JP2011222654A - Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system - Google Patents

Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system Download PDF

Info

Publication number
JP2011222654A
JP2011222654A JP2010088601A JP2010088601A JP2011222654A JP 2011222654 A JP2011222654 A JP 2011222654A JP 2010088601 A JP2010088601 A JP 2010088601A JP 2010088601 A JP2010088601 A JP 2010088601A JP 2011222654 A JP2011222654 A JP 2011222654A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
seebeck coefficient
amplification
connection
conductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010088601A
Other languages
Japanese (ja)
Inventor
Yoshiomi Kondo
義臣 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONDO MOTOTOSHI
KONDO YOSHITOMI
Original Assignee
KONDO MOTOTOSHI
KONDO YOSHITOMI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONDO MOTOTOSHI, KONDO YOSHITOMI filed Critical KONDO MOTOTOSHI
Priority to JP2010088601A priority Critical patent/JP2011222654A/en
Publication of JP2011222654A publication Critical patent/JP2011222654A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide means for solving a problem in which there is an upper limit in improving thermoelectric conversion efficiency, the limit determined by a thermoelectric conversion material, and preventing stoppage of a function of an entire multi-concatenation thermoelectric conversion assembly unit when a part of elements therein is disconnected; and to provide a method for more simply producing the multi-concatenation thermoelectric conversion assembly unit.SOLUTION: Three or more conductive members having a positive or negative Seebeck coefficient, and conductive members having a Seebeck coefficient of the same code are electrically inter-connected in series using conductive connecting members. The configuration of connection is such that the conductive members are at both ends. This configuration of connection makes it possible to amplify a value of the Seebeck coefficient of a single conductive member. Further, a multi-concatenation Seebeck coefficient amplification thermoelectric conversion unit is configured in which a set of multi-concatenation Seebeck coefficient amplification thermoelectric conversion element having a positive Seebeck coefficient and multi-concatenation Seebeck coefficient amplification thermoelectric conversion element having a negative Seebeck coefficient is joined by a joining conductive member, and a pair of output terminals are connected to the counterparts of the connected conductive members using the joining conductive member.

Description

本発明は、熱流パワーと電力の相互変換を高効率化するゼーベック係数増幅効果を利用して高機能化した多数連結ゼーベック係数増幅効果熱電変換ユニットの構造及びその製造方法、多数連結ゼーベック係数増幅効果熱電変換集合ユニット及びその製造方法、多数連結ゼーベック係数増幅効果熱電変換モジュール及びその製造方法、多数連結ゼーベック係数増幅効果熱電変換パネル及びその製造方法、多数連結ゼーベック係数増幅効果熱電変換シートの構造及びその製造方法、並びに多数連結ゼーベック係数増幅効果熱電変換システムの構造に関する。   The present invention relates to a structure of a multi-coupled Seebeck coefficient amplification effect thermoelectric conversion unit that is highly functionalized using a Seebeck coefficient amplification effect that increases the efficiency of mutual conversion between heat flow power and electric power, a manufacturing method thereof, and a multi-connection Seebeck coefficient amplification effect. Thermoelectric conversion assembly unit and manufacturing method thereof, multi-connection Seebeck coefficient amplification effect thermoelectric conversion module and manufacturing method thereof, multi-connection Seebeck coefficient amplification effect thermoelectric conversion panel and manufacturing method thereof, structure of multi-connection Seebeck coefficient amplification effect thermoelectric conversion sheet and the like The present invention relates to a manufacturing method and a structure of a multi-connection Seebeck coefficient amplification effect thermoelectric conversion system.

現在、世界における総エネルギー消費の2/3は廃熱等で有効に利用されず、地球の温暖化や環境破壊を増大させる要因となっている。太陽電池、風力発電、波力発電等は太陽エネルギーを起源とする持続可能電力システムであるが、環境内で最も豊富な太陽及び地球由来の太陽光黒体吸収熱・太陽電池透過光黒体吸収熱・温泉熱・地熱等と河川水や気化熱利用による冷水等との持続可能な温度差未利用エネルギー資源を有効利用して、熱電変換効果を利用する再生可能熱電変換システムはまだ実用化と普及に至っていない。   At present, 2/3 of the total energy consumption in the world is not effectively utilized due to waste heat and the like, which is a factor that increases global warming and environmental destruction. Solar cells, wind power generation, wave power generation, etc. are sustainable power systems originating from solar energy, but the most abundant solar and earth-derived solar blackbody absorption heat and solar cell transmission light blackbody absorption in the environment Sustainable temperature difference between heat, hot spring heat, geothermal heat, etc. and river water or cold water using vaporization heat, etc. It has not spread.

再生可能熱電変換システムが実用化と普及に至らない原因は、熱パワーと電力の相互の熱電変換効率が低いことによる。この低熱電変換効率を飛躍的に高める物理的ゼーベック係数増幅効果が理論と実証実験により明らかになったことから、太陽電池に匹敵する再生可能熱電変換システムの実用化と普及が可能な段階にきている。   The reason why the renewable thermoelectric conversion system has not been put into practical use and popularized is that the thermoelectric conversion efficiency between heat power and electric power is low. The physical Seebeck coefficient amplification effect that dramatically increases this low thermoelectric conversion efficiency has been clarified by theory and demonstration experiments, and it is now possible to put into practical use and widespread use of a renewable thermoelectric conversion system comparable to solar cells. ing.

一般に、数ミリの厚さの半導体(熱電変換材)を使う半導体型熱電モジュールの製造プロセスまたは半導体型の熱電変換材の数十から数百分の一程度の厚さの熱電変換材を使う集積回路の製造プロセスまたは集積回路型の熱電変換材の数十から数百分の一程度の厚さの熱電変換材を使う薄膜の製造プロセスの3種類の製造プロセスで組込まれる熱電変換部のユニットは、全て同じ接続形態となっている。この共通した特徴により、以下では、この3種類の製造プロセスによる共通の接続形態を持つ熱電変換部のユニットを総称して熱電変換ユニットと記し、また、3種類の製造プロセスによる熱電変換ユニットを互いに区別する場合は、半導体型または集積回路型または薄膜型の熱電変換ユニットと記す。更に、前記の3種類の製造プロセスにより製造される熱電変換ユニットの集合ユニットである半導体型熱電変換モジュールまたは集積回路型熱電変換チップまたは熱電変換薄膜は、全て同じ接続形態となっている。   In general, the manufacturing process of a semiconductor thermoelectric module using a semiconductor (thermoelectric conversion material) with a thickness of several millimeters or the integration using a thermoelectric conversion material with a thickness of tens to hundreds of hundreds of a semiconductor type thermoelectric conversion material The unit of the thermoelectric conversion unit incorporated in the three types of manufacturing processes of the circuit manufacturing process or the thin film manufacturing process using the thermoelectric conversion material of about several tens to several hundreds of the thickness of the integrated circuit type thermoelectric conversion material is , All have the same connection form. Due to this common feature, hereinafter, the units of the thermoelectric conversion unit having a common connection form by these three types of manufacturing processes are collectively referred to as a thermoelectric conversion unit, and the thermoelectric conversion units by the three types of manufacturing processes are mutually referred to. When distinguishing, it describes as a thermoelectric conversion unit of a semiconductor type, an integrated circuit type, or a thin film type. Furthermore, the semiconductor-type thermoelectric conversion module, the integrated circuit-type thermoelectric conversion chip, or the thermoelectric conversion thin film, which are aggregate units of the thermoelectric conversion units manufactured by the three types of manufacturing processes, all have the same connection form.

この3種類の製造プロセスに共通した特徴の集合接続形態を有する熱電変換用の集合ユニットを総称して熱電変換集合ユニットと記し、また、3種類の製造プロセスによる熱電変換集合ユニットを互いに区別する場合は、半導体型または集積回路型または薄膜型の熱電変換集合ユニットと記す。更に、前記の3種類の製造プロセスにより複数の熱電変換集合ユニットを接続して製造されるモジュールを熱電変換モジュールと記し、また、3種類の製造プロセスによる熱電変換モジュールを互いに区別する場合は、半導体型または集積回路型または薄膜型の熱電変換モジュールと記す。更に、前記の3種類の製造プロセスにより複数の熱電変換集合モジュールを接続して製造されるパネルを熱電変換パネルと記し、また、3種類の製造プロセスによる熱電変換パネルを互いに区別する場合は、半導体型または集積回路型または薄膜型の熱電変換パネルと記す。   The collective unit for thermoelectric conversion having the collective connection form common to the three types of manufacturing processes is collectively referred to as a thermoelectric conversion collective unit, and the thermoelectric conversion collective units by the three types of manufacturing processes are distinguished from each other. Is described as a thermoelectric conversion collective unit of a semiconductor type, an integrated circuit type or a thin film type. Furthermore, a module manufactured by connecting a plurality of thermoelectric conversion collective units by the above three types of manufacturing processes is referred to as a thermoelectric conversion module, and when the thermoelectric conversion modules by the three types of manufacturing processes are distinguished from each other, a semiconductor A thermoelectric conversion module of type, integrated circuit type or thin film type. Furthermore, a panel manufactured by connecting a plurality of thermoelectric conversion assembly modules by the above three types of manufacturing processes is referred to as a thermoelectric conversion panel, and when the thermoelectric conversion panels by the three types of manufacturing processes are distinguished from each other, a semiconductor A thermoelectric conversion panel of type, integrated circuit type or thin film type.

更に、前記の3種類の製造プロセスにより複数の熱電変換集合パネルを接続して製造されるシートを熱電変換シートと記し、また、3種類の製造プロセスによる熱電変換シートを互いに区別する場合は、半導体型または集積回路型または薄膜型の熱電変換シートと記す。
集積回路プロセスは、例えばイオン注入法やフォトリソグラフィ、スパッタ、蒸着等を用いるプロセスであり、薄膜プロセスでは、PVDやVCD、真空蒸着、プラズマエッチング、スパッタ等を用いることでより厚さを薄く形成することができる。
Further, a sheet manufactured by connecting a plurality of thermoelectric conversion collective panels by the above three types of manufacturing processes is referred to as a thermoelectric conversion sheet, and when the thermoelectric conversion sheets by the three types of manufacturing processes are distinguished from each other, a semiconductor A thermoelectric conversion sheet of a type, an integrated circuit type or a thin film type.
The integrated circuit process is a process using, for example, an ion implantation method, photolithography, sputtering, vapor deposition, or the like. In the thin film process, the thickness is reduced by using PVD, VCD, vacuum vapor deposition, plasma etching, sputtering, or the like. be able to.

本発明者(出願人)は、上記のゼーベック効果を利用した熱電変換装置及びそれを利用したエネルギー変換システムと集積並列ペルチェ・ゼーベック素子チップの製造方法を発明し、既に特許認可されている(特許文献1,2,3,4を参照。)   The inventor (applicant) invented a thermoelectric conversion device using the Seebeck effect and an energy conversion system using the Seebeck effect and a method of manufacturing an integrated parallel Peltier Seebeck element chip, and has already been granted a patent (patent) (See references 1, 2, 3, 4)

一般に熱電変換効果機器内で使われている熱電変換素子は、高温側と低温側の距離が5mm前後の狭さの従来型熱電変換素子である為に熱電変換効果に寄与しない高温側から低温側への熱流損失が大きく、機器全体の熱電変換効率が低く抑えられるという欠点がある。この従来型の欠点を低減するために、特許文献1、2、3、及び4に記載された発明においては、熱電変換素子の高温側と低温側の距離を必要に応じた長さに設定する構造にする事により、高温側から低温側への熱流損失を低減して熱電変換効率を従来型熱電変換素子より大きくする技術を提供するものであった。   Generally, the thermoelectric conversion element used in thermoelectric conversion effect equipment is a conventional thermoelectric conversion element with a distance of about 5 mm between the high temperature side and the low temperature side, so it does not contribute to the thermoelectric conversion effect from the high temperature side to the low temperature side. There is a disadvantage that the heat flow loss to the device is large and the thermoelectric conversion efficiency of the entire device can be kept low. In order to reduce the disadvantages of the conventional type, in the inventions described in Patent Documents 1, 2, 3, and 4, the distance between the high temperature side and the low temperature side of the thermoelectric conversion element is set to a length as required. By adopting a structure, a technique for reducing the heat flow loss from the high temperature side to the low temperature side and increasing the thermoelectric conversion efficiency compared with the conventional thermoelectric conversion element was provided.

特許第4253471号明細書Japanese Patent No. 4253471 特許第4261890号明細書Japanese Patent No. 4261890 中国特許No.ZL200380105263.9Chinese Patent No.ZL200380105263.9 特許第4141415号明細書Japanese Patent No. 4141415

しかし、2つの熱電変換材の間を導電性の優れた金属等の導電材で連結することによって、熱電変換材単体のゼーベック係数の値を増幅するゼーベック係数増幅効果の理論と理論を実証する実験結果が存在しなかった為に、特許文献1、2、3、及び4に記載された発明においては、熱電変換効率の改善は熱電変換材により決まる上限があるという問題があった。   However, the experiment of demonstrating the theory and the theory of the Seebeck coefficient amplification effect that amplifies the value of the Seebeck coefficient of a single thermoelectric conversion material by connecting the two thermoelectric conversion materials with a conductive material such as a metal having excellent conductivity. Since there was no result, in the inventions described in Patent Documents 1, 2, 3, and 4, there was a problem that the improvement in thermoelectric conversion efficiency had an upper limit determined by the thermoelectric conversion material.

上述の特許文献1、2、3、及び4における熱電変換システムでは、ゼーベック係数の2乗に比例する熱電変換における出力は依然として小さく、改善の程度は限定されたものであった。このため、熱電変換によるエネルギー利用の実用化と普及を促進するには、ゼーベック係数を大きくして劇的に出力を増大させるような、新たな構成を開発することが求められている。   In the thermoelectric conversion systems in the above-mentioned Patent Documents 1, 2, 3, and 4, the output in thermoelectric conversion proportional to the square of the Seebeck coefficient is still small, and the degree of improvement is limited. For this reason, in order to promote the practical use and spread of energy use by thermoelectric conversion, it is required to develop a new configuration that dramatically increases the output by increasing the Seebeck coefficient.

本発明は、上記問題を解決するためになされたものである。すなわち、本発明者(出願人)は、上述の特許文献2を利用した実験結果を理論分析してゼーベック係数を増幅させる効果を見出し、ゼーベック係数増幅効果の理論を構築して、証明する為の実証実験により理論が正しい事を確認した。本発明の目的は、理論と実証実験結果に基づき、ゼーベック係数増幅効果により熱流パワーと電力の相互変換の効率を増大して熱電変換システムの機能を向上させるとともに、容易に製造可能な新たな構造の多数連結ゼーベック係数増幅熱電変換素子、多数連結ゼーベック係数増幅熱電変換ユニット、多数連結ゼーベック係数増幅熱電変換集合ユニット、多数連結ゼーベック係数増幅熱電変換モジュール、多数連結ゼーベック係数増幅熱電変換パネル、多数連結ゼーベック係数増幅熱電変換シート、並びに多数連結ゼーベック係数増幅熱電変換システムを提供することを目的とする。
また更に、この多数連結ゼーベック係数増幅熱電変換集合ユニット、多数連結ゼーベック係数増幅熱電変換モジュール、多数連結ゼーベック係数増幅熱電変換パネル、多数連結ゼーベック係数増幅熱電変換シートの製造方法を提供することを目的とする。
The present invention has been made to solve the above problems. That is, the present inventor (applicant) theoretically analyzes the experimental results using the above-mentioned Patent Document 2 to find out the effect of amplifying the Seebeck coefficient, and constructs and proves the theory of the Seebeck coefficient amplification effect. It was confirmed by theory that the theory was correct. The object of the present invention is to improve the function of the thermoelectric conversion system by increasing the efficiency of mutual conversion between heat flow power and power by the Seebeck coefficient amplification effect based on the theory and the results of the proof experiment, and a new structure that can be easily manufactured. Multi-connected Seebeck coefficient amplification thermoelectric conversion element, Multi-connection Seebeck coefficient amplification thermoelectric conversion unit, Multi-connection Seebeck coefficient amplification thermoelectric conversion unit, Multi-connection Seebeck coefficient amplification thermoelectric conversion module, Multi-connection Seebeck coefficient amplification thermoelectric conversion panel, Multi-connection Seebeck coefficient amplification thermoelectric conversion panel An object is to provide a coefficient amplification thermoelectric conversion sheet and a multi-connected Seebeck coefficient amplification thermoelectric conversion system.
Still another object of the present invention is to provide a method for producing the multi-connected Seebeck coefficient amplification thermoelectric conversion assembly unit, the multi-connection Seebeck coefficient amplification thermoelectric conversion module, the multi-connection Seebeck coefficient amplification thermoelectric conversion panel, and the multi-connection Seebeck coefficient amplification thermoelectric conversion sheet. To do.

上記課題を解決するため、第1の発明による多数連結ゼーベック係数増幅熱電変換素子の構造は、正または負のゼーベック係数を有する3個以上の導電部材と、同じ符号のゼーベック係数を有する前記導電部材同士を導電性連結部材で電気的に直列接続して両端が前記導電部材となる接続形態を有し、前記の接続形態により前記導電部材単体のゼーベック係数の値を増幅することを特徴とする。一般に、正のゼーベック係数を有する導電部材をp型導電部材と呼び、負のゼーベック係数を有する導電部材をn型導電部材と呼ぶことから、以下では、p型導電部材は正ゼーベック係数を有する導電部材であり、n型導電部材は負ゼーベック係数を有する導電部材である。   In order to solve the above-described problem, the structure of the multi-connection Seebeck coefficient amplification thermoelectric conversion element according to the first invention includes three or more conductive members having a positive or negative Seebeck coefficient and the conductive member having the same sign Seebeck coefficient. They are electrically connected in series with a conductive connecting member and have a connection form in which both ends become the conductive member, and the value of the Seebeck coefficient of the conductive member alone is amplified by the connection form. In general, a conductive member having a positive Seebeck coefficient is called a p-type conductive member, and a conductive member having a negative Seebeck coefficient is called an n-type conductive member. The n-type conductive member is a conductive member having a negative Seebeck coefficient.

すなわち、本発明においては、3個以上の同じp型またはn型導電部材同士を、導電性連結部材によって連続して直列接続するものである。
これにより、導電性連結部材を介して隣の導電部材へ電子が移動でき、各々の導電部材内の熱拡散と濃度拡散によって移動する電子の数が導電部材単体の場合よりも多く移動することが可能になる。このため、低温側と高温側とで生じる電荷の偏りを従来よりも増大させてゼーベック係数の値を増幅することができる。
That is, in the present invention, three or more identical p-type or n-type conductive members are continuously connected in series by a conductive connecting member.
As a result, electrons can move to the adjacent conductive member via the conductive connecting member, and the number of electrons moving due to thermal diffusion and concentration diffusion in each conductive member may move more than in the case of the conductive member alone. It becomes possible. For this reason, it is possible to amplify the value of the Seebeck coefficient by increasing the bias of charge generated on the low temperature side and the high temperature side as compared with the conventional case.

また、第2の発明によるゼーベック係数増幅熱電変換ユニットの構造は、上述のp型多数連結ゼーベック係数増幅熱電変換素子と負のゼーベック係数を有する多数連結ゼーベック係数増幅熱電変換素子との対を接合導電部材により接合し、前記接続導電部材の対向部に接合導電部材により1対の出力端を接続して成ることを特徴とする。
これにより、熱流パワーと電力の相互変換に関して、より大きい変換効率を得ることができる。
In addition, the structure of the Seebeck coefficient amplification thermoelectric conversion unit according to the second invention is such that a pair of the above-mentioned p-type multiple connection Seebeck coefficient amplification thermoelectric conversion element and a multiple connection Seebeck coefficient amplification thermoelectric conversion element having a negative Seebeck coefficient is joined. It joins by a member, and a pair of output ends are connected by the joining conductive member to the opposing part of the said connection conductive member, It is characterized by the above-mentioned.
Thereby, greater conversion efficiency can be obtained with respect to mutual conversion between heat flow power and power.

