JP2011228086A - Porous electrode base material and method of manufacturing the same - Google Patents

Porous electrode base material and method of manufacturing the same Download PDF

Info

Publication number
JP2011228086A
JP2011228086A JP2010096042A JP2010096042A JP2011228086A JP 2011228086 A JP2011228086 A JP 2011228086A JP 2010096042 A JP2010096042 A JP 2010096042A JP 2010096042 A JP2010096042 A JP 2010096042A JP 2011228086 A JP2011228086 A JP 2011228086A
Authority
JP
Japan
Prior art keywords
fiber
carbon
porous electrode
short
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010096042A
Other languages
Japanese (ja)
Other versions
JP5526969B2 (en
Inventor
Kazuhiro Sumioka
和宏 隅岡
Yoshihiro Sako
佳弘 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010096042A priority Critical patent/JP5526969B2/en
Publication of JP2011228086A publication Critical patent/JP2011228086A/en
Application granted granted Critical
Publication of JP5526969B2 publication Critical patent/JP5526969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Fibers (AREA)
  • Multicomponent Fibers (AREA)
  • Paper (AREA)
  • Inert Electrodes (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous electrode base material and its manufacturing method, which can be manufactured at a low cost, and offer a high thickness precision and surface smoothness, and which has sufficient handleability, air permeability and electrical conductivity.SOLUTION: A method of manufacturing a porous electrode base material with pieces of carbon short fiber (A) connected by 3D-network-texture carbon fiber (B) includes the steps of: using carbon short fiber (A), and carbon-fiber-precursor short fiber (b) consisting of polyacrylonitrile polymer/phenol resin and fibrillated by beating to manufacture a precursor sheet, in which the carbon short fiber (A) and carbon fiber precursor short fiber (b') resulting from the fibrillation of the carbon-fiber-precursor short fiber (b) by beating are distributed; and carbonizing the precursor sheet.

Description

本発明は、燃料電池に用いられる多孔質電極基材とその製造方法に関する。   The present invention relates to a porous electrode substrate used for a fuel cell and a method for producing the same.

燃料電池に設置されるガス拡散電極基材は、従来機械的強度を高くするために、炭素短繊維を抄造後、有機高分子で結着させ、これを高温で焼成して有機高分子を炭素化させたペーパー状の炭素/炭素複合体からなる多孔質電極基材であった(特許文献1参照)。また、低コスト化を目的として、酸化短繊維を抄造後、これを高温で焼成して酸化短繊維を炭素化させた多孔質電極基材が提案されている(特許文献2参照)。さらには、複数の炭素繊維を含んで成るマット;および該炭素繊維マットに組み込まれた複数のアクリルパルプ繊維を含んでなり、該アクリルパルプ繊維は、炭素繊維マットに組み込まれた後に硬化され炭化される燃料電池用ガス拡散層が提案されている(特許文献3参照)。   In order to increase mechanical strength, gas diffusion electrode base materials installed in fuel cells are conventionally made by making short carbon fibers, binding them with organic polymers, and firing them at a high temperature to convert the organic polymers into carbon. It was the porous electrode base material which consists of carbonized carbon / carbon composite (refer patent document 1). Also, for the purpose of reducing the cost, a porous electrode substrate has been proposed in which oxidized short fibers are made and then fired at a high temperature to carbonize the oxidized short fibers (see Patent Document 2). A mat comprising a plurality of carbon fibers; and a plurality of acrylic pulp fibers incorporated into the carbon fiber mat, the acrylic pulp fibers being cured and carbonized after being incorporated into the carbon fiber mat. A gas diffusion layer for a fuel cell has been proposed (see Patent Document 3).

国際公開第2001/056103号パンフレットInternational Publication No. 2001/056103 Pamphlet 国際公開第2002/042534号パンフレットInternational Publication No. 2002/042534 Pamphlet 特開2007−273466号公報JP 2007-273466 A

しかし、特許文献1に開示されている多孔質炭素電極基材は、機械的強度および表面平滑性が高く、十分なガス透気度および導電性を有しているもの、製造工程が複雑であるため製造コストが高くなる問題があった。特許文献2に開示されている炭素繊維シートの製法は、低コスト化は可能であるものの、焼成時の収縮が大きく、得られる多孔質電極基材の厚みムラが大きいことやシートのうねりが大きいという問題があった。特許文献3に開示されている多孔質電極基材は、低コスト化は可能であるが、シート化する際の炭素繊維とアクリルパルプの絡みが少なく、ハンドリングが困難であるという問題があった。また、アクリルパルプは繊維状材料と比較してポリマーの分子配向がほとんどないため、炭素化時の炭素化率が低く、ハンドリング性を高めるためには、多くのアクリルパルプを添加する必要があった。   However, the porous carbon electrode substrate disclosed in Patent Document 1 has high mechanical strength and surface smoothness, has sufficient gas permeability and conductivity, and the manufacturing process is complicated. Therefore, there has been a problem that the manufacturing cost becomes high. Although the carbon fiber sheet manufacturing method disclosed in Patent Document 2 can reduce the cost, the shrinkage at the time of firing is large, the thickness unevenness of the obtained porous electrode substrate is large, and the sheet has a large swell. There was a problem. Although the porous electrode substrate disclosed in Patent Document 3 can be reduced in cost, there is a problem that handling is difficult because there is little entanglement between carbon fibers and acrylic pulp when forming into a sheet. In addition, since acrylic pulp has almost no molecular orientation of the polymer compared to fibrous materials, the carbonization rate during carbonization is low, and it was necessary to add a large amount of acrylic pulp in order to improve handling properties. .

本発明は、上記のような問題点を克服し、製造コストが低く、厚み精度および表面平滑性が高く、十分なハンドリング性をもち、かつ十分なガス透気度および導電性を持った多孔質電極基材およびその製造方法を提供することを目的とする。   The present invention overcomes the above-mentioned problems, has a low manufacturing cost, has high thickness accuracy and surface smoothness, has sufficient handling properties, and has a sufficient gas permeability and conductivity. It aims at providing an electrode base material and its manufacturing method.

本発明者等は、前記課題が、以下の発明[1]〜[7]によって解決されることを見出した。
[1]炭素短繊維(A)と、ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する炭素繊維前駆体短繊維(b)とを用いて、前記炭素短繊維(A)と、前記炭素繊維前駆体短繊維(b)が叩解によってフィブリル化した炭素繊維前駆体短繊維(b’)とが分散した前駆体シートを製造する工程(1)、および前記前駆体シートを炭素化処理する工程(2)を有する多孔質電極基材の製造方法。
[2]前記工程(1)と前記工程(2)の間に、前記前駆体シートを加熱加圧成型する工程(3)を有する前記[1]に記載の多孔質電極基材の製造方法。
[3]前記工程(3)と前記工程(2)の間に、加熱加圧成型された前記前駆体シートを酸化処理する工程(4)を有する前記[2]に記載の多孔質電極基材の製造方法。
[4]前記[1]〜[3]のいずれかに記載の多孔質電極基材の製造方法で製造される多孔質電極基材。
[5]炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合されてなる多孔質電極基材。
[6]ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する易割繊性海島複合繊維。
[7]前記[6]に記載の易割繊性海島複合繊維を切断した炭素繊維前駆体短繊維。
The present inventors have found that the above problems are solved by the following inventions [1] to [7].
[1] A carbon short fiber (A), a carbon fiber precursor short fiber (b) comprising a polyacrylonitrile-based polymer / phenol resin and fibrillated by beating, the carbon short fiber (A), Step (1) of producing a precursor sheet in which carbon fiber precursor short fibers (b ′) in which carbon fiber precursor short fibers (b) are fibrillated by beating are dispersed, and carbonizing the precursor sheet The manufacturing method of the porous electrode base material which has a process (2).
[2] The method for producing a porous electrode substrate according to [1], further including a step (3) of heat-press molding the precursor sheet between the step (1) and the step (2).
[3] The porous electrode substrate according to [2], further including a step (4) of oxidizing the precursor sheet formed by heating and pressing between the step (3) and the step (2). Manufacturing method.
[4] A porous electrode substrate produced by the method for producing a porous electrode substrate according to any one of [1] to [3].
[5] A porous electrode substrate in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B).
[6] An easily split sea-island composite fiber made of polyacrylonitrile-based polymer / phenolic resin and fibrillated by beating.
[7] A carbon fiber precursor short fiber obtained by cutting the easily splittable sea-island composite fiber according to [6].

本発明によれば、製造コストが低く、厚み精度および表面平滑性が高く、十分なハンドリング性をもち、かつ十分なガス透気度および導電性を持った多孔質電極基材を得ることができる。また、本発明の多孔質電極基材の製造方法によれば、前記多孔質電極基材を低コストで製造することができる。   According to the present invention, it is possible to obtain a porous electrode substrate with low manufacturing cost, high thickness accuracy and high surface smoothness, sufficient handling properties, and sufficient gas permeability and conductivity. . Moreover, according to the manufacturing method of the porous electrode base material of this invention, the said porous electrode base material can be manufactured at low cost.

実施例2で得られた多孔質電極基材の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of a porous electrode substrate obtained in Example 2. FIG.

<多孔質電極基材>
本発明に係る多孔質電極基材は、炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合されてなる。
<Porous electrode substrate>
The porous electrode substrate according to the present invention is formed by joining short carbon fibers (A) with three-dimensional network carbon fibers (B).

多孔質電極基材は、シート状、渦巻き状等の形状をとることができる。シート状にした場合、多孔質電極基材の目付は15〜100g/m2程度が好ましく、空隙率は50〜90%程度が好ましく、厚みは50〜300μm程度が好ましく、うねりは5mm以下が好ましい。多孔質電極基材のガス透気度は、500〜20000ml/hr/cm2/mmAqであることが好ましい。また、多孔質電極基材の貫通方向抵抗厚さ方向の電気抵抗(貫通方向抵抗)は、50mΩ・cm2以下であることが好ましい。なお、多孔質電極基材のガス透気度および貫通方向抵抗の測定方法は、後述する。 The porous electrode substrate can take a sheet shape, a spiral shape, or the like. When formed into a sheet, the basis weight of the porous electrode substrate is preferably about 15 to 100 g / m 2 , the porosity is preferably about 50 to 90%, the thickness is preferably about 50 to 300 μm, and the undulation is preferably 5 mm or less. . The gas air permeability of the porous electrode base material is preferably 500 to 20000 ml / hr / cm 2 / mmAq. Moreover, it is preferable that the electrical resistance (penetration direction resistance) of the porous electrode substrate in the penetration direction resistance thickness direction is 50 mΩ · cm 2 or less. In addition, the measuring method of the gas permeability of a porous electrode base material and penetration direction resistance is mentioned later.

<炭素短繊維(A)>
多孔質電極基材を構成する炭素短繊維(A)としては、ポリアクリロニトリル系炭素繊維(以下「PAN系炭素繊維」という。)、ピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊維を適当な長さに切断してものが挙げられる。多孔質電極基材の機械的強度の観点から、PAN系炭素繊維が好ましい。
<Short carbon fiber (A)>
As the carbon short fibers (A) constituting the porous electrode substrate, carbon fibers such as polyacrylonitrile-based carbon fibers (hereinafter referred to as “PAN-based carbon fibers”), pitch-based carbon fibers, and rayon-based carbon fibers are appropriately used. It can be cut into lengths. From the viewpoint of the mechanical strength of the porous electrode substrate, PAN-based carbon fibers are preferred.

炭素短繊維(A)の平均繊維長は、分散性の点から、2〜12mm程度であることが好ましい。炭素短繊維(A)の平均繊維径は、炭素短繊維の生産コストおよび分散性の面から、3〜9μmであることが好ましく、多孔質電極基材の平滑性の面から、4〜8μmであることがより好ましい。   The average fiber length of the short carbon fibers (A) is preferably about 2 to 12 mm from the viewpoint of dispersibility. The average fiber diameter of the short carbon fibers (A) is preferably 3 to 9 μm from the viewpoint of production cost and dispersibility of the short carbon fibers, and 4 to 8 μm from the smoothness aspect of the porous electrode substrate. More preferably.

<分散>
多孔質電極基材を構成する炭素短繊維(A)は、通常、2次元平面内において分散している。ここで、「2次元平面内において分散」とは、炭素短繊維(A)が、シート状の電極基材の表面に平行またはほぼ平行に存在していることを意味する。このように分散状態しているので、炭素短繊維(A)による短絡や炭素短繊維(A)の折損を防止することができる。また、この2次元平面内での炭素短繊維(A)の配向方向は、実質的にランダムであっても良く、特定方向への配向性が高くなっていても良い。
<Dispersion>
The short carbon fibers (A) constituting the porous electrode substrate are usually dispersed in a two-dimensional plane. Here, “dispersed in a two-dimensional plane” means that the short carbon fibers (A) are present in parallel or substantially parallel to the surface of the sheet-like electrode substrate. Since it is dispersed in this way, it is possible to prevent short-circuiting by the short carbon fibers (A) and breakage of the short carbon fibers (A). In addition, the orientation direction of the short carbon fibers (A) in the two-dimensional plane may be substantially random, and the orientation in a specific direction may be high.

炭素短繊維(A)は、多孔質電極基材中において直線状を保って存在している。また、多孔質電極基材中において、炭素短繊維(A)同士は直接結合しておらず、3次元網目状炭素繊維(B)によって接合されている。   The short carbon fibers (A) are present in a linear shape in the porous electrode substrate. Further, in the porous electrode base material, the short carbon fibers (A) are not directly bonded to each other, and are joined by the three-dimensional network carbon fibers (B).

<3次元網目状炭素繊維(B)>
3次元網目状炭素繊維(B)は、炭素短繊維(A)同士を接合する繊維であり、接合部において屈曲状または湾曲状になっている状態で存在し、それぞれが3次元的な網目構造を形成している。多孔質電極基材における3次元網目状炭素繊維(B)の含有率は、10〜90質量%が好ましい。多孔質電極基材の機械的強度を十分なものに保つため、3次元網目状炭素繊維(B)の含有率は、15〜80質量%がより好ましい。
<Three-dimensional network carbon fiber (B)>
The three-dimensional network carbon fiber (B) is a fiber that joins the short carbon fibers (A) to each other, and exists in a bent or curved state at the joint, and each has a three-dimensional network structure. Is forming. The content of the three-dimensional network carbon fiber (B) in the porous electrode substrate is preferably 10 to 90% by mass. In order to keep the mechanical strength of the porous electrode substrate sufficiently, the content of the three-dimensional network carbon fiber (B) is more preferably 15 to 80% by mass.

<多孔質電極基材の製造方法>
本発明に係る多孔質電極基材は、次のような方法により製造することができる。第1の方法は、炭素短繊維(A)と炭素繊維前駆体短繊維(b)とを用いて、炭素短繊維(A)と、炭素繊維前駆体短繊維(b)が叩解によってフィブリル化した炭素繊維前駆体短繊維(b’)とが分散した前駆体シートを製造する工程(1)、およびその前駆体シートを炭素化処理する工程(2)を順次行う方法である。第2の方法は、工程(1)、その前駆体シートを加熱加圧成型する工程(3)、および工程(2)を順次行う方法である。第3の方法は、工程(1)、工程(3)、加熱加圧成型された前駆体シートを酸化処理する工程(4)、および工程(2)を順次行う方法である。
<Method for producing porous electrode substrate>
The porous electrode substrate according to the present invention can be produced by the following method. In the first method, the carbon short fiber (A) and the carbon fiber precursor short fiber (b) were fibrillated by beating using the carbon short fiber (A) and the carbon fiber precursor short fiber (b). In this method, a step (1) of producing a precursor sheet in which carbon fiber precursor short fibers (b ′) are dispersed and a step (2) of carbonizing the precursor sheet are sequentially performed. The second method is a method of sequentially performing the step (1), the step (3) of heat-press molding the precursor sheet, and the step (2). The third method is a method of sequentially performing the step (1), the step (3), the step (4) of oxidizing the heat-pressed precursor sheet, and the step (2).

<炭素繊維前駆体短繊維(b)>
炭素繊維前駆体短繊維(b)は、ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、リファイナーやパルパーなどによって叩解してフィブリル化するものである。炭素繊維前駆体短繊維(b)は、共通の溶剤に溶解しかつ非相溶性である、ポリアクリロニトリル系ポリマーおよびフェノール樹脂を用いて製造される。特に、製造コストの低減および導電性発現の観点から、炭素化処理する工程における残存質量が20質量%以上であることが好ましい。
<Carbon fiber precursor short fiber (b)>
The carbon fiber precursor short fiber (b) is made of polyacrylonitrile-based polymer / phenol resin and is fibrillated by beating with a refiner or a pulper. The carbon fiber precursor short fiber (b) is produced using a polyacrylonitrile-based polymer and a phenol resin, which are soluble in a common solvent and are incompatible. In particular, from the viewpoint of reduction in manufacturing cost and expression of conductivity, it is preferable that the residual mass in the carbonization treatment step is 20% by mass or more.