また、第3の発明による多数連結ゼーベック係数増幅熱電変換集合ユニットの構造は、上述の複数個のゼーベック係数増幅熱電変換ユニットの出力端同士を、接続導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続し、多数連結ゼーベック係数増幅熱電変換集合ユニットが互いに電気的に絶縁された状態で接合して、前記接続導電部材により1対以上の出力端を接続する。
これにより、より大きい熱流パワーの転送量と熱電変換による電力出力を得ることができる。
Moreover, the structure of the multi-connection Seebeck coefficient amplification thermoelectric conversion assembly unit according to the third invention is such that the output ends of the plurality of Seebeck coefficient amplification thermoelectric conversion units are connected in series, connected in parallel, or connected in series by a connecting conductive member. A connection and a parallel connection are mixed and connected, and a multi-connected Seebeck coefficient amplification thermoelectric conversion collective unit is joined in a state of being electrically insulated from each other, and one or more output ends are connected by the connection conductive member.
As a result, a larger heat flow power transfer amount and power output by thermoelectric conversion can be obtained.

また、第4の発明による多数連結ゼーベック係数増幅熱電変換モジュールの構造は、上述の複数個の多数連結ゼーベック係数増幅熱電変換集合ユニットの出力端同士を電気的に直列または並列、または直列と並列を混成して接続することにより構成される。
また同様に、第5の発明による多数連結ゼーベック係数増幅熱電変換パネルの構造は、この多数連結ゼーベック係数増幅熱電変換モジュール同士を電気的に直列または並列、または直列と並列を混成して接続することにより構成することができ、第6の発明による多数連結ゼーベック係数増幅熱電変換シートの構造は、この複数個の多数連結ゼーベック係数増幅熱電変換パネル同士を電気的に直列または並列、または直列と並列を混成して更に接続することにより構成される。
このように、次々と多数連結ゼーベック係数増幅熱電変換ユニット、多数連結ゼーベック係数増幅熱電変換集合ユニット、多数連結ゼーベック係数増幅熱電変換モジュール、多数連結ゼーベック係数増幅熱電変換パネル、多数連結ゼーベック係数増幅熱電変換シートを接続して大規模化すればするほど、より大きく熱流パワーの転送量と熱電変換による電力出力を増大させることができる。
Moreover, the structure of the multi-connected Seebeck coefficient amplification thermoelectric conversion module according to the fourth invention is such that the output ends of the plurality of multiple connection Seebeck coefficient amplification thermoelectric conversion collective units are electrically connected in series or parallel, or in series and parallel. It is configured by hybrid connection.
Similarly, in the structure of the multi-connected Seebeck coefficient amplification thermoelectric conversion panel according to the fifth invention, the multi-connection Seebeck coefficient amplification thermoelectric conversion modules are electrically connected in series or in parallel, or in series and parallel. The structure of the multi-connection Seebeck coefficient amplification thermoelectric conversion sheet according to the sixth invention is such that the plurality of multiple connection Seebeck coefficient amplification thermoelectric conversion panels are electrically connected in series or parallel, or in series and parallel. It is configured by mixing and further connecting.
In this way, multiple connected Seebeck coefficient amplification thermoelectric conversion units, multiple connection Seebeck coefficient amplification thermoelectric conversion collective units, multiple connection Seebeck coefficient amplification thermoelectric conversion modules, multiple connection Seebeck coefficient amplification thermoelectric conversion panels, multiple connection Seebeck coefficient amplification thermoelectric conversion The larger the size of the sheet connected, the larger the amount of heat flow power transferred and the power output by thermoelectric conversion.

本発明によれば、高温側と低温側に加えた温度差による導電部材内の温度勾配に伴う電子の熱拡散と濃度拡散で生じる電荷の偏りを従来の導電部材単体で使う場合よりも大きくすることができる。このため、ゼーベック係数を増幅させる効果が起こり、同じ温度差に対して高温側と低温側の電位差が従来よりも大きくなるので、熱流パワーの転送量と熱電変換による電力出力を増大させることが可能となる。   According to the present invention, the electric charge bias caused by the thermal diffusion and concentration diffusion of electrons due to the temperature gradient in the conductive member due to the temperature difference applied between the high temperature side and the low temperature side is made larger than in the case where the conventional conductive member is used alone. be able to. For this reason, the effect of amplifying the Seebeck coefficient occurs, and the potential difference between the high temperature side and the low temperature side for the same temperature difference becomes larger than before, so it is possible to increase the amount of heat flow power transferred and the power output by thermoelectric conversion It becomes.

多数連結ゼーベック係数増幅熱電変換ユニット及び従来の熱電変換ユニットの構成を示す概略構成図である。Aは本発明の第1の実施の形態に係る3連結ゼーベック係数増幅熱電変換ユニットであり、Bは従来の熱電変換ユニットである。It is a schematic block diagram which shows the structure of many connection Seebeck coefficient amplification thermoelectric conversion units and the conventional thermoelectric conversion unit. A is a 3-connected Seebeck coefficient amplification thermoelectric conversion unit according to the first embodiment of the present invention, and B is a conventional thermoelectric conversion unit. 従来の熱電変換素子のエネルギーバンド図である。Aは、p型半導体を用いた場合であり、Bはn型半導体の場合である。It is an energy band figure of the conventional thermoelectric conversion element. A is a case where a p-type semiconductor is used, and B is a case where an n-type semiconductor is used. 本発明の第1の実施の形態に係るp型3連結ゼーベック係数増幅熱電変換素子のエネルギーバンド図である。It is an energy band figure of the p-type 3 connection Seebeck coefficient amplification thermoelectric conversion element concerning a 1st embodiment of the present invention. 本発明の第1の実施の形態に係るn型3連結ゼーベック係数増幅熱電変換素子のエネルギーバンド図である。It is an energy band figure of the n-type 3 connection Seebeck coefficient amplification thermoelectric conversion element concerning a 1st embodiment of the present invention. 実験に用いた熱電変換ユニットの構造を示す概略構成図である。Aは従来の熱電変換ユニット、Bは2連結ゼーベック係数増幅熱電変換ユニットである。It is a schematic block diagram which shows the structure of the thermoelectric conversion unit used for experiment. A is a conventional thermoelectric conversion unit, and B is a 2-connected Seebeck coefficient amplification thermoelectric conversion unit. 従来の熱電変換ユニットのゼーベック係数、及び2連結ゼーベック係数増幅熱電変換ユニットの導電性連結部材の長さとゼーベック係数の関係を示す説明図である。It is explanatory drawing which shows the relationship between the Seebeck coefficient of the conventional thermoelectric conversion unit, and the length of the electroconductive connection member of a 2 connection Seebeck coefficient amplification thermoelectric conversion unit, and a Seebeck coefficient. Aは4個のp型導電部材を直列接続した4連結ゼーベック係数増幅熱電変換素子が生じる電流を示す説明図である。Bは4個のn型導電部材を直列接続した4連結ゼーベック係数増幅熱電変換素子が生じる電流を示す説明図である。A is explanatory drawing which shows the electric current which the 4 connection Seebeck coefficient amplification thermoelectric conversion element which connected the four p-type electroconductive members in series produces. B is explanatory drawing which shows the electric current which a 4 connection Seebeck coefficient amplification thermoelectric conversion element which connected the four n-type electroconductive members in series produces. 導電部材を4個ずつ直列接続した4連結ゼーベック係数増幅熱電変換ユニットの生じる電圧、電流を示す説明図であるIt is explanatory drawing which shows the voltage and electric current which a 4 connection Seebeck coefficient amplification thermoelectric conversion unit which connected the conductive member 4 each in series produces 本発明の第1の実施形態例に係る3連結ゼーベック係数増幅熱電変換集合ユニットの概略構成図である。Aは上面図、BはX1−X’1断面図、CはY−Y’断面図、DはX2−X’2断面図である。A’は第1の実施形態の変形例に係る3連結ゼーベック係数増幅熱電変換集合ユニットの上面図の出力端子部分の概略構成図である。It is a schematic block diagram of the 3 connection Seebeck coefficient amplification thermoelectric conversion collective unit which concerns on the 1st Example of this invention. A is a top view, B is an X1-X′1 cross-sectional view, C is a Y-Y ′ cross-sectional view, and D is an X2-X′2 cross-sectional view. A 'is a schematic configuration diagram of an output terminal portion of a top view of a three-connected Seebeck coefficient amplification thermoelectric conversion collective unit according to a modification of the first embodiment. 本発明の第1の実施の形態に係る3連結ゼーベック係数増幅熱電変換集合ユニットの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the 3 connection Seebeck coefficient amplification thermoelectric conversion aggregate | assembly unit which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る3連結ゼーベック係数増幅電変換集合ユニットの概略構成図である。Aは上面図、BはX−X’断面図、CはY−Y’断面図である。A’は第2の実施形態の変形例に係る3連結ゼーベック係数増幅熱電変換集合ユニットの上面図の出力端子部分の概略構成図である。It is a schematic block diagram of the 3 connection Seebeck coefficient amplification electric conversion aggregate | assembly unit which concerns on the 2nd Embodiment of this invention. A is a top view, B is a cross-sectional view along X-X ′, and C is a cross-sectional view along Y-Y ′. A 'is a schematic block diagram of an output terminal portion of a top view of a three-connected Seebeck coefficient amplification thermoelectric conversion collective unit according to a modification of the second embodiment. 本発明の第3の実施の形態に係る3連結ゼーベック係数増幅熱電変換集合ユニットの概略構成図である。Aは上面図、BはX−X’断面図、CはY−Y’断面図である。A’は第3の実施形態の変形例に係る3連結ゼーベック係数増幅熱電変換集合ユニットの上面図の出力端子部分の概略構成図である。It is a schematic block diagram of the 3 connection Seebeck coefficient amplification thermoelectric conversion assembly unit which concerns on the 3rd Embodiment of this invention. A is a top view, B is a cross-sectional view along X-X ′, and C is a cross-sectional view along Y-Y ′. A 'is a schematic block diagram of an output terminal portion of a top view of a three-connected Seebeck coefficient amplification thermoelectric conversion collective unit according to a modification of the third embodiment. 本発明の第4の実施形態例に係る多数連結ゼーベック係数増幅熱電変換モジュールの構成を表す上面図である。It is a top view showing the structure of the multiple connection Seebeck coefficient amplification thermoelectric conversion module which concerns on the example of 4th Embodiment of this invention. 本発明の第5の実施形態例に係る多数連結ゼーベック係数増幅熱電変換パネルの構成を表す上面図である。It is a top view showing the structure of the multiple connection Seebeck coefficient amplification thermoelectric conversion panel which concerns on the 5th example of embodiment of this invention. 本発明の第6の実施形態例に係る多数連結ゼーベック係数増幅熱電変換シートの構成を表す上面図である。It is a top view showing the structure of the multiple connection Seebeck coefficient amplification thermoelectric conversion sheet | seat which concerns on the 6th Example of this invention.

以下、本発明の基礎となるゼーベック係数増幅効果の理論と理論を実証する為の実証実験結果と、本発明の実施の形態に係る多数連結ゼーベック係数増幅熱電変換集合ユニット及びその製造方法について説明するが、本発明は以下の例に限定されるものではない。なお、以下の第1〜第3の実施例とその変形例及び第4〜第6の実施例は本発明による高効率な熱電変換を使う電力供給に関する実施例であり、第7の実施の形態例は本発明による高効率熱電変換を使う高効率な熱エネルギー転送に関する実施例である。説明は以下の順序で行う。
1.ゼーベック係数増幅効果の理論と理論を実証する為の実証実験結果
2.第1の実施の形態例(3連結ゼーベック係数増幅熱電変換集合ユニットの直列接続により構成する例)と第1の変形例(出力端の対を複数形成する例)
3.第1の実施形態例における3連結熱電変換集合ユニット100の製造方法
4.第2の実施の形態例(3連結ゼーベック係数増幅熱電変換集合ユニットの並列接続により構成する例)と第2の変形例(出力端の対を複数形成する例)
5.第3の実施の形態例(3連結ゼーベック係数増幅熱電変換集合ユニットの直列接続及び並列接続を混成させる例)と第3の変形例(出力端の対を複数形成する例)
6.第4の実施の形態例(多数連結ゼーベック係数増幅熱電変換モジュールを構成する例)
7.第5の実施の形態例(多数連結ゼーベック係数増幅熱電変換パネルを構成する例)
8.第6の実施の形態例(多数連結ゼーベック係数増幅熱電変換シートを構成する例)
9.第7の実施の形態例(熱エネルギー転送システムとしての利用例)
Hereinafter, the theory of the Seebeck coefficient amplification effect which is the basis of the present invention and the results of verification experiments for demonstrating the theory, and the multi-connected Seebeck coefficient amplification thermoelectric conversion assembly unit and the manufacturing method thereof according to the embodiment of the present invention will be described. However, the present invention is not limited to the following examples. The following first to third embodiments, modified examples thereof, and fourth to sixth embodiments are examples relating to power supply using high-efficiency thermoelectric conversion according to the present invention, and are described in the seventh embodiment. An example is an example of high efficiency thermal energy transfer using high efficiency thermoelectric conversion according to the present invention. The description will be made in the following order.
1. 1. Seebeck coefficient amplification effect theory and verification test results to verify the theory First embodiment (an example in which three connected Seebeck coefficient amplification thermoelectric conversion aggregate units are connected in series) and a first modification (an example in which a plurality of output terminal pairs are formed)
3. 3. Manufacturing method of three-linked thermoelectric conversion collective unit 100 in the first embodiment Second embodiment (example configured by parallel connection of three-connected Seebeck coefficient amplification thermoelectric conversion collective units) and second modification (example of forming a plurality of pairs of output terminals)
5. Third embodiment (example in which serial connection and parallel connection of three connected Seebeck coefficient amplification thermoelectric conversion aggregate units are mixed) and third modification (example in which a plurality of pairs of output terminals are formed)
6). Fourth embodiment (example of configuring a multi-connected Seebeck coefficient amplification thermoelectric conversion module)
7). Fifth embodiment (example of configuring a multi-connected Seebeck coefficient amplification thermoelectric conversion panel)
8). Sixth Embodiment (Example of configuring a multi-connected Seebeck coefficient amplification thermoelectric conversion sheet)
9. Seventh embodiment (example of use as a thermal energy transfer system)

1.ゼーベック係数増幅効果の理論と理論を実証する為の実証実験結果
物理的ゼーベック係数増幅効果の理論について説明する。半導体内では、熱励起により価電子帯の電子はアクセプター準位に励起されて価電子帯に正の電荷の正孔ができる。ドナー準位の電子は伝導帯準位に励起されて自由電子となる。温度勾配の無い場合には、正孔及び自由電子は一様な密度分布となり、電気的に中性状態である。一般に、金属などを使う接合導電部材の熱伝導率は半導体よりも小さいために、温度差に伴う温度勾配は主に半導体内に生じ、温度勾配に伴う熱拡散と濃度拡散により金属や半導体内で移動する粒子は電子である。
1. Theory of the Seebeck coefficient amplification effect and the results of verification experiments to verify the theory The physical Seebeck coefficient amplification effect theory will be described. In the semiconductor, electrons in the valence band are excited to the acceptor level by thermal excitation, and positively charged holes are formed in the valence band. The donor level electrons are excited to the conduction band level and become free electrons. When there is no temperature gradient, holes and free electrons have a uniform density distribution and are in an electrically neutral state. In general, since the thermal conductivity of a joining conductive member using a metal is smaller than that of a semiconductor, a temperature gradient due to a temperature difference is mainly generated in the semiconductor, and in the metal or semiconductor due to thermal diffusion and concentration diffusion accompanying the temperature gradient. The moving particles are electrons.

図1Bに示した導電部材を単体で使う従来型の熱電変換ユニット70bの左側のp型熱電変換素子及び右側のn型熱電変換素子のエネルギーバンドの模式図を図2A及び図2Bに示す。図中領域A2及びA5は導電部材であり、A1,A3,A4,A6に示す領域は接合導電部材を表す。また、図中右側が高温、左側が低温の場合である。p型熱電変換素子の低温側の温度をTPLで、高温側の温度をTPHで示すと、その温度差ΔTPC は、ΔTPC=TPH−TPLとして表される。n型熱電変換素子の低温側の温度をTnL、高温側の温度をTnHで示すと、その温度差ΔTnC は、ΔTnC=TnH−TnLとして表される。
また、図2Aと図2Bにおいて、線EFはフェルミ準位、線Ecは伝導帯準位、線Evは価電子帯準位、線Eはアクセプター準位、線Eはドナー準位を示しており、以降の図においても同様とする。
2A and 2B are schematic diagrams of energy bands of the left p-type thermoelectric conversion element and the right n-type thermoelectric conversion element of the conventional thermoelectric conversion unit 70b using the conductive member shown in FIG. 1B alone. In the figure, regions A2 and A5 are conductive members, and regions indicated by A1, A3, A4, and A6 represent bonded conductive members. In the figure, the right side is a high temperature and the left side is a low temperature. The temperature of the cold side of the p-type thermoelectric conversion elements at T PL, when indicating the temperature of the hot side T PH, the temperature difference [Delta] T PC is expressed as ΔT PC = T PH -T PL. temperature T nL of the low temperature side of the n-type thermoelectric conversion element, indicating the temperature of the hot side T nH, the temperature difference [Delta] T nC is expressed as ΔT nC = T nH -T nL.
Further, in FIGS. 2A and 2B, the line E F is the Fermi level, the line Ec is the conduction band level, the line Ev is the valence band level, the line E A is the acceptor level, the line E D a donor level The same applies to the following drawings.

導電部材内に温度勾配のある図2Aと図2Bにおいて、熱拡散と濃度拡散によりp型導電部材のA3,A2及びA1領域では各々矢印e1,e2及びe3に示す方向へ電子は移動し、n型導電部材のA6,A5及びA4領域では各々矢印e4,e5及びe6に示す方向へ電子は移動する。この電子の移動に伴い、p型導電部材のA2領域では正孔が左側へ移動して正電荷が増大し、n型導電部材のA5領域では自由電子が左側へ移動して負電荷が増大する。この様に温度勾配の無い場合に電気的に中性状態である導電部材内で電荷の偏りが起こる結果として、p型導電部材では低温側がプラスで高温側がマイナスとなる電位勾配が生じ、その電位勾配による電界Eにより正孔に右方向へ加わる引き戻し力と熱拡散に伴う正孔の左側への駆動力が互いに釣り合うように正孔の偏り分布が決まる。同様に、n型導電部材では低温側がマイナスで高温側がプラスとなる電位勾配が生じ、その電位勾配による電界Eにより自由電子に右方向へ加わる引き戻し力と熱拡散に伴う自由電子の左側への駆動力が互いに釣り合うように自由電子の偏り分布が決まる。薄い厚く電気抵抗の小さい金属が用いられる接合導電部材のA1,A3,A4,A6領域の電界は、導電部材のA2及びA5領域の電界に比べて無視できる程度に小さいために、接合導電部材内の自由電子が移動し、ガウスの法則により定常状態では、図2Aに示すようにp型導電部材で高温側がマイナス、低温側がプラスの電位となり、図2Bに示すようにn型導電部材で高温側がプラス、低温側がマイナスの電位となる。 2A and 2B in which there is a temperature gradient in the conductive member, electrons move in the directions indicated by arrows e1, e2, and e3 in the regions A3, A2, and A1 of the p-type conductive member due to thermal diffusion and concentration diffusion, respectively. In the A6, A5, and A4 regions of the mold conductive member, electrons move in the directions indicated by arrows e4, e5, and e6, respectively. As the electrons move, holes move to the left in the A2 region of the p-type conductive member and positive charges increase, and in the A5 region of the n-type conductive member, free electrons move to the left and negative charges increase. . In this way, as a result of the occurrence of charge bias in the electrically neutral conductive member when there is no temperature gradient, the p-type conductive member has a potential gradient in which the low temperature side is positive and the high temperature side is negative. hole deviation distribution such that the driving force are balanced with each other to the left of the hole with the hole in the joining pullback force and thermal diffusion to the right by the electric field E 1 with a gradient is determined. Similarly, the potential gradient cold side hot side becomes positive minus occurs in n-type conductive member, the electric field E 2 due to the potential gradient to free electrons left due to pullback force and thermal diffusion applied to the right to free electrons The free electron bias distribution is determined so that the driving forces are balanced with each other. Since the electric field in the A1, A3, A4, and A6 regions of the bonding conductive member using a thin, thin metal having a low electric resistance is negligibly small compared to the electric fields in the A2 and A5 regions of the conductive member, In the steady state according to Gauss's law, the p-type conductive member has a negative high temperature side and the low temperature side has a positive potential as shown in FIG. 2A, and the n type conductive member has a high temperature side as shown in FIG. 2B. Positive and low temperature side has negative potential.

この様な正孔の電荷の偏り分布で生じる電位勾配が起こる結果として、p型導電部材では高温側の領域A3におけるフェルミ準位から低温側の領域A1のフェルミ準位に向かって領域A2におけるフェルミ準位の勾配が生じる。同様にして、n型導電部材では高温側の領域A6におけるフェルミ準位から低温側の領域A4のフェルミ準位に向かって領域A5におけるフェルミ準位の勾配が生じる。この電位勾配の長さ方向への積分量が、熱電変換効果に基づく温度差とゼーベック係数の積で定義された電圧出力の大きさとなる。ゼーベック係数の値は電圧出力を温度差で割った値となる。熱電変換材を単体で使う従来型の熱電変換素子では、熱拡散と濃度拡散による起こる電子の移動は主にA2及びA5領域内のみで起こり、接合導電部材A1及びA4領域では行き止まりとなる。   As a result of the potential gradient generated due to such a bias charge distribution of holes, in the p-type conductive member, the Fermi level in the region A2 moves from the Fermi level in the region A3 on the high temperature side toward the Fermi level in the region A1 on the low temperature side. A level gradient occurs. Similarly, in the n-type conductive member, a Fermi level gradient in the region A5 is generated from the Fermi level in the high temperature region A6 toward the Fermi level in the low temperature region A4. The amount of integration in the length direction of this potential gradient is the magnitude of the voltage output defined by the product of the temperature difference based on the thermoelectric conversion effect and the Seebeck coefficient. The value of the Seebeck coefficient is a value obtained by dividing the voltage output by the temperature difference. In a conventional thermoelectric conversion element that uses a thermoelectric conversion material alone, the movement of electrons caused by thermal diffusion and concentration diffusion mainly occurs only in the A2 and A5 regions, and ends in the junction conductive members A1 and A4 regions.

これに対して、図1Aに示した本実施の形態例による3連結熱電変換ユニット70aの左側のp型3連結熱電変換素子及び右側のn型3連結熱電変換素子の場合のエネルギーバンドの模式図は、図3及び図4に示すようになる。図3のA7,A13に示す領域は接合導電部材であり、A8,A10,A12に示す領域はp型導電部材、A9,A11に示す領域は、導電性連結部材である。また、A7領域が温度TPLの低温側で、A13領域が温度TPHの高温側の場合である。高温側と低温側の温度差ΔTPLnは、ΔTPLn=TPH−TPLで表される。 On the other hand, the schematic diagram of the energy band in the case of the left p-type 3-coupled thermoelectric conversion element and the right-side n-type 3-coupled thermoelectric conversion element of the 3-coupled thermoelectric conversion unit 70a according to the embodiment shown in FIG. 1A. Is as shown in FIG. 3 and FIG. The regions indicated by A7 and A13 in FIG. 3 are bonding conductive members, the regions indicated by A8, A10, and A12 are p-type conductive members, and the regions indicated by A9 and A11 are conductive connecting members. Further, on the low temperature side of the A7 region temperature T PL, A13 region is the case of the high-temperature side of the temperature T PH. Temperature difference [Delta] T PLn the high temperature side and low temperature side is represented by ΔT PLn = T PH -T PL.

p型導電部材内に温度勾配のある図3において、A13,A12及びA11領域の各々の矢印e7、e8及びe9に示す方向への熱拡散と濃度拡散による電子の移動は、前記の導電部材を単体で使う従来型の図2Aで示した場合と同じである。しかし、導電性連結部材A11領域にはp型導電部材A10領域が接続されている為に、熱拡散と濃度拡散によりA11領域に流入した電子が、A11領域の自由電子を玉突き式に次々に移動させてe10に示す方向へ押し出してA10領域へ電子を流入させることにより、熱拡散と濃度拡散による電子の移動はA10領域、更に導電性連結部材A9領域を経てA8領域へ続くことになる。即ち、従来型の熱電変換素子では図3のA12領域に対応する図2Aの単一の導電部材A2領域のみで熱拡散と濃度拡散による電子の移動数と移動距離が限定されるのに対して、p型3連結熱電変換素子では図3の2つの導電性連結部材A11領域とA9領域を介してA12,A10,A8領域へ連続して熱拡散と濃度拡散による電子の移動数と移動距離が増加する。この電子の移動数と移動距離は、導電性連結部材で連結する導電部材の数を多くすれば更に大きくなる。   In FIG. 3 where there is a temperature gradient in the p-type conductive member, the movement of electrons due to thermal diffusion and concentration diffusion in the directions indicated by arrows e7, e8 and e9 in the regions A13, A12 and A11, This is the same as that shown in FIG. However, since the p-type conductive member A10 region is connected to the conductive connecting member A11 region, electrons that flow into the A11 region due to thermal diffusion and concentration diffusion move one after another in a ball-type manner. Then, the electrons are pushed out in the direction indicated by e10 to flow electrons into the A10 region, so that the movement of electrons due to thermal diffusion and concentration diffusion continues to the A8 region through the A10 region and further through the conductive connecting member A9 region. That is, in the conventional thermoelectric conversion element, the number and distance of movement of electrons due to thermal diffusion and concentration diffusion are limited only in the single conductive member A2 region of FIG. 2A corresponding to the A12 region of FIG. In the p-type three-coupled thermoelectric conversion element, the number and distance of movement of electrons due to thermal diffusion and concentration diffusion continue to the A12, A10, and A8 regions via the two conductive coupling members A11 and A9 in FIG. To increase. The number and distance of movement of the electrons are further increased if the number of conductive members connected by the conductive connecting member is increased.

このように、図3のp型3連結熱電変換素子では電子の移動数と移動距離が増加する結果、電子の移動に伴う正孔の拡散も増加して電荷の偏りが増大し、導電部材A12,A10,A8領域の各々の電位勾配の長さ方向への積分量も増大して電圧出力の大きさも増大する。電圧出力を温度差で割ったゼーベック係数の値も増加する結果として、ゼーベック係数が増幅される。このゼーベック係数の増幅量は、導電性連結部材で連結する導電部材の数を多くすれば更に大きくなる。   As described above, in the p-type three-coupled thermoelectric conversion element of FIG. 3, the number of moving electrons and the moving distance increase. As a result, the diffusion of holes accompanying the movement of electrons also increases, and the bias of charge increases. , A10, and A8 regions, the amount of integration in the lengthwise direction of the potential gradient increases, and the magnitude of the voltage output also increases. As a result of the increase in the value of the Seebeck coefficient obtained by dividing the voltage output by the temperature difference, the Seebeck coefficient is amplified. The amount of amplification of the Seebeck coefficient is further increased if the number of conductive members connected by the conductive connecting member is increased.

同様にして、図4のn型3連結熱電変換素子においても、A19,A17及びA15領域の各々の矢印e16、e17及びe18に示す方向への熱拡散と濃度拡散による電子の移動は、前記の導電部材を単体で使う従来型の図2Bで示した場合と同じである。しかし、導電性連結部材A18領域にはn型導電部材A17領域が接続されている為に、熱拡散と濃度拡散によりA18領域に流入した電子が、A18領域の自由電子を玉突き式に次々に移動させて矢印e20に示す方向へ押し出してA17領域へ電子を流入させることにより、熱拡散と濃度拡散による電子の移動はA17領域、更に導電性連結部材A16領域を経てA15領域へ続くことになる。即ち、従来型の熱電変換素子では図4のA19領域に対応する図2Bの単一の導電部材A5領域のみで熱拡散と濃度拡散による電子の移動数と移動距離が限定されるのに対して、n型3連結熱電変換素子では図4の2つの導電性連結部材A18領域とA16領域を介してA19,A17,A15領域へ連続して熱拡散と濃度拡散による電子の移動数と移動距離が増加する。   Similarly, also in the n-type three-coupled thermoelectric conversion element of FIG. 4, the movement of electrons due to thermal diffusion and concentration diffusion in the directions indicated by arrows e16, e17, and e18 in the A19, A17, and A15 regions is as described above. This is the same as the case of the conventional type shown in FIG. 2B in which the conductive member is used alone. However, since the n-type conductive member A17 region is connected to the conductive connecting member A18 region, electrons flowing into the A18 region due to thermal diffusion and concentration diffusion move one after another free electrons in the A18 region. Then, the electrons are pushed out in the direction indicated by the arrow e20 to flow electrons into the A17 region, whereby the movement of electrons due to thermal diffusion and concentration diffusion continues to the A15 region through the A17 region and further through the conductive connecting member A16 region. In other words, in the conventional thermoelectric conversion element, the number and distance of movement of electrons due to thermal diffusion and concentration diffusion are limited only in the single conductive member A5 region of FIG. 2B corresponding to the A19 region of FIG. In the n-type three-coupled thermoelectric conversion element, the number and distance of movement of electrons due to thermal diffusion and concentration diffusion continue to the A19, A17, and A15 regions via the two conductive coupling members A18 region and A16 region of FIG. To increase.

このように、n型3連結熱電変換素子においても電子の移動数と移動距離が増加する結果、自由電子の拡散も増加して電荷の偏りが増大し、導電部材A19,A17,A15領域の各々の電位勾配の長さ方向への積分量も増大して電圧出力の大きさも増大する。電圧出力を温度差で割ったゼーベック係数の値も増加する結果として、ゼーベック係数が増幅される。このゼーベック係数の増幅量は、導電性連結部材で連結する導電部材の数を多くすれば更に大きくなる。以上が、新しい物理的ゼーベック係数増幅効果の理論の説明である。   As described above, also in the n-type three-coupled thermoelectric conversion element, the number of moving electrons and the moving distance increase. As a result, the diffusion of free electrons also increases and the bias of charge increases, and each of the conductive member A19, A17, A15 regions. The amount of integration in the length direction of the potential gradient increases, and the magnitude of the voltage output also increases. As a result of the increase in the value of the Seebeck coefficient obtained by dividing the voltage output by the temperature difference, the Seebeck coefficient is amplified. The amount of amplification of the Seebeck coefficient is further increased if the number of conductive members connected by the conductive connecting member is increased. The above is the explanation of the theory of the new physical Seebeck coefficient amplification effect.

次に、前記の物理的ゼーベック係数増幅効果の理論を実証する為の実証実験の結果について、図5と図6を元に説明する。
図5に、実験に用いた熱電変換素子の構成を示す。図5A及び図5Bは各々同じロッドから切り出した導電部材を単体で使う従来型の熱電変換ユニット及び本発明に関わる2連結熱電変換ユニットである。この図5A及び図5Bに示す従来型の熱電変換ユニット及び本発明に関わる2連結熱電変換ユニットの両方を各々127個直列接続して熱電変換集合ユニットを作成した。
図5Aの70dでは、直径1.8mm、厚さ1.5mmのp型及びn型のBiTe導電部材1d及び導電部材2dが銅の接合導電部材4によって接合され、接合導電部材4は、絶縁膜7を介してAl基板6に固定されている。図5Bの70eでは、図5Aの導電部材1dと1e及び2dと2eとが各々直径1.5mmの銅の導電性連結部材4e及び3eによって連結接続されており、その他の構成は図5Aと同じである。図5Bの70eでは、導電性連結部材4e及び3eの長さLが0.2cm,2.0cm,4.0cm,10cmの2連結熱電変換ユニットを実証実験で用いた。図5A及び図5Bの熱電変換集合ユニットの内部抵抗は、各々3.0Ω及び6.0Ωである。
Next, the result of the verification experiment for verifying the theory of the physical Seebeck coefficient amplification effect will be described with reference to FIGS.
FIG. 5 shows the configuration of the thermoelectric conversion element used in the experiment. 5A and 5B are a conventional thermoelectric conversion unit that uses a single conductive member cut out from the same rod and a two-coupled thermoelectric conversion unit according to the present invention. Each of the conventional thermoelectric conversion unit shown in FIG. 5A and FIG. 5B and the two linked thermoelectric conversion units according to the present invention were connected in series to create a thermoelectric conversion collective unit.
In 70d of FIG. 5A, a p-type and n-type BiTe conductive member 1d and a conductive member 2d having a diameter of 1.8 mm and a thickness of 1.5 mm are joined by a copper joined conductive member 4, and the joined conductive member 4 is an insulating film. 7 is fixed to the Al substrate 6. In 70e in FIG. 5B, the conductive members 1d and 1e and 2d and 2e in FIG. 5A are connected and connected by copper conductive connecting members 4e and 3e each having a diameter of 1.5 mm, and the other configurations are the same as in FIG. 5A. It is. In 70e of FIG. 5B, the 2-connection thermoelectric conversion unit in which the length L of the conductive connection members 4e and 3e is 0.2 cm, 2.0 cm, 4.0 cm, and 10 cm was used in the demonstration experiment. The internal resistances of the thermoelectric conversion collective units of FIGS. 5A and 5B are 3.0Ω and 6.0Ω, respectively.

図5A及び図5Bの実験では、共に自動温度調節器を用いて高温側を90度、低温側を30度に固定して、室温17度の環境下で図5A及び図5Bの各部位の温度及び、開放電圧Vを測定した。各部位の温度及び、開放電圧Vを正確に測定することより、より正確にゼーベック係数を算出することができる。
熱電変換ユニットを構成するp型及びn型の導電部材のゼーベック係数を平均した導電部材単体のゼーベック係数αの値は、開放電圧Vと導電部材の部分だけに加わる温度差ΔT及び熱電変換ユニット数m=127を使って、下記式1の定義式で算出することができる。

α=V/2mΔT ・・・(1)

なお、測定データと算出データは、桁数を3桁までの精度で求めている。p型及びn型導電部材同士を接続する銅の導電性連結部材が生じるゼーベック電圧が電流路内において互いに逆向きに発生して打消し合うことと、p型及びn型導電部材の熱伝導率がほぼ等しいことは一般に知られている。
In the experiments of FIGS. 5A and 5B, the temperature of each part shown in FIGS. 5A and 5B is fixed in an environment of 17 ° C. by fixing the high temperature side to 90 degrees and the low temperature side to 30 degrees using an automatic temperature controller. And the open circuit voltage V was measured. By accurately measuring the temperature of each part and the open circuit voltage V, the Seebeck coefficient can be calculated more accurately.
The value of the Seebeck coefficient α of the single conductive member obtained by averaging the Seebeck coefficients of the p-type and n-type conductive members constituting the thermoelectric conversion unit is the temperature difference ΔT applied only to the open voltage V and the conductive member portion, and the number of thermoelectric conversion units. Using m = 127, it can be calculated by the definition formula of the following formula 1.

α = V / 2mΔT (1)

Measurement data and calculation data are obtained with an accuracy of up to three digits. The Seebeck voltage generated by the copper conductive connecting member connecting the p-type and n-type conductive members is generated in opposite directions in the current path and cancels each other, and the thermal conductivity of the p-type and n-type conductive members Is generally known to be approximately equal.

図6に、各測定値と式1を用いて得られた実証実験結果を示す。図の縦軸はゼーベック係数値で横軸は導電性連結部材4e及び3eの長さLである。図5Aの従来型熱電変換集合ユニット及び図5Bの2連結熱電変換集合ユニットによる実験データを、各々図中の実験誤差範囲(エラーバー)を付けたシンボルfの白四角及びシンボルeの白丸で区別して示してある。なお、図5Aの従来型熱電変換集合ユニットはL=0cmの場合に相当し、この従来型熱電変換集合ユニットによる実験データは図中のL=0cmの位置のデータである。   FIG. 6 shows the results of the demonstration experiment obtained using each measured value and Equation 1. The vertical axis in the figure is the Seebeck coefficient value, and the horizontal axis is the length L of the conductive connecting members 4e and 3e. The experimental data from the conventional thermoelectric conversion collective unit of FIG. 5A and the two-coupled thermoelectric conversion collective unit of FIG. 5B are divided into white squares of symbol f and white circles of symbol e, respectively, with experimental error ranges (error bars) in the figure. It is shown separately. The conventional thermoelectric conversion collective unit in FIG. 5A corresponds to the case of L = 0 cm, and the experimental data by this conventional thermoelectric conversion collective unit is data at the position of L = 0 cm in the figure.

図6の実験データから以下の2つの事実が分かる。1)図5Bの2連結熱電変換集合ユニットの導電部材のゼーベック係数の値は、実験誤差範囲内で導電性連結部材4e及び3eの長さLに依存しない。2)図5Bの2連結熱電変換集合ユニットの導電部材のゼーベック係数の値は、図5Aの従来型熱電変換集合ユニットの導電部材のゼーベック係数の値より約1.2倍大きく増幅されている。
実験事実の1)は、前記の物理的ゼーベック係数増幅効果の理論が導電性連結部材の長さLに依存しない理論であることと一致する。実験事実の2)は、前記の理論が導電性連結部材の導入により導電部材のゼーベック係数が増幅される効果を導く理論であることと一致する。
このように、実証実験による実験結果により、前記の物理的ゼーベック係数増幅効果の理論は正しいことが実証されていると言える。
The following two facts can be seen from the experimental data in FIG. 1) The value of the Seebeck coefficient of the conductive member of the two-coupled thermoelectric conversion collective unit in FIG. 5B does not depend on the length L of the conductive connecting members 4e and 3e within the experimental error range. 2) The value of the Seebeck coefficient of the conductive member of the two-coupled thermoelectric conversion assembly unit in FIG. 5B is amplified about 1.2 times larger than the value of the Seebeck coefficient of the conductive member of the conventional thermoelectric conversion assembly unit in FIG. 5A.
The experimental fact 1) agrees with the theory that the physical Seebeck coefficient amplification effect is not dependent on the length L of the conductive connecting member. The experimental fact 2) is consistent with the above theory that leads to the effect that the Seebeck coefficient of the conductive member is amplified by the introduction of the conductive connecting member.
As described above, it can be said that the theory of the physical Seebeck coefficient amplification effect is correct based on the experimental results of the verification experiment.

現在に至るまで、2つの導電部材の間を導電性の優れた金属等の導電材で連結することによって、ゼーベック係数増幅効果が得られるという具体的な理論も存在しない為に、上述の特許文献1、2、3、及び4における熱電変換システムによる出力電圧及び電力の改善の程度は小さく限定されていた。
しかし、本発明者は、上述の特許文献2を利用した実験結果を理論分析してゼーベック係数を増幅させる効果を見出し、ゼーベック係数増幅効果の理論を構築して、証明する為の実証実験により理論が正しい事を確認したものである。また、前記の物理的ゼーベック係数増幅効果の理論で言及したように、導電性連結部材で連結する導電部材の数を多くすれば、ゼーベック係数の増幅量を更に大きくすることができる。
To date, there is no specific theory that the Seebeck coefficient amplification effect can be obtained by connecting two conductive members with a conductive material such as a metal having excellent conductivity. The degree of improvement in output voltage and power by the thermoelectric conversion systems in 1, 2, 3, and 4 was small and limited.
However, the present inventor theoretically analyzes the experimental results using the above-mentioned Patent Document 2 to find out the effect of amplifying the Seebeck coefficient, constructs the theory of the Seebeck coefficient amplification effect, and conducts the proof experiment to prove it. Has been confirmed to be correct. Further, as mentioned in the theory of the physical Seebeck coefficient amplification effect, the amount of amplification of the Seebeck coefficient can be further increased by increasing the number of conductive members connected by the conductive connection member.