ポリアクリロニトリル系ポリマーは、アクリロニトリルを単独重合したポリマーであっても、アクリロニトリルとその他のモノマーとを共重合したポリマーであってもよいが、紡糸性および炭素化処理工程における残存質量の観点から、アクリロニトリル単位を50質量%以上含有するポリアクリロニトリル系ポリマーが好ましい。アクリロニトリルと共重合されるモノマーとしては、一般的なアクリル系繊維を構成する不飽和モノマーであれば特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸ヒドロキシプロピルなどに代表されるアクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチルなどに代表されるメタクリル酸エステル類;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどが挙げられる。ポリアクリロニトリル系ポリマーは、炭素化処理する工程における残存質量が20質量%以上であることが好ましい。   The polyacrylonitrile-based polymer may be a polymer obtained by homopolymerizing acrylonitrile or a polymer obtained by copolymerizing acrylonitrile and other monomers, but from the viewpoint of spinnability and residual mass in the carbonization process, acrylonitrile. A polyacrylonitrile-based polymer containing 50% by mass or more of units is preferable. The monomer copolymerized with acrylonitrile is not particularly limited as long as it is an unsaturated monomer constituting a general acrylic fiber. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, Acrylic esters represented by 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, etc .; methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, methacrylic acid Typical examples include t-butyl acid, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate and the like. Methacrylic acid esters; acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylol acrylamide, diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinylidene bromide, vinyl fluoride, And vinylidene fluoride. The polyacrylonitrile-based polymer preferably has a residual mass of 20% by mass or more in the carbonization process.

ポリアクリロニトリル系ポリマーの重量平均分子量は、特に限定されないが、5万〜100万が好ましい。ポリアクリロニトリル系ポリマーの重量平均分子量が5万以上であることで、紡糸性が向上すると同時に、繊維の糸質が良好になる傾向にある。また、ポリアクリロニトリル系ポリマーの重量平均分子量が100万以下であることで、紡糸原液の最適粘度を与えるポリマー濃度が高くなり、生産性が向上する傾向にある。   The weight average molecular weight of the polyacrylonitrile polymer is not particularly limited, but is preferably 50,000 to 1,000,000. When the weight average molecular weight of the polyacrylonitrile-based polymer is 50,000 or more, the spinnability is improved and at the same time the yarn quality of the fiber tends to be good. Further, when the weight average molecular weight of the polyacrylonitrile-based polymer is 1,000,000 or less, the polymer concentration that gives the optimum viscosity of the spinning dope increases, and the productivity tends to be improved.

フェノール樹脂は、炭素化後も導電性物質として残存する物質であり、紡糸性の観点から、常温(10〜40℃)において固体であることが好ましい。フェノール樹脂として、常温において固体でかつ熱融着性を示すノボラックタイプのフェノール樹脂を単独で用いることもできるが、それと、フェノール類とアルデヒド類の反応によって得られるレゾールタイプのフェノール樹脂を混合することも好ましい。フェノール樹脂は、炭素化処理する工程における残存質量が20質量%以上であることが好ましい。なお、フェノール樹脂の種類や、炭素化温度等によって炭素化処理する工程における残存質量が異なる。   The phenol resin is a substance that remains as a conductive substance even after carbonization, and is preferably solid at room temperature (10 to 40 ° C.) from the viewpoint of spinnability. As the phenolic resin, a novolac type phenolic resin that is solid at room temperature and exhibits heat fusion properties can be used alone, but it is mixed with a resol type phenolic resin obtained by the reaction of phenols and aldehydes. Is also preferable. It is preferable that the residual mass in the step of carbonizing the phenol resin is 20% by mass or more. In addition, the residual mass in the process of carbonizing differs depending on the type of phenol resin, the carbonization temperature, and the like.

炭素繊維前駆体短繊維(b)に含まれるポリアクリロニトリル系ポリマーとフェノール樹脂の質量比は、後述する叩解処理により少なくとも一部分が割繊し、フィブリル化させる観点から、30:70〜80:20が好ましい。   The mass ratio of the polyacrylonitrile-based polymer and the phenol resin contained in the carbon fiber precursor short fiber (b) is 30:70 to 80:20 from the viewpoint of at least partially splitting and fibrillating by a beating process described later. preferable.

炭素繊維前駆体短繊維(b)の断面形状は、特に限定されない。分散性、炭素化時の収縮による破断を抑制するため、炭素繊維前駆体短繊維(b)の繊度は、1〜10dtexであることが好ましい。   The cross-sectional shape of the carbon fiber precursor short fiber (b) is not particularly limited. In order to suppress dispersibility and breakage due to shrinkage during carbonization, the fineness of the carbon fiber precursor short fiber (b) is preferably 1 to 10 dtex.

炭素繊維前駆体短繊維(b)の平均繊維長は、分散性の観点から、1〜20mmが好ましい。   The average fiber length of the carbon fiber precursor short fibers (b) is preferably 1 to 20 mm from the viewpoint of dispersibility.

炭素繊維前駆体短繊維(b)は、機械的外力により相分離界面の剥離により叩解して、その少なくとも一部分が割繊し、フィブリル化した炭素繊維前駆体短繊維(b’)となる。叩解方法は、特に限定されないが、例えば、リファイナーやパルパー、ビーター、または加圧水流の噴射(ウオータージェットパンチング)によりフィブリル化することが可能である。   The carbon fiber precursor short fiber (b) is beaten by peeling of the phase separation interface by a mechanical external force, and at least a part of the carbon fiber precursor short fiber is split into a fibrillated carbon fiber precursor short fiber (b '). The beating method is not particularly limited, and for example, fibrillation can be performed by a refiner, a pulper, a beater, or a jet of pressurized water (water jet punching).

このような炭素繊維前駆体短繊維(b)は、その種類や炭素短繊維(A)との混合比、酸化処理の有無によって、最終的に得られる多孔質電極基材中に3次元網目状炭素繊維(B)として残る割合が異なる。炭素短繊維(A)と炭素繊維前駆体短繊維(b)との混合比は、炭素短繊維(A)100質量部に対して、炭素繊維前駆体短繊維(b)が50〜300質量部程度であることが好ましい。炭素繊維前駆体短繊維(b)を50質量部以上とすることで、形成される3次元網目状炭素繊維(B)の量が多くなるため、多孔質電極基材シートの強度が向上する。炭素繊維前駆体短繊維(b)を300質量部以下とすることで、炭素化時の炭素繊維前駆体短繊維(b)の収縮を抑制する炭素短繊維(A)が少ないことに起因するシートが収縮することを抑制でき、多孔質電極基材シートの強度が向上する。   Such a carbon fiber precursor short fiber (b) has a three-dimensional network shape in the finally obtained porous electrode base material depending on the type, the mixing ratio with the carbon short fiber (A), and the presence or absence of oxidation treatment. The proportions remaining as carbon fibers (B) are different. The mixing ratio of the carbon short fiber (A) and the carbon fiber precursor short fiber (b) is 50 to 300 parts by mass of the carbon fiber precursor short fiber (b) with respect to 100 parts by mass of the carbon short fiber (A). It is preferable that it is a grade. By setting the carbon fiber precursor short fiber (b) to 50 parts by mass or more, the amount of the three-dimensional network carbon fiber (B) to be formed increases, so that the strength of the porous electrode substrate sheet is improved. Sheets resulting from less carbon short fibers (A) that suppress the shrinkage of carbon fiber precursor short fibers (b) during carbonization by setting the carbon fiber precursor short fibers (b) to 300 parts by mass or less. Can be suppressed, and the strength of the porous electrode substrate sheet is improved.

炭素繊維前駆体短繊維(b)を機械的外力により相分離界面の剥離により叩解する際の、叩解方法、叩解時間に依存して、フィブリル化の状態は変化する。フィブリル化の度合いを評価する方法として、濾水度評価(JIS P8121(パルプ濾水度試験法:カナダ標準型))を用いることができる。   The fibrillation state changes depending on the beating method and beating time when beating the carbon fiber precursor short fiber (b) by peeling of the phase separation interface by mechanical external force. As a method for evaluating the degree of fibrillation, freeness evaluation (JIS P8121 (pulp freeness test method: Canadian standard type)) can be used.

炭素繊維前駆体短繊維(b)を叩解させた炭素繊維前駆体短繊維(b’)の濾水度、つまり炭素繊維前駆体短繊維(b’)のフィブリル化の度合いは特に限定されない。濾水度が小さくなるにつれ、3次元網目状炭素繊維(B)が形成されやすい傾向となる。また十分な叩解を実施せず、濾水度が大きいままの炭素繊維前駆体短繊維(b’)を用いると、3次元網目状炭素繊維(B)と、多孔質炭素繊維が混在した状態になる傾向となる。そのような傾向を考慮し、炭素繊維前駆体短繊維(b)を叩解させた炭素繊維前駆体短繊維(b’)の濾水度は500cc以下とすることが好ましい。   The freeness of the carbon fiber precursor short fiber (b ′) obtained by beating the carbon fiber precursor short fiber (b), that is, the degree of fibrillation of the carbon fiber precursor short fiber (b ′) is not particularly limited. As the freeness decreases, the three-dimensional network carbon fiber (B) tends to be easily formed. In addition, when carbon fiber precursor short fibers (b ′) that are not sufficiently beaten and have a high freeness are used, the three-dimensional network carbon fibers (B) and the porous carbon fibers are mixed. Tend to be. In consideration of such a tendency, it is preferable that the freeness of the carbon fiber precursor short fiber (b ′) obtained by beating the carbon fiber precursor short fiber (b) is 500 cc or less.