以下、本発明の第1の実施形態における3連結ゼーベック係数増幅熱電変換ユニットの構成について説明する。以下では、熱電変換する最小要素を熱電変換素子、同符号のゼーベック係数の導電部材を導電性連結部材で連結した要素を連結熱電変換素子、正と負のゼーベック係数の熱電変換素子の対を接合導電部材で接合した要素を熱電変換ユニット、導電性連結部材で連結したユニットを連結熱電変換ユニットと略記する。
図1Aと図1Bは、本発明の第1の実施形態例における3連結ゼーベック係数増幅熱電変換ユニット70aと、従来の熱電変換ユニット70bを示す概略構成図である。
Hereinafter, the configuration of the three-connected Seebeck coefficient amplification thermoelectric conversion unit in the first embodiment of the present invention will be described. In the following, the thermoelectric conversion element is the smallest element for thermoelectric conversion, the element is connected by connecting the conductive member of Seebeck coefficient with the same sign with the conductive connecting member, and a pair of thermoelectric conversion elements with positive and negative Seebeck coefficient is joined Elements joined by conductive members are abbreviated as thermoelectric conversion units, and units connected by conductive connecting members are abbreviated as connected thermoelectric conversion units.
1A and 1B are schematic configuration diagrams showing a three-connected Seebeck coefficient amplification thermoelectric conversion unit 70a and a conventional thermoelectric conversion unit 70b according to the first embodiment of the present invention.

本実施の形態における連結熱電変換ユニット70aは、左側の3つの正のゼーベック係数を持つp型導電部材1aと1c同士及び1cと1b同士の各々を導電性連結部材3aと3cとで電気的に直列接続した3連結ゼーベック係数増幅熱電変換素子と、右側の3つの負のゼーベック係数を持つn型導電部材2aと2c同士及び2cと2b同士の各々を導電性連結部材3bと3dとで電気的に直列接続した3連結熱電変換素子との対を上側の接合導電部材4によって接合し、対向部下側の接合導電部材4により1対の出力端を接続して構成される。   In the connected thermoelectric conversion unit 70a in the present embodiment, the p-type conductive members 1a and 1c having three positive Seebeck coefficients on the left side and 1c and 1b are electrically connected to each other by the conductive connection members 3a and 3c. Three connected Seebeck coefficient amplifying thermoelectric conversion elements connected in series, and the right side n-type conductive members 2a and 2c having two negative Seebeck coefficients and 2c and 2b are electrically connected by conductive connecting members 3b and 3d, respectively. A pair of three connected thermoelectric conversion elements connected in series to each other is joined by an upper joining conductive member 4, and a pair of output ends are connected by a joining conductive member 4 below the facing portion.

一方、熱電変換材を単体で使う図1Bの従来型の熱電変換ユニット70bでは、p型導電部材1aとn型導電部材2aとの対を上側の接合導電部材4によって接合し、対向部下側の接合導電部材4により1対の出力端を接続して構成される。
本実施の形態においては、3つの同じ符号のゼーベック係数を持つ導電部材を導電性連結部材で接続して生じるゼーベック係数増幅効果を利用してゼーベック係数を増大させることができ、上下間の温度差とゼーベック係数に比例する出力電圧を、図1Bの従来の熱電変換ユニットより高くすることが可能である。
また、同じ符号のゼーベック係数を有する導電部材を連結接続する数を増やせば増やすほど、出力を大きくすることが可能である。
On the other hand, in the conventional thermoelectric conversion unit 70b of FIG. 1B using a single thermoelectric conversion material, a pair of the p-type conductive member 1a and the n-type conductive member 2a is joined by the upper joined conductive member 4, and the lower part of the opposite portion is joined. A pair of output ends are connected by the bonding conductive member 4.
In the present embodiment, the Seebeck coefficient can be increased by utilizing the Seebeck coefficient amplification effect generated by connecting the three conductive members having the same reference Seebeck coefficient by the conductive connecting member, and the temperature difference between the upper and lower sides can be increased. The output voltage proportional to the Seebeck coefficient can be made higher than that of the conventional thermoelectric conversion unit of FIG. 1B.
Further, the output can be increased as the number of conductive members having the same reference Seebeck coefficient is increased.

図7Aに、4つのp型導電部材1a,1c,1e,1bを各々3つの導電性連結部材3a,3c,3eによって連結したp型4連結熱電変換素子を形成し、高温側と低温側に電極として設置した銅などの接合導電部材4を介して負荷回路に接続した例を示す。前記の図3で説明したように、p型導電部材の場合、低温側に正の電荷が偏るので高温側から低温側へゼーベック起電圧Vsが生じ、負荷回路18aを通って低温側から高温側へと電流が流れる。この電流により、高温側では接合導電部材とp型導電部材の境界面で吸熱のペルチエ効果により熱パワーが流入し、低温側では境界面での電流の方向が逆による発熱のペルチエ効果により熱パワーが流出する。この熱パワーの流入と流出の差は回路内で消費される電力に等しく、エネルギー保存則が成立する。
同様にして、4つのn型導電部材を各々3つの導電性連結部材で連結したn型4連結熱電変換素子を接合導電部材4を介して負荷回路に接続した図7Bでも、p型4連結熱電変換素子の場合と逆方向のゼーベック起電圧Vsにより回路電流が流れて、熱パワーの流入と流出の差と消費される電力に等しなりエネルギー保存則が成立する。
In FIG. 7A, p-type 4-connected thermoelectric conversion elements are formed by connecting four p-type conductive members 1a, 1c, 1e, 1b by three conductive connection members 3a, 3c, 3e, respectively, on the high temperature side and the low temperature side. An example in which a load circuit is connected through a bonding conductive member 4 such as copper installed as an electrode is shown. As described above with reference to FIG. 3, in the case of the p-type conductive member, the positive charge is biased toward the low temperature side, so the Seebeck electromotive voltage Vs is generated from the high temperature side to the low temperature side, and the low temperature side to the high temperature side through the load circuit 18a. Current flows into the. Due to this current, heat power flows in at the boundary surface between the bonding conductive member and the p-type conductive member due to the endothermic Peltier effect on the high temperature side, and on the low temperature side due to the Peltier effect of heat generation due to the reverse current direction at the boundary surface. Leaks. The difference between the inflow and outflow of this thermal power is equal to the power consumed in the circuit, and the energy conservation law is established.
Similarly, in FIG. 7B in which an n-type 4-coupled thermoelectric conversion element in which four n-type conductive members are coupled by three conductive coupling members is connected to a load circuit via the bonding conductive member 4, a p-type 4-coupled thermoelectric element is connected. A circuit current flows due to the Seebeck electromotive voltage Vs in the opposite direction to that of the conversion element, and the energy conservation law is established by equaling the difference between the inflow and outflow of thermal power and the consumed power.

図8に、図7Aと図7Bの高温側を接合導電部材4で接続した4連結熱電変換ユニットに負荷回路に接続した例を示す。図8では図7Aと図7Bで生じるゼーベック起電圧が加算される接続になることにより、図8のゼーベック起電圧は2Vsとなって回路電流が流れる。熱パワーの流入と流出の差は2倍となり、回路内で消費できる電力も2倍となってエネルギー保存則が成立する。
また、5個以上の導電部材を導電性連結部材により接続して5連結熱電変換ユニットを構成してもよく、これらを更に接続することで、熱電変換集合ユニット、連結熱熱電変換モジュールを構成してもよい。
なお、このように複数個の導電部材を導電性連結部材によって接続する場合、同じ熱電変換素子内の導電部材は同じ正負の符号のゼーベック係数を有していることが、より大きな熱電変換効率を実現する為に必要である。また、それぞれの導電部材を連結する導電性連結部材の電気伝導率が大きく自由電子の密度が高い導電性部材が好ましいが、ゼーベック係数の符号は同じでもよいし、異なっていてもよい。
FIG. 8 shows an example in which a load circuit is connected to a 4-coupled thermoelectric conversion unit in which the high-temperature side of FIGS. 7A and 7B is connected by a bonding conductive member 4. In FIG. 8, by the connection in which the Seebeck electromotive voltages generated in FIGS. 7A and 7B are added, the Seebeck electromotive voltage in FIG. 8 becomes 2 Vs and a circuit current flows. The difference between the inflow and outflow of thermal power is doubled, the power that can be consumed in the circuit is doubled, and the energy conservation law is established.
Further, five or more conductive members may be connected by a conductive connecting member to constitute a five-linked thermoelectric conversion unit, and by further connecting these, a thermoelectric conversion assembly unit and a linked thermothermoelectric conversion module are formed. May be.
In addition, when a plurality of conductive members are connected by a conductive connecting member in this way, it is possible that the conductive members in the same thermoelectric conversion element have the same Seebeck coefficient with the same positive / negative sign. It is necessary to realize. Moreover, although the electrical conductivity of the electroconductive connection member which connects each electroconductive member is large and the density of a free electron is high, the sign of a Seebeck coefficient may be the same and may differ.

2.第1の実施の形態例と第1の変形例
次ぎに、本発明の第1の実施形態例及び第1の実施形態の変形例における図9の3連結熱電変換集合ユニット100の構成図について説明する。
なお、以下の第1の実施の形態例と第1の変形例、第2の実施の形態例と第2の変形例、第3の実施の形態例と第3の変形例の全てにおいて、多数連結熱電変換集合ユニット内の一部切断などの損傷が無い場合には、インピーダンス整合(電気回路理論により公知の負荷回路への供給電力最大の条件)する様に設定した負荷回路への供給電力を比べると、全ての実施形態による供給電力は互いに等しくなることがわかっている。また、全ての実施形態において、3個以上の同じp型またはn型の導電部材を導電性連結部材によって接続する多数連結熱電変換集合ユニットでは、連結する導電部材の数を多くすることにより、供給電力を更に大きくすることが可能である。
2. First Embodiment and First Modification Next, a configuration diagram of the three-coupled thermoelectric conversion collective unit 100 in FIG. 9 in the first embodiment of the present invention and the modification of the first embodiment will be described. To do.
In all of the following first embodiment and first modification, second embodiment and second modification, third embodiment and third modification, there are many. When there is no damage such as partial disconnection in the connected thermoelectric conversion collective unit, the power supplied to the load circuit is set so as to perform impedance matching (maximum power supply to the load circuit known by electric circuit theory). In comparison, it has been found that the power supplied by all embodiments is equal to each other. Further, in all the embodiments, in a multi-coupled thermoelectric conversion collective unit in which three or more identical p-type or n-type conductive members are connected by a conductive connecting member, the supply can be performed by increasing the number of conductive members to be connected. It is possible to further increase the power.

本発明の第1の実施の形態例の図9は、複数の図1Aの3連結熱電変換ユニット70aの出力端を接合導電部材4により接続する構成とするものである。図9Aは本実施の形態における3連結熱電変換集合ユニット100を上から見た上面図、図9Bは図9AのX1−X’1断面図、図9Cは図9AのY−Y’断面図、図9Dは図9AのX2―X’2断面図である。3連結熱電変換集合ユニット100は、p型導電部材1a(図9中A1の領域)と、n型導電部材2a(図9中B1の領域)とが複数個固定された第1の絶縁基板5aと、p型導電部材1b(図9中A2の領域)と、n型導電部材2b(図9中B2の領域)とが複数固定された第2の絶縁基板5bとを含む。   FIG. 9 of the first embodiment of the present invention is configured to connect the output ends of a plurality of three-coupled thermoelectric conversion units 70a of FIG. 9A is a top view of the three-coupled thermoelectric conversion assembly unit 100 according to the present embodiment as viewed from above, FIG. 9B is a cross-sectional view taken along line X1-X′1 of FIG. 9A, and FIG. 9C is a cross-sectional view taken along line YY ′ of FIG. FIG. 9D is a cross-sectional view taken along line X2-X′2 of FIG. 9A. The three-connected thermoelectric conversion collective unit 100 includes a first insulating substrate 5a in which a plurality of p-type conductive members 1a (A1 region in FIG. 9) and n-type conductive members 2a (B1 region in FIG. 9) are fixed. And a second insulating substrate 5b to which a plurality of p-type conductive members 1b (region A2 in FIG. 9) and n-type conductive members 2b (region B2 in FIG. 9) are fixed.

また、図9B、C、Dは共に、3つのp型導電部材1aと1c(図9中A3の領域)同士及び1cと1b同士の各々を導電性連結部材3a(図9中C1の領域)と3c(図9中C3の領域)とで電気的に直列接続したp型3連結熱電変換素子と、3つのn型導電部材2aと2c(図9中B3の領域)同士及び2cと2b同士の各々を導電性連結部材3b(図9中C2の領域)と3d(図9中C4の領域)とで電気的に連結接続したn型3連結熱電変換素子とが複数固定された絶縁基板5aと絶縁基板5bとを含む。
また、複数の3連結熱電変換ユニットの出力端同士を電気的に接合する接合導電部材4と、発生した電圧出力の出力端子61、62も含む。
9B, 9C, and 9D, the three p-type conductive members 1a and 1c (region A3 in FIG. 9) and the portions 1c and 1b are electrically connected to the conductive connecting member 3a (region C1 in FIG. 9). And 3c (region C3 in FIG. 9), p-type three-coupled thermoelectric conversion elements electrically connected in series, three n-type conductive members 2a and 2c (region B3 in FIG. 9), and 2c and 2b Insulating substrate 5a in which a plurality of n-type three-coupled thermoelectric conversion elements, each of which is electrically coupled and connected by conductive coupling member 3b (region C2 in FIG. 9) and 3d (region C4 in FIG. 9), are fixed. And an insulating substrate 5b.
Moreover, the joining conductive member 4 which electrically joins the output ends of a some 3 connection thermoelectric conversion unit, and the output terminals 61 and 62 of the generated voltage output are also included.

第1の実施形態の変形例の図9A’は、重複を避ける為に図9Aの1対の出力端子61と62側の部分に相当する図で、図9Aの3連結熱電変換集合ユニットを左右に2つに分け、発生した電圧出力を2対の出力端子63、64と65、66から取り出すように変形した実施形態を示す。この出力端子は3対にしてもよく、出力端子対を複数にすることにより、複数連結熱電変換集合ユニット内の一部に応力等による接合部の断線故障が起きた場合にも、その断線故障が含まれていない領域の出力端子対から出力電圧を外部へ供給する事が可能となる。出力端子対を複数にすることにより、複数連結熱電変換集合ユニットの製品としての信頼性の向上が可能となる。   FIG. 9A ′ of the modified example of the first embodiment is a diagram corresponding to the pair of output terminals 61 and 62 in FIG. 9A to avoid duplication, and the three-coupled thermoelectric conversion collective unit in FIG. FIG. 5 shows an embodiment in which the voltage output generated is divided into two and the generated voltage output is taken out from two pairs of output terminals 63, 64 and 65, 66. This output terminal may be three pairs, and even when a disconnection failure of the joint due to stress or the like occurs in a part of the plurality of connected thermoelectric conversion collective units by using a plurality of output terminal pairs, the disconnection failure It is possible to supply the output voltage to the outside from the output terminal pair in a region where no is included. By using a plurality of output terminal pairs, it is possible to improve the reliability as a product of a plurality of connected thermoelectric conversion collective units.

3.第1の実施形態例における3連結熱電変換集合ユニットの製造方法
次に、図10を用いて本発明の第1の実施形態例における3連結熱電変換集合ユニット100の製造方法の一例について説明する。ここでは、上述の集積回路プロセスや薄膜プロセスに分類できる方法によって製造する例を挙げる。
以下に示す第1の実施形態の製造方法と同様に、第1の実施形態の変形例、第2の実施の形態例と第2の変形例、第3の実施の形態例と第3の変形例を含む同様な実施形態例の全ては、シリコン・ウエハの形成から熱電変換集合ユニットの完成まで薄膜プロセスや集積回路プロセスによる製造や半導体型のプロセスによる製造が可能であり、一括して生産することができる。
3. Method for Manufacturing Three-Linked Thermoelectric Conversion Assembly Unit in First Embodiment Example Next, an example of a method for manufacturing the three-connection thermoelectric conversion assembly unit 100 in the first embodiment example of the present invention will be described with reference to FIG. Here, an example of manufacturing by a method that can be classified into the above-described integrated circuit process and thin film process will be given.
Similarly to the manufacturing method of the first embodiment described below, the first embodiment is modified, the second embodiment and the second modification, the third embodiment and the third modification. All of the similar embodiments including examples can be manufactured by a thin film process, an integrated circuit process, and a semiconductor type process from the formation of a silicon wafer to the completion of a thermoelectric conversion assembly unit, and are produced collectively. be able to.

まず、図10Aのように極薄い耐熱プラスチックの基板21上に、蒸着法、スパッタ法、プラズマCVD法(Chemical Vapor Development:化学蒸着法)等を用いて、アモルファスシリコン・ウエハを作成する。このアモルファスシリコン・ウエハは、用途に応じて数ミクロンメートルから五ミリメートルあるいは十数ミリメートルの一様な厚さのアモルファスシリコン(非晶質シリコン)からなる第1のシリコン層20aとして形成される。
例えば、プラズマCVD法では、グロー放電により原料ガスのシラン(SiH4)、シランジシラン(SiH6)を分解し、アモルファスシリコン層を基板上に成長させて、上記のような一様の厚さのアモルファスシリコン・ウエハを作成する。
First, as shown in FIG. 10A, an amorphous silicon wafer is formed on a very thin heat-resistant plastic substrate 21 by using a vapor deposition method, a sputtering method, a plasma CVD method (Chemical Vapor Development), or the like. This amorphous silicon wafer is formed as a first silicon layer 20a made of amorphous silicon (amorphous silicon) having a uniform thickness of several micrometers to five millimeters or tens of millimeters depending on the application.
For example, in the plasma CVD method, silane (SiH 4 ) and silane disilane (SiH 6 ) as source gases are decomposed by glow discharge, an amorphous silicon layer is grown on the substrate, and the uniform thickness as described above is obtained. Create an amorphous silicon wafer.

あるいは、アモルファスシリコン層にCW(Continuous Wave:連続波)エキシマレーザー(波長308nm)を照射してアニーリング(熱なまし)処理をするか、または、ウエハ全体を熱電気炉に入れてアニーリング処理し、アモルファスシリコンよりも電子や正孔などのキャリア移動度がはるかに大きいポリシリコン(多結晶シリコン) ・ウエハを作成する。あるいは、シリコンを円柱状に結晶成長させたインゴットをスライスして単結晶シリコン・ウエハを作成する。(以下、こうしたアモルファスシリコン基材、ポリシリコン基材、単結晶シリコン基材の何れも「ウエハ」と略記する。)   Alternatively, the amorphous silicon layer is irradiated with a CW (Continuous Wave) excimer laser (wavelength 308 nm) and annealed (thermal annealing), or the entire wafer is put into a thermoelectric furnace and annealed, Polysilicon (polycrystalline silicon) wafer with much higher carrier mobility such as electrons and holes than amorphous silicon. Alternatively, a single crystal silicon wafer is formed by slicing an ingot obtained by crystallizing silicon in a cylindrical shape. (Hereinafter, any of such amorphous silicon substrate, polysilicon substrate, and single crystal silicon substrate is abbreviated as “wafer”.)

このようにして作成したウエハ表面にフォトレジストを不図示の塗布機で薄く塗布し、このフォトレジストを塗布したウエハ上方に設けた不図示の露光装置(ステッパー)に第1の導電部材22a及び第2の導電部材23aの領域を露光するマスクパターンをセットする。すなわち、図10Aにおいて、A1及びB1の領域のみ紫外光を透過するマスクを用いてレジストに露光を行う。1チップ分の露光後も露光ステージを上下方向及び左右方向に順次移動させて1チップ分ずつ露光を繰り返し、ウエハ全面を走査して露光する。この際、レジストの種類によっては焼きしめと呼ばれる軽い熱処理を行い、露光部分の反応を促進させる。なお、ここではレジストにネガレジストを用いた場合について示してある。   Photoresist is thinly applied to the wafer surface thus prepared by a coating machine (not shown), and the first conductive member 22a and the first conductive member 22a and the first conductive member 22a are placed on an exposure apparatus (stepper) (not shown) provided above the wafer coated with this photoresist. A mask pattern for exposing the region of the second conductive member 23a is set. That is, in FIG. 10A, the resist is exposed using a mask that transmits ultraviolet light only in the areas A1 and B1. After the exposure for one chip, the exposure stage is sequentially moved in the vertical direction and the horizontal direction to repeat the exposure for each chip, and the entire surface of the wafer is scanned for exposure. At this time, depending on the type of resist, a light heat treatment called baking is performed to promote the reaction of the exposed portion. Here, a case where a negative resist is used as a resist is shown.