なお、炭素繊維前駆体短繊維(b)は、あらかじめ叩解した状態で炭素短繊維(A)と混合、分散させ、後述する前駆体シートを製造してもよいし、前駆体シートを製造する際に、炭素短繊維(A)と混合、分散させながら叩解されてもよい。   In addition, the carbon fiber precursor short fiber (b) may be mixed and dispersed with the carbon short fiber (A) in a beating state in advance to produce a precursor sheet to be described later, or when producing the precursor sheet. Further, it may be beaten while being mixed and dispersed with the short carbon fibers (A).

<易割繊性海島複合繊維>
以下、上記炭素繊維前駆体短繊維(b)の好ましい態様として、易割繊性海島複合繊維について説明する。本発明に係る易割繊性海島複合繊維は、ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する性質を有する。この易割繊性海島複合繊維を適当な長さ(例えば、繊維長1〜20mm)に切断したものを前述の炭素繊維前駆体短繊維(b)として用いることができる。易割繊性海島複合繊維は、通常の紡糸法で製造することができる。
<Easily split sea island composite fiber>
Hereinafter, an easily splittable sea-island composite fiber will be described as a preferred embodiment of the carbon fiber precursor short fiber (b). The easily splittable sea-island composite fiber according to the present invention is composed of a polyacrylonitrile-based polymer / phenolic resin and has a property of fibrillation by beating. What cut this easily split sea-island composite fiber in suitable length (for example, fiber length 1-20 mm) can be used as the above-mentioned carbon fiber precursor short fiber (b). The splittable sea-island composite fiber can be produced by a normal spinning method.

まず、ポリアクリロニトリル系ポリマーとフェノール樹脂とを同時に溶剤に溶解して、易割繊性海島複合繊維の紡糸原液とする。または、ポリアクリロニトリル系ポリマーを溶剤に溶解して得られる紡糸原液と、フェノール樹脂を溶剤に溶解して得られる紡糸原液とを、スタティックミキサー等で混合し、易割繊性海島複合繊維の紡糸原液としてもよい。溶剤としては、ジメチルアミド、ジメチルホルムアミド、ジメチルスルフォキシドなどの有機溶剤を用いることができる。紡糸原液は、ポリアクリロニトリル系ポリマーとフェノール樹脂の合計ポリマー濃度で12〜30質量%に調整することが好ましい。   First, a polyacrylonitrile-based polymer and a phenol resin are simultaneously dissolved in a solvent to obtain a spinning dope for an easily splittable sea-island composite fiber. Alternatively, a spinning stock solution obtained by dissolving a polyacrylonitrile-based polymer in a solvent and a spinning stock solution obtained by dissolving a phenol resin in a solvent are mixed with a static mixer, etc. It is good. As the solvent, organic solvents such as dimethylamide, dimethylformamide, dimethyl sulfoxide and the like can be used. The spinning dope is preferably adjusted to 12 to 30% by mass with the total polymer concentration of the polyacrylonitrile-based polymer and the phenol resin.

次いで、得られた紡糸原液を、ノズルより紡糸し、適宜、湿熱延伸、洗浄、乾燥および乾熱延伸を施こすことで、易割繊性海島複合繊維を得ることができる。紡糸方法としては、一般的にアクリル繊維の製造に用いられる湿式法、乾湿式法、乾式法のいずれも用いることができるが、紡糸口金より紡糸原液を凝固浴に吐出し凝固させる湿式法が好ましい。紡糸口金の孔形状は、丸型であることが好ましい。凝固糸は、引き続き、洗浄、延伸および乾燥の各工程を経ることが好ましい。なお、全延伸倍率は1.5〜4.0倍の間に設定されることが好ましい。全延伸倍率を1.5倍以上とすることで、凝固浴での糸切れが起きなくなり、工程通過性が良好となる。また、全延伸倍率を4.0倍以下とすることで、繊維の配向が抑制され割繊性が良好となる。   Subsequently, the obtained spinning dope is spun from a nozzle and subjected to wet heat drawing, washing, drying and dry heat drawing as appropriate, whereby an easily split sea-island composite fiber can be obtained. As the spinning method, any of a wet method, a dry-wet method, and a dry method that are generally used for the production of acrylic fibers can be used. . The hole shape of the spinneret is preferably a round shape. It is preferable that the coagulated yarn is subsequently subjected to washing, drawing and drying steps. The total draw ratio is preferably set between 1.5 and 4.0 times. By setting the total draw ratio to 1.5 times or more, yarn breakage does not occur in the coagulation bath, and process passability is improved. Moreover, by setting the total draw ratio to 4.0 times or less, the fiber orientation is suppressed and the splitting property is improved.

こうして、ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する易割繊性海島複合繊維を得ることができる。   Thus, an easily split sea-island composite fiber made of polyacrylonitrile-based polymer / phenolic resin and fibrillated by beating can be obtained.

<前駆体シートを製造する工程(1)>
前駆体シートの製造方法としては、液体の媒体中に炭素短繊維(A)および炭素繊維前駆体短繊維(b)を分散させて抄造する湿式法、空気中に炭素短繊維(A)および炭素繊維前駆体短繊維(b)を分散させて降り積もらせる乾式法、などの抄紙方法を適用できるが、シートの均一性が高いという観点から湿式法が好ましい。炭素短繊維(A)が単繊維に開繊するのを助け、開繊した単繊維が再収束することを防止するためにも、炭素繊維前駆体短繊維(b)を使用し、また必要に応じて有機高分子化合物をバインダーとして使用して、湿式抄紙することもできる。有機高分子化合物は、炭素短繊維(A)と炭素繊維前駆体短繊維(b’)とを含む前駆体シート中で、各成分をつなぎとめるバインダー(糊剤)としての役割を有する。ただし、炭素短繊維(A)と炭素繊維前駆体短繊維(b’)の絡みが多いため、有機高分子化合物を用いずにシート化することも可能である。
<Process for producing precursor sheet (1)>
As a method for producing a precursor sheet, a wet method in which a short carbon fiber (A) and a short carbon fiber precursor fiber (b) are dispersed in a liquid medium to make paper, a short carbon fiber (A) and carbon in air A paper making method such as a dry method in which the fiber precursor short fibers (b) are dispersed and deposited can be applied, but a wet method is preferred from the viewpoint of high sheet uniformity. In order to help the carbon short fibers (A) to open into single fibers and prevent the opened single fibers from refocusing, the carbon fiber precursor short fibers (b) are used and necessary. Accordingly, wet papermaking can be performed using an organic polymer compound as a binder. The organic polymer compound has a role as a binder (glue) that holds the components together in the precursor sheet containing the short carbon fibers (A) and the short carbon fiber precursor fibers (b ′). However, since there are many entanglements between the short carbon fiber (A) and the short carbon fiber precursor fiber (b ′), it is possible to form a sheet without using an organic polymer compound.

炭素短繊維(A)および炭素繊維前駆体短繊維(b)を分散させる媒体としては、例えば、水、アルコールなど、炭素繊維前駆体短繊維(b)が溶解しない媒体が挙げられるが、生産性の観点から、水が好ましい。   Examples of the medium in which the carbon short fibers (A) and the carbon fiber precursor short fibers (b) are dispersed include a medium in which the carbon fiber precursor short fibers (b) are not dissolved, such as water and alcohol. From the viewpoint of water, water is preferable.

炭素短繊維(A)と、炭素繊維前駆体短繊維(b)と、有機高分子化合物とを混合する方法としては、水中で攪拌分散させる方法、これらを直接混ぜ込む方法が挙げられるが、均一に分散させる観点から、水中で拡散分散させる方法が好ましい。炭素短繊維(A)と炭素繊維前駆体短繊維(b)を、有機高分子化合物を混合し、抄紙して前駆体シートを製造することにより、前駆体シートの強度が向上する。また、その製造途中で、前駆体シートから炭素短繊維(A)が剥離し、炭素短繊維(A)の配向が変化することを防止することができる。有機高分子化合物としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニルなどを用いることができる。特に、抄紙工程での結着力に優れ、炭素短繊維の脱落が少ないことから、ポリビニルアルコールが好ましい。本発明では、有機高分子化合物を繊維形状にして用いることも可能である。   Examples of the method of mixing the carbon short fiber (A), the carbon fiber precursor short fiber (b), and the organic polymer compound include a method of stirring and dispersing in water, and a method of directly mixing these, From the viewpoint of dispersing in water, a method of diffusing and dispersing in water is preferred. The strength of the precursor sheet is improved by mixing a short carbon fiber (A) and a short carbon fiber precursor fiber (b) with an organic polymer compound and making a paper to produce a precursor sheet. Moreover, it can prevent that the carbon short fiber (A) peels from a precursor sheet | seat during the manufacture, and the orientation of a carbon short fiber (A) changes. As the organic polymer compound, polyvinyl alcohol (PVA), polyvinyl acetate, or the like can be used. In particular, polyvinyl alcohol is preferred because it has excellent binding power in the paper making process and the short carbon fibers are less likely to fall off. In the present invention, it is also possible to use an organic polymer compound in the form of a fiber.

前駆体シートは、連続法とバッチ法のいずれによっても製造できるが、前駆体シートの生産性および機械的強度の観点から、連続法で製造することが好ましい。   The precursor sheet can be produced by either a continuous method or a batch method, but it is preferably produced by a continuous method from the viewpoint of the productivity and mechanical strength of the precursor sheet.

前駆体シートの目付は、10〜200g/m2程度であることが好ましい。また、前駆体シートの厚みは、20〜400μm程度であることが好ましい。 The basis weight of the precursor sheet is preferably about 10 to 200 g / m2. Moreover, it is preferable that the thickness of a precursor sheet | seat is about 20-400 micrometers.

<炭素化処理する工程(2)>
前駆体シートは、そのまま炭素化処理することができ、加熱加圧成型後に炭素化処理することもでき、加熱加圧成型後の前駆体シートを酸化処理した後に炭素化処理することもできる。炭素短繊維(A)を炭素繊維前駆体短繊維(b’)で融着させ、かつ炭素繊維前駆体短繊維(b’)を炭素化して3次元網目状炭素繊維(B)とすることより、得られる多孔質電極基材の機械的強度および導電性が高くなる。
<Step of carbonization treatment (2)>
The precursor sheet can be carbonized as it is, can be carbonized after heat-pressure molding, or can be carbonized after oxidation treatment of the precursor sheet after heat-pressure molding. By fusing the carbon short fiber (A) with the carbon fiber precursor short fiber (b ′) and carbonizing the carbon fiber precursor short fiber (b ′) to obtain a three-dimensional network carbon fiber (B). Thus, the mechanical strength and conductivity of the obtained porous electrode substrate are increased.

炭素化処理は、得られる多孔質電極基材の導電性を高めるために、不活性ガス中で行うことが好ましい。炭素化処理は、通常1000℃以上の温度で行なわれる。炭素化処理する温度範囲は、1000〜3000℃が好ましく、1000〜2200℃がより好ましい。炭素化処理を行う時間は、例えば10分〜1時間程度である。また、炭素化処理の前に、300〜800℃の程度の不活性雰囲気での焼成による前処理を行うことができる。   The carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the obtained porous electrode substrate. The carbonization treatment is usually performed at a temperature of 1000 ° C. or higher. 1000-3000 degreeC is preferable and, as for the temperature range which carbonizes, 1000-2200 degreeC is more preferable. The time for performing the carbonization treatment is, for example, about 10 minutes to 1 hour. Moreover, the pretreatment by baking in an inert atmosphere of about 300 to 800 ° C. can be performed before the carbonization treatment.

連続的に製造された前駆体シートを炭素化処理する場合は、製造コスト低減化の観点から、前駆体シートの全長にわたって連続で炭素化処理を行うことが好ましい。多孔質電極基材が長尺であれば、多孔質電極基材の生産性が高くなり、かつその後のMEA製造も連続で行うことができるので、燃料電池の製造コストを低減できる。また、多孔質電極基材や燃料電池の生産性および製造コスト低減化の観点から、製造された多孔質電極基材を連続的に巻き取ることが好ましい。   When carbonizing the continuously manufactured precursor sheet, it is preferable to perform the carbonizing process continuously over the entire length of the precursor sheet from the viewpoint of reducing the manufacturing cost. If the porous electrode base material is long, the productivity of the porous electrode base material becomes high, and subsequent MEA production can be performed continuously, so that the manufacturing cost of the fuel cell can be reduced. Moreover, it is preferable to wind up the manufactured porous electrode base material continuously from a viewpoint of productivity and reduction of manufacturing cost of a porous electrode base material and a fuel cell.

<加熱加圧成型する工程(3)>
炭素短繊維(A)を炭素繊維前駆体短繊維(b’)で融着させ、かつ多孔質電極基材の厚みムラを低減させるという観点から、炭素化処理の前に、前駆体シートを200℃未満の温度で加熱加圧成型することが好ましい。加熱加圧成型は、前駆体シートを均等に加熱加圧成型できる技術であれば、いかなる技術も適用できる。例えば、前駆体シートの両面に平滑な剛板を当てて熱プレスする方法、連続ベルトプレス装置を用いる方法が挙げられる。
<Step of heat and pressure molding (3)>
From the viewpoint of fusing the carbon short fibers (A) with the carbon fiber precursor short fibers (b ′) and reducing the thickness unevenness of the porous electrode substrate, the precursor sheet is 200 It is preferable to perform heat and pressure molding at a temperature of less than ° C. Any technique can be applied to the heat and pressure molding as long as the technique can uniformly heat and mold the precursor sheet. For example, a method in which a smooth rigid plate is applied to both surfaces of the precursor sheet and heat-pressed, and a method using a continuous belt press apparatus are included.

連続的に製造された前駆体シートを加熱加圧成型する場合には、連続ベルトプレス装置を用いる方法が好ましい。これによって、炭素化処理を連続で行うことができる。連続ベルトプレス装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法、液圧ヘッドプレスにより面圧でプレスする方法などが挙げられるが、後者の方がより平滑な多孔質電極基材が得られるという点で好ましい。   A method using a continuous belt press apparatus is preferable when the continuously produced precursor sheet is heat-press molded. Thereby, the carbonization process can be performed continuously. Examples of the pressing method in the continuous belt press apparatus include a method of applying pressure to the belt with a roll press using a linear pressure, a method of pressing with a surface pressure using a hydraulic head press, etc. The latter is a smoother porous electrode. It is preferable at the point that a base material is obtained.

加熱加圧成型における加熱温度は、前駆体シートの表面を効果的に平滑にするために、200℃未満が好ましく、120〜190℃がより好ましい。成型圧力は特に限定されないが、前駆体シート中における炭素繊維前駆体短繊維(b’)の含有比率が多い場合は、成型圧が低くても容易に前駆体シートの表面を平滑にすることができる。このとき必要以上にプレス圧を高くすると、加熱加圧成型時に炭素短繊維(A)が破壊されるという問題や、多孔質電極基材の組織が緻密になりすぎるという問題等が生じる可能性がある。成型圧力は、20kPa〜10MPa程度が好ましい。加熱加圧成型の時間は、例えば30秒〜10分とすることができる。   In order to effectively smooth the surface of the precursor sheet, the heating temperature in the heat and pressure molding is preferably less than 200 ° C, and more preferably 120 to 190 ° C. The molding pressure is not particularly limited, but when the content ratio of the carbon fiber precursor short fibers (b ′) in the precursor sheet is large, the surface of the precursor sheet can be easily smoothed even if the molding pressure is low. it can. If the press pressure is increased more than necessary at this time, there may be a problem that the short carbon fibers (A) are destroyed at the time of heat and pressure molding, a problem that the structure of the porous electrode substrate is too dense, or the like. is there. The molding pressure is preferably about 20 kPa to 10 MPa. The time for heat and pressure molding can be, for example, 30 seconds to 10 minutes.

前駆体シートを2枚の剛板に挟んでまたは連続ベルトプレス装置で加熱加圧成型する時は、剛板やベルトに炭素繊維前駆体短繊維(b’)などが付着しないようにあらかじめ剥離剤を塗っておくことや、前駆体シートと剛板やベルトとの間に離型紙を挟むことが好ましい。   When the precursor sheet is sandwiched between two rigid plates or heated and pressed with a continuous belt press, a release agent is used in advance to prevent carbon fiber precursor short fibers (b ') from adhering to the rigid plate or belt. It is preferable to coat the release sheet or to sandwich the release paper between the precursor sheet and the rigid plate or belt.

<酸化処理する工程(4)>
炭素短繊維(A)を炭素繊維前駆体短繊維(b’)で良好に融着させ、かつ炭素繊維前駆体短繊維(b’)の炭素化率を向上させるという観点から、加熱加圧成型した前駆体シートを、200℃以上300℃未満の温度で酸化処理することが好ましい。酸化処理の温度は、240〜270℃がより好ましい。酸化処理の時間は、例えば1分間〜2時間とすることができる。
<Oxidation process (4)>
From the viewpoint of successfully fusing the carbon short fibers (A) with the carbon fiber precursor short fibers (b ′) and improving the carbonization rate of the carbon fiber precursor short fibers (b ′), heat-press molding The precursor sheet thus obtained is preferably oxidized at a temperature of 200 ° C. or higher and lower than 300 ° C. The temperature of the oxidation treatment is more preferably 240 to 270 ° C. The oxidation treatment time can be, for example, 1 minute to 2 hours.