次に、ウエハ上のレジスト全面にマスクパターンを転写した後、未露光部分のみを現像液に溶解させ、ウエハを露出させる(現像)。この現像には、例えば強アルカリ性のTMAH(Tetramethyl ammonium hydroxide:テトラメチル アンモニウム ヒドロオキサイド)が用いられ、現像機(デベロッパー)でウエハを回転しながらこの現像液を滴下することにより、現像が行われる。   Next, after the mask pattern is transferred to the entire resist surface on the wafer, only the unexposed portion is dissolved in the developer to expose the wafer (development). For this development, for example, strong alkaline TMAH (Tetramethyl ammonium hydroxide) is used, and development is performed by dropping the developer while rotating the wafer with a developing machine (developer).

次に、レジストが残されたウエハ全体を高温の酸化炉にいれ、「熱酸化法」を用いてウエハを二酸化シリコン(SiO2)に変成させる。これにより、現像によってウエハが露出した部分、すなわち図10AにおいてA1、B1の領域以外の部分が二酸化シリコン(SiO2)に変化する。 Next, the entire wafer on which the resist is left is placed in a high-temperature oxidation furnace, and the wafer is transformed into silicon dioxide (SiO 2 ) using a “thermal oxidation method”. As a result, the portion where the wafer is exposed by development, that is, the portion other than the regions A1 and B1 in FIG. 10A is changed to silicon dioxide (SiO 2 ).

二酸化シリコンの形成後はウエハ上に残っているレジストを溶剤によって除去する。そして再びウエハ上にレジストを塗布して露光、現像をおこない、今度は領域A1のみが露出し、それ以外の部分はレジストによって覆われた状態とする。
この領域A1をp型半導体とする場合には、例えばイオン注入法によってボロン(B:ホウ素)の高エネルギーイオンビームをウエハ上のA1の領域に照射する。そして、この打ち込んだイオンによる格子欠陥をアニーリング処理によって再結晶化し、P型半導体を形成する。これによって第1の導電部材22aが領域A上に形成される。このイオンを打ち込む際には、イオンがウエハ面に達する直前にエレクトロンシャワーを当ててイオンのプラス電荷を電子電荷で中和するようにする。
After the silicon dioxide is formed, the resist remaining on the wafer is removed with a solvent. Then, a resist is applied again on the wafer, and exposure and development are performed. This time, only the region A1 is exposed, and the other portions are covered with the resist.
When this region A1 is a p-type semiconductor, a high-energy ion beam of boron (B: boron) is irradiated to the region A1 on the wafer, for example, by ion implantation. Then, the lattice defects due to the implanted ions are recrystallized by an annealing process to form a P-type semiconductor. Thus, the first conductive member 22a is formed on the region A. When this ion is implanted, an electron shower is applied immediately before the ion reaches the wafer surface so that the positive charge of the ion is neutralized by the electronic charge.

続いて、第1の導電部材22aの形成後はウエハ上に残ったレジストを除去し、再びレジストの塗布、露光、現像の工程を繰り返す。今度は図10Aに示す領域B1が露出され、それ以外の部分はレジストによって覆われた状態とする。
領域B1をn型半導体とする場合には、同様にイオン注入法を用いて例えばリン(P)の高エネルギービームを照射する。そして、打ち込んだイオンによる格子欠陥をアニーリング処理によって再結晶化して、N型半導体に変化させる。これにより、領域B1に第2の導電部材23aが形成される。
Subsequently, after the formation of the first conductive member 22a, the resist remaining on the wafer is removed, and the resist coating, exposure, and development steps are repeated again. Next, the region B1 shown in FIG. 10A is exposed, and the other portions are covered with the resist.
In the case where the region B1 is an n-type semiconductor, a high energy beam of phosphorus (P), for example, is irradiated using an ion implantation method. Then, the lattice defects caused by the implanted ions are recrystallized by an annealing process to change into an N-type semiconductor. Thereby, the second conductive member 23a is formed in the region B1.

次に、図10Bに示すように、第1の導電性連結部材24a、第2の導電性連結部材24bを薄膜プロセスによって第1の導電部材22a及び第2の導電部材23a上に形成する。まず、ウエハ上にポジレジスト25を塗布して露光、現像を行い、第1の導電部材22aの領域のみを露出してそれ以外の部分はポジレジスト25によって覆われた状態とする。そしてスクリーン印刷法によって、上記露出された第1の導電部材22a上に金属ペースト(銅などの金属粉末、カラズフリット、樹脂、有機溶剤よりなる)を塗布して熱処理を行い、第1の導電部材22a上に第1の導電性連結部材24aを形成する。   Next, as shown in FIG. 10B, the first conductive connecting member 24a and the second conductive connecting member 24b are formed on the first conductive member 22a and the second conductive member 23a by a thin film process. First, a positive resist 25 is applied on the wafer, exposed and developed, and only the region of the first conductive member 22a is exposed and the other portions are covered with the positive resist 25. Then, by a screen printing method, a metal paste (made of metal powder such as copper, kala frit, resin, organic solvent) is applied on the exposed first conductive member 22a, and heat treatment is performed. A first conductive connecting member 24a is formed on 22a.

次にポジレジスト25に対して再び露光、現像を行い、今度は第2の導電部材23aの領域のみが露出され、それ以外の領域はレジスト25及び第1の導電性連結部材24aによって覆われた状態とする。そしてスクリーン印刷法によって、上記露出された第2の導電部材23a上に金属ペーストを塗布して熱処理を行い、第2の導電部材23a上に第2の導電性連結部材24bを形成する。
なお、このレジストが高耐久性であり絶縁性が高い場合には、第1の導電性連結部材24a及び第2の導電性連結部材24bを電気的に保護する絶縁部材としてそのまま用いてもよい。もしくは、樹脂等を注入し、第1の接合導電部材24が互いに絶縁された状態になるように形成することもできる。
Next, the positive resist 25 was exposed and developed again, and this time, only the region of the second conductive member 23a was exposed, and the other regions were covered with the resist 25 and the first conductive connecting member 24a. State. Then, a metal paste is applied onto the exposed second conductive member 23a by a screen printing method, and heat treatment is performed, thereby forming a second conductive connecting member 24b on the second conductive member 23a.
If the resist is highly durable and highly insulating, the first conductive connecting member 24a and the second conductive connecting member 24b may be used as they are as insulating members for electrical protection. Alternatively, resin or the like can be injected so that the first bonding conductive members 24 are insulated from each other.

また、金属ペーストの焼成温度が高く、レジストが耐えられない場合にはレーザCVD法等を用いて、露出した第1の導電部材22a及び第2の導電部材23a上に第1の導電性連結部材24a及び第2の導電性連結部材24bを選択的に形成してもよい。また、蒸着やスパッタ等により形成してもよい。   Further, when the baking temperature of the metal paste is high and the resist cannot withstand, the first conductive connecting member is formed on the exposed first conductive member 22a and second conductive member 23a by using a laser CVD method or the like. You may selectively form 24a and the 2nd electroconductive connection member 24b. Further, it may be formed by vapor deposition or sputtering.

次に、図10Cに示すように、第1の接合導電部材24aと第2の接合導電部材24bとレジスト25の上に、蒸着法、スパッタ法、プラズマCVD法等を用い、アモルファスシリコン、またはこのアモルファスシリコンを熱処理したポリシリコンからなる第2のシリコン層20bを形成する。
続いて、このシリコン層20b上にレジストを塗布して露光、現像を行い、第1の導電性連結部材24a、第2の導電性連結部材24b上の領域A2、B2のみレジストによって覆われ、それ以外の部分は露出された状態とする。そして、これを酸化炉に投入し、領域A2、B2以外の部分を二酸化シリコンへと変化させる。
Next, as shown in FIG. 10C, on the first bonding conductive member 24a, the second bonding conductive member 24b, and the resist 25, using an evaporation method, a sputtering method, a plasma CVD method, etc., amorphous silicon or this A second silicon layer 20b made of polysilicon obtained by heat-treating amorphous silicon is formed.
Subsequently, a resist is applied onto the silicon layer 20b, exposed and developed, and only the regions A2 and B2 on the first conductive connecting member 24a and the second conductive connecting member 24b are covered with the resist. The other parts are exposed. And this is thrown into an oxidation furnace, and parts other than area | region A2, B2 are changed into silicon dioxide.

次に、シリコン層20b上にレジストを塗布して露光、現像を行いシリコン層20b内の領域A2のみを露出させ、それ以外の部分はレジストによって覆われた状態とする。そして既述のイオン注入法によりボロン等を注入し、第2のシリコン層20bの領域A2に第3の導電部材22bを形成する。
また同様にしてシリコン層20b内の領域B2のみを露出させてそれ以外の部分をレジストによって覆い、領域Bにイオン注入法によりリン等を注入する。これにより、シリコン層20b内の領域B2には第4の導電部材23bが形成される。
Next, a resist is applied on the silicon layer 20b, exposed and developed to expose only the region A2 in the silicon layer 20b, and the other portions are covered with the resist. Then, boron or the like is implanted by the above-described ion implantation method to form the third conductive member 22b in the region A2 of the second silicon layer 20b.
Similarly, only the region B2 in the silicon layer 20b is exposed, the other portions are covered with a resist, and phosphorus or the like is implanted into the region B by ion implantation. Thereby, the fourth conductive member 23b is formed in the region B2 in the silicon layer 20b.

第3の導電部材22b上に形成される第3の導電性連結部材24cと、第4の導電部材23b上に形成される第4の導電性連結部材24dは、同じ材料であってもよいし、異なるゼーベック係数を有するものであってもよい。   The third conductive connecting member 24c formed on the third conductive member 22b and the fourth conductive connecting member 24d formed on the fourth conductive member 23b may be made of the same material. May have different Seebeck coefficients.

同様に図10Bと図10Cの工程を繰り返し、図10Dに示すように、隣り合う第5の導電部材22cと第6の導電部材23c、及び隣り合う第1の導電部材22aと第2の導電部材23aを接合導電部材27によって接続する。
まず、第3のシリコン層20c上にレジストを塗布して露光を行い、となり合う第5の導電部材22cと第6の導電部材23cの対、及びこの中心に位置する二酸化シリコンの領域を露出し、それ以外の部分はレジストによって覆われた状態とする。そしてこの露出された領域に、スクリーン印刷法によって、金属ペースト(銀や銅などの粉末、カラズフリット、樹脂、有機溶剤よりなる)を塗布(印刷)して熱処理することにより、第5の導電部材22cと第6の導電部材23cとを接続する。
例えば始めは銀ペーストを使いオーミックコンタクトにより接続し、その上に銅ペーストの印刷と熱処理を繰り返す。そして、この銅ペーストの印刷と熱処理を繰り返すことにより、隣り合う第5の導電部材22cと第6の導電部材23cとをオーミックコンタクトで接続する。これにより、p型とn型の熱電変換部が直列に接続された熱電変換ユニットが形成される。
Similarly, the steps of FIG. 10B and FIG. 10C are repeated, and as shown in FIG. 10D, the adjacent fifth conductive member 22c and the sixth conductive member 23c, and the adjacent first conductive member 22a and the second conductive member. 23 a is connected by a bonding conductive member 27.
First, a resist is applied on the third silicon layer 20c and exposed to expose the pair of the fifth conductive member 22c and the sixth conductive member 23c, and the silicon dioxide region located at the center. The other parts are covered with a resist. Then, by applying (printing) a metal paste (made of silver, copper or the like, powder, frit, resin, or organic solvent) to this exposed region by a screen printing method and heat-treating, the fifth conductive member 22c and the sixth conductive member 23c are connected.
For example, at first, silver paste is used and connected by ohmic contact, and then copper paste printing and heat treatment are repeated. Then, by repeating printing and heat treatment of the copper paste, the adjacent fifth conductive member 22c and sixth conductive member 23c are connected by ohmic contact. Thereby, the thermoelectric conversion unit in which the p-type and n-type thermoelectric conversion units are connected in series is formed.

また、第1のシリコン層20a側においては、まず基板21を研磨機等で磨いて、ウエハの下面に第1の導電部材22aと第2の導電部材23aとが露出するようにする。そしてこの面にレジストを塗布して露光、現像を行う。これにより、第2のシリコン層20b側において接合導電部材27によって覆われた二酸化シリコンの領域28の下部に位置する、第1のシリコン層20a側の二酸化シリコンの領域29がレジストによって覆われ、それ以外の部分は露出された状態とする。   On the first silicon layer 20a side, the substrate 21 is first polished with a polishing machine or the like so that the first conductive member 22a and the second conductive member 23a are exposed on the lower surface of the wafer. Then, a resist is applied to this surface, and exposure and development are performed. As a result, the silicon dioxide region 29 on the first silicon layer 20a side, which is located below the silicon dioxide region 28 covered by the bonding conductive member 27 on the second silicon layer 20b side, is covered with the resist. The other parts are exposed.

この露出された領域に、上記と同様の方法にて金属ペーストを塗布して熱処理し、隣り合う第1の導電部材22aと第2の導電部材23aとを接続するための第2の接合導電部材27を形成する。これにより、隣り合う熱電変換ユニット同士が直列に接続される。そして最後に、発生する起電力を外部回路へ出力するための出力端子を形成することにより薄膜状の3連結熱電変換集合ユニット100を形成することができる。
また、4個以上の導電部材を導電性連結部材によって直列に接続する場合の複数連結熱電変換集合ユニットにも、上述の図10B,Cに示したプロセスを繰り返すことで同様に作製することができる。
A second bonding conductive member for connecting the adjacent first conductive member 22a and the second conductive member 23a by applying a metal paste to the exposed region by the same method as described above and performing heat treatment. 27 is formed. Thereby, adjacent thermoelectric conversion units are connected in series. Finally, a thin-film three-coupled thermoelectric conversion assembly unit 100 can be formed by forming an output terminal for outputting the generated electromotive force to an external circuit.
Moreover, it can produce similarly by repeating the process shown to the above-mentioned FIG. 10B and C also in the multiple connection thermoelectric conversion aggregate | assembly unit in the case of connecting four or more conductive members in series by a conductive connection member. .

このように、本発明の第1の実施の形態例においては、薄膜プロセス、集積回路プロセスを用い、一貫して形成される。このため、図9に示すような熱電変換集合ユニット100を一括して製造することが可能となる。また、このプロセスでは薄膜状の熱電変換集合ユニットを製造することが可能なため、電子機器等に搭載する場合の実装スペースを削減することができる。   Thus, the first embodiment of the present invention is formed consistently using a thin film process and an integrated circuit process. For this reason, it becomes possible to manufacture the thermoelectric conversion aggregate unit 100 as shown in FIG. 9 collectively. Further, in this process, a thin-film thermoelectric conversion assembly unit can be manufactured, so that the mounting space for mounting on an electronic device or the like can be reduced.

また、4個以上の導電部材を接続した熱電変換ユニットによって熱電変換集合ユニットを構成する場合においても、同じ薄膜プロセス、集積回路プロセスを繰り返すだけでよいので、高出力な熱電変換集合ユニットを容易に作製することが可能である。
なお、上述の半導体型のプロセスによって製造することも、もちろん可能である。
In addition, even when the thermoelectric conversion assembly unit is constituted by the thermoelectric conversion units to which four or more conductive members are connected, it is only necessary to repeat the same thin film process and integrated circuit process. It is possible to produce.
Of course, it is also possible to manufacture by the above-mentioned semiconductor type process.

なお、ここで挙げた例のみでなく、他にも蒸着、スパッタ、プラズマCVD法とエッチングを組み合わせる等、薄膜プロセス、集積回路プロセス、半導体型のプロセスを用いることにより種々の方法を採ることができる。
また、遠距離間の温度差により発電を行う目的で、導電性連結部材に金属リード線を用い、第1のシリコン層20aと第2のシリコン層20bの間の距離を長くしたい場合もある。このような場合には、第1のシリコン層20a側に金属リード線を接続した後、金属リード線を第1のシリコン層20aの面に対して垂直方向にのばした状態で、紫外線硬化樹脂や熱硬化樹脂等にて硬化する。そして樹脂からはみ出たリード線の部分を切断し、樹脂上に第2のシリコン層20bを堆積させてもよい。
また、3個以上の導電部材を直列に接続する場合においても、同様に接続してもよい。
In addition to the examples given here, various other methods can be adopted by using a thin film process, an integrated circuit process, and a semiconductor type process such as a combination of vapor deposition, sputtering, plasma CVD and etching. .
In addition, there is a case where a metal lead wire is used for the conductive connecting member to increase the distance between the first silicon layer 20a and the second silicon layer 20b for the purpose of generating electric power due to a temperature difference between long distances. In such a case, after the metal lead wire is connected to the first silicon layer 20a side, the UV lead is cured with the metal lead wire extended in a direction perpendicular to the surface of the first silicon layer 20a. Cured with or thermosetting resin. Then, the portion of the lead wire protruding from the resin may be cut, and the second silicon layer 20b may be deposited on the resin.
Further, when three or more conductive members are connected in series, they may be similarly connected.

4.第2の実施の形態例と第2の変形例
次ぎに、本発明の第2の実施形態例及び第2の実施形態の変形例における図11の3連結熱電変換集合ユニット300及び3連結熱電変換集合ユニット400の構成図について説明する。
本発明の第2の実施形態例は、複数の図1Aの3連結熱電変換ユニット70aの出力端を接合導電部材4によりを並列接続することによって連結熱電変換集合ユニットを形成するものである。図11Aは本実施の形態における3連結熱電変換集合ユニット300を上から見た上面図、図11Bは図11AのX1−X’1断面図、図11Cは図11AのY−Y’断面図である。図11B、Cは共に、3つのp型導電部材1aと1c(図11中A3の領域)同士及び1cと1b同士の各々を導電性連結部材3a(図11中C1の領域)と3c(図11中C3の領域)とで電気的に直列接続したp型3連結熱電変換素子と、3つのn型導電部材2aと2c(図11中B3の領域)同士及び2cと2b同士の各々を導電性連結部材3b(図11中C2の領域)と3d(図11中C4の領域)とで電気的に直列接続したn型3連結熱電変換素子とが複数固定された絶縁基板5aと絶縁基板5bとを含む。図11Aに示すように、D1方向には、p型3連結熱電変換素子の列とn型3連結熱電変換素子の列が交互に配置され、D2方向には同じp型またはn型の3連結熱電変換素子が配置されている。導電性連結部材3a,3b,3c,3dは同じ材料であってもよいし、異なっていてもよい。
4). Second Embodiment and Second Modification Next, the three-coupled thermoelectric conversion collective unit 300 and the three-coupled thermoelectric conversion of FIG. 11 in the second embodiment of the present invention and the modification of the second embodiment will be described. A configuration diagram of the collective unit 400 will be described.
In the second embodiment of the present invention, a connected thermoelectric conversion assembly unit is formed by connecting the output ends of a plurality of three connected thermoelectric conversion units 70a in FIG. 11A is a top view of the three-coupled thermoelectric conversion assembly unit 300 according to the present embodiment as viewed from above, FIG. 11B is a cross-sectional view taken along line X1-X′1 of FIG. 11A, and FIG. 11C is a cross-sectional view taken along line YY ′ of FIG. is there. 11B and 11C, the three p-type conductive members 1a and 1c (region A3 in FIG. 11) and the portions 1c and 1b are respectively connected to the conductive connecting members 3a (region C1 in FIG. 11) and 3c (FIG. 11B). P-type three-coupled thermoelectric conversion elements electrically connected in series with each other and the three n-type conductive members 2a and 2c (region B3 in FIG. 11) and between each of 2c and 2b. Insulating substrate 5a and insulating substrate 5b in which a plurality of n-type three-coupled thermoelectric conversion elements electrically connected in series between the conductive connecting member 3b (region C2 in FIG. 11) and 3d (region C4 in FIG. 11) are fixed. Including. As shown in FIG. 11A, in the D1 direction, a row of p-type three-coupled thermoelectric conversion elements and a row of n-type three-coupled thermoelectric conversion elements are alternately arranged, and the same p-type or n-type three-connection is arranged in the D2 direction. A thermoelectric conversion element is arranged. The conductive connecting members 3a, 3b, 3c, 3d may be made of the same material or different.

また図11Cに示すように、絶縁部材5bにおいてD2方向に配列された列m1〜m8の同じp型またはn型の3連結熱電変換素子同士は、接合導電部材4bによって、その全てが接続される。また図11Bに示すように、D1方向においては絶縁部材5a側に配置された隣り合うp型導電部材1aとn型導電部材2aとが接合導電部材4aによって接続され、3連結熱電変換ユニットが形成される。また接合導電部材4aと接合導電部材4bは同じ材料であってもよい。   Further, as shown in FIG. 11C, all of the same p-type or n-type three-connected thermoelectric conversion elements in the rows m1 to m8 arranged in the D2 direction in the insulating member 5b are connected by the bonding conductive member 4b. . Further, as shown in FIG. 11B, adjacent p-type conductive member 1a and n-type conductive member 2a arranged on the insulating member 5a side in D1 direction are connected by bonding conductive member 4a to form a three-linked thermoelectric conversion unit. Is done. The bonding conductive member 4a and the bonding conductive member 4b may be the same material.

すなわち、列L1〜L4におけるそれぞれの3連結熱電変換ユニットは、接合導電部材4bにより、同じp型またはn型の導電部材同士が接合されて並列接続となる。したがって、図11Cの矢印に示すように、各3連結熱電変換ユニットからの電流が接合導電部材4bにおいて合流し、複数の電源をいわゆる並列接続した状態に相当する。
なお、図11Aに示す本発明の第2の実施形態例においては、例えば列L1〜列L4まで熱電変換ユニットを4列配置する例としてある。また出力端61、62は列m1、列m8において配置される接合導電部材4bを延長したものを用いてもよく、または新たに導電部材を形成してもよい。
That is, in each of the three linked thermoelectric conversion units in the rows L1 to L4, the same p-type or n-type conductive members are joined together by the joined conductive member 4b to be connected in parallel. Therefore, as indicated by the arrows in FIG. 11C, the currents from the three connected thermoelectric conversion units are merged in the bonding conductive member 4b, which corresponds to a state in which a plurality of power supplies are connected in parallel.
In the second embodiment of the present invention shown in FIG. 11A, for example, four rows of thermoelectric conversion units are arranged from row L1 to row L4. The output ends 61 and 62 may be obtained by extending the bonding conductive member 4b arranged in the rows m1 and m8, or a new conductive member may be formed.

このように、本発明の第2の実施形態例においては、3連結熱電変換集合ユニット300内の3連結熱電変換ユニット全てが並列に接続される。したがって、3連結熱電変換集合ユニット300内の接合導電部材が一部切断されたとしても、出力端子61、62からの出力が完全に停止するのを防ぐことができる。
このため第2の実施形態例によれば、折り曲げや衝撃等に強く、3連結熱電変換集合ユニット内の一部切断などの損傷に対して供給電力の低下を最小限に止め、耐久性の高い3連結熱電変換集合ユニットを提供することが可能となる。
Thus, in the second embodiment of the present invention, all the three linked thermoelectric conversion units in the three linked thermoelectric conversion collective unit 300 are connected in parallel. Therefore, even if the bonded conductive member in the three-linked thermoelectric conversion collective unit 300 is partially cut, it is possible to prevent the output from the output terminals 61 and 62 from being completely stopped.
For this reason, according to the second embodiment, it is resistant to bending, impact, etc., and the decrease in power supply is minimized with respect to damage such as partial cutting in the three-coupled thermoelectric conversion collective unit, resulting in high durability It is possible to provide a three-linked thermoelectric conversion collective unit.

第2の実施形態の変形例の図11A’は、重複を避ける為に図11Aの1対の出力端子61と62側の部分に相当する図で、図11Aの3連結熱電変換集合ユニットを左右に2つに分け、発生した電圧出力を2対の出力端子601、602と603、604から取り出すように変形した3連結熱電変換集合ユニット400を示す。この出力端子は3対にしてもよく、出力端子対を複数にすることにより、全ての3連結熱電変換ユニットが並列に接続しているため、導電部材や接合導電部材に断線故障が生じても、発電機能が完全に停止してしまうのを防ぐと共に、その断線故障が含まれていない領域の出力端子対から出力電圧を外部へ供給する事が可能となる。このように、並列接続された3連結熱電変換ユニットをD1に複数に分割し、各々の分割部分に出力端子対を取付けて、複数の出力端子対から出力電圧を外部へ供給することにより、電機能を持つ複数連結熱電変換集合ユニットの製品としての更なる信頼性の向上が可能となる。   FIG. 11A ′ of a modification of the second embodiment is a diagram corresponding to the pair of output terminals 61 and 62 in FIG. 11A to avoid duplication, and the three-coupled thermoelectric conversion collective unit in FIG. 3 shows a three-linked thermoelectric conversion collective unit 400 which is divided into two parts and is modified so that the generated voltage output is taken out from two pairs of output terminals 601, 602 and 603, 604. This output terminal may be three pairs, and by connecting a plurality of output terminal pairs, all three connected thermoelectric conversion units are connected in parallel, so even if a disconnection failure occurs in the conductive member or the joined conductive member. In addition to preventing the power generation function from being completely stopped, it is possible to supply the output voltage to the outside from the output terminal pair in the region where the disconnection failure is not included. In this way, the three-coupled thermoelectric conversion units connected in parallel are divided into a plurality of D1, and an output terminal pair is attached to each divided portion, and an output voltage is supplied from the plurality of output terminal pairs to the outside. It is possible to further improve the reliability of a multi-coupled thermoelectric conversion assembly unit having a function as a product.

5.第3の実施の形態例と第3の変形例
図12は、第3の実施の形態例及び第3の実施形態の変形例における3連結熱電変換集合ユニット500及び3連結熱電変換集合ユニット600の構成を示す概略構成図である。図12Aは3連結熱熱電変換集合ユニット500の絶縁部材5a側から見た上面図、図12Bは図12AのX−X’断面図、図12Cは図12AのY−Y’断面図である。図12B、Cは共に、3つのp型導電部材1aと1c(図12中A3の領域)同士及び1cと1b同士の各々を導電性連結部材3a(図12中C1の領域)と3c(図12中C3の領域)とで電気的に直列接続したp型3連結熱電変換素子と、3つのn型導電部材2aと2c(図12中B3の領域)同士及び2cと2b同士の各々を導電性連結部材3b(図12中C2の領域)と3d(図12中C4の領域)とで電気的に直列接続したn型3連結熱電変換素子とが複数固定された絶縁基板5aと絶縁基板5bとを含む。
5. Third Embodiment and Third Modification FIG. 12 shows a configuration of the three-coupled thermoelectric conversion assembly unit 500 and the three-connection thermoelectric conversion assembly unit 600 in the third embodiment and the modification of the third embodiment. It is a schematic block diagram which shows a structure. 12A is a top view of the three-coupled thermothermoelectric conversion collective unit 500 viewed from the insulating member 5a side, FIG. 12B is a cross-sectional view taken along the line XX ′ of FIG. 12A, and FIG. 12C is a cross-sectional view taken along the line YY ′ of FIG. 12B and FIG. 12C, the three p-type conductive members 1a and 1c (region A3 in FIG. 12) and the portions 1c and 1b are respectively connected to the conductive connecting members 3a (region C1 in FIG. 12) and 3c (FIG. 12). P-type three-coupled thermoelectric conversion elements electrically connected in series with each other, the three n-type conductive members 2a and 2c (region B3 in FIG. 12), and each of 2c and 2b. Insulating substrate 5a and insulating substrate 5b in which a plurality of n-type three-coupled thermoelectric conversion elements electrically connected in series by the conductive connecting member 3b (region C2 in FIG. 12) and 3d (region C4 in FIG. 12) are fixed Including.

図12Aに示すようにD1方向には、n型3連結熱電変換素子とp型3連結熱電変換素子とが接合導電部材41aで接合された3連結熱電変換ユニットが配列される。D2方向には、二つの3連結熱電変換ユニットを絶縁部材5b側の接合導電部材41bによって並列に接続した二並列の3連結熱電変換ユニット71aが左右反転されて、第L1列から第L4列まで複数接続されることになる。なお図12Aにおいて接合導電部材41aは、説明の都合上その領域を小さく表示してある。また、出力端子611、612は、列m1、m8における接合導電部材41bを延長して形成するか、もしくはこれに新たに導電部材を接続することによって形成される。
また、4個以上のp型またはn型の導電部材を導電性連結部材によって直列に接続することにより、更に高い出力を実現することができる。
As shown in FIG. 12A, in the direction D1, three-coupled thermoelectric conversion units in which an n-type three-coupled thermoelectric conversion element and a p-type three-coupled thermoelectric conversion element are joined by a joint conductive member 41a are arranged. In the D2 direction, two parallel three-coupled thermoelectric conversion units 71a in which two three-coupled thermoelectric conversion units are connected in parallel by the bonding conductive member 41b on the insulating member 5b side are reversed left and right, from the L1 column to the L4 column. Multiple connections will be made. In FIG. 12A, the bonding conductive member 41a is shown in a small size for convenience of explanation. The output terminals 611 and 612 are formed by extending the bonding conductive members 41b in the rows m1 and m8, or by newly connecting conductive members to the output terminals 611 and 612.
Further, a higher output can be realized by connecting four or more p-type or n-type conductive members in series by a conductive connecting member.

このように、本発明の第3の実施形態例では、3連結熱電変換ユニットの直列接続と並列接続とが混成している。すなわち、3連結熱電変換集合ユニット500においても、並列接続を内部に含むため、3連結熱電変換集合ユニット内の一部に断線が生じても、出力端611、612から出力が完全に停止するのを防ぐことができる。このため、第3の実施形態における熱電変換集合ユニット500は、折り曲げや衝撃に強く、ユニット内の一部切断などの損傷に対して供給電力の低下を最小限に止め、長期間の使用を実現できる。   Thus, in the third embodiment of the present invention, the serial connection and the parallel connection of the three linked thermoelectric conversion units are mixed. That is, since the three-coupled thermoelectric conversion assembly unit 500 also includes parallel connection, the output is completely stopped from the output ends 611 and 612 even if a disconnection occurs in a part of the three-connection thermoelectric conversion assembly unit. Can be prevented. For this reason, the thermoelectric conversion collective unit 500 according to the third embodiment is resistant to bending and impact, minimizes the decrease in power supply against damage such as partial cutting in the unit, and realizes long-term use. it can.

第3の実施形態の変形例の図12A’は、重複を避ける為に図12Aの1対の出力端子611と612側の部分に相当する図で、図12Aの3連結熱電変換集合ユニットを左右に2つに分け、発生した電圧出力を2対の出力端子613、614と615、616から取り出すように変形した3連結熱電変換集合ユニット600を示す。この出力端子は3対にしてもよく、出力端子対を複数にすることにより、全ての熱電変換ユニットが直列接続と並列接続とが混成しているため、導電部材や接合導電部材に断線故障が生じても、発電機能が完全に停止してしまうのを防ぐと共に、その断線故障が含まれていない領域の出力端子対から出力電圧を外部へ供給する事が可能となる。
第3の実施形態例のその変形例により、発電機能を持つ3連結または多数連結熱電変換集合ユニットの製品としての信頼性の更なる向上が可能となる。
FIG. 12A ′ of a modification of the third embodiment is a view corresponding to the pair of output terminals 611 and 612 in FIG. 12A in order to avoid duplication, and the three-coupled thermoelectric conversion collective unit in FIG. 3 shows a three-linked thermoelectric conversion collective unit 600 which is divided into two and is modified so that the generated voltage output is taken out from two pairs of output terminals 613, 614 and 615, 616. There may be three pairs of output terminals. By making a plurality of pairs of output terminals, all thermoelectric conversion units are mixed in series connection and parallel connection. Even if it occurs, it is possible to prevent the power generation function from being completely stopped and to supply the output voltage to the outside from the output terminal pair in the region where the disconnection failure is not included.
According to the modification of the third embodiment, it is possible to further improve the reliability of the three-linked or multi-connected thermoelectric conversion collective unit having a power generation function as a product.

6.第4の実施の形態例
以上、本発明の第1〜第3の実施形態例とそれらの変形例(第1〜第3の変形例)について説明したが、本発明の多数連結熱電変換集合ユニット同士を直列、並列もしくは直列と並列を混成して複数接続したモジュール化も可能である。特に、本発明においては、既述のように薄膜プロセス、集積回路プロセスにより一貫して熱電変換集合ユニットを製造することができる。したがって、初めから多数連結熱電変換集合ユニットが直列または並列に接続されたモジュールを同一ウエハ内に一括して製造することが可能である。
6). Fourth Embodiment As described above, the first to third embodiments of the present invention and their modifications (first to third modifications) have been described. However, the multi-coupled thermoelectric conversion collective unit of the present invention is described. It is also possible to form a module in which a plurality of units are connected in series, parallel, or a combination of series and parallel. In particular, in the present invention, the thermoelectric conversion collective unit can be manufactured consistently by the thin film process and the integrated circuit process as described above. Therefore, it is possible to manufacture a module in which a large number of connected thermoelectric conversion collective units are connected in series or in parallel from the beginning in the same wafer.

すなわち、同一ウエハ内に形成された複数の熱電変換集合ユニットにおいて、隣り合う熱電変換集合ユニットにおける出力端を接続する接合導電部材を形成するステップを追加すればよい。もちろんこのステップは蒸着やスパッタ等の薄膜プロセス、集積回路プロセスによって容易に達成することができる。これにより、本発明による熱電変換集合ユニットをモジュール化した場合においても同様に、一括して製造できる。また、一つのウエハ内に形成する熱電変換集合ユニットの数を増やせば、一つのウエハ、基材において複数のモジュールを同時に形成することも当然のことながら可能である。
また、半導体型のプロセスにおいても、それぞれの熱電変換集合ユニット同士を接続するステップを追加することにより製造することができる。
In other words, in the plurality of thermoelectric conversion assembly units formed in the same wafer, a step of forming a bonding conductive member that connects the output ends of adjacent thermoelectric conversion assembly units may be added. Of course, this step can be easily achieved by thin film processes such as vapor deposition and sputtering, and integrated circuit processes. Thereby, even when the thermoelectric conversion collective unit according to the present invention is modularized, it can be manufactured in a batch. Further, if the number of thermoelectric conversion collective units formed in one wafer is increased, it is naturally possible to simultaneously form a plurality of modules on one wafer and base material.
Further, even in a semiconductor type process, it can be manufactured by adding a step of connecting each thermoelectric conversion collective unit.

以下、本発明の第4の実施形態例における多数連結ゼーベック係数増幅熱電変換モジュールの構成について説明する。本発明の第4の実施の形態例は、複数の多数連結ゼーベック係数増幅熱電変換集合ユニットの出力端同士を接合導電部材により接続し、多数連結ゼーベック係数増幅熱電変換集合ユニット同士を直列と並列を混成して接続する構成とするものである。以下では、多数連結ゼーベック係数増幅熱電変換を多数連結熱電変換と略記する。   Hereinafter, the configuration of the multi-connection Seebeck coefficient amplification thermoelectric conversion module in the fourth embodiment of the present invention will be described. In the fourth embodiment of the present invention, the output ends of a plurality of multiple connected Seebeck coefficient amplified thermoelectric conversion aggregate units are connected by a joining conductive member, and the multiple connected Seebeck coefficient amplified thermoelectric conversion aggregate units are connected in series and in parallel. It is set as the structure connected in a hybrid. Hereinafter, the multi-connection Seebeck coefficient amplification thermoelectric conversion is abbreviated as multi-connection thermoelectric conversion.

図13は、本発明の第4の実施形態例に係る多数連結熱電変換モジュール700を示す構成図である。本実施の形態例においてD1方向には、7個(任意の個数の多数連結熱電変換集合ユニットでも良い)の多数連結熱電変換集合ユニット701の接続端同士が接合導電部材702によって接続されている。そしてこの7個の多数連結熱電変換集合ユニット701が接続されたセットがD2方向に例えば7セット(任意のセット数でよい)並べた構成とされる。   FIG. 13 is a block diagram showing a multi-coupled thermoelectric conversion module 700 according to the fourth embodiment of the present invention. In the present embodiment, the connection ends of seven (or any number of multi-coupled thermoelectric conversion assembly units) multi-connection thermoelectric conversion assembly units 701 are connected by a bonding conductive member 702 in the direction D1. Then, for example, seven sets (arbitrary number of sets) are arranged in the D2 direction in a set in which the seven multi-coupled thermoelectric conversion collective units 701 are connected.

またD2方向では、図13上の左端の多数連結熱電変換集合ユニットの各出力端が接合導電部材703によって並列に接続される。一方、右端の左端の多数連結熱電変換集合ユニットの各出力端も接合導電部材704によって並列に接続される。すなわち、D1方向にそれぞれ7個の左端の多数連結熱電変換換集合ユニットが直列接続された7個のセットが、D2方向に並列に接続された状態となっている。
出力端705、706は接合導電部材703、704を延伸したものでもよく、また新たに接合導電部材を接続してもよい。また、これらの熱電変換多数連結熱電変換ユニットには、第1〜第3の実施の形態例、第1〜第3の変形例において説明した左端の多数連結熱電変換集合ユニットを用いることができる。
In the D2 direction, the output ends of the multi-connected thermoelectric conversion collective unit at the left end on FIG. 13 are connected in parallel by the joint conductive member 703. On the other hand, each output end of the multi-connected thermoelectric conversion collective unit at the left end of the right end is also connected in parallel by the bonding conductive member 704. That is, seven sets each including seven leftmost multi-unit thermoelectric conversion collective units in series in the D1 direction are connected in parallel in the D2 direction.
The output ends 705 and 706 may be obtained by extending the bonding conductive members 703 and 704, or may newly connect a bonding conductive member. Moreover, the leftmost multi-connection thermoelectric conversion collective unit demonstrated in the 1st-3rd embodiment and the 1st-3rd modification can be used for these thermoelectric conversion multi-connection thermoelectric conversion units.

したがって、第4の実施の形態例における多数連結熱電変換モジュールは、同じ正負の符号を有する3個の導電部材が電気的に直列に接続された多数連結熱電変換ユニットにより構成されている。このため、従来よりも大幅に出力を増大させることが可能である。   Therefore, the multi-connection thermoelectric conversion module in the fourth embodiment is configured by a multi-connection thermoelectric conversion unit in which three conductive members having the same positive and negative signs are electrically connected in series. For this reason, it is possible to increase output significantly compared with the past.

また、接合導電部材702、703、704は蒸着やスパッタ、CVD等にて形成することがきる。これらの接合導電部材は多数連結熱電変換集合ユニット701の出力端と同じ材料でもよく、この場合には多数連結熱電変換集合ユニットの出力端を形成するステップにおいて同時に接合導電部材702、703、704を形成することもできる。   The bonding conductive members 702, 703, and 704 can be formed by vapor deposition, sputtering, CVD, or the like. These joining conductive members may be made of the same material as the output end of the multi-coupled thermoelectric conversion assembly unit 701. In this case, in the step of forming the output end of the multi-connection thermoelectric conversion assembly unit, the joint conductive members 702, 703, 704 are simultaneously formed. It can also be formed.

したがって、本実施の形態例における多数連結熱電変換モジュールにおいても、薄膜プロセスや集積回路プロセスによって形成することが可能であり、ウエハサイズの許す限り一括して複数の熱電変換モジュールを製造することができる。
また、多数連結熱電変換モジュールを構成する多数連結熱電変換集合ユニットに本発明の第2または第3の実施形態例のものを用いる場合には、直列接続及び並列接続を混成接続された多数連結熱電変換ユニット、多数連結熱電変換集合ユニットが混成しているため、一部の導電部材や接合導電部材が切断されたとしても、多数連結熱電変換モジュール全体の発電機能が停止してしまうのを防ぐことができる。また本実施の形態例においては、これら多数連結熱電変換集合ユニット同士を直列接続して更に並列接続してもいるので、多数連結熱電変換集合ユニット同士を接続する接合導電部材の一部が断線しても発電機能が完全に停止することはない。
Therefore, the multi-coupled thermoelectric conversion module according to the present embodiment can be formed by a thin film process or an integrated circuit process, and a plurality of thermoelectric conversion modules can be manufactured collectively as the wafer size permits. .
In addition, when the multi-coupled thermoelectric conversion collective unit constituting the multi-coupled thermoelectric conversion module is used in the second or third embodiment of the present invention, a multi-coupled thermoelectric having a serial connection and a parallel connection mixedly connected. Since the conversion unit and the multi-coupled thermoelectric conversion collective unit are mixed, even if some conductive members and bonded conductive members are cut, the power generation function of the multi-coupled thermoelectric conversion module as a whole is prevented from stopping. Can do. Further, in the present embodiment, since these multiple connected thermoelectric conversion aggregate units are connected in series and further connected in parallel, a part of the joining conductive member connecting the multiple connected thermoelectric conversion aggregate units is disconnected. However, the power generation function does not stop completely.

更に、直列接続及び並列接続の混成接続を利用した多数連結熱電変換モジュールを構成することにより、発電機能の停止が万全に防げ、電機能を持つ多数連結熱電変換モジュールの製品としての信頼性の更なる向上が可能となる。なお、直列接続または並列接続または直列接続及び並列接続の混成接続による構成形態の多数連結熱電変換モジュールの全てにおいて、多数連結熱電変換モジュール内の一部切断などの損傷が無い場合には、インピーダンス整合する様に設定した負荷回路への供給電力を比べると、全ての構成形態による供給電力は互いに等しくなることがわかっている。   Furthermore, by configuring a multi-coupled thermoelectric conversion module using a hybrid connection of series connection and parallel connection, the power generation function can be completely prevented from being stopped, and the reliability of the multi-connection thermoelectric conversion module having an electrical function as a product can be further improved. Can be improved. In addition, in all of the multi-coupled thermoelectric conversion modules configured by series connection or parallel connection or mixed connection of series connection and parallel connection, if there is no damage such as partial disconnection in the multi-connection thermoelectric conversion module, impedance matching is performed. Comparing the power supplied to the load circuit set as described above, it is known that the power supplied by all the configurations is equal to each other.

7.第5の実施の形態例
次に、本発明の第5の実施形態例における多数連結ゼーベック係数増幅熱電変換パネルの構成について説明する。本発明の第4の実施の形態例はり規模の大きい熱電変換システムを製造する例で、複数の多数連結ゼーベック係数増幅熱電変換モジュールの出力端同士を接合導電部材により接続し、多数連結ゼーベック係数増幅熱電変換モジュール同士を直列と並列を混成して接続する構成とするものである。以下では前述と同様に、多数連結ゼーベック係数増幅熱電変換を多数連結熱電変換と略記する。
図14は多数連結熱電変換パネル710の構成を示す上面図である。図14においては、多数連結熱電変換モジュールをD1方向に3個(数を制限するものではなく任意でよい)、D2方向に3個(任意でよい)並べた例を示してある。また、多数連結熱電変換モジュールには、図13に示した多数連結熱電変換モジュール700または直列接続及び並列接続の混成接続を利用した多数連結熱電変換モジュールを用いることができる。
7. Fifth Embodiment Next, the configuration of a multi-connected Seebeck coefficient amplification thermoelectric conversion panel in the fifth embodiment of the present invention will be described. The fourth embodiment of the present invention is an example of manufacturing a thermoelectric conversion system having a large beam scale. The output ends of a plurality of multi-connected Seebeck coefficient amplification thermoelectric conversion modules are connected to each other by a joining conductive member, and the multi-connection Seebeck coefficient amplification is performed. The thermoelectric conversion modules are configured to be connected in series and parallel. Hereinafter, similarly to the above, the multi-connection Seebeck coefficient amplification thermoelectric conversion is abbreviated as multi-connection thermoelectric conversion.
FIG. 14 is a top view showing a configuration of a multi-connection thermoelectric conversion panel 710. FIG. 14 shows an example in which a multi-connected thermoelectric conversion module is arranged three in the D1 direction (the number is not limited and may be arbitrary) and three (optional) in the D2 direction. Further, as the multi-coupled thermoelectric conversion module, the multi-couple thermoelectric conversion module 700 shown in FIG. 13 or a multi-couple thermoelectric conversion module using a hybrid connection of series connection and parallel connection can be used.

D1方向には、隣り合う多数連結熱電変換モジュールの出力端同士が接合導電部材712によって接続され、例えば3つの熱電変換モジュールが直列接続される。この3つの熱電変換モジュールを直列接続したセットを、更にD2方向へ接合導電部材713によって3セット並列に接続することにより、多数連結熱電変換パネルが構成される。出力端714、715は、多数連結熱電変換モジュール700の出力端を延伸したものでもよいし、あらたに接続してもよい。また接合導電部材712、713は同じ材料であってもよい。   In the D1 direction, the output ends of adjacent multi-coupled thermoelectric conversion modules are connected to each other by a bonding conductive member 712, and, for example, three thermoelectric conversion modules are connected in series. A set of three thermoelectric conversion modules connected in series is further connected in parallel in the D2 direction by a joining conductive member 713, whereby a multi-connected thermoelectric conversion panel is configured. The output ends 714 and 715 may be obtained by extending the output ends of the multi-coupled thermoelectric conversion module 700 or may be newly connected. The joint conductive members 712 and 713 may be the same material.

また、多数連結熱電変換パネル710においては多数連結熱電変換モジュール同士が並列に接続されてもいるので、接合導電部材712や713の一部が断線しても発電機能が完全に停止することはない。更に、直列接続及び並列接続の混成接続を利用した多数連結熱電変換パネルを構成ることにより、発電機能の停止が万全に防げ、電機能を持つ多数連結熱電変換パネルの製品としての信頼性の更なる向上が可能となる。
なお、直列接続または並列接続または直列接続及び並列接続の混成接続による構成形態の多数連結熱電変換パネルの全てにおいて、多数連結熱電変換パネル内の一部切断などの損傷が無い場合には、インピーダンス整合する様に設定した負荷回路への供給電力を比べると、全ての構成形態による供給電力は互いに等しくなることがわかっている。
In addition, in the multi-coupled thermoelectric conversion panel 710, the multi-coupled thermoelectric conversion modules are connected in parallel, so that the power generation function does not completely stop even if part of the joint conductive members 712 or 713 is disconnected. . Furthermore, by configuring a multi-coupled thermoelectric conversion panel using a hybrid connection of series connection and parallel connection, the power generation function can be completely prevented from stopping, and the reliability of the multi-connection thermoelectric conversion panel with electrical functions as a product can be improved. Can be improved.
In all of the multi-coupled thermoelectric conversion panels configured in series connection or parallel connection or mixed connection of series connection and parallel connection, if there is no damage such as partial disconnection in the multi-connection thermoelectric conversion panel, impedance matching Comparing the power supplied to the load circuit set as described above, it is known that the power supplied by all the configurations is equal to each other.

8.第6の実施の形態例
次に、本発明の第6の実施形態例における多数連結ゼーベック係数増幅熱電変換シートの構成について説明する。本発明の第5の実施の形態例より規模の大きい熱電変換システムを製造する例で、複数の多数連結ゼーベック係数増幅熱電変換パネルの出力端同士を接合導電部材により接続し、多数連結ゼーベック係数増幅熱電変換パネル同士を直列と並列を混成して接続する構成とするものである。以下では前述と同様に、多数連結ゼーベック係数増幅熱電変換を多数連結熱電変換と略記する。
図15は多数連結熱電変換シート720の構成を示す上面図である。図15においては、多数連結熱電変換パネル710をD1方向に3個(数を制限するものではなく任意でよい)、D2方向に3個(任意でよい)並べた例を示してある。また、多数連結熱電変換パネルには、図14に示した多数連結熱電変換パネル710または直列接続及び並列接続の混成接続を利用した多数連結熱電変換パネルを用いることができる。
8). Sixth Embodiment Next, the configuration of a multi-connected Seebeck coefficient amplified thermoelectric conversion sheet in the sixth embodiment of the present invention will be described. In an example of manufacturing a thermoelectric conversion system having a larger scale than that of the fifth embodiment of the present invention, the output ends of a plurality of multiple connected Seebeck coefficient amplification thermoelectric conversion panels are connected to each other by a joining conductive member, and multiple connected Seebeck coefficient amplification is performed. The thermoelectric conversion panels are configured to be connected in a mixed manner in series and parallel. Hereinafter, similarly to the above, the multi-connection Seebeck coefficient amplification thermoelectric conversion is abbreviated as multi-connection thermoelectric conversion.
FIG. 15 is a top view showing the configuration of the multi-coupled thermoelectric conversion sheet 720. FIG. 15 shows an example in which multiple connected thermoelectric conversion panels 710 are arranged in the D1 direction (three are optional, not limited), and three (optional) are arranged in the D2 direction. Moreover, the multi-connection thermoelectric conversion panel using the multi-connection thermoelectric conversion panel 710 shown in FIG. 14 or a hybrid connection of series connection and parallel connection can be used as the multi-connection thermoelectric conversion panel.

D1方向には、隣り合う多数連結熱電変換パネルの出力端同士が接合導電部材722によって接続され、例えば3つの多数連結熱電変換パネルが直列接続される。この3つの多数連結熱電変換パネルを直列接続したセットを、更にD2方向へ接合導電部材723によって3セット並列に接続することにより、多数連結熱電変換シートが構成される。出力端724、725は、多数連結熱電変換パネル710の出力端を延伸したものでもよいし、あらたに接続してもよい。また接合導電部材712、713は同じ材料であってもよい。   In the D1 direction, the output ends of the adjacent multiple connected thermoelectric conversion panels are connected to each other by the bonding conductive member 722, and, for example, three multiple connected thermoelectric conversion panels are connected in series. A multi-connected thermoelectric conversion sheet is configured by connecting three sets of these multi-connected thermoelectric conversion panels connected in series to each other in parallel in the D2 direction by the bonding conductive member 723. The output ends 724 and 725 may be obtained by extending the output end of the multi-coupled thermoelectric conversion panel 710 or may be newly connected. The joint conductive members 712 and 713 may be the same material.

また、多数連結熱電変換シート720においては多数連結熱電変換パネル同士が並列に接続されてもいるので、接合導電部材722や723の一部が断線しても発電機能が完全に停止することはない。更に、直列接続及び並列接続の混成接続を利用した多数連結熱電変換シートを構成することにより、発電機能の停止が確実に防げ、電機能を持つ多数連結熱電変換シートの製品としての信頼性の更なる向上が可能となる。
なお、直列接続または並列接続または直列接続及び並列接続の混成接続による構成形態の多数連結熱電変換シートの全てにおいて、多数連結熱電変換シート内の一部切断などの損傷が無い場合には、インピーダンス整合する様に設定した負荷回路への供給電力を比べると、全ての構成形態による供給電力は互いに等しくなることがわかっている。
In addition, since the multi-coupled thermoelectric conversion panels 720 are connected in parallel in the multi-couple thermoelectric conversion sheet 720, the power generation function does not completely stop even if part of the joint conductive members 722 and 723 is disconnected. . Furthermore, by configuring a multi-connection thermoelectric conversion sheet using a hybrid connection of series connection and parallel connection, it is possible to reliably prevent the power generation function from being stopped, and to improve the reliability of the multi-connection thermoelectric conversion sheet having an electric function as a product. Can be improved.
In addition, in all of the multi-coupled thermoelectric conversion sheets configured in series connection or parallel connection or mixed connection of series connection and parallel connection, if there is no damage such as partial cut in the multi-connection thermoelectric conversion sheet, impedance matching is performed. Comparing the power supplied to the load circuit set as described above, it is known that the power supplied by all the configurations is equal to each other.

9.第7の実施の形態例
以上、本発明の第1〜第6の実施例で外部の温度差から高効率な熱電変換を行って負荷回路へより大きい電力供給をする実施例について説明したが、本発明による高効率な多数連結ゼーベック係数増幅熱電変換回路技術は、逆に本発明による回路に電流を流してペルチエ効果により高効率な熱エネルギー転送を可能にする。即ち、一方から熱を吸収し、他方から熱を放出するエアコンの機能を、従来の熱電材料を単一で使う場合よりも高効率で実現することが可能である。
次に、この高効率な熱エネルギー転送に関する第7の実施の形態例について3つの方式を説明する。
第1の方式は、外部電源の電力を使用する方式である。第2の方式は、別の独立な一つ以上の本発明による高効率な多数連結ゼーベック係数増幅熱電変換回路による出力電力を外部電源の電力として使用する方式である。第3の方式は、本発明による同じ2つの高効率な多数連結ゼーベック係数増幅熱電変換回路を互いに負荷回路として使い、自分自身の出力電力で電流を流す方式である。
9. Seventh Embodiment As described above, the first to sixth embodiments of the present invention have been described with respect to the embodiment in which high-efficiency thermoelectric conversion is performed from the external temperature difference and larger power is supplied to the load circuit. In contrast, the highly efficient multi-connected Seebeck coefficient amplification thermoelectric conversion circuit technology according to the present invention allows a current to flow through the circuit according to the present invention and enables highly efficient heat energy transfer by the Peltier effect. That is, the function of an air conditioner that absorbs heat from one side and releases heat from the other can be realized with higher efficiency than the case of using a single conventional thermoelectric material.
Next, three methods will be described for the seventh embodiment related to this highly efficient thermal energy transfer.
The first method is a method that uses power from an external power source. The second method is a method in which the output power of one or more independent independent high-efficiency multi-connection Seebeck coefficient amplification thermoelectric conversion circuits according to the present invention is used as the power of the external power supply. The third method is a method in which the same two high-efficiency multi-connection Seebeck coefficient amplification thermoelectric conversion circuits according to the present invention are used as load circuits, and current flows with their own output power.

第1の方式では、例えば本発明の多数連結熱電変換パネルまたは多数連結熱電変換シートを家屋やビルの屋根や外壁に設置して、このパネルまたはシートの外側面を太陽光の黒体吸収熱で高温にし、内側面を水または空気で冷却して低温にすることにより、太陽光を利用した熱電発電を利用して対象とする負荷回路に電力を供給できる。この時に、このパネルまたはシートの回路に流れる電流によるペルチエ効果により、高温の外側面では吸熱が起こり、低温の内側面では発熱が起こって水または空気は暖まる。この吸熱量から発熱量を引いた熱エネルギーが回路全体で消費される電気エネルギーに等しく、エネルギー保存族が成り立つ。パネルまたはシートの内側面を室内の空気を循環させて冷却させれば、徐々に室内は暖房されてエアコンの温風の役割もする。
しかし、このクーラーの役割が不十分である場合には、補助的に外部電源の電力を使って前記の電流に加算して電流を流すことにより、吸熱量と発熱量が増大して循環させる空気は更に暖められる結果、室内の暖房効果も更に高くなる。この時の太陽光とパネルまたはシートと対象とする負荷回路と外部電源と室内を含む全体の系では、太陽光からの吸収熱量が増大し、この増大した分の吸収熱量が室内の熱エネルギーとして転送され、外部電源による加算電流により負荷回路への電力供給が増える。この結果、太陽光の自然エネルギー利用の電力生成及び外部電力省エネルギー化に相当する室内の暖房と負荷回路への電力供給増加が同時に進行する。
In the first method, for example, the multi-connection thermoelectric conversion panel or multi-connection thermoelectric conversion sheet of the present invention is installed on the roof or outer wall of a house or a building, and the outer surface of the panel or sheet is absorbed by the black body heat absorbed by sunlight. By increasing the temperature to a low temperature by cooling the inner surface with water or air, electric power can be supplied to the target load circuit using thermoelectric power generation using sunlight. At this time, due to the Peltier effect due to the current flowing in the circuit of this panel or sheet, heat is absorbed on the high temperature outer surface, heat is generated on the low temperature inner surface, and water or air is warmed. The heat energy obtained by subtracting the calorific value from the endothermic amount is equal to the electric energy consumed in the entire circuit, and the energy conservation family is established. If the inside air of the panel or sheet is cooled by circulating indoor air, the room is gradually heated and acts as warm air for the air conditioner.
However, when the role of this cooler is insufficient, the amount of heat absorption and heat generation is increased and circulated by adding current to the current using auxiliary power from the external power supply and circulating the current. As a result of further warming, the indoor heating effect is further enhanced. At this time, in the entire system including the sunlight, the panel or sheet, the target load circuit, the external power supply, and the room, the amount of heat absorbed from sunlight increases, and the amount of heat absorbed from this increased amount is used as the heat energy in the room. The power supply to the load circuit is increased by the added current from the external power source. As a result, the increase in power supply to the room heating and the load circuit, which corresponds to the generation of electric power using natural energy of sunlight and the energy saving of external power, proceeds simultaneously.

第2の方式では、前記の第1の方式と同様に複数の本発明の多数連結熱電変換パネルまたは多数連結熱電変換シートを家屋やビルの屋根や外壁に設置して太陽光を直接利用した発電するか、または、太陽光や地熱を蓄熱流体に吸収させて複数の前記のパネルまたはシートで昼夜発電する自然エネルギー利用の発電システムを構成する。この発電システムの電力の一部を前記の第1の方式の補助的に外部電源の電力として使い、エアコン用のパネルまたはシートへの電流供給に利用する。この第2の方式でも、自然エネルギー利用の規模の大きい電力生成及び外部電力省エネルギー化としてのエアコン駆動が同時に進行する。   In the second method, as in the first method, a plurality of multi-coupled thermoelectric conversion panels or multi-coupled thermoelectric conversion sheets of the present invention are installed on the roof or outer wall of a house or building to directly use sunlight. Or, a solar energy or geothermal heat is absorbed by the heat storage fluid, and a power generation system using natural energy that generates power day and night with the plurality of panels or sheets is configured. A part of the electric power of this power generation system is used as electric power for the external power supply in an auxiliary manner in the first method, and is used for supplying current to an air conditioner panel or sheet. Even in the second method, the generation of electric power using a large amount of natural energy and the driving of the air conditioner as an external power saving are simultaneously performed.

第3の方式では、本発明による同じ2つの多数連結熱電変換パネルまたは多数連結熱電変換シートを互いにインピーダンス整合する負荷回路として接続し、この2つのパネルまたはシートの回路の電流を流す。例えば第1のパネルまたはシートを家屋やビルの屋根や外壁に設置して太陽光利用発電回路にし、第2のパネルまたはシートをエアコンまたは2つの対象物の一方を加熱し他方を冷却する加熱冷却システムとして使用する。回路に電源スイッチが入った瞬間に電磁は速度で周回電流が流れる物理現象が起こることから、ペルチエ効果による熱エネルギー転送の特徴は、熱電回路に電流が流れ始めると瞬時に2つの対象物の一方で吸熱、他方で発熱が始まる事である。
第1と第2のパネルまたはシートを接続した回路では、第1のパネルまたはシートの内側面を水または空気で冷却して低温に保ちながら外側面が太陽光の黒体吸収熱で過熱されて温度差が出ると同時に、電流が流れてペルチエ効果により外側面で吸熱、内側面で発熱が起こり、かつ、第2のパネルまたはシートの片面で吸熱、反対面で発熱が起こる。第2のパネルまたはシートの吸熱面と発熱面に沿って空気を流せば、冷房用の冷風と暖房用の温風として両方同時に使え、空気の代わりに水を循環させれば物の冷却と加熱の両方が同時にできる。また、ゼーベック係数の温度依存性が小さい温度領域では、全ての面での吸熱パワーと発熱パワーはほぼ等しい。この第3の方式のシステムを第1領域の高温部の熱を離れた第2領域の領域へ熱伝導させる媒体に対応させると、第1領域からの吸熱量は電磁波速度で瞬時に第2領域の発熱量として転送され(伝わり)、自己駆動型熱転送システムが実現されると同時に、熱伝導が無限大の理想的な熱伝導媒体でとなる。
In the third system, the same two multi-coupled thermoelectric conversion panels or multi-coupled thermoelectric conversion sheets according to the present invention are connected as load circuits for impedance matching with each other, and the currents of the circuits of the two panels or sheets are passed. For example, the first panel or sheet is installed on the roof or outer wall of a house or building to form a solar power generation circuit, and the second panel or sheet is heated and cooled to heat one of the air conditioner or two objects and cool the other. Use as a system. The phenomenon of thermal energy transfer due to the Peltier effect occurs at the moment when the power switch is turned on in the circuit, so the characteristic of thermal energy transfer due to the Peltier effect is that one of the two objects is instantaneous when current begins to flow in the thermoelectric circuit. Endothermic heat and heat on the other side.
In the circuit in which the first and second panels or sheets are connected, the outer surface is overheated by the black body absorption heat of sunlight while the inner surface of the first panel or sheet is cooled with water or air and kept at a low temperature. At the same time as the temperature difference occurs, current flows and the Peltier effect absorbs heat on the outer surface, heat is generated on the inner surface, and heat is absorbed on one side of the second panel or sheet, and heat is generated on the opposite surface. If air flows along the heat absorption surface and heat generation surface of the second panel or sheet, it can be used as both cool air for cooling and warm air for heating at the same time, and water is circulated instead of air to cool and heat objects. You can do both at the same time. Further, in the temperature region where the temperature dependence of the Seebeck coefficient is small, the heat absorption power and the heat generation power are almost equal on all surfaces. When this third system is adapted to a medium that conducts heat from the high temperature part of the first region to the second region, the heat absorption amount from the first region is instantaneously determined by the electromagnetic wave velocity in the second region. As a self-driving heat transfer system is realized, it becomes an ideal heat conduction medium with infinite heat conduction.

以上、本発明による多数連結ゼーベック係数増幅熱電変換素子、多数連結ゼーベック係数増幅熱電変換ユニット、多数連結ゼーベック係数増幅熱電変換集合ユニット、多数連結ゼーベック係数増幅熱電変換モジュール、多数連結ゼーベック係数増幅熱電変換パネル、多数連結ゼーベック係数増幅熱電変換シート、並びにその製造方法について説明したが、本発明は上記実施の形態にとらわれることなく、特許請求の範囲に記載した本発明の要旨を逸脱しない限りにおいて、なお考えられる種々の形態を含むものであることは言うまでもない。   As described above, a multi-connected Seebeck coefficient amplification thermoelectric conversion element, a multi-connection Seebeck coefficient amplification thermoelectric conversion unit, a multi-connection Seebeck coefficient amplification thermoelectric conversion assembly unit, a multi-connection Seebeck coefficient amplification thermoelectric conversion module, and a multi-connection Seebeck coefficient amplification thermoelectric conversion panel. The multi-connected Seebeck coefficient amplification thermoelectric conversion sheet and the manufacturing method thereof have been described. However, the present invention is not limited to the above-described embodiment, and is still considered as long as it does not depart from the gist of the present invention described in the claims. Needless to say, it includes various forms.

1a,1b,1c,1d,1e,2a,2b,2c,2d,2e,22a,22b,22c,23a,23b,23c・・・導電部材、3a,3b,3c,3d,3e,3f,4e,24a,24b,24c,24d・・・導電性連結部材、4,4a,4b,41a,41b,702,703,704,712,713,722,723,・・・接合導電部材、5a,5b,20a,20b,20c・・・絶縁部材、6・・・Al基板、7・・・絶縁膜、70a,70b,70d,70e,70f,70g,70h,70k・・・熱電変換素子、18a,18b,18c・・・負荷回路、21・・・基板、25・・・レジスト、28,29・・・二酸化シリコンの領域、61,62,63,64,65,66,601,602,603,604,611,612,613,614,615,616,705,706,714,715,724,725・・・出力端、71a,71b・・・二並列3連結熱電変換ユニット、100,300,500,701・・・多数連結ゼーベック係数増幅熱電変換素子集合ユニット、700,711・・・多数連結ゼーベック係数増幅熱電変換モジュール、710,721・・・多数連結ゼーベック係数増幅熱電変換パネル、720・・・多数連結ゼーベック係数増幅熱電変換シート   1a, 1b, 1c, 1d, 1e, 2a, 2b, 2c, 2d, 2e, 22a, 22b, 22c, 23a, 23b, 23c... Conductive member, 3a, 3b, 3c, 3d, 3e, 3f, 4e , 24a, 24b, 24c, 24d ... conductive connecting members, 4, 4a, 4b, 41a, 41b, 702, 703, 704, 712, 713, 722, 723, ... joined conductive members, 5a, 5b , 20a, 20b, 20c ... insulating member, 6 ... Al substrate, 7 ... insulating film, 70a, 70b, 70d, 70e, 70f, 70g, 70h, 70k ... thermoelectric conversion element, 18a, 18b, 18c ... load circuit, 21 ... substrate, 25 ... resist, 28, 29 ... silicon dioxide region, 61, 62, 63, 64, 65, 66, 601, 602, 603 604 , 611, 612, 613, 614, 615, 616, 705, 706, 714, 715, 724, 725,... Output end, 71 a, 71 b, two parallel three-connected thermoelectric conversion units, 100, 300, 500, 701 ... multiple connected Seebeck coefficient amplified thermoelectric conversion element assembly unit, 700,711 ... multiple connected Seebeck coefficient amplified thermoelectric conversion module, 710,721 ... multiple connected Seebeck coefficient amplified thermoelectric conversion panel, 720 ... multiple Connected Seebeck coefficient amplification thermoelectric conversion sheet

Claims (11)

正または負のゼーベック係数を有する3個以上の導電部材と、同じ符号のゼーベック係数を有する前記導電部材同士を導電性連結部材で電気的に直列接続して両端が前記導電部材となる接続形態を有し、
前記の接続形態により前記導電部材単体のゼーベック係数の値を増幅することを特徴とする多数連結ゼーベック係数増幅熱電変換素子の構造。
A connection configuration in which three or more conductive members having positive or negative Seebeck coefficients and the conductive members having the same sign Seebeck coefficient are electrically connected in series with a conductive connecting member, and both ends are the conductive members. Have
A structure of a multi-connected Seebeck coefficient amplification thermoelectric conversion element that amplifies the value of the Seebeck coefficient of the conductive member alone according to the connection form.
請求項1に記載の正のゼーベック係数を有する多数連結ゼーベック係数増幅熱電変換素子と負のゼーベック係数を有する多数連結ゼーベック係数増幅熱電変換素子との対を接合導電部材により接合し、前記接続導電部材の対向部に接合導電部材により1対の出力端を接続して成ることを特徴とする多数連結ゼーベック係数増幅熱電変換ユニットの構造。   A pair of a multi-connected Seebeck coefficient amplification thermoelectric conversion element having a positive Seebeck coefficient according to claim 1 and a multi-connection Seebeck coefficient amplification thermoelectric conversion element having a negative Seebeck coefficient are joined by a joint conductive member, and the connection conductive member A structure of a multi-connection Seebeck coefficient amplification thermoelectric conversion unit, wherein a pair of output ends are connected to opposite portions of each other by a bonding conductive member. 請求項2に記載の多数連結ゼーベック係数増幅熱電変換ユニットが、複数個の熱伝導性に優れた電気的絶縁材上に接合され、
複数個の前記多数連結ゼーベック係数増幅熱電変換ユニットの出力端同士が、接合導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続され、
前記多数連結ゼーベック係数増幅熱電変換ユニットの複数個が互いに電気的に絶縁された状態で接合されることにより、前記接合導電部材により1対以上の出力端が形成される、
ことを特徴とする多数連結ゼーベック係数増幅熱電変換集合ユニットの構造。
The multi-connected Seebeck coefficient amplification thermoelectric conversion unit according to claim 2 is bonded onto a plurality of electrical insulating materials having excellent thermal conductivity,
The output ends of a plurality of the multiple connected Seebeck coefficient amplification thermoelectric conversion units are connected in series by a joint conductive member, or connected in parallel, or a combination of series connection and parallel connection,
A plurality of the connected Seebeck coefficient amplification thermoelectric conversion units are joined in a state of being electrically insulated from each other, thereby forming one or more pairs of output ends by the joined conductive member.
A structure of a multi-connected Seebeck coefficient amplification thermoelectric conversion collective unit characterized by that.
請求項3に記載の複数個の多数連結ゼーベック係数増幅熱電変換集合ユニットの出力端同士を、接続導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続し、多数連結ゼーベック係数増幅熱電変換集合ユニットが互いに電気的に絶縁された状態で接合することにより、前記接続導電部材により1対以上の出力端を接続して成ることを特徴とする多数連結ゼーベック係数増幅熱電変換モジュールの構造。   A plurality of multiple connected Seebeck coefficient amplified thermoelectric conversion aggregate units according to claim 3 are connected to each other by connecting the output ends of the units in series connection, parallel connection, or a combination of series connection and parallel connection. A plurality of Seebeck coefficient amplification thermoelectric conversions, wherein the Seebeck coefficient amplification thermoelectric conversion collective units are joined in a state of being electrically insulated from each other, and one or more pairs of output ends are connected by the connecting conductive member. Module structure. 請求項4に記載の複数個の多数連結ゼーベック係数増幅熱電変換モジュールの出力端同士を、接続導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続し、多数連結ゼーベック係数増幅熱電変換モジュールが互いに電気的に絶縁された状態で接合することにより、前記接続導電部材により1対以上の出力端を接続して成ることを特徴とする多数連結ゼーベック係数増幅熱電変換パネルの構造。   A plurality of connected Seebeck coefficient output thermoelectric conversion modules according to claim 4 are connected in series by a connecting conductive member, or connected in parallel by connecting a series connection and a parallel connection. A multi-coupled Seebeck coefficient amplification thermoelectric conversion panel comprising: a plurality of coupled output terminals connected to each other by the connection conductive members by joining coefficient amplification thermoelectric conversion modules in a state of being electrically insulated from each other; Construction. 請求項5に記載の複数個の多数連結ゼーベック係数増幅熱電変換パネルの出力端同士を、接続導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続し、多数連結ゼーベック係数増幅熱電変換パネルが互いに電気的に絶縁された状態で接合することにより、前記接続導電部材により1対以上の出力端を接続して成ることを特徴とする多数連結ゼーベック係数増幅熱電変換シートの構造。   A plurality of connected Seebeck coefficient output thermoelectric conversion panels according to claim 5 are connected in series by a connecting conductive member, or connected in parallel by connecting a series connection and a parallel connection. A multi-connected Seebeck coefficient amplification thermoelectric conversion sheet comprising a plurality of coupled Seebeck coefficient amplification thermoelectric conversion sheets, wherein the coefficient amplification thermoelectric conversion panels are joined in a state of being electrically insulated from each other, thereby connecting one or more pairs of output ends by the connection conductive member. Construction. 請求項3に記載の多数連結ゼーベック係数増幅熱電変換集合ユニットの構造を形成する各工程を複数回繰り返して順次実施するステップと、
を含み、多数個の多数連結ゼーベック係数増幅熱電変換集合ユニットを同時に作成することを特徴とする多数連結ゼーベック係数増幅熱電変換集合ユニットの製造方法。
Performing each of the steps of forming the structure of the multi-connected Seebeck coefficient amplified thermoelectric conversion assembly unit according to claim 3 by repeating a plurality of times and sequentially performing the steps;
And manufacturing a multi-connected Seebeck coefficient amplified thermoelectric conversion assembly unit at the same time.
請求項4に記載の多数連結ゼーベック係数増幅熱電変換モジュールの構造を形成する各工程を複数回繰り返して順次実施するステップと、
を含み、多数個の多数連結ゼーベック係数増幅熱電変換モジュールを同時に作成することを特徴とする多数連結ゼーベック係数増幅熱電変換モジュールの製造方法。
Performing each of the steps of forming the structure of the multi-connected Seebeck coefficient amplification thermoelectric conversion module according to claim 4 sequentially and repeatedly a plurality of times;
And manufacturing a multi-connected Seebeck coefficient amplified thermoelectric conversion module at the same time.
請求項5に記載の多数連結ゼーベック係数増幅熱電変換パネルの構造を形成する各工程を複数回繰り返して順次実施するステップと
を含み、多数個の多数連結ゼーベック係数増幅熱電変換パネを同時に作成することを特徴とする多数連結ゼーベック係数増幅熱電変換パネルの製造方法。
Forming a plurality of connected Seebeck coefficient amplified thermoelectric conversion panels at the same time by repeatedly performing each step of forming the structure of the multiple connected Seebeck coefficient amplified thermoelectric conversion panel a plurality of times. A method for producing a multi-connected Seebeck coefficient amplified thermoelectric conversion panel characterized by
請求項7に記載の多数連結ゼーベック係数増幅熱電変換シートの構造を形成する各工程を複数回繰り返して順次実施するステップと
を含み、多数枚の多数連結ゼーベック係数増幅熱電変換シートを同時に作成することを特徴とする多数連結ゼーベック係数増幅熱電変換シートの製造方法。
And simultaneously performing each step of forming the structure of the multi-connected Seebeck coefficient amplified thermoelectric conversion sheet according to claim 7 a plurality of times and sequentially forming the multiple connected Seebeck coefficient amplified thermoelectric conversion sheet. A method for producing a multi-connected Seebeck coefficient amplified thermoelectric conversion sheet characterized by
請求項6に記載の複数個の多数連結ゼーベック係数増幅熱電変換シートの出力端同士を、接続導電部材により直列接続、または並列接続、または直列接続及び並列接続を混成して接続し、多数連結ゼーベック係数増幅熱電変換シートが互いに電気的に絶縁された状態で接合することにより、前記接続導電部材により1対以上の出力端を接続して成ることを特徴とする多数連結ゼーベック係数増幅熱電変換システムの構造。
A plurality of connected Seebeck coefficient amplified thermoelectric conversion sheets according to claim 6 are connected in series by a connecting conductive member, or a plurality of connected Seebeck coefficient-amplified thermoelectric conversion sheets mixed in series connection and parallel connection. A multi-coupled Seebeck coefficient amplification thermoelectric conversion system comprising: a plurality of coupled output terminals connected to each other by the connection conductive members by joining coefficient amplification thermoelectric conversion sheets in a state of being electrically insulated from each other; Construction.
JP2010088601A 2010-04-07 2010-04-07 Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system Pending JP2011222654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010088601A JP2011222654A (en) 2010-04-07 2010-04-07 Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010088601A JP2011222654A (en) 2010-04-07 2010-04-07 Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system

Publications (1)

Publication Number Publication Date
JP2011222654A true JP2011222654A (en) 2011-11-04

Family

ID=45039271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010088601A Pending JP2011222654A (en) 2010-04-07 2010-04-07 Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system

Country Status (1)

Country Link
JP (1) JP2011222654A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
WO2016031572A1 (en) * 2014-08-23 2016-03-03 眞人 馬淵 Thermoelectric material, thermoelectric conversion element, and module group composed of combination of thermoelectric conversion elements and π-type module group made of thermoelectric material and π-type module group made of thermoelectric material other than such π-type module group
JP6411613B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
JP6411612B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088003A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729171U (en) * 1980-07-28 1982-02-16
JPH0249480A (en) * 1988-04-27 1990-02-19 Theodorus Bijvoets Thermoelectric device
JPH0379459U (en) * 1989-12-06 1991-08-13
JPH11224922A (en) * 1998-02-05 1999-08-17 Sony Corp Semiconductor device
JP2005228915A (en) * 2004-02-13 2005-08-25 Toshiaki Eto Separated peltier system
JP2009049165A (en) * 2007-08-20 2009-03-05 Murata Mfg Co Ltd Thermoelectric conversion module, and thermoelectric conversion module assembly
WO2010014958A2 (en) * 2008-08-01 2010-02-04 Bsst Llc Enhanced thermally isolated thermoelectrics
JP2011014862A (en) * 2009-07-06 2011-01-20 Korea Electronics Telecommun Thermoelectric device, and method for fabricating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729171U (en) * 1980-07-28 1982-02-16
JPH0249480A (en) * 1988-04-27 1990-02-19 Theodorus Bijvoets Thermoelectric device
JPH0379459U (en) * 1989-12-06 1991-08-13
JPH11224922A (en) * 1998-02-05 1999-08-17 Sony Corp Semiconductor device
JP2005228915A (en) * 2004-02-13 2005-08-25 Toshiaki Eto Separated peltier system
JP2009049165A (en) * 2007-08-20 2009-03-05 Murata Mfg Co Ltd Thermoelectric conversion module, and thermoelectric conversion module assembly
WO2010014958A2 (en) * 2008-08-01 2010-02-04 Bsst Llc Enhanced thermally isolated thermoelectrics
JP2011014862A (en) * 2009-07-06 2011-01-20 Korea Electronics Telecommun Thermoelectric device, and method for fabricating the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
WO2016031572A1 (en) * 2014-08-23 2016-03-03 眞人 馬淵 Thermoelectric material, thermoelectric conversion element, and module group composed of combination of thermoelectric conversion elements and π-type module group made of thermoelectric material and π-type module group made of thermoelectric material other than such π-type module group
JP2016046502A (en) * 2014-08-23 2016-04-04 眞人 馬淵 THERMOELECTRIC MATERIAL, π-TYPE MODULE GROUP FORMED FROM THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC MATERIAL OR MODULE GROUP FORMED BY COMBINING THERMOELECTRIC CONVERSION ELEMENT WITH ANY OTHER MODULE GROUP THAN π-TYPE MODULE GROUP
CN107155379A (en) * 2014-08-23 2017-09-12 马渊真人 The module group that thermoelectric material, thermoelectric conversion element and the Π pattern block groups being made by thermoelectric conversion element and by thermoelectric material and the Π pattern block groups being made up of the thermoelectric material in addition to this Π patterns block group are constituted
JP6411613B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
JP6411612B1 (en) * 2017-10-31 2018-10-24 株式会社Gceインスティチュート Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element
WO2019088004A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088002A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088003A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) * 2017-10-31 2019-05-09 株式会社Gceインスティチュート Thermoelectric element, power generation device, and thermoelectric element production method
JP2019083287A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Thermoelectric element, power generator, method of manufacturing thermoelectric element
JP2019083290A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Thermoelectric element, power generator, and method of manufacturing thermoelectric element
JP2019083288A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Method of manufacturing thermoelectric element
JP2019083289A (en) * 2017-10-31 2019-05-30 株式会社Gceインスティチュート Thermoelectric element, power generator, method of manufacturing thermoelectric element

Similar Documents

Publication Publication Date Title
Hu et al. Silicon integrated circuit thermoelectric generators with a high specific power generation capacity
JP2011222654A (en) Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system
Nan et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices
JP4141415B2 (en) Integrated parallel Peltier Seebeck element chip and manufacturing method thereof, integrated Peltier Seebeck element panel or sheet, and direct energy conversion system and energy transfer system
Yang et al. Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization
TW393788B (en) Method of manufacturing thermoelectric device
WO2006043514A1 (en) Structure of peltier element or seebeck element and its manufacturing method
Dhawan et al. Si0. 97Ge0. 03 microelectronic thermoelectric generators with high power and voltage densities
US20090277493A1 (en) Concentrator photovoltaic device, pv concentrator module formed therefrom and production process therefor
US20110100406A1 (en) Split thermo-electric structure and devices and systems that utilize said structure
CN101399240A (en) Microelectronic package and method of cooling an interconnect feature in same
WO2004001859A1 (en) Planar solar concentrator power module
Kobayashi et al. Optimized structure of tubular thermoelectric generators using n-type Bi2Te3 and p-type Sb2Te3 thin films on flexible substrate for energy harvesting
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
JP2005523589A (en) Modular thermocouple and laminate
Enescu et al. Applications of hybrid photovoltaic modules with thermoelectric cooling
Mizoshiri et al. Thin-film thermoelectric modules for power generation using focused solar light
US20120204923A1 (en) Thermoelectric piping apparatus and method for generating electricity
US20130306125A1 (en) Seebeck Solar Cell
TWI353673B (en) Integrated package having solar cell and thermoele
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
US20160056363A1 (en) Freestanding Thermoelectric Energy Conversion Device
KR20170075512A (en) Spin thermoelectric device
Chen et al. Development of a novel transparent micro-thermoelectric generator for solar energy conversion
Paredes et al. Receiver-module-integrated thermal management of high-concentration photovoltaic thermal systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224