酸化処理としては、加熱多孔板を用いた加圧直接加熱による連続酸化処理、または加熱ロール等を用いた間欠的な加圧直接加熱による連続酸化処理が、低コスト、かつ炭素短繊維(A)を炭素繊維前駆体短繊維(b’)で融着させることができるという点で好ましい。連続的に製造された前駆体シートを酸化処理する場合、前駆体シートの全長にわたって連続で酸化処理することが好ましい。これによって、炭素化処理を連続で行うことができる。   As oxidation treatment, continuous oxidation treatment by direct pressure heating using a heated perforated plate or continuous oxidation treatment by intermittent direct pressure heating using a heating roll or the like is low in cost and short carbon fiber (A) Is preferable in that it can be fused with the carbon fiber precursor short fibers (b ′). When oxidizing the precursor sheet manufactured continuously, it is preferable to continuously oxidize the entire length of the precursor sheet. Thereby, the carbonization process can be performed continuously.

以下、本発明を実施例によりさらに具体的に説明する。実施例中の各物性値等は、以下の方法で測定した。「部」は「質量部」を意味する。   Hereinafter, the present invention will be described more specifically with reference to examples. Each physical property value in the examples was measured by the following method. “Part” means “part by mass”.

(1)ガス透気度
多孔質電極基材のガス透気度は、JIS規格P−8117に準拠し、ガーレーデンソメーターを使用して200mLの空気が透過するのにかかった時間を測定し、ガス透気度(ml/hr/cm2/mmAq)を算出した。
(1) Gas permeability The gas permeability of the porous electrode substrate is measured according to JIS standard P-8117, using a Gurley densometer to measure the time taken for 200 mL of air to pass through, The gas permeability (ml / hr / cm 2 / mmAq) was calculated.

(2)厚み
多孔質電極基材の厚みは、厚み測定装置ダイヤルシックネスゲージ((株)ミツトヨ製、商品名:7321)を使用して測定した。測定子の大きさは直径10mmで、測定圧力は1.5kPaとした。
(2) Thickness The thickness of the porous electrode base material was measured using a thickness measuring device dial thickness gauge (manufactured by Mitutoyo Corporation, trade name: 7321). The size of the probe was 10 mm in diameter, and the measurement pressure was 1.5 kPa.

(3)貫通方向抵抗
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、金メッキした銅板に多孔質電極基材を挟み、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通方向抵抗(mΩ・cm2)=測定抵抗値(mΩ)×試料面積(cm2
(4)3次元網目状炭素繊維(B)の含有率
3次元網目状炭素繊維(B)の含有率は、得られた多孔質電極基材の目付と、使用した炭素短繊維(A)の目付とから、次式より算出した。
3次元網目状炭素繊維(B)の含有率(%)=[多孔質電極基材目付(g/m2)−炭素短繊維(A)目付(g/m2)]÷多孔質電極基材目付(g/m2)×100
(5)多孔質電極基材のうねり
多孔質電極基材のうねりの指標として、平板上に縦250mm横250mmの多孔質電極基材を静置した際の、多孔質電極基材の高さの最大値と最小値の差を算出した。
(3) Through-direction resistance The electrical resistance in the thickness direction of the porous electrode base material (through-direction resistance) is 10 mA / cm 2 when the porous electrode base material is sandwiched between gold-plated copper plates and pressed from above and below the copper plate at 1 MPa. The resistance value when a current was passed at a current density of was measured from the following equation.
Through-direction resistance (mΩ · cm 2 ) = Measured resistance value (mΩ) × Sample area (cm 2 )
(4) Content of the three-dimensional network carbon fiber (B) The content of the three-dimensional network carbon fiber (B) is based on the basis weight of the obtained porous electrode substrate and the short carbon fiber (A) used. From the basis weight, it was calculated from the following formula.
Content (%) of three-dimensional network carbon fiber (B) = [Porous electrode substrate basis weight (g / m 2 ) −Carbon short fiber (A) basis weight (g / m 2 )] ÷ Porous electrode substrate Weight per unit (g / m 2 ) × 100
(5) Waviness of the porous electrode base material As an index of the swell of the porous electrode base material, the height of the porous electrode base material when the porous electrode base material of 250 mm in length and 250 mm in width is allowed to stand on a flat plate. The difference between the maximum and minimum values was calculated.

(実施例1)易割繊性海島複合繊維の製造
水系懸濁重合法により合成したアクリロニトリル/酢酸ビニル=93/7(質量比)の組成を有する重量平均分子量140000のポリアクリロニトリル系ポリマー200gをジメチルアセトアミド600gにスリーワンモーターにて混合溶解させ、ポリアクリロニトリル系ポリマー紡糸原液を調製した。また、フェノール樹脂(住友ベークライト(株)製、商品名:PR−50731)100gをジメチルアセトアミド190gにスリーワンモーターにて混合溶解させ、フェノール樹脂紡糸原液を調製した。それぞれ得られたポリアクリロニトリル系ポリマー紡糸原液とフェノール樹脂紡糸原液を混合した後、合計のポリマー濃度が24.8質量%となるようにジメチルアセトアミドを添加し、常温で60分間攪拌した後、液温が70℃になるように温水ジャケットで昇温させて、70℃になってから60分間攪拌した。
(Example 1) Manufacture of easily splittable sea-island composite fiber 200 g of a polyacrylonitrile polymer having a weight average molecular weight of 140000 having a composition of acrylonitrile / vinyl acetate = 93/7 (mass ratio) synthesized by an aqueous suspension polymerization method was added to dimethyl A polyacrylonitrile-based polymer spinning dope was prepared by mixing and dissolving in 600 g of acetamide with a three-one motor. Further, 100 g of phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name: PR-50731) was mixed and dissolved in 190 g of dimethylacetamide with a three-one motor to prepare a phenol resin spinning dope. After mixing the obtained polyacrylonitrile-based polymer spinning stock solution and the phenol resin spinning stock solution, dimethylacetamide was added so that the total polymer concentration was 24.8% by mass, and the mixture was stirred at room temperature for 60 minutes. The temperature was raised with a warm water jacket so that the temperature became 70 ° C., and the mixture was stirred for 60 minutes after reaching 70 ° C.

次いで、得られた紡糸原液を80℃に昇温し、その温度に保ったまま、ギヤポンプを用いてノズルへ定量供給した。そして、紡糸原液をノズルの口金より凝固浴(ジメチルアセトアミドが30質量%で、水が70質量%となるように調整)に吐出し凝固させる湿式紡糸方法より、総延伸倍率が3.0倍になるように紡糸して、単繊維繊度3.1dtexの易割繊性海島複合繊維を得た。得られた易割繊性海島複合繊維を3mm長に切断することで、炭素繊維前駆体短繊維(b)を得た。   Next, the obtained spinning dope was heated to 80 ° C., and while being kept at that temperature, a fixed amount was supplied to the nozzle using a gear pump. Then, the total draw ratio is increased to 3.0 times by the wet spinning method in which the spinning solution is discharged and solidified from the nozzle base into a coagulation bath (adjusted so that dimethylacetamide is 30% by mass and water is 70% by mass). Thus, an easily split sea-island composite fiber having a single fiber fineness of 3.1 dtex was obtained. The easily splittable sea-island composite fiber obtained was cut into a length of 3 mm to obtain a carbon fiber precursor short fiber (b).

得られた炭素繊維前駆体短繊維(b)に水を加えて繊維濃度を1質量%とした後、ディスクリファイナー(熊谷理機工業(株)製、商品名:KRK高濃度ディスクリファイナー、ディスククリアランス0.3mm、回転数5000rpm)で叩解処理しスラリーを得た。そのスラリーを用いて、目付が90g/m2で一辺が25cmの正方形に抄紙し、130℃のドラム式乾燥機(ハシマ(株)製、商品名:HP−124AP)により接触時間3分間で乾燥することで、シートを形成した。得られたシートを走査型電子顕微鏡にて観察したところ、割繊された部分の形態はフィブリル状であることを確認した。 After adding water to the obtained carbon fiber precursor short fiber (b) to adjust the fiber concentration to 1% by mass, a disc refiner (manufactured by Kumagai Riki Kogyo Co., Ltd., trade name: KRK high concentration disc refiner, disc clearance) The slurry was beaten at 0.3 mm and a rotation speed of 5000 rpm. Using the slurry, paper is made into a square having a basis weight of 90 g / m 2 and a side of 25 cm, and dried with a 130 ° C. drum dryer (trade name: HP-124AP, manufactured by Hashima Co., Ltd.) for 3 minutes. Thus, a sheet was formed. When the obtained sheet | seat was observed with the scanning electron microscope, it confirmed that the form of the divided part was a fibril form.

(実施例2)
炭素短繊維(A)として、平均繊維径が7μmであり、平均繊維長が3mmであるPAN系炭素繊維100部を水中に均一に分散させて、単繊維に開繊させ、十分に分散させた。そこに、実施例1で得られた炭素繊維前駆体短繊維(b)100部をミキサーにより十分に叩解させた状態で均一に分散させ、標準角型シートマシン(熊谷理機工業(株)製、商品名:No.2555)を用いて、JIS P−8209法に準拠して、手動で2次元平面内(縦250mm、横250mm)に分散させ、乾燥させることで、目付が50g/m2の前駆体シートを得た。なお、前駆体シートにおける炭素短繊維(A)、および炭素繊維前駆体短繊維(b)を叩解させた炭素繊維前駆体短繊維(b’)の分散状態は、良好であった。
(Example 2)
As the short carbon fibers (A), 100 parts of PAN-based carbon fibers having an average fiber diameter of 7 μm and an average fiber length of 3 mm were uniformly dispersed in water, spread into single fibers, and sufficiently dispersed. . Then, 100 parts of the carbon fiber precursor short fiber (b) obtained in Example 1 was uniformly dispersed in a state where the fiber was sufficiently beaten by a mixer, and a standard square sheet machine (manufactured by Kumagai Riki Kogyo Co., Ltd.). , Product name: No. 2555), according to JIS P-8209 method, by manually dispersing in a two-dimensional plane (length 250 mm, width 250 mm) and drying, the basis weight is 50 g / m 2 A precursor sheet was obtained. In addition, the dispersion state of the short carbon fiber (A) in the precursor sheet and the short carbon fiber precursor fiber (b ′) obtained by beating the short carbon fiber precursor fiber (b) was good.

次いで、この前駆体シートの両面を、シリコーン系離型剤をコートした紙で挟んだ後、バッチプレス装置にて、180℃、3MPaの条件下で3分間加圧加熱成型した。次いで、加圧加熱成型された前駆体シートの両面を、シリコーン系離型剤をコートしたステンレスパンチングプレートで挟んだ後、バッチプレス装置にて、280℃、0.5MPaの条件下で1分間酸化処理した。その後、酸化処理された前駆体シートをバッチ炭素化炉にて、窒素ガス雰囲気中、2000℃の条件下で1時間炭素化処理して、多孔質電極基材を得た。   Next, both sides of this precursor sheet were sandwiched between papers coated with a silicone-based release agent, and then subjected to pressure and heat molding for 3 minutes under the conditions of 180 ° C. and 3 MPa in a batch press apparatus. Next, both sides of the pressure-heated precursor sheet are sandwiched by a stainless punching plate coated with a silicone release agent, and then oxidized for 1 minute at 280 ° C. and 0.5 MPa in a batch press apparatus. Processed. Thereafter, the oxidized precursor sheet was carbonized in a batch carbonization furnace in a nitrogen gas atmosphere at 2000 ° C. for 1 hour to obtain a porous electrode substrate.

得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、うねりも2mm以下と小さく、十分なハンドリング性があり、ガス透気度、厚みおよび貫通方向抵抗はいずれも良好であった。網目状炭素繊維(B)の含有率は45%であった。また、得られた多孔質電極基材は、その表面の走査型電子顕微鏡写真を図1に示したように、2次元平面内に分散した炭素短繊維(A)同士が、3次元網目状炭素繊維(B)によって接合されていることが確認できた。評価結果を表1に示した。   The obtained porous electrode base material has almost no in-plane shrinkage at the time of carbonization treatment, the swell is as small as 2 mm or less, has sufficient handling properties, and the gas permeability, thickness, and penetration direction resistance are all It was good. The content of reticulated carbon fiber (B) was 45%. In addition, as shown in the scanning electron micrograph of the surface of the obtained porous electrode substrate, the short carbon fibers (A) dispersed in a two-dimensional plane are composed of three-dimensional network carbon. It has confirmed that it was joined by the fiber (B). The evaluation results are shown in Table 1.

(実施例3および4)
炭素繊維前駆体短繊維(b)の使用量および前駆体シートの目付を表1に示す値としたこと以外は、実施例1と同様にして、多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚みおよび貫通方向抵抗はいずれも良好であった。また、2次元平面内に分散した炭素短繊維(A)同士が、3次元網目状炭素繊維(B)によって接合されていることが確認できた。評価結果を表1に示した。
(Examples 3 and 4)
A porous electrode substrate was obtained in the same manner as in Example 1 except that the amount of carbon fiber precursor short fibers (b) used and the basis weight of the precursor sheet were set to the values shown in Table 1. The obtained porous electrode substrate had almost no in-plane shrinkage during the carbonization treatment, and gas permeability, thickness, and penetration direction resistance were all good. Moreover, it has confirmed that the carbon short fibers (A) disperse | distributed in the two-dimensional plane were joined by the three-dimensional network carbon fiber (B). The evaluation results are shown in Table 1.

(実施例5)
酸化処理を実施しなかったこと以外は、実施例2と同様にして、多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚みおよび貫通方向抵抗はいずれも良好であった。また、2次元平面内に分散した炭素短繊維(A)同士が、網目状炭素繊維(B)によって接合されていることが確認できた。評価結果を表1に示した。
(Example 5)
A porous electrode substrate was obtained in the same manner as in Example 2 except that the oxidation treatment was not performed. The obtained porous electrode substrate had almost no in-plane shrinkage during the carbonization treatment, and gas permeability, thickness, and penetration direction resistance were all good. Moreover, it has confirmed that the carbon short fibers (A) disperse | distributed in the two-dimensional plane were joined by the network carbon fiber (B). The evaluation results are shown in Table 1.

(実施例6)
加熱加圧成型および酸化処理を実施しなかったこと以外は、実施例2と同様にして、多孔質電極基材を得た。得られた多孔質電極基材は、炭素化処理時における面内の収縮がほとんどなく、ガス透気度、厚みおよび貫通方向抵抗はいずれも良好であった。また、2次元平面内に分散した炭素短繊維(A)同士が、網目状炭素繊維(B)によって接合されていることが確認できた。評価結果を表1に示した。
(Example 6)
A porous electrode substrate was obtained in the same manner as in Example 2 except that the heat and pressure molding and the oxidation treatment were not performed. The obtained porous electrode substrate had almost no in-plane shrinkage during the carbonization treatment, and gas permeability, thickness, and penetration direction resistance were all good. Moreover, it has confirmed that the carbon short fibers (A) disperse | distributed in the two-dimensional plane were joined by the network carbon fiber (B). The evaluation results are shown in Table 1.

(比較例1)
炭素繊維前駆体短繊維(b)を用いずに、有機高分子化合物として、平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VPB105−1)100部を用いたこと以外は、実施例2と同様にして、多孔質電極基材を得た。
(Comparative Example 1)
Without using carbon fiber precursor short fibers (b), as an organic polymer compound, 100 parts of polyvinyl alcohol (PVA) short fibers (Kuraray Co., Ltd., trade name: VPB105-1) having an average fiber length of 3 mm A porous electrode substrate was obtained in the same manner as Example 2 except that it was used.

得られた多孔質電極基材においては、PVAがほとんど炭素化しないため、炭素短繊維(A)同士が接合されておらず、シート状の構造を維持することができなかった。   In the obtained porous electrode substrate, since PVA hardly carbonizes, the short carbon fibers (A) are not joined to each other, and a sheet-like structure cannot be maintained.

(比較例2)
炭素短繊維(A)を用いずに、有機高分子化合物としての平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105−1)16部を用い、前駆体シートの目付を58g/m2としたこと以外は、実施例2と同様にして、多孔質電極基材を得た。
(Comparative Example 2)
Without using carbon short fibers (A), 16 parts of polyvinyl alcohol (PVA) short fibers (Kuraray Co., Ltd., trade name: VBP105-1) having an average fiber length of 3 mm as an organic polymer compound are used as precursors. A porous electrode substrate was obtained in the same manner as in Example 2 except that the basis weight of the body sheet was 58 g / m 2 .

得られた多孔質電極基材においては、炭素繊維前駆体短繊維(b’)が炭素化する際の収縮により、シート状の構造を維持することができなかった。   In the obtained porous electrode substrate, the sheet-like structure could not be maintained due to shrinkage when the carbon fiber precursor short fibers (b ′) were carbonized.

(比較例3)
炭素繊維前駆体短繊維(b)を用いずに、平均繊維径が10μmであり、平均繊維長が3mmであるポリアクリロニトリル系ポリマーのみからなる炭素繊維前駆体短繊維(以下、「PAN系プリカーサー」と称す。)100部、および有機高分子化合物としての平均繊維長が3mmのポリビニルアルコール(PVA)短繊維(クラレ(株)製、商品名:VBP105−1)40部を用い、前駆体シートの目付を60g/m2としたこと以外は、実施例2と同様にして、多孔質電極基材を得た。
(Comparative Example 3)
Without using the carbon fiber precursor short fiber (b), the carbon fiber precursor short fiber (hereinafter referred to as “PAN precursor”) consisting only of a polyacrylonitrile polymer having an average fiber diameter of 10 μm and an average fiber length of 3 mm. And 100 parts of polyvinyl alcohol (PVA) short fibers (made by Kuraray Co., Ltd., trade name: VBP105-1) having an average fiber length of 3 mm as an organic polymer compound, A porous electrode substrate was obtained in the same manner as in Example 2 except that the basis weight was 60 g / m 2 .

得られた多孔質電極基材においては、炭素化時の収縮によりPAN系プリカーサー由来の炭素短繊維が炭素短繊維(A)との結着部で破断していることが観察され、貫通方向抵抗が実施例1の多孔質電極基材と比較して大きい値を示した。評価結果を表1に示した。   In the obtained porous electrode substrate, it was observed that the carbon short fiber derived from the PAN precursor was broken at the binding portion with the carbon short fiber (A) due to shrinkage during carbonization, and the penetration resistance However, the value was larger than that of the porous electrode substrate of Example 1. The evaluation results are shown in Table 1.

Claims (7)

炭素短繊維(A)と、ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する炭素繊維前駆体短繊維(b)とを用いて、前記炭素短繊維(A)と、前記炭素繊維前駆体短繊維(b)が叩解によってフィブリル化した炭素繊維前駆体短繊維(b’)とが分散した前駆体シートを製造する工程(1)および
前記前駆体シートを炭素化処理する工程(2)
を有する多孔質電極基材の製造方法。
Using the carbon short fiber (A) and the carbon fiber precursor short fiber (b) made of polyacrylonitrile-based polymer / phenol resin and fibrillated by beating, the carbon short fiber (A) and the carbon fiber precursor Step (1) for producing a precursor sheet in which short carbon fibers (b ′) in which short body fibers (b) are fibrillated by beating are dispersed, and step (2) for carbonizing the precursor sheets
The manufacturing method of the porous electrode base material which has this.
前記工程(1)と前記工程(2)の間に、
前記前駆体シートを加熱加圧成型する工程(3)
を有する請求項1に記載の多孔質電極基材の製造方法。
Between the step (1) and the step (2),
Step (3) of heat-pressing the precursor sheet
The manufacturing method of the porous electrode base material of Claim 1 which has these.
前記工程(3)と前記工程(2)の間に、
加熱加圧成型された前記前駆体シートを酸化処理する工程(4)
を有する請求項2に記載の多孔質電極基材の製造方法。
Between the step (3) and the step (2),
Step (4) of oxidizing the precursor sheet that has been heat and pressure molded
The manufacturing method of the porous electrode base material of Claim 2 which has these.
請求項1〜3のいずれかに記載の多孔質電極基材の製造方法で製造される多孔質電極基材。   The porous electrode base material manufactured with the manufacturing method of the porous electrode base material in any one of Claims 1-3. 炭素短繊維(A)同士が3次元網目状炭素繊維(B)によって接合されてなる多孔質電極基材。   A porous electrode substrate in which short carbon fibers (A) are joined together by a three-dimensional network carbon fiber (B). ポリアクリロニトリル系ポリマー/フェノール樹脂からなり、叩解によってフィブリル化する易割繊性海島複合繊維。   An easily splittable sea-island composite fiber made of polyacrylonitrile-based polymer / phenolic resin and fibrillated by beating. 請求項6に記載の易割繊性海島複合繊維を切断した炭素繊維前駆体短繊維。   A carbon fiber precursor short fiber obtained by cutting the easily splittable sea-island composite fiber according to claim 6.
JP2010096042A 2010-04-19 2010-04-19 Porous electrode substrate and method for producing the same Expired - Fee Related JP5526969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010096042A JP5526969B2 (en) 2010-04-19 2010-04-19 Porous electrode substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010096042A JP5526969B2 (en) 2010-04-19 2010-04-19 Porous electrode substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011228086A true JP2011228086A (en) 2011-11-10
JP5526969B2 JP5526969B2 (en) 2014-06-18

Family

ID=45043227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010096042A Expired - Fee Related JP5526969B2 (en) 2010-04-19 2010-04-19 Porous electrode substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5526969B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175328A (en) * 2012-02-24 2013-09-05 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet for porous electrode substrate and precursor sheet, and manufacturing method of porous electrode substrate and electrode substrate
KR101425305B1 (en) 2013-01-15 2014-07-31 전북대학교산학협력단 Manufacturing method of carbon fiber paper using PAN fibrid
WO2015129488A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
KR20170026392A (en) * 2014-07-03 2017-03-08 도레이 카부시키가이샤 Porous carbon material and method for manufacturing porous carbon material
KR20170059995A (en) * 2014-09-18 2017-05-31 도레이 카부시키가이샤 Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
CN109082731A (en) * 2018-08-20 2018-12-25 天津工业大学 A kind of cross-linked porous carbon nano-fiber and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195324A (en) * 1992-01-21 1993-08-03 Toray Ind Inc Precursor for carbon fiber production and method for producing the precursor
JP2005256182A (en) * 2004-03-09 2005-09-22 Gun Ei Chem Ind Co Ltd Phenol resin-based fiber and method for producing the same
JP2009129634A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195324A (en) * 1992-01-21 1993-08-03 Toray Ind Inc Precursor for carbon fiber production and method for producing the precursor
JP2005256182A (en) * 2004-03-09 2005-09-22 Gun Ei Chem Ind Co Ltd Phenol resin-based fiber and method for producing the same
JP2009129634A (en) * 2007-11-21 2009-06-11 Mitsubishi Rayon Co Ltd Porous electrode base material, its manufacturing method, membrane-electrode assembly, and polymer electrolyte fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175328A (en) * 2012-02-24 2013-09-05 Mitsubishi Rayon Co Ltd Manufacturing method of precursor sheet for porous electrode substrate and precursor sheet, and manufacturing method of porous electrode substrate and electrode substrate
KR101425305B1 (en) 2013-01-15 2014-07-31 전북대학교산학협력단 Manufacturing method of carbon fiber paper using PAN fibrid
US10131770B2 (en) 2014-02-26 2018-11-20 Toray Industries, Inc. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
WO2015129488A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
CN106029756A (en) * 2014-02-26 2016-10-12 东丽株式会社 Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
JPWO2015129488A1 (en) * 2014-02-26 2017-03-30 東レ株式会社 Porous carbon material, carbon material reinforced composite material, porous carbon material precursor, method for producing porous carbon material precursor, and method for producing porous carbon material
EA034212B1 (en) * 2014-02-26 2020-01-17 Торэй Индастриз, Инк. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
TWI659926B (en) * 2014-02-26 2019-05-21 日商東麗股份有限公司 Porous carbon material, carbon material reinforced composite material, porous carbon material precursor, method of manufacturing porous carbon material precursor and method of manufacturing porous carbon material
AU2015224174B2 (en) * 2014-02-26 2018-06-14 Toray Industries, Inc. Porous carbon material, composite material reinforced with carbon material, porous carbon material precursor, porous carbon material precursor production method, and porous carbon material production method
KR20170026392A (en) * 2014-07-03 2017-03-08 도레이 카부시키가이샤 Porous carbon material and method for manufacturing porous carbon material
KR102383873B1 (en) 2014-07-03 2022-04-08 도레이 카부시키가이샤 Porous carbon material and method for manufacturing porous carbon material
EP3196164A4 (en) * 2014-09-18 2018-03-28 Toray Industries, Inc. Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
US10399856B2 (en) * 2014-09-18 2019-09-03 Toray Industries, Inc. Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
KR20170059995A (en) * 2014-09-18 2017-05-31 도레이 카부시키가이샤 Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
KR102393606B1 (en) 2014-09-18 2022-05-03 도레이 카부시키가이샤 Particulate porous carbon material, particulate carbon material aggregate, and production method for particulate porous carbon material
CN109082731A (en) * 2018-08-20 2018-12-25 天津工业大学 A kind of cross-linked porous carbon nano-fiber and preparation method thereof
CN109082731B (en) * 2018-08-20 2020-01-10 天津工业大学 Crosslinked porous carbon nanofiber and preparation method thereof

Also Published As

Publication number Publication date
JP5526969B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5585450B2 (en) Porous electrode substrate and method for producing the same
US9786923B2 (en) Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
JP5561171B2 (en) Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5526969B2 (en) Porous electrode substrate and method for producing the same
JP5356540B2 (en) Porous electrode substrate, method for producing the same, porous electrode substrate precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
JP5664791B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
CA2910531A1 (en) Porous electrode substrate, method for manufacturing same, and polymer electrolyte fuel cell
JP2013020842A (en) Porous electrode substrate
JP5435817B2 (en) Method for producing porous electrode substrate
JP5394469B2 (en) Porous electrode substrate manufacturing method and porous electrode substrate
JP2013251070A (en) Porous electrode base material and method for producing the same
JP5590419B2 (en) Porous electrode substrate precursor sheet manufacturing method, porous electrode substrate manufacturing method, porous electrode substrate, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5501332B2 (en) Porous electrode substrate precursor sheet, method for producing the same, porous electrode substrate, membrane-electrode assembly, and solid polymer fuel cell
JP5485211B2 (en) Method for producing porous electrode substrate
JP6277653B2 (en) Method for producing porous electrode substrate
JP2016012474A (en) Manufacturing method of porous electrode base material
JP2018142449A (en) Porous electrode substrate and manufacturing method thereof
JP2018055969A (en) Porous electrode base material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R151 Written notification of patent or utility model registration

Ref document number: 5526969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees