WO2019088004A1 - Thermoelectric element, power generation device, and thermoelectric element production method - Google Patents

Thermoelectric element, power generation device, and thermoelectric element production method Download PDF

Info

Publication number
WO2019088004A1
WO2019088004A1 PCT/JP2018/040039 JP2018040039W WO2019088004A1 WO 2019088004 A1 WO2019088004 A1 WO 2019088004A1 JP 2018040039 W JP2018040039 W JP 2018040039W WO 2019088004 A1 WO2019088004 A1 WO 2019088004A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
stacked
stacked cell
wiring
thermoelectric element
Prior art date
Application number
PCT/JP2018/040039
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 博史
Original Assignee
株式会社Gceインスティチュート
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gceインスティチュート filed Critical 株式会社Gceインスティチュート
Publication of WO2019088004A1 publication Critical patent/WO2019088004A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J45/00Discharge tubes functioning as thermionic generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thermoelectric element that converts thermal energy into electrical energy, a power generation device, and a method of manufacturing the thermoelectric element.
  • thermoelectric elements that generate electrical energy using thermal energy (absolute temperature) has been actively conducted.
  • a thermoelectric element disclosed in Patent Document 1 has been proposed.
  • Such a thermoelectric element is expected to be used in various applications as compared with a configuration in which electrical energy is generated using a temperature difference given to an electrode.
  • thermoelectric device comprising: insulating spherical nanobeads, wherein a work function of the emitter electrode layer is smaller than a work function of the collector electrode layer, and a particle diameter of the spherical nanobeads is 100 nm or less.
  • Patent No. 6147901 gazette
  • thermoelectric element in the case where the thermoelectric element is used as a power generation device, a configuration (laminated body) in which electrode portions are stacked is required in order to increase the obtained current and voltage.
  • laminated body in which the electrode portions are connected in series, if one electrode portion is short-circuited, abnormal heat generation or the like may occur. For this reason, in the structure which laminated
  • thermoelectric element disclosed in Patent Document 1 discloses a configuration in which a terminal electrode is provided to connect each electrode layer extended to the side surface of the laminate. For this reason, it is necessary to connect terminal electrodes to all the stacked electrode layers, and it is not possible to select an electrode layer to be electrically connected. As a result, even if one electrode layer is short-circuited, abnormal heat generation and the like may occur similarly to the above, and there is a concern that the characteristics are not stable. From the above-mentioned circumstances, it is desirable to realize a thermoelectric element that can obtain stable characteristics.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a thermoelectric element, a power generator, and a method of manufacturing the thermoelectric element that can obtain stable characteristics. .
  • thermoelectric element is a thermoelectric element that converts thermal energy into electrical energy, and includes a first stacked cell unit and a second stacked unit including a plurality of conversion units stacked alternately in contact and a plurality of wires.
  • the conversion unit includes a first electrode layer, a second electrode layer having a work function different from that of the first electrode layer, the first electrode layer, and the second electrode.
  • the stacked body is characterized in that it has an upper layer wiring that electrically connects the plurality of conversion portions of the first stacked cell portion and the second stacked cell portion.
  • thermoelectric element according to a second aspect of the present invention is the thermoelectric element according to the first aspect, wherein the stacked body has a third stacked cell portion having a plurality of the conversion portions stacked alternately in contact with each other and a plurality of the wires. When viewed from the stacking direction, the third stacked cell portion is electrically separated from the first stacked cell portion, the second stacked cell portion, and the upper layer wiring.
  • the laminated body in the first invention or the second invention, includes a plurality of laminated base materials, and one of the conversion portion and the wiring of the first laminated cell portion. , And one of the conversion parts and the wiring included in the second stacked cell part is provided in one of the base materials.
  • the laminated body has a lead-out base material laminated in the uppermost layer, and the first laminated cell part and the second laminated cell part are the lead-out base
  • the lead wire provided in the material and in contact with the upper layer wire, viewed from the stacking direction, the lead wire of the first stacked cell portion, the plurality of conversion portions, and the plurality of wires overlap
  • the lead-out wiring, the plurality of conversion units, and the plurality of wirings, which are included in the second stacked cell unit, are disposed to overlap with each other when viewed from the stacking direction.
  • a power generation device is a power generation device for converting thermal energy into electric energy, comprising: a first stacked cell unit having a plurality of conversion units stacked alternately in contact; and a plurality of wires; And a first wire and a second wire connected to the stacked body, wherein the conversion unit has a work function different from that of the first electrode layer and the first electrode layer.
  • the first stacked cell unit is disposed to be separated from the second stacked cell unit, and the stacked body electrically connects the plurality of conversion units included in the first stacked cell unit and the second stacked cell unit. It is characterized by having upper layer wiring to connect.
  • a method of manufacturing a thermoelectric device is a method of manufacturing a thermoelectric device that converts heat energy into electric energy, and forms a plurality of wirings, a plurality of first electrode layers, and a plurality of second electrode layers. Connection to form a pre-process, a post-process to form a plurality of stacked cell units in which the wiring, the first electrode layer, and the second electrode layer are sequentially stacked, and an upper layer wire in contact with the plurality of stack cell units And an after-process including an intermediate process of forming an intermediate portion including nanoparticles at a position in contact with the first electrode layer and the second electrode layer.
  • the connection step includes a determination step of determining whether or not a short circuit location is included in each of the plurality of stacked cell units; And a wiring forming step of forming the upper layer wiring in contact with only the stacked cell portion.
  • the stacked body has the upper layer wiring that electrically connects the plurality of conversion parts of the first stacked cell part and the second stacked cell part. Therefore, it is not necessary to connect the upper layer wires to all the stacked cell portions, and the upper layer wire can be provided after selecting the stacked cell portions to be electrically connected. This makes it possible to obtain stable characteristics.
  • the third stacked cell portion is separated from the first stacked cell portion, the second stacked cell portion, and the upper layer wiring. Therefore, the voltage of the thermoelectric element can be set according to the number of stacked layers in each stacked cell portion, and the current of the thermoelectric element can be set according to the number of stacked cell portions connected via the upper layer wiring. Thereby, it becomes possible to easily design the optimum thermoelectric element characteristics according to the application.
  • one conversion portion and wiring included in each stacked cell portion are provided in one base material.
  • the wiring which electrically connects each conversion part is provided in the inside of a laminated body.
  • the laminate has the lead substrate laminated on the uppermost layer. For this reason, when forming the upper layer wiring, it is possible to suppress the deterioration of the conversion portion of each stacked cell portion. This makes it possible to obtain more stable characteristics.
  • the connecting step forms an upper layer wire in contact with the plurality of stacked cell portions. For this reason, it is not necessary to connect the upper layer wiring to all the stacked cell portions, and it is possible to select the stacked cell portion to be electrically connected. This makes it possible to obtain stable characteristics.
  • the wiring, the first electrode layer, and the second electrode layer are sequentially stacked, and the intermediate portion is formed at a position in contact with the first electrode layer and the second electrode layer.
  • the wiring forming step forms the upper layer wiring in contact with only the stacked cell portion not including the short circuited part. Therefore, even in the case where the stacked cell portion including the short circuit portion exists, only the normal stacked cell portion can be connected through the upper layer wiring. Thereby, it becomes possible to improve the yield at the time of manufacture of a thermoelectric element.
  • FIG. 1 (a) is a schematic cross-sectional view showing an example of the configuration of the power generation device and the thermoelectric element in the embodiment
  • FIG. 1 (b) is a schematic plan view of 1B-1B in FIG. 1 (a)
  • FIG. 2 is a schematic cross section which shows the 1st modification of the 1st electrode layer in an example of a structure of the electric power generating apparatus in this embodiment, and a thermoelectric element.
  • FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element in the embodiment.
  • Fig. 4 (a) is a schematic cross-sectional view showing a recess formed in the base
  • Fig. 4 (b) is a schematic cross-sectional view showing a wiring formed in the base.
  • Fig. 4 (a) is a schematic cross-sectional view showing a recess formed in the base
  • Fig. 4 (b) is a schematic cross-sectional view showing a wiring formed in the base.
  • FIGS. 6A to 6D are flowcharts showing first to fourth modified examples of the method of manufacturing a thermoelectric element in the present embodiment.
  • thermoelectric element and a power generation device according to an embodiment of the present invention will be described with reference to the drawings.
  • the direction in which the substrates 21 and the like are stacked is referred to as the stacking direction Z
  • the direction intersecting the stacking direction Z is referred to as the first direction X and the second direction Y, respectively.
  • FIG. 1 (a) is a schematic cross-sectional view showing the power generation device 100 and the thermoelectric element 1 in the present embodiment
  • FIG. 1 (b) is a schematic plan view of 1B-1B in FIG. 1 (a).
  • the power generation device 100 includes the thermoelectric element 1, a first wire 101, and a second wire 102.
  • the power generation device 100 may include, for example, a substrate 103 that supports the thermoelectric element 1.
  • the power generation device 100 supplies the current generated in the thermoelectric element 1 to the load R connected to the first wiring 101 and the second wiring 102.
  • the power generation device 100 is provided, for example, in a mobile device such as an IoT (Internet of Things) device, a wearable device, or a self-supporting sensor terminal in addition to application to solar power generation, and can be used as a substitute or supplement for a battery. .
  • IoT Internet of Things
  • the thermoelectric element 1 can convert thermal energy generated using, for example, a central processing unit (CPU) of an electronic device, an engine of an automobile, a production facility of a factory, or the like as a heat source into electrical energy to generate current.
  • the thermoelectric element 1 includes a laminate 2.
  • the stacked body 2 includes a plurality of stacked cell units 20 extending in the stacking direction Z, an upper layer wire 24, and a lower layer wire 25.
  • the stacked cell unit 20 includes a plurality of conversion units 23 and a plurality of wires 22 stacked alternately.
  • the stacked cell units 20 When viewed in the stacking direction Z, the stacked cell units 20 are disposed apart from each other, and are disposed, for example, along the first direction X and the second direction Y.
  • the number of stacked cell units 20 and the number of stacked conversion units 23 and wirings 22 are arbitrary.
  • the upper layer wire 24 and the lower layer wire 25 electrically connect the stacked cell units 20.
  • the laminate 2 has, for example, a plurality of stacked substrates 21. Each base material 21 is laminated in contact with each other.
  • One conversion unit 23 and wiring 22 included in each stacked cell unit 20 are provided in one base 21.
  • one conversion unit 23 and wiring 22 of the first stacked cell unit 20-1 and one conversion unit 23 and wiring 22 of the second stacked cell unit 20-2 are , Provided in one substrate 21.
  • the base 21 has a first major surface 21 a intersecting with the stacking direction Z, and a second major surface 21 b opposed to the first major surface 21 a.
  • the thickness of the base 21 is, for example, 10 ⁇ m or more and 2 mm or less.
  • the thickness of the substrate 21 is smaller than the width of the substrate 21 in the first direction X and smaller than the length of the substrate 21 in the second direction Y.
  • the base 21 preferably has an insulating property and also has excellent properties such as smoothness, heat resistance, or low thermal expansion.
  • the substrate 21 is, for example, a film using a thin plate-like material such as silicon, glass, or resin, and PET (polyethylene terephthalate), PC (polycarbonate), or polyimide is used as the material, for example, single crystal silicon Or glass may be used.
  • the wiring 22 is in contact with the conversion unit 23 stacked vertically.
  • the wiring 22 may be exposed from the second major surface 21 b, and the exposed surface of the wiring 22 may be formed on the same plane as the second major surface 21 b.
  • the thickness of the wiring 22 is substantially equal to, for example, the thickness of the base 21.
  • the wiring 22 preferably has conductivity, and also has excellent characteristics such as embedding, heat resistance, or low thermal expansion.
  • nickel, copper, silver, gold, tungsten, or titanium can be used as the wiring 22.
  • the conversion unit 23 is in contact with the wiring 22 stacked vertically.
  • the conversion unit 23 includes a first electrode layer 23a, a second electrode layer 23b, and an intermediate portion 23c.
  • the conversion part 23 may be exposed from the 1st main surface 21a, and the exposed surface of the conversion part 23 may be formed on the same plane as the 1st main surface 21a.
  • First Electrode Layer 23a, Second Electrode Layer 23b The first electrode layer 23 a is provided apart from the wiring 22 stacked on the lower side.
  • the first electrode layer 23 a is in contact with the wiring 22 stacked on the upper side.
  • the first electrode layer 23a is in contact with, for example, the base 21 laminated on the upper side.
  • the second electrode layer 23 b is provided in contact with the wiring 22 stacked on the lower side.
  • the second electrode layer 23 b is provided between the first electrode layer 23 a and the wiring 22 stacked on the lower side.
  • the second electrode layer 23 b is electrically separated from the first electrode layer 23 a.
  • the thickness of the first electrode layer 23a and the second electrode layer 23b is, for example, 1 nm or more and 50 nm or less.
  • the distance (interelectrode gap) between the first electrode layer 23a and the second electrode layer 23b is, for example, 10 ⁇ m or less, and preferably 10 nm or more and 100 nm or less.
  • the first electrode layer 23a has a work function different from that of the second electrode layer 23b.
  • the work function of the first electrode layer 23a is smaller than the work function of the second electrode layer 23b.
  • the first electrode layer 23a is described as a cathode (cathode) and the second electrode layer 23b is described as an anode (anode), but the first electrode layer 23a is an anode and the second electrode layer 23b is a cathode. It is also good.
  • the work function of the first electrode layer 23a is larger than the work function of the second electrode layer 23b.
  • first electrode layer 23a when tungsten (work function: 4.55 eV) is used as the first electrode layer 23a, platinum (work function: 5.65 eV) is used as the second electrode layer 23b.
  • first electrode layer 23a and the second electrode layer 23b in addition to aluminum and titanium, a multilayer film may be used, and a material to be used may be arbitrarily selected according to the work function.
  • the formation of the first electrode layer 23a and the second electrode layer 23b can be realized by vapor deposition, sputtering, or an inked metal material by a method such as screen printing or inkjet coating.
  • the intermediate portion 23c is provided in contact with the first electrode layer 23a and the second electrode layer 23b.
  • the middle part 23c contains, for example, nanoparticles and a solvent.
  • the middle part 23c shows, for example, a state in which a solvent in which nanoparticles are dispersed is filled.
  • the middle part 23c may not include, for example, a solvent, and may indicate a state in which only the nanoparticles are loaded.
  • the nanoparticles have a work function between the work function of the first electrode layer 23a and the work function of the second electrode layer 23b, and for example, have a work function of 3.0 eV or more and 5.5 eV or less.
  • the nanoparticles for example, at least one of gold and silver is used, and for example, a material satisfying the above-described work function range may be used.
  • a particle diameter which is 1/10 or less of the gap between electrodes is used, specifically, a particle diameter of 2 nm or more and 10 nm or less is used, for example, particles having an average particle diameter (D50) of 3 nm or more and 8 nm or less Diameters may be used.
  • the average particle diameter can be measured by a particle size distribution measuring instrument (for example, Nanotrac Wave II-EX 150 manufactured by Microtrac BEL, etc.) using a laser diffraction scattering method.
  • the nanoparticles have, for example, an insulating film provided on the surface.
  • an insulating film for example, a metal oxide such as silicon oxide or alumina is used.
  • an organic compound such as alkanethiol or a semiconductor such as silicon may be used.
  • the thickness of the insulating film is, for example, 5 nm or more and 100 nm or less.
  • a liquid having a boiling point of 60 ° or more is used, and for example, at least one of an organic solvent and water is used.
  • an organic solvent for example, methanol, ethanol, toluene, xylene, alkanethiol, tetradecane and the like are used.
  • thermoelectric element 1 when thermal energy is applied to the thermoelectric element 1, thermal electrons are emitted from the first electrode layer 23a and the second electrode layer 23b of each stacked cell unit 20 toward the intermediate portion 23c. .
  • the emitted thermoelectrons are propagated to the first electrode layer 23a or the second electrode layer 23b via the nanoparticles dispersed in the intermediate portion 23c.
  • the amount of thermions emitted depends on the work function of each of the electrode layers 23a and 23b, and a material having a smaller work function tends to be emitted more. That is, more thermal electrons are emitted from the first electrode layer 23a having a work function smaller than that of the second electrode layer 23b. For this reason, compared with the amount of thermoelectrons moving from the second electrode layer 23b to the first electrode layer 23a among all thermions emitted to the intermediate portion 23c, the first electrode layer 23a to the second electrode layer 23b The amount of moving thermions tends to be large. As a result, thermal energy is converted into electrical energy, and a current is generated from the second electrode layer 23 b toward the first electrode layer 23 a.
  • the degree of thermions emitted from the first electrode layer 23a mainly depends on the heat energy and also depends on the work function of the first electrode layer 23a and the work function of the second electrode layer 23b, and the interelectrode gap . Therefore, by shortening the distance between the first electrode layer 23a and the second electrode layer 23b, it is possible to increase the amount of electrical energy generated.
  • the first electrode layer 23a be formed of one layer other than refractory metal.
  • refractory metals refer to niobium, molybdenum, tantalum, tungsten and rhenium.
  • any of carbon-based materials such as aluminum, silicon, lanthanum hexaboride (LaB 6 ), or graphene is used, for example.
  • aluminum is excellent in processability
  • silicon is excellent in productivity
  • lanthanum hexaboride has a low work function, so that materials can be selected according to the application.
  • any of the materials described above can be used under high temperature. This makes it possible to increase the amount of electrical energy generated.
  • the upper layer wire 24 is in contact with the top of each stacked cell portion 20 and electrically connects the plurality of conversion portions 23 and the wires 22 included in each stacked cell portion 20.
  • the upper layer wire 24 is in contact with the external wire (for example, the first wire 101).
  • the upper layer wire 24 may be electrically separated from, for example, a part of the stacked cell units 20.
  • the upper layer wiring 24 is the third stacked cell unit 20. It can be provided so as to be electrically separated from the third and sixth stacked cell units 20-6 and to be in contact with the other stacked cell units 20.
  • the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6 are the other stacked cell units 20 (for example, the first stacked cell unit 20-1 and the second stacked cell). It is electrically separated from the portion 20-2) and the upper layer wiring 24.
  • the place (layout) where the upper layer wire 24 is provided has flexibility as compared with the case where the configuration corresponding to the upper layer wire 24 is formed on the side surface or the like. Therefore, after selecting whether or not to electrically connect to the stacked cell unit 20, the upper layer wire 24 can be provided. In particular, when the stacked cell unit 20 has the short-circuited conversion unit 23, only the normal stacked cell unit 20 can be electrically connected through the upper layer wiring 24.
  • the lower layer wire 25 is in contact with the lowermost portion of each stacked cell portion 20 as shown in FIG.
  • the lower layer wiring 25 is in contact with the external wiring (for example, the second wiring 102).
  • the lower layer wiring 25 may be provided in the substrate 103, for example.
  • the lower layer wire 25 may be in contact with all the stacked cell units 20. In this case, whether or not each stacked cell unit 20 is electrically connected is determined depending on whether or not it is in contact with the upper layer wire 24.
  • a material having conductivity is used as the upper layer wire 24 and the lower layer wire 25.
  • nickel, copper, silver, gold, tungsten, or titanium can be used.
  • the laminate 2 has, for example, a lead-out substrate 21n laminated on the uppermost layer.
  • the lead-out base 21 n has a main surface intersecting with the stacking direction Z.
  • the thickness of the lead-out substrate 21n, the configuration of the material, and the like are the same as those of the substrate 21.
  • the stacked cell unit 20 has, for example, a lead wire 22n.
  • the lead-out wiring 22 n is provided in the lead-out base 21 n and is electrically connected to the plurality of wirings 22 of the stacked cell unit 20.
  • the lead-out wiring 22n penetrates the lead-out base 21n, for example, along the stacking direction Z.
  • the lead-out wiring 22n of the stacked cell unit 20, the plurality of conversion units 23, and the wiring 22 are arranged to overlap.
  • the thickness, material, and the like of the lead-out wiring 22 n are the same as the wiring 22.
  • the lead interconnection 22 n may be provided thicker than the interconnection 22.
  • the stacked cell unit 20 has, for example, an upper layer extraction electrode layer 26.
  • the upper layer lead-out electrode layer 26 is in contact with the lead-out wire 22 n and, for example, in contact with the upper layer wire 24.
  • the upper layer lead-out electrode layer 26 may be provided on the main surface of the lead-out base 21n or in the lead-out base 21n.
  • the thickness, the material, and the like of the upper layer extraction electrode layer 26 are the same as those of the electrode layers 23 a and 23 b.
  • the upper layer extraction electrode layer 26 may be provided thicker than each electrode layer 23a and 23b.
  • the stacked cell unit 20 includes, for example, a lower layer lead-out electrode layer 27 provided on the second major surface 21 b of the base material 21 in the lowermost layer.
  • the lower layer lead-out electrode layer 27 is in contact with the wiring 22 in the base material 21 in the lowermost layer, for example, in contact with the lower layer wiring 25.
  • the thickness and the material configuration of the lower layer extraction electrode layer 27 are the same as those of the respective electrode layers 23a and 23b.
  • the stacked body 2 electrically connects the plurality of conversion units 23 of each stacked cell unit 20 (for example, the first stacked cell unit 20-1 and the second stacked cell unit 20-2).
  • Upper layer wiring 24 is provided. Therefore, it is not necessary to connect the upper layer wire 24 to all the stacked cell portions 20, and the upper layer wire 24 can be provided after selecting the stacked cell portion 20 to be electrically connected. This makes it possible to obtain stable characteristics.
  • each stacked cell unit 20 includes the plurality of conversion units 23 and the plurality of wirings 22 stacked alternately. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
  • some of the stacked cell units 20 are the other stacked cell units 20 (for example, the first stacked cell). It electrically separates from the portion 20-1, the second stacked cell portion 20-2), and the upper layer wire 24. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
  • one conversion unit 23 and the wiring 22 included in each stacked cell unit 20 are provided in one base 21.
  • the wiring 22 which electrically connects each conversion part 23 is provided in the inside of the laminated body 2.
  • the laminate 2 includes the lead-out base material 21 n stacked on the uppermost layer. For this reason, when the upper layer wiring 24 is formed, the deterioration of the conversion portion 23 of each stacked cell portion 20 can be suppressed. This makes it possible to obtain more stable characteristics.
  • the side surface of the first electrode layer 23 a may be separated from the base material 21 and in contact with the intermediate portion 23 c. Even in such a configuration, stable characteristics can be obtained.
  • FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element 1 in the present embodiment.
  • FIG.4 and FIG.5 is a schematic cross section which shows an example of the manufacturing method of the thermo-element 1 in this embodiment.
  • the method of manufacturing the thermoelectric element 1 in the present embodiment includes a pre-process S110, a post-process S120, and a connection process S130.
  • a pre-process S110 a plurality of wirings 22, a plurality of first electrode layers 23a, and a plurality of second electrode layers 23b are formed.
  • the plurality of wirings 22, the plurality of first electrode layers 23 a, and the plurality of second electrode layers 23 b are formed using, for example, a film-like base 21.
  • the pre-process S110 includes, for example, steps S111 to S114.
  • the post-process S120 forms a plurality of stacked cell units 20 in which the wiring 22, the first electrode layer 23a, and the second electrode layer 23b are stacked in order.
  • Post-process S120 has step S121, step S122, and middle process S123, for example.
  • Step S111 When the base 21 is used in the previous step S110, as shown in FIG. 4A, the recess 21c is formed on the first major surface 21a of the base 21 (step S111). A plurality of recessed portions 21 c are formed spaced apart in the first direction X and the second direction Y. At this time, for example, the recess 21c is not formed in a portion (not shown) in which the lead interconnection 22n is formed.
  • the base material 21 for example, a film-like material extending in one of the first direction X and the second direction Y and having a constant width in the other direction is used.
  • the recess 21 c is formed by, for example, a thermal transfer process using a metal mold.
  • the depth of the recess 21c is, for example, 50 nm to 500 nm
  • the width in the first direction X is preferably 10 times to 1000 times the depth.
  • the width is preferably 1 ⁇ m to 100 ⁇ m.
  • Step S112 the wiring 22 penetrating from the bottom of the recess 21c to the second major surface 21b is formed (step S112).
  • the wiring 22 is formed on the bottom of each recess 21c.
  • the lead wire 22n may be formed simultaneously with the wire 22.
  • the lead-out wiring 22 n is formed at a position electrically separated from the wiring 22 along the extending direction of the base material 21.
  • the lead wiring 22 n is formed to penetrate the base 21.
  • the wiring 22 is formed, for example, by forming a through hole by laser processing on the bottom surface of the recess 21 c and embedding a metal by a plating method. At this time, metal is embedded to such an extent that the recess 21 c is not filled.
  • the first electrode layer 23a in contact with the wiring 22 is formed on the second major surface 21b (step S113).
  • the first electrode layers 23 a are formed in contact with the respective wirings 22 in a state of being separated from one another.
  • the first electrode layer 23a may be formed in contact with the lead wire 22n.
  • the first electrode layer 23a is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method.
  • the width of the first electrode layer 23 a in the first direction X is wider than the width of the wiring 22 and equal to the width of the recess 21 c.
  • the second electrode layer 23b in contact with the wiring 22 is formed in the recess 21c (step S114).
  • the second electrode layer 23 b is electrically separated from each of the main surfaces 21 a and 21 b.
  • the second electrode layer 23b may be formed before the first electrode layer 23a is formed.
  • the upper extraction electrode layer 26 may be formed simultaneously with the second electrode layer 23 b. In this case, the upper layer lead-out electrode layer 26 is in contact with the lead-out wiring 22 n.
  • the first electrode layer 23a is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method.
  • the width of the second electrode layer 23b in the first direction X is equal to the width of the first electrode layer 23a.
  • the base material 21 may be divided (step S121).
  • the base 21 is divided, for example, in the direction in which the base 21 extends.
  • the base 21 is divided at a position separated from the wiring 22, the first electrode layer 23a, and the second electrode layer 23b.
  • the portion on which the lead interconnection 22n and the like are formed may be divided as the lead base 21n.
  • each base material 21 is laminated (step S122). As a result, a plurality of stacked cell units 20 in which the wiring 22, the first electrode layer 23a, and the second electrode layer 23b are sequentially stacked are formed.
  • the first electrode layer 23 a formed on the base 21 laminated on the upper side is disposed in the recess 21 c of each base 21.
  • the first electrode layer 23a is disposed to be electrically separated from the second electrode layer 23b, and an unfilled portion is left in the recess 21c.
  • the lead-out substrate 21n may be laminated on the uppermost layer on which the respective substrates 21 are laminated. Further, the first electrode layer 23 a formed on the second major surface 21 b of the base material 21 in the lowermost layer is used as the lower layer extraction electrode layer 27. At this time, viewed from the stacking direction Z, the upper layer lead electrode layer 26 included in each stacked cell portion 20, the lead wire 22n, the plurality of first electrode layers 23a, the plurality of second electrode layers 23b, the wire 22, and the lower layer lead electrode Layers 27 are placed one on top of the other.
  • Each substrate 21 is activated by, for example, plasma cleaning or UV cleaning of the main surfaces 21a and 21b, and then the first main surface 21a of the lower substrate 21 and the second main surface of the upper substrate 21. It is laminated by pasting 21b.
  • middle process S123> an intermediate portion 23c including nanoparticles and a solvent is formed in the recess 21c (intermediate step S123).
  • the intermediate portion 23c is formed between the first electrode layer 23a and the second electrode layer 23b, and is filled in the unfilled portion of the recess 21c. Thereby, the conversion unit 23 is formed.
  • the intermediate portion 23c can be filled in the recess 21c by capillary action.
  • the intermediate portion 23 c is filled from the side surface of the laminate 2 in the second direction Y into the recess 21 c formed in each base 21. Thereafter, for example, by covering the side surface of the laminate 2 with an insulating material or the like, it is possible to suppress the filling failure and the like of the intermediate portion 23c.
  • connection step S130 Next, the upper layer wire 24 in contact with the plurality of stacked cell units 20 is formed (connection step S130).
  • the upper layer wiring 24 is formed on the lead-out base material 21 n formed in the uppermost layer of the laminate 2, for example, as shown in FIG. 1 (b).
  • the lower layer wiring 25 may be formed before and after the upper layer wiring 24 is formed.
  • the lower layer wire 25 is in contact with the lower layer lead electrode layer 27 formed at the lowermost portion of each stacked cell portion 20.
  • the stacked cell units 20 in contact with the upper layer wiring 24 are electrically connected.
  • the upper layer wiring 24 and the lower layer wiring 25 may be realized by, for example, a method used in a semiconductor element formation process, and are formed using, for example, at least one of a screen printing method, an etching method, an inkjet method, and a plating method.
  • connection step S130 for example, the upper layer wire 24 is formed after selecting the stacked cell unit 20 to be electrically connected. At this time, in the connection step S130, a determination step of determining whether or not each short circuited portion is included in each stacked cell portion 20, and a wire forming step of forming the upper layer wiring 24 in contact with only the stacked cell portion 20 not including the shorted portion Have.
  • the first stacked cell unit 20-1, the second stacked cell unit, and the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6 do not include the short circuit location.
  • the upper layer wiring 24 is formed.
  • thermoelectric element 1 in the present embodiment is formed through the steps described above.
  • a first wire 101 connected to the upper layer wire 24 formed, a substrate 103 for supporting the thermoelectric element 1, and a second wire 102 connected to the lower layer wire 25 are formed, and the first wire 101 and the second wire 102 are formed.
  • the power generation device 100 in the present embodiment can be formed.
  • the lower layer wiring 25 may be formed immediately before forming the substrate 103, for example.
  • connection step S130 the upper layer wire 24 electrically connecting the plurality of stacked cell units 20 is formed. Therefore, it is not necessary to connect the upper layer wiring 24 to all the stacked cell units 20, and the stacked cell unit 20 to be electrically connected can be selected. This makes it possible to obtain stable characteristics.
  • the wire 22, the first electrode layer 23a, and the second electrode layer 23b are stacked in order, and at a position in contact with the first electrode layer 23a and the second electrode layer 23b. , Intermediate portion 23c. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
  • the wiring 22 and the intermediate portion 23 c are formed in the base 21. For this reason, the wiring 22 which electrically connects the conversion unit 23 in each stacked cell unit 20 is formed inside the stacked body 2. As a result, deterioration of the wiring 22 can be suppressed in the manufacturing process of the power generation apparatus 100 and the like, and stable characteristics can be obtained.
  • the intermediate portion 23c formed in the recess 21c of the base 21 is in contact with the first electrode layer 23a formed on the second major surface 21b of the base 21 stacked on the upper side. That is, there is no need to form a separate structure in order to electrically connect the conversion units 23. For this reason, the contact resistance accompanying the electrical connection of each structure can be minimized. As a result, the amount of electrical energy generated by the thermoelectric element 1 can be increased.
  • the intermediate portion 23c is formed. That is, after laminating each base material 21 (Step S122), intermediate part 23c is formed (intermediate process S123). For this reason, in the state which fixed each base material 21, middle part 23c can be formed. Thereby, it becomes possible to suppress deterioration of middle part 23c accompanying lamination of each substrate 21.
  • the base material 21 is divided (step S121) before laminating the base materials 21 (step S122). For this reason, the lamination position which laminates each base material 21 can be set up with sufficient accuracy. This makes it possible to obtain more stable characteristics.
  • thermoelectric element 1 it is not necessary to use an etching method, for example, as a method of forming the recess 21 c. For this reason, it is possible to realize the reduction of equipment investment, the reduction of the manufacturing cost, and the improvement of the task associated with the manufacture of the thermoelectric element 1.
  • the recess 21 c can be formed by a fine transfer method using a mold. Therefore, the processing area can be easily expanded without the need to use a vacuum process. In addition, it becomes possible to cope with continuous production processes such as roll-to-roll.
  • thermoelectric element 1 by using a resin film as the base material 21, base materials 21 comrades can be bonded easily and the space which fills the intermediate part 23c can be controlled easily. Therefore, in addition to the improvement of the productivity of the thermoelectric element 1 and the reduction of the manufacturing cost, it becomes possible to suppress the characteristic variation of the thermoelectric element 1.
  • FIG. 6 is a flowchart showing first to fourth modified examples of the method of manufacturing the thermoelectric element 1 in the present embodiment.
  • the base members 21 may be laminated (step S122).
  • the intermediate portion 23c can be formed using, for example, a continuous coating method such as roll-to-roll. For this reason, the time which forms intermediate part 23c can be shortened. This makes it possible to shorten the time in the manufacturing process.
  • intermediate part 23c Before laminating each base material 21, in order to form intermediate part 23c, intermediate part 23c can be formed only by filling nanoparticles without using a solvent. Thereby, it becomes possible to suppress deterioration of layered product 2 accompanying vaporization of a solvent, etc.
  • each base material 21 can be divided
  • Thermoelectric element 2 Laminated body 20: Laminated cell portion 21: Base 21a: First main surface 21b: Second main surface 21c: Recess 21n: Lead base 22: Wiring 22n: Lead wiring 23: Conversion portion 23a: First electrode layer 23b: second electrode layer 23c: middle portion 24: upper layer wire 25: lower layer wire 26: upper layer lead electrode layer 27: lower layer lead electrode layer 100: power generation device 101: first wire 102: second wire 103: Substrate R: Load S110: Pre-process S120: Post-process S130: Connection process X: first direction Y: second direction Z: stacking direction

Abstract

[Problem] To provide a thermoelectric element, a power generation device, and a thermoelectric element production method with which stable properties are obtained. [Solution] A thermoelectric element 1 which converts thermal energy to electrical energy, and which is characterized by being provided with a laminate 2 having a first lamination cell portion 20-1 and a second lamination cell portion 20-2 each having a plurality of conversion portions 23 and a plurality of wires 22 alternately layered in contact with one another, and in that: the conversion portions are each provided with a first electrode layer 23a, a second electrode layer 23b having a work function which differs from the first electrode layer 23a, and an intermediate portion 23c containing nanoparticles and provided between the first electrode layer 23a and the second electrode layer 23b while being in contact with both; the first lamination cell portion 20-1 is disposed separated from the second lamination cell portion 20-2 when viewed from the lamination direction Z of the laminate 2; and the laminate 2 is provided with a top layer wire 24 which electrically connects the plurality of conversion portions 23 provided in the first lamination cell portion 20-1 and the second lamination cell portion 20-2.

Description

熱電素子、発電装置、及び熱電素子の製造方法Thermoelectric element, power generation device, and method of manufacturing thermoelectric element
 本発明は、熱エネルギーを電気エネルギーに変換する熱電素子、発電装置、及び熱電素子の製造方法に関する。 The present invention relates to a thermoelectric element that converts thermal energy into electrical energy, a power generation device, and a method of manufacturing the thermoelectric element.
 近年、熱エネルギー(絶対温度)を利用して電気エネルギーを生成する熱電素子の開発が盛んに行われている。特に、電極の有する仕事関数の差分を利用した電気エネルギーの生成に関し、例えば特許文献1に開示された熱電素子等が提案されている。このような熱電素子は、電極に与える温度差を利用して電気エネルギーを生成する構成に比べて、様々な用途への利用が期待されている。 BACKGROUND ART In recent years, development of thermoelectric elements that generate electrical energy using thermal energy (absolute temperature) has been actively conducted. In particular, with regard to the generation of electrical energy using the difference in work function of the electrodes, for example, a thermoelectric element disclosed in Patent Document 1 has been proposed. Such a thermoelectric element is expected to be used in various applications as compared with a configuration in which electrical energy is generated using a temperature difference given to an electrode.
 特許文献1では、エミッタ電極層と、コレクタ電極層と、前記エミッタ電極層及び前記コレクタ電極層の表面に分散して配置され、前記エミッタ電極層及び前記コレクタ電極層をサブミクロン間隔で離間する電気絶縁性の球状ナノビーズとを備え、前記エミッタ電極層の仕事関数は前記コレクタ電極層の仕事関数よりも小さく、前記球状ナノビーズの粒子径は100nm以下である、熱電素子が開示されている。 In Patent Document 1, electricity is disposed on the surface of the emitter electrode layer, the collector electrode layer, the emitter electrode layer, and the surface of the collector electrode layer in a dispersed manner, and the emitter electrode layer and the collector electrode layer are separated by submicron intervals. A thermoelectric device is disclosed, comprising: insulating spherical nanobeads, wherein a work function of the emitter electrode layer is smaller than a work function of the collector electrode layer, and a particle diameter of the spherical nanobeads is 100 nm or less.
特許第6147901号公報Patent No. 6147901 gazette
 ここで、熱電素子を発電装置として用いる場合、得られる電流や電圧を高くするために、電極部分を積層した構成(積層体)が要求される。しかしながら、電極部分が直列に接続された積層体では、電極部分が1ヵ所でも短絡すると、異常発熱等を引き起こす恐れがある。このため、電極部分を積層した構成では、特性が安定しないことが懸念として挙げられる。 Here, in the case where the thermoelectric element is used as a power generation device, a configuration (laminated body) in which electrode portions are stacked is required in order to increase the obtained current and voltage. However, in a laminate in which the electrode portions are connected in series, if one electrode portion is short-circuited, abnormal heat generation or the like may occur. For this reason, in the structure which laminated | stacked the electrode part, it is mentioned as a concern that a characteristic is not stabilized.
 この点、特許文献1に開示された熱電素子では、積層体の側面に延在した各電極層をつなぐ端子電極が設けられる構成が開示されている。このため、積層された全ての電極層に対して端子電極を接続する必要があり、電気的に接続する電極層を選択することができない。これにより、電極層が1ヵ所でも短絡すると、上記と同様に異常発熱等を引き起こす恐れがあり、特性が安定しないことが懸念として挙げられる。上述した事情により、安定した特性を得られる熱電素子の実現が望まれている。 In this respect, the thermoelectric element disclosed in Patent Document 1 discloses a configuration in which a terminal electrode is provided to connect each electrode layer extended to the side surface of the laminate. For this reason, it is necessary to connect terminal electrodes to all the stacked electrode layers, and it is not possible to select an electrode layer to be electrically connected. As a result, even if one electrode layer is short-circuited, abnormal heat generation and the like may occur similarly to the above, and there is a concern that the characteristics are not stable. From the above-mentioned circumstances, it is desirable to realize a thermoelectric element that can obtain stable characteristics.
 そこで本発明は、上述した問題に鑑みて案出されたものであり、その目的とするところは、安定した特性を得られる熱電素子、発電装置、及び熱電素子の製造方法を提供することにある。 Accordingly, the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a thermoelectric element, a power generator, and a method of manufacturing the thermoelectric element that can obtain stable characteristics. .
 第1発明に係る熱電素子は、熱エネルギーを電気エネルギーに変換する熱電素子であって、交互に接して積層された複数の変換部と、複数の配線とを有する第1積層セル部及び第2積層セル部を有する積層体を備え、前記変換部は、第1電極層と、前記第1電極層とは異なる仕事関数を有する第2電極層と、前記第1電極層と、前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、を有し、前記積層体の積層方向から見て、前記第1積層セル部は、前記第2積層セル部と離間して配置され、前記積層体は、前記第1積層セル部及び前記第2積層セル部の有する複数の前記変換部を電気的に接続する上層配線を有することを特徴とする。 A thermoelectric element according to a first aspect of the present invention is a thermoelectric element that converts thermal energy into electrical energy, and includes a first stacked cell unit and a second stacked unit including a plurality of conversion units stacked alternately in contact and a plurality of wires. The conversion unit includes a first electrode layer, a second electrode layer having a work function different from that of the first electrode layer, the first electrode layer, and the second electrode. An intermediate portion including a nanoparticle and provided in contact with the layer, wherein the first stacked cell portion is separated from the second stacked cell portion when viewed from the stacking direction of the stacked body The stacked body is characterized in that it has an upper layer wiring that electrically connects the plurality of conversion portions of the first stacked cell portion and the second stacked cell portion.
 第2発明に係る熱電素子は、第1発明において、前記積層体は、交互に接して積層された複数の前記変換部と、複数の前記配線とを有する第3積層セル部を有し、前記積層方向から見て、前記第3積層セル部は、前記第1積層セル部、前記第2積層セル部、及び前記上層配線と電気的に離間することを特徴とする。 A thermoelectric element according to a second aspect of the present invention is the thermoelectric element according to the first aspect, wherein the stacked body has a third stacked cell portion having a plurality of the conversion portions stacked alternately in contact with each other and a plurality of the wires. When viewed from the stacking direction, the third stacked cell portion is electrically separated from the first stacked cell portion, the second stacked cell portion, and the upper layer wiring.
 第3発明に係る熱電素子は、第1発明又は第2発明において、前記積層体は、積層された複数の基材を有し、前記第1積層セル部の有する1つの前記変換部及び前記配線、並びに前記第2積層セル部の有する1つの前記変換部及び前記配線は、1つの前記基材内に設けられることを特徴とする。 In the thermoelectric element according to the third invention, in the first invention or the second invention, the laminated body includes a plurality of laminated base materials, and one of the conversion portion and the wiring of the first laminated cell portion. , And one of the conversion parts and the wiring included in the second stacked cell part is provided in one of the base materials.
 第4発明に係る熱電素子は、第3発明において、前記積層体は、最上層に積層された引出基材を有し、前記第1積層セル部及び前記第2積層セル部は、前記引出基材内に設けられ、前記上層配線と接する引出配線を有し、前記積層方向から見て、前記第1積層セル部の有する前記引出配線、複数の前記変換部、及び複数の前記配線は、重なって配置され、前記積層方向から見て、前記第2積層セル部の有する前記引出配線、複数の前記変換部、及び複数の前記配線は、重なって配置されることを特徴とする。 In the thermoelectric element according to the fourth aspect of the present invention, in the third aspect, the laminated body has a lead-out base material laminated in the uppermost layer, and the first laminated cell part and the second laminated cell part are the lead-out base The lead wire provided in the material and in contact with the upper layer wire, viewed from the stacking direction, the lead wire of the first stacked cell portion, the plurality of conversion portions, and the plurality of wires overlap And the lead-out wiring, the plurality of conversion units, and the plurality of wirings, which are included in the second stacked cell unit, are disposed to overlap with each other when viewed from the stacking direction.
 第5発明に係る発電装置は、熱エネルギーを電気エネルギーに変換する発電装置であって、交互に接して積層された複数の変換部と、複数の配線とを有する第1積層セル部及び第2積層セル部を有する積層体と、前記積層体と接続された第1配線及び第2配線と、を備え、前記変換部は、第1電極層と、前記第1電極層とは異なる仕事関数を有する第2電極層と、前記第1電極層と、前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、を有し、前記積層体の積層方向から見て、前記第1積層セル部は、前記第2積層セル部と離間して配置され、前記積層体は、前記第1積層セル部及び前記第2積層セル部の有する複数の前記変換部を電気的に接続する上層配線を有することを特徴とする。 A power generation device according to a fifth aspect of the present invention is a power generation device for converting thermal energy into electric energy, comprising: a first stacked cell unit having a plurality of conversion units stacked alternately in contact; and a plurality of wires; And a first wire and a second wire connected to the stacked body, wherein the conversion unit has a work function different from that of the first electrode layer and the first electrode layer. A second electrode layer, a first electrode layer, and an intermediate portion provided in contact with the second electrode layer and including nanoparticles, viewed from the stacking direction of the laminate, The first stacked cell unit is disposed to be separated from the second stacked cell unit, and the stacked body electrically connects the plurality of conversion units included in the first stacked cell unit and the second stacked cell unit. It is characterized by having upper layer wiring to connect.
 第6発明に係る熱電素子の製造方法は、熱エネルギーを電気エネルギーに変換する熱電素子の製造方法であって、複数の配線、複数の第1電極層、及び複数の第2電極層を形成する前工程と、前記配線、前記第1電極層、及び前記第2電極層を順番に積層した複数の積層セル部を形成する後工程と、複数の前記積層セル部と接する上層配線を形成する接続工程と、を備え、前記後工程は、前記第1電極層及び前記第2電極層と接する位置に、ナノ粒子を含む中間部を形成する中間工程を有することを特徴とする。 A method of manufacturing a thermoelectric device according to a sixth aspect of the invention is a method of manufacturing a thermoelectric device that converts heat energy into electric energy, and forms a plurality of wirings, a plurality of first electrode layers, and a plurality of second electrode layers. Connection to form a pre-process, a post-process to form a plurality of stacked cell units in which the wiring, the first electrode layer, and the second electrode layer are sequentially stacked, and an upper layer wire in contact with the plurality of stack cell units And an after-process including an intermediate process of forming an intermediate portion including nanoparticles at a position in contact with the first electrode layer and the second electrode layer.
 第7発明に係る熱電素子の製造方法は、第6発明において、前記接続工程は、複数の前記積層セル部毎に、短絡箇所を含むか否かを判定する判定工程と、前記短絡箇所を含まない前記積層セル部のみと接する前記上層配線を形成する配線形成工程と、を有することを特徴とする。 In the method of manufacturing a thermoelectric element according to the seventh invention, in the sixth invention, the connection step includes a determination step of determining whether or not a short circuit location is included in each of the plurality of stacked cell units; And a wiring forming step of forming the upper layer wiring in contact with only the stacked cell portion.
 第1発明~第5発明によれば、積層体は、第1積層セル部及び第2積層セル部の有する複数の変換部を電気的に接続する上層配線を有する。このため、全ての積層セル部に対して上層配線を接続する必要がなく、電気的に接続する積層セル部を選択した上で上層配線を設けることができる。これにより、安定した特性を得ることが可能となる。 According to the first to fifth inventions, the stacked body has the upper layer wiring that electrically connects the plurality of conversion parts of the first stacked cell part and the second stacked cell part. Therefore, it is not necessary to connect the upper layer wires to all the stacked cell portions, and the upper layer wire can be provided after selecting the stacked cell portions to be electrically connected. This makes it possible to obtain stable characteristics.
 特に、第2発明によれば、第3積層セル部は、第1積層セル部、第2積層セル部、及び上層配線と離間する。このため、各積層セル部の積層数に応じて熱電素子の電圧を設定でき、上層配線を介して接続する積層セル部の数に応じて熱電素子の電流を設定できる。これにより、用途に応じた最適な熱電素子の特性を容易に設計することが可能となる。 In particular, according to the second invention, the third stacked cell portion is separated from the first stacked cell portion, the second stacked cell portion, and the upper layer wiring. Therefore, the voltage of the thermoelectric element can be set according to the number of stacked layers in each stacked cell portion, and the current of the thermoelectric element can be set according to the number of stacked cell portions connected via the upper layer wiring. Thereby, it becomes possible to easily design the optimum thermoelectric element characteristics according to the application.
 特に、第3発明によれば、各積層セル部の有する1つの変換部及び配線は、1つの基材内に設けられる。このため、各変換部を電気的に接続する配線が、積層体の内部に設けられる。これにより、発電装置の製造工程等において、配線が劣化することを抑制でき、さらに安定した特性を得ることが可能となる。 In particular, according to the third aspect of the present invention, one conversion portion and wiring included in each stacked cell portion are provided in one base material. For this reason, the wiring which electrically connects each conversion part is provided in the inside of a laminated body. As a result, deterioration of the wiring can be suppressed in the manufacturing process of the power generation apparatus and the like, and further stable characteristics can be obtained.
 特に、第4発明によれば、積層体は、最上層に積層された引出基材を有する。このため、上層配線を形成するとき、各積層セル部の有する変換部の劣化を抑制することができる。これにより、さらに安定した特性を得ることが可能となる。 In particular, according to the fourth aspect of the present invention, the laminate has the lead substrate laminated on the uppermost layer. For this reason, when forming the upper layer wiring, it is possible to suppress the deterioration of the conversion portion of each stacked cell portion. This makes it possible to obtain more stable characteristics.
 第6発明及び第7発明によれば、接続工程は、複数の積層セル部と接する上層配線を形成する。このため、全ての積層セル部に対して上層配線を接続する必要がなく、電気的に接続する積層セル部を選択することができる。これにより、安定した特性を得ることが可能となる。 According to the sixth and seventh inventions, the connecting step forms an upper layer wire in contact with the plurality of stacked cell portions. For this reason, it is not necessary to connect the upper layer wiring to all the stacked cell portions, and it is possible to select the stacked cell portion to be electrically connected. This makes it possible to obtain stable characteristics.
 第6発明及び第7発明によれば、後工程は、配線、第1電極層、及び第2電極層を順番に積層し、第1電極層及び第2電極層と接する位置に、中間部を形成する。このため、各積層セル部の積層数に応じて熱電素子の電圧を設定でき、上層配線を介して接続する積層セル部の数に応じて熱電素子の電流を設定できる。これにより、用途に応じた最適な熱電素子の特性を容易に設計することが可能となる。 According to the sixth and seventh inventions, in the post-process, the wiring, the first electrode layer, and the second electrode layer are sequentially stacked, and the intermediate portion is formed at a position in contact with the first electrode layer and the second electrode layer. Form. Therefore, the voltage of the thermoelectric element can be set according to the number of stacked layers in each stacked cell portion, and the current of the thermoelectric element can be set according to the number of stacked cell portions connected via the upper layer wiring. Thereby, it becomes possible to easily design the optimum thermoelectric element characteristics according to the application.
 特に、第7発明によれば、配線形成工程は、短絡箇所を含まない積層セル部のみと接する上層配線を形成する。このため、短絡箇所を含む積層セル部が存在する場合においても、正常な積層セル部のみを上層配線を介して接続することができる。これにより、熱電素子の製造時における歩留まりを向上させることが可能となる。 In particular, according to the seventh aspect of the invention, the wiring forming step forms the upper layer wiring in contact with only the stacked cell portion not including the short circuited part. Therefore, even in the case where the stacked cell portion including the short circuit portion exists, only the normal stacked cell portion can be connected through the upper layer wiring. Thereby, it becomes possible to improve the yield at the time of manufacture of a thermoelectric element.
図1(a)は、実施形態における発電装置及び熱電素子の構成の一例を示す模式断面図であり、図1(b)は、図1(a)における1B-1Bの模式平面図である。FIG. 1 (a) is a schematic cross-sectional view showing an example of the configuration of the power generation device and the thermoelectric element in the embodiment, and FIG. 1 (b) is a schematic plan view of 1B-1B in FIG. 1 (a). 図2は、本実施形態における発電装置及び熱電素子の構成の一例における第1電極層の第1変形例を示す模式断面図である。FIG. 2: is a schematic cross section which shows the 1st modification of the 1st electrode layer in an example of a structure of the electric power generating apparatus in this embodiment, and a thermoelectric element. 図3は、実施形態における熱電素子の製造方法の一例を示すフローチャートである。FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element in the embodiment. 図4(a)は、基材内に形成された凹部を示す模式断面図であり、図4(b)は、基材内に形成された配線を示す模式断面図であり、図4(c)は、第2主面上に形成された第1電極層を示す模式断面図であり、図4(d)は、凹部内に形成された第2電極層を示す模式断面図である。Fig. 4 (a) is a schematic cross-sectional view showing a recess formed in the base, and Fig. 4 (b) is a schematic cross-sectional view showing a wiring formed in the base. Fig. 4 is a schematic cross-sectional view showing a first electrode layer formed on the second main surface, and Fig. 4 (d) is a schematic cross-sectional view showing a second electrode layer formed in the recess. 図5(a)は、分割された基材を示す模式断面図であり、図5(b)は、積層された各基材を示す模式断面図である。Fig.5 (a) is a schematic cross section which shows the divided | segmented base material, FIG.5 (b) is a schematic cross section which shows each laminated | stacked base material. 図6(a)~図6(d)は、本実施形態における熱電素子の製造方法の第1~第4変形例を示すフローチャートである。FIGS. 6A to 6D are flowcharts showing first to fourth modified examples of the method of manufacturing a thermoelectric element in the present embodiment.
 以下、本発明の実施形態における熱電素子及び発電装置の一例について、図面を参照しながら説明する。なお、各図において各基材21等の積層される方向を積層方向Zとし、積層方向Zと交わる方向をそれぞれ第1方向X及び第2方向Yとする。 Hereinafter, an example of a thermoelectric element and a power generation device according to an embodiment of the present invention will be described with reference to the drawings. In each of the drawings, the direction in which the substrates 21 and the like are stacked is referred to as the stacking direction Z, and the direction intersecting the stacking direction Z is referred to as the first direction X and the second direction Y, respectively.
 (発電装置100、熱電素子1の構成)
 図1を参照して、本実施形態における発電装置100及び熱電素子1の構成の一例について説明する。図1(a)は、本実施形態における発電装置100及び熱電素子1を示す模式断面図であり、図1(b)は、図1(a)における1B-1Bの模式平面図である。
(Configuration of power generation device 100, thermoelectric element 1)
With reference to FIG. 1, an example of the configuration of the power generation device 100 and the thermoelectric element 1 in the present embodiment will be described. FIG. 1 (a) is a schematic cross-sectional view showing the power generation device 100 and the thermoelectric element 1 in the present embodiment, and FIG. 1 (b) is a schematic plan view of 1B-1B in FIG. 1 (a).
 図1に示すように、発電装置100は、熱電素子1と、第1配線101と、第2配線102とを備える。発電装置100は、例えば熱電素子1を支持する基板103を備えてもよい。 As shown in FIG. 1, the power generation device 100 includes the thermoelectric element 1, a first wire 101, and a second wire 102. The power generation device 100 may include, for example, a substrate 103 that supports the thermoelectric element 1.
 発電装置100は、熱電素子1において生成された電流を、第1配線101及び第2配線102に接続された負荷Rへ供給する。発電装置100は、例えば太陽光発電への応用のほか、例えばIoT(Internet of Things)デバイス、ウェアラブル機器等のモバイル機器又は自立型センサ端末内に設けられ、電池の代替又は補助として用いることができる。 The power generation device 100 supplies the current generated in the thermoelectric element 1 to the load R connected to the first wiring 101 and the second wiring 102. The power generation device 100 is provided, for example, in a mobile device such as an IoT (Internet of Things) device, a wearable device, or a self-supporting sensor terminal in addition to application to solar power generation, and can be used as a substitute or supplement for a battery. .
 熱電素子1は、例えば電子デバイスのCPU(Central Processing Unit)、自動車のエンジン、工場の生産設備等を熱源として発生した熱エネルギーを、電気エネルギーに変換し、電流を生成することができる。熱電素子1は、積層体2を備える。 The thermoelectric element 1 can convert thermal energy generated using, for example, a central processing unit (CPU) of an electronic device, an engine of an automobile, a production facility of a factory, or the like as a heat source into electrical energy to generate current. The thermoelectric element 1 includes a laminate 2.
 <積層体2、積層セル部20>
 積層体2は、積層方向Zに延在する複数の積層セル部20と、上層配線24と、下層配線25とを有する。積層セル部20は、交互に積層された複数の変換部23と、複数の配線22とを有する。
<Laminated body 2, stacked cell portion 20>
The stacked body 2 includes a plurality of stacked cell units 20 extending in the stacking direction Z, an upper layer wire 24, and a lower layer wire 25. The stacked cell unit 20 includes a plurality of conversion units 23 and a plurality of wires 22 stacked alternately.
 積層方向Zから見て、各積層セル部20は、それぞれ離間して配置され、例えば第1方向X及び第2方向Yに沿って配置される。積層セル部20の数、並びに変換部23及び配線22の積層する数は、任意である。上層配線24及び下層配線25は、各積層セル部20を電気的に接続する。 When viewed in the stacking direction Z, the stacked cell units 20 are disposed apart from each other, and are disposed, for example, along the first direction X and the second direction Y. The number of stacked cell units 20 and the number of stacked conversion units 23 and wirings 22 are arbitrary. The upper layer wire 24 and the lower layer wire 25 electrically connect the stacked cell units 20.
 <基材21>
 積層体2は、例えば積層された複数の基材21を有する。各基材21は、それぞれ接して積層される。各積層セル部20の有する1つの変換部23及び配線22は、1つの基材21内に設けられる。例えば図1(a)に示すように、第1積層セル部20-1の有する1つの変換部23及び配線22、並びに第2積層セル部20-2の有する1つの変換部23及び配線22は、1つの基材21内に設けられる。
<Base material 21>
The laminate 2 has, for example, a plurality of stacked substrates 21. Each base material 21 is laminated in contact with each other. One conversion unit 23 and wiring 22 included in each stacked cell unit 20 are provided in one base 21. For example, as shown in FIG. 1A, one conversion unit 23 and wiring 22 of the first stacked cell unit 20-1 and one conversion unit 23 and wiring 22 of the second stacked cell unit 20-2 are , Provided in one substrate 21.
 基材21は、積層方向Zと交わる第1主面21a、及び第1主面21aに対向する第2主面21bを有する。積層方向Zにおいて、基材21の厚さは、例えば10μm以上2mm以下である。基材21の厚さは、第1方向Xにおける基材21の幅よりも小さく、第2方向Yにおける基材21の長さよりも小さい。 The base 21 has a first major surface 21 a intersecting with the stacking direction Z, and a second major surface 21 b opposed to the first major surface 21 a. In the stacking direction Z, the thickness of the base 21 is, for example, 10 μm or more and 2 mm or less. The thickness of the substrate 21 is smaller than the width of the substrate 21 in the first direction X and smaller than the length of the substrate 21 in the second direction Y.
 基材21は、絶縁性を有するほか、例えば平滑性、耐熱性、又は低熱膨張性等に優れた特性を有することが好ましい。基材21は、例えば薄板状のシリコンやガラス、又は樹脂等の材料を用いたフィルム状であり、材料としてPET(polyethylene terephthalate)、PC(polycarbonate)、又はポリイミドが用いられるほか、例えば単結晶シリコンやガラスが用いられてもよい。 The base 21 preferably has an insulating property and also has excellent properties such as smoothness, heat resistance, or low thermal expansion. The substrate 21 is, for example, a film using a thin plate-like material such as silicon, glass, or resin, and PET (polyethylene terephthalate), PC (polycarbonate), or polyimide is used as the material, for example, single crystal silicon Or glass may be used.
 <配線22>
 配線22は、上下に積層された変換部23と接する。配線22が基材21内に設けられる場合、配線22は第2主面21bから露出し、配線22の露出面は、第2主面21bと同一平面上に形成されてもよい。積層方向Zにおいて、配線22の厚さは、例えば基材21の厚さとほぼ同等である。
<Wiring 22>
The wiring 22 is in contact with the conversion unit 23 stacked vertically. When the wiring 22 is provided in the base 21, the wiring 22 may be exposed from the second major surface 21 b, and the exposed surface of the wiring 22 may be formed on the same plane as the second major surface 21 b. In the stacking direction Z, the thickness of the wiring 22 is substantially equal to, for example, the thickness of the base 21.
 配線22は、導電性を有するほか、例えば埋め込み性、耐熱性、又は低熱膨張性等に優れた特性を有することが好ましい。配線22として、例えばニッケル、銅、銀、金、タングステン、又はチタンを用いることができる。 The wiring 22 preferably has conductivity, and also has excellent characteristics such as embedding, heat resistance, or low thermal expansion. For example, nickel, copper, silver, gold, tungsten, or titanium can be used as the wiring 22.
 <変換部23>
 変換部23は、上下に積層された配線22と接する。変換部23は、第1電極層23aと、第2電極層23bと、中間部23cとを有する。変換部23が基材21内に設けられる場合、変換部23は第1主面21aから露出し、変換部23の露出面は、第1主面21aと同一平面上に形成されてもよい。
 <第1電極層23a、第2電極層23b>
 第1電極層23aは、下側に積層された配線22と離間して設けられる。第1電極層23aは、上側に積層された配線22と接する。第1電極層23aは、例えば上側に積層された基材21と接する。
<Converter 23>
The conversion unit 23 is in contact with the wiring 22 stacked vertically. The conversion unit 23 includes a first electrode layer 23a, a second electrode layer 23b, and an intermediate portion 23c. When the conversion part 23 is provided in the base material 21, the conversion part 23 may be exposed from the 1st main surface 21a, and the exposed surface of the conversion part 23 may be formed on the same plane as the 1st main surface 21a.
<First Electrode Layer 23a, Second Electrode Layer 23b>
The first electrode layer 23 a is provided apart from the wiring 22 stacked on the lower side. The first electrode layer 23 a is in contact with the wiring 22 stacked on the upper side. The first electrode layer 23a is in contact with, for example, the base 21 laminated on the upper side.
 第2電極層23bは、下側に積層された配線22と接して設けられる。第2電極層23bは、第1電極層23aと、下側に積層された配線22との間に設けられる。第2電極層23bは、第1電極層23aと電気的に離間する。 The second electrode layer 23 b is provided in contact with the wiring 22 stacked on the lower side. The second electrode layer 23 b is provided between the first electrode layer 23 a and the wiring 22 stacked on the lower side. The second electrode layer 23 b is electrically separated from the first electrode layer 23 a.
 積層方向Zにおいて、第1電極層23a及び第2電極層23bの厚さは、例えば1nm以上50nm以下である。第1電極層23aと、第2電極層23bとの間の距離(電極間ギャップ)は、例えば10μm以下であり、好ましくは10nm以上100nm以下である。 In the stacking direction Z, the thickness of the first electrode layer 23a and the second electrode layer 23b is, for example, 1 nm or more and 50 nm or less. The distance (interelectrode gap) between the first electrode layer 23a and the second electrode layer 23b is, for example, 10 μm or less, and preferably 10 nm or more and 100 nm or less.
 第1電極層23aは、第2電極層23bの仕事関数とは異なる仕事関数を有する。本実施形態では、第1電極層23aの仕事関数は、第2電極層23bの仕事関数よりも小さい。なお、本実施形態において第1電極層23aを陰極(カソード)、及び第2電極層23bを陽極(アノード)として説明するが、第1電極層23aを陽極、及び第2電極層23bを陰極としてもよい。この場合、第1電極層23aの仕事関数は、第2電極層23bの仕事関数よりも大きい。 The first electrode layer 23a has a work function different from that of the second electrode layer 23b. In the present embodiment, the work function of the first electrode layer 23a is smaller than the work function of the second electrode layer 23b. In the present embodiment, the first electrode layer 23a is described as a cathode (cathode) and the second electrode layer 23b is described as an anode (anode), but the first electrode layer 23a is an anode and the second electrode layer 23b is a cathode. It is also good. In this case, the work function of the first electrode layer 23a is larger than the work function of the second electrode layer 23b.
 例えば、第1電極層23aとしてタングステン(仕事関数:4.55eV)が用いられるとき、第2電極層23bとして白金(仕事関数:5.65eV)が用いられる。例えば、第1電極層23a及び第2電極層23bとして、アルミニウム、チタンのほか、多層膜が用いられてもよく、仕事関数に応じて用いる材料を任意に選択してもよい。なお、第1電極層23a及び第2電極層23bの形成は、金属材料の蒸着、スパッタリング、又はインク化した金属材料をスクリーン印刷やインクジェット塗布等の方法で行うことで実現できる。 For example, when tungsten (work function: 4.55 eV) is used as the first electrode layer 23a, platinum (work function: 5.65 eV) is used as the second electrode layer 23b. For example, as the first electrode layer 23a and the second electrode layer 23b, in addition to aluminum and titanium, a multilayer film may be used, and a material to be used may be arbitrarily selected according to the work function. The formation of the first electrode layer 23a and the second electrode layer 23b can be realized by vapor deposition, sputtering, or an inked metal material by a method such as screen printing or inkjet coating.
 <中間部23c>
 中間部23cは、第1電極層23aと第2電極層23bとの間に接して設けられる。中間部23cは、例えばナノ粒子と、溶媒とを含む。中間部23cは、例えばナノ粒子を分散した溶媒が充填された状態を示す。中間部23cは、例えば溶媒を含まなくてもよく、ナノ粒子のみが充填された状態を示してもよい。
<Intermediate part 23c>
The intermediate portion 23c is provided in contact with the first electrode layer 23a and the second electrode layer 23b. The middle part 23c contains, for example, nanoparticles and a solvent. The middle part 23c shows, for example, a state in which a solvent in which nanoparticles are dispersed is filled. The middle part 23c may not include, for example, a solvent, and may indicate a state in which only the nanoparticles are loaded.
 <ナノ粒子>
 ナノ粒子は、第1電極層23aの仕事関数と、第2電極層23bの仕事関数との間の仕事関数を有し、例えば3.0eV以上5.5eV以下の仕事関数を有する。ナノ粒子として、例えば金及び銀の少なくとも何れかが用いられるほか、例えば上記の仕事関数の範囲を満たす材料が用いられてもよい。
<Nanoparticles>
The nanoparticles have a work function between the work function of the first electrode layer 23a and the work function of the second electrode layer 23b, and for example, have a work function of 3.0 eV or more and 5.5 eV or less. As the nanoparticles, for example, at least one of gold and silver is used, and for example, a material satisfying the above-described work function range may be used.
 ナノ粒子として、例えば電極間ギャップの1/10以下である粒子径が用いられ、具体的には2nm以上10nm以下の粒子径が用いられるほか、例えば平均粒径(D50)3nm以上8nm以下の粒子径が用いられてもよい。なお、平均粒径は、レーザー回折散乱法を用いた粒度分布計測器(例えばMicrotracBEL製Nanotrac WaveII-EX150等)により測定することができる。 As nanoparticles, for example, a particle diameter which is 1/10 or less of the gap between electrodes is used, specifically, a particle diameter of 2 nm or more and 10 nm or less is used, for example, particles having an average particle diameter (D50) of 3 nm or more and 8 nm or less Diameters may be used. The average particle diameter can be measured by a particle size distribution measuring instrument (for example, Nanotrac Wave II-EX 150 manufactured by Microtrac BEL, etc.) using a laser diffraction scattering method.
 ナノ粒子は、例えば表面に設けられた絶縁膜を有する。絶縁膜として、例えばシリコン酸化物又はアルミナ等の金属酸化物が用いられるほか、例えばアルカンチオール等の有機化合物や、シリコン等の半導体が用いられてもよい。絶縁膜の厚さは、例えば5nm以上100nm以下である。 The nanoparticles have, for example, an insulating film provided on the surface. As the insulating film, for example, a metal oxide such as silicon oxide or alumina is used. For example, an organic compound such as alkanethiol or a semiconductor such as silicon may be used. The thickness of the insulating film is, for example, 5 nm or more and 100 nm or less.
 溶媒として、沸点が60°以上の液体が用いられ、例えば有機溶媒及び水の少なくとも何れかが用いられる。有機溶媒として、例えばメタノール、エタノール、トルエン、キシレン、アルカンチオール、テトラデカン等が用いられる。 As the solvent, a liquid having a boiling point of 60 ° or more is used, and for example, at least one of an organic solvent and water is used. As the organic solvent, for example, methanol, ethanol, toluene, xylene, alkanethiol, tetradecane and the like are used.
 本実施形態によれば、熱電素子1に熱エネルギーが与えられると、各積層セル部20の有する第1電極層23a及び第2電極層23bから、中間部23cに向けて熱電子が放出される。放出された熱電子は、中間部23c内に分散されたナノ粒子を介して、第1電極層23a又は第2電極層23bに伝搬される。 According to the present embodiment, when thermal energy is applied to the thermoelectric element 1, thermal electrons are emitted from the first electrode layer 23a and the second electrode layer 23b of each stacked cell unit 20 toward the intermediate portion 23c. . The emitted thermoelectrons are propagated to the first electrode layer 23a or the second electrode layer 23b via the nanoparticles dispersed in the intermediate portion 23c.
 ここで、放出される熱電子の量は、各電極層23a、23bの仕事関数に依存し、仕事関数が小さい材料ほど多く放出される傾向を示す。すなわち、第2電極層23bよりも仕事関数の小さい第1電極層23aから、熱電子が多く放出される。このため、中間部23cに放出された全熱電子のうち、第2電極層23bから第1電極層23aへ移動する熱電子の量に比べて、第1電極層23aから第2電極層23bへ移動する熱電子の量が多い傾向を示す。これにより、熱エネルギーを電気エネルギーに変換し、第2電極層23bから第1電極層23aに向かう電流が生成される。 Here, the amount of thermions emitted depends on the work function of each of the electrode layers 23a and 23b, and a material having a smaller work function tends to be emitted more. That is, more thermal electrons are emitted from the first electrode layer 23a having a work function smaller than that of the second electrode layer 23b. For this reason, compared with the amount of thermoelectrons moving from the second electrode layer 23b to the first electrode layer 23a among all thermions emitted to the intermediate portion 23c, the first electrode layer 23a to the second electrode layer 23b The amount of moving thermions tends to be large. As a result, thermal energy is converted into electrical energy, and a current is generated from the second electrode layer 23 b toward the first electrode layer 23 a.
 第1電極層23aから放出される熱電子の度合いは、主に、熱エネルギーに依存するほか、第1電極層23aの仕事関数及び第2電極層23bの仕事関数、並びに電極間ギャップに依存する。このため、第1電極層23aと第2電極層23bとの間の距離を短くすることにより、電気エネルギーの発生量を増加させることが可能となる。 The degree of thermions emitted from the first electrode layer 23a mainly depends on the heat energy and also depends on the work function of the first electrode layer 23a and the work function of the second electrode layer 23b, and the interelectrode gap . Therefore, by shortening the distance between the first electrode layer 23a and the second electrode layer 23b, it is possible to increase the amount of electrical energy generated.
 特に、第1電極層23aとして、高融点金属(refractory metal)以外の1層から構成されていることが望ましい。ここで、高融点金属とは、ニオブ、モリブデン、タンタル、タングステン、レニウムを示す。第1電極層23aとして、例えばアルミニウム、ケイ素、六ほう化ランタン(LaB)、又はグラフェン等のカーボン系材料の何れかが用いられる。特に、アルミニウムは加工性に優れ、ケイ素は生産性に優れ、六ほう化ランタンは仕事関数が小さいため、用途に応じて材料を選択することができる。また、上述した材料は、何れも高温下にて用いることができる。これにより、電気エネルギーの発生量を増加させることが可能となる。 In particular, it is desirable that the first electrode layer 23a be formed of one layer other than refractory metal. Here, refractory metals refer to niobium, molybdenum, tantalum, tungsten and rhenium. As the first electrode layer 23a, any of carbon-based materials such as aluminum, silicon, lanthanum hexaboride (LaB 6 ), or graphene is used, for example. In particular, aluminum is excellent in processability, silicon is excellent in productivity, and lanthanum hexaboride has a low work function, so that materials can be selected according to the application. Further, any of the materials described above can be used under high temperature. This makes it possible to increase the amount of electrical energy generated.
 <上層配線24、下層配線25>
 上層配線24は、各積層セル部20の最上部と接し、各積層セル部20の有する複数の変換部23及び配線22を電気的に接続する。上層配線24は、外部配線(例えば第1配線101)と接する。
<Upper layer wiring 24, lower layer wiring 25>
The upper layer wire 24 is in contact with the top of each stacked cell portion 20 and electrically connects the plurality of conversion portions 23 and the wires 22 included in each stacked cell portion 20. The upper layer wire 24 is in contact with the external wire (for example, the first wire 101).
 上層配線24は、例えば一部の積層セル部20と電気的に離間してもよい。例えば図1(b)に示すように、例えば第3積層セル部20-3及び第6積層セル部20-6が短絡した変換部23を有する場合、上層配線24は、第3積層セル部20-3及び第6積層セル部20-6と電気的に離間し、その他の積層セル部20と接するように設けることができる。このとき、積層方向Zから見て、第3積層セル部20-3及び第6積層セル部20-6は、他の積層セル部20(例えば第1積層セル部20-1、第2積層セル部20-2)、及び上層配線24と電気的に離間する。 The upper layer wire 24 may be electrically separated from, for example, a part of the stacked cell units 20. For example, as shown in FIG. 1B, for example, in the case where the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6 have the conversion unit 23 short-circuited, the upper layer wiring 24 is the third stacked cell unit 20. It can be provided so as to be electrically separated from the third and sixth stacked cell units 20-6 and to be in contact with the other stacked cell units 20. At this time, when viewed in the stacking direction Z, the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6 are the other stacked cell units 20 (for example, the first stacked cell unit 20-1 and the second stacked cell). It is electrically separated from the portion 20-2) and the upper layer wiring 24.
 すなわち、本実施形態によれば、上層配線24に対応する構成が側面等に形成される場合と比べて、上層配線24を設ける場所(レイアウト)に自由度がある。このため、積層セル部20と電気的に接続するか否かを選択した上で、上層配線24を設けることができる。特に、積層セル部20が短絡した変換部23を有する場合、正常な積層セル部20のみを上層配線24を介して電気的に接続することができる。 That is, according to the present embodiment, the place (layout) where the upper layer wire 24 is provided has flexibility as compared with the case where the configuration corresponding to the upper layer wire 24 is formed on the side surface or the like. Therefore, after selecting whether or not to electrically connect to the stacked cell unit 20, the upper layer wire 24 can be provided. In particular, when the stacked cell unit 20 has the short-circuited conversion unit 23, only the normal stacked cell unit 20 can be electrically connected through the upper layer wiring 24.
 下層配線25は、図1(a)に示すように、各積層セル部20の最下部と接する。下層配線25は、外部配線(例えば第2配線102)と接する。下層配線25は、例えば基板103内に設けられてもよい。 The lower layer wire 25 is in contact with the lowermost portion of each stacked cell portion 20 as shown in FIG. The lower layer wiring 25 is in contact with the external wiring (for example, the second wiring 102). The lower layer wiring 25 may be provided in the substrate 103, for example.
 下層配線25は、全ての積層セル部20と接してもよい。この場合、各積層セル部20が電気的に接続されるか否かは、上層配線24と接しているか否かによって決まる。 The lower layer wire 25 may be in contact with all the stacked cell units 20. In this case, whether or not each stacked cell unit 20 is electrically connected is determined depending on whether or not it is in contact with the upper layer wire 24.
 上層配線24及び下層配線25として、導電性を有する材料が用いられ、例えばニッケル、銅、銀、金、タングステン、又はチタンを用いることができる。 A material having conductivity is used as the upper layer wire 24 and the lower layer wire 25. For example, nickel, copper, silver, gold, tungsten, or titanium can be used.
 <引出基材21n>
 積層体2は、例えば最上層に積層された引出基材21nを有する。引出基材21nは、積層方向Zと交わる主面を有する。引出基材21nの厚さや材料等の構成は、基材21と同等である。
<Drawout base 21n>
The laminate 2 has, for example, a lead-out substrate 21n laminated on the uppermost layer. The lead-out base 21 n has a main surface intersecting with the stacking direction Z. The thickness of the lead-out substrate 21n, the configuration of the material, and the like are the same as those of the substrate 21.
 <引出配線22n>
 積層セル部20は、例えば引出配線22nを有する。引出配線22nは、引出基材21n内に設けられ、積層セル部20の有する複数の配線22と電気的に接続される。
<Drawer wire 22n>
The stacked cell unit 20 has, for example, a lead wire 22n. The lead-out wiring 22 n is provided in the lead-out base 21 n and is electrically connected to the plurality of wirings 22 of the stacked cell unit 20.
 引出配線22nは、例えば積層方向Zに沿って引出基材21nを貫通する。積層方向Zから見て、積層セル部20の有する引出配線22n、複数の変換部23、及び配線22は、重なって配置される。引出配線22nの厚さや材料等の構成は、配線22と同等である。例えば、引出配線22nは、配線22よりも厚く設けられてもよい。 The lead-out wiring 22n penetrates the lead-out base 21n, for example, along the stacking direction Z. When viewed from the stacking direction Z, the lead-out wiring 22n of the stacked cell unit 20, the plurality of conversion units 23, and the wiring 22 are arranged to overlap. The thickness, material, and the like of the lead-out wiring 22 n are the same as the wiring 22. For example, the lead interconnection 22 n may be provided thicker than the interconnection 22.
 <上層引出電極層26>
 積層セル部20は、例えば上層引出電極層26を有する。上層引出電極層26は、引出配線22nと接し、例えば上層配線24と接する。上層引出電極層26は、引出基材21nの主面に設けられるほか、引出基材21n内に設けられてもよい。上層引出電極層26の厚さや材料等の構成は、各電極層23a、23bと同等である。例えば上層引出電極層26は、各電極層23a、23bよりも厚く設けられてもよい。
<Upper layer extraction electrode layer 26>
The stacked cell unit 20 has, for example, an upper layer extraction electrode layer 26. The upper layer lead-out electrode layer 26 is in contact with the lead-out wire 22 n and, for example, in contact with the upper layer wire 24. The upper layer lead-out electrode layer 26 may be provided on the main surface of the lead-out base 21n or in the lead-out base 21n. The thickness, the material, and the like of the upper layer extraction electrode layer 26 are the same as those of the electrode layers 23 a and 23 b. For example, the upper layer extraction electrode layer 26 may be provided thicker than each electrode layer 23a and 23b.
 <下層引出電極層27>
 積層セル部20は、例えば最下層における基材21の第2主面21bに設けられた下層引出電極層27を有する。下層引出電極層27は、最下層における基材21内の配線22と接し、例えば下層配線25と接する。下層引出電極層27の厚さや材料の構成は、各電極層23a、23bと同様である。
<Lower layer extraction electrode layer 27>
The stacked cell unit 20 includes, for example, a lower layer lead-out electrode layer 27 provided on the second major surface 21 b of the base material 21 in the lowermost layer. The lower layer lead-out electrode layer 27 is in contact with the wiring 22 in the base material 21 in the lowermost layer, for example, in contact with the lower layer wiring 25. The thickness and the material configuration of the lower layer extraction electrode layer 27 are the same as those of the respective electrode layers 23a and 23b.
 本実施形態によれば、 積層体2は、各積層セル部20(例えば第1積層セル部20-1及び第2積層セル部20-2)の有する複数の変換部23を電気的に接続する上層配線24を有する。このため、全ての積層セル部20に対して上層配線24を接続する必要がなく、電気的に接続する積層セル部20を選択した上で上層配線24を設けることができる。これにより、安定した特性を得ることが可能となる。 According to the present embodiment, the stacked body 2 electrically connects the plurality of conversion units 23 of each stacked cell unit 20 (for example, the first stacked cell unit 20-1 and the second stacked cell unit 20-2). Upper layer wiring 24 is provided. Therefore, it is not necessary to connect the upper layer wire 24 to all the stacked cell portions 20, and the upper layer wire 24 can be provided after selecting the stacked cell portion 20 to be electrically connected. This makes it possible to obtain stable characteristics.
 また、本実施形態によれば、各積層セル部20は、交互に積層された複数の変換部23と、複数の配線22とを有する。このため、各積層セル部20の積層数に応じて熱電素子1の電圧を設定でき、上層配線24を介して接続する積層セル部20の数に応じて熱電素子1の電流を設定できる。これにより、用途に応じた最適な熱電素子1の特性を容易に設計することが可能となる。 Further, according to the present embodiment, each stacked cell unit 20 includes the plurality of conversion units 23 and the plurality of wirings 22 stacked alternately. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
 また、本実施形態によれば、一部の積層セル部20(例えば第3積層セル部20-3、第6積層セル部20-6)は、その他の積層セル部20(例えば第1積層セル部20-1、第2積層セル部20-2)、及び上層配線24と電気的に離間する。このため、各積層セル部20の積層数に応じて熱電素子1の電圧を設定でき、上層配線24を介して接続する積層セル部20の数に応じて熱電素子1の電流を設定できる。これにより、用途に応じた最適な熱電素子1の特性を容易に設計することが可能となる。 Further, according to the present embodiment, some of the stacked cell units 20 (for example, the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6) are the other stacked cell units 20 (for example, the first stacked cell). It electrically separates from the portion 20-1, the second stacked cell portion 20-2), and the upper layer wire 24. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
 また、本実施形態によれば、各積層セル部20の有する1つの変換部23及び配線22は、1つの基材21内に設けられる。このため、各変換部23を電気的に接続する配線22が、積層体2の内部に設けられる。これにより、発電装置100の製造工程等において、配線22が劣化することを抑制でき、さらに安定した特性を得ることが可能となる。 Further, according to the present embodiment, one conversion unit 23 and the wiring 22 included in each stacked cell unit 20 are provided in one base 21. For this reason, the wiring 22 which electrically connects each conversion part 23 is provided in the inside of the laminated body 2. As a result, in the manufacturing process of the power generation device 100 or the like, deterioration of the wiring 22 can be suppressed, and it is possible to obtain more stable characteristics.
 また、本実施形態によれば、積層体2は、最上層に積層された引出基材21nを有する。このため、上層配線24を形成するとき、各積層セル部20の有する変換部23の劣化を抑制することができる。これにより、さらに安定した特性を得ることが可能となる。 Further, according to the present embodiment, the laminate 2 includes the lead-out base material 21 n stacked on the uppermost layer. For this reason, when the upper layer wiring 24 is formed, the deterioration of the conversion portion 23 of each stacked cell portion 20 can be suppressed. This makes it possible to obtain more stable characteristics.
 なお、例えば図2に示すように、第1電極層23aの側面は、基材21と離間して中間部23cと接してもよい。このような構成においても、安定した特性を得ることが可能となる。 For example, as shown in FIG. 2, the side surface of the first electrode layer 23 a may be separated from the base material 21 and in contact with the intermediate portion 23 c. Even in such a configuration, stable characteristics can be obtained.
 (熱電素子1の製造方法)
 次に、図3~図5を参照して、本実施形態における熱電素子1の製造方法の一例について説明する。図3は、本実施形態における熱電素子1の製造方法の一例を示すフローチャートである。図4及び図5は、本実施形態における熱電素子1の製造方法の一例を示す模式断面図である。
(Method of manufacturing the thermoelectric element 1)
Next, with reference to FIGS. 3 to 5, an example of a method of manufacturing the thermoelectric element 1 according to the present embodiment will be described. FIG. 3 is a flowchart showing an example of a method of manufacturing the thermoelectric element 1 in the present embodiment. FIG.4 and FIG.5 is a schematic cross section which shows an example of the manufacturing method of the thermo-element 1 in this embodiment.
 本実施形態における熱電素子1の製造方法は、前工程S110と、後工程S120と、接続工程S130とを備える。前工程S110は、複数の配線22、複数の第1電極層23a、及び複数の第2電極層23bを形成する。複数の配線22、複数の第1電極層23a、及び複数の第2電極層23bは、例えばフィルム状の基材21を利用して形成される。前工程S110は、例えばステップS111~ステップS114を有する。 The method of manufacturing the thermoelectric element 1 in the present embodiment includes a pre-process S110, a post-process S120, and a connection process S130. In the previous step S110, a plurality of wirings 22, a plurality of first electrode layers 23a, and a plurality of second electrode layers 23b are formed. The plurality of wirings 22, the plurality of first electrode layers 23 a, and the plurality of second electrode layers 23 b are formed using, for example, a film-like base 21. The pre-process S110 includes, for example, steps S111 to S114.
 後工程S120は、配線22、第1電極層23a、及び第2電極層23bを順番に積層した複数の積層セル部20を形成する。後工程S120は、例えばステップS121、ステップS122、及び中間工程S123を有する。 The post-process S120 forms a plurality of stacked cell units 20 in which the wiring 22, the first electrode layer 23a, and the second electrode layer 23b are stacked in order. Post-process S120 has step S121, step S122, and middle process S123, for example.
 <凹部21cを形成:ステップS111>
 前工程S110において基材21を利用した場合、図4(a)に示すように、基材21の第1主面21aに、凹部21cを形成する(ステップS111)。凹部21cは、第1方向X及び第2方向Yに離間して複数形成される。このとき、例えば引出配線22nを形成する部分(図示せず)には、凹部21cを形成しない。なお、基材21として、例えば第1方向X及び第2方向Yの一方に延在し、他方に一定幅を有するフィルム状の材料が用いられる。
Forming Recess 21c: Step S111
When the base 21 is used in the previous step S110, as shown in FIG. 4A, the recess 21c is formed on the first major surface 21a of the base 21 (step S111). A plurality of recessed portions 21 c are formed spaced apart in the first direction X and the second direction Y. At this time, for example, the recess 21c is not formed in a portion (not shown) in which the lead interconnection 22n is formed. In addition, as the base material 21, for example, a film-like material extending in one of the first direction X and the second direction Y and having a constant width in the other direction is used.
 凹部21cは、例えば金属金型を用いた熱転写プロセスにより形成される。積層方向Zにおいて、凹部21cの深さは、例えば50nm以上500nm以下で形成され、第1方向Xにおける幅は、深さの10倍以上1000倍以下であることが望ましい。例えば、凹部21cの深さが100nm程度の場合、幅が1μm以上100μm以下であることが望ましい。 The recess 21 c is formed by, for example, a thermal transfer process using a metal mold. In the stacking direction Z, the depth of the recess 21c is, for example, 50 nm to 500 nm, and the width in the first direction X is preferably 10 times to 1000 times the depth. For example, when the depth of the recess 21c is about 100 nm, the width is preferably 1 μm to 100 μm.
 <配線22を形成:ステップS112>
 次に、図4(b)に示すように、凹部21cの底面から第2主面21bまで貫通する配線22を形成する(ステップS112)。配線22は、各凹部21cの底面に形成される。なお、配線22と同時に引出配線22nを形成してもよい。この場合、例えば基材21の延在する方向に沿って、配線22と電気的に離間した位置に引出配線22nが形成される。引出配線22nは、基材21を貫通して形成される。
<Forming the Wiring 22: Step S112>
Next, as shown in FIG. 4B, the wiring 22 penetrating from the bottom of the recess 21c to the second major surface 21b is formed (step S112). The wiring 22 is formed on the bottom of each recess 21c. The lead wire 22n may be formed simultaneously with the wire 22. In this case, for example, the lead-out wiring 22 n is formed at a position electrically separated from the wiring 22 along the extending direction of the base material 21. The lead wiring 22 n is formed to penetrate the base 21.
 配線22は、例えば凹部21cの底面をレーザー加工により貫通孔を形成したあと、メッキ法により金属を埋め込むことにより形成される。このとき、凹部21cが埋まらない程度に金属を埋め込む。 The wiring 22 is formed, for example, by forming a through hole by laser processing on the bottom surface of the recess 21 c and embedding a metal by a plating method. At this time, metal is embedded to such an extent that the recess 21 c is not filled.
 <第1電極層23aを形成;ステップS113>
 次に、図4(c)に示すように、第2主面21b上に、配線22と接する第1電極層23aを形成する(ステップS113)。第1電極層23aは、それぞれ離間した状態で各配線22に接して形成される。なお、第1電極層23aは、引出配線22nに接して形成されてもよい。
<Formation of First Electrode Layer 23a; Step S113>
Next, as shown in FIG. 4C, the first electrode layer 23a in contact with the wiring 22 is formed on the second major surface 21b (step S113). The first electrode layers 23 a are formed in contact with the respective wirings 22 in a state of being separated from one another. The first electrode layer 23a may be formed in contact with the lead wire 22n.
 第1電極層23aは、例えばスプレイ印刷法の他、蒸着法又はインクジェット法により形成される。第1方向Xにおける第1電極層23aの幅は、配線22の幅よりも広く、凹部21cの幅と等しい。 The first electrode layer 23a is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method. The width of the first electrode layer 23 a in the first direction X is wider than the width of the wiring 22 and equal to the width of the recess 21 c.
 <第2電極層23bを形成:ステップS114>
 次に、図4(d)に示すように、凹部21c内に、配線22と接する第2電極層23bを形成する(ステップS114)。第2電極層23bは、各主面21a、21bとは電気的に離間して形成される。なお、第1電極層23aを形成するまえに、第2電極層23bを形成してもよい。また、第2電極層23bと同時に上層引出電極層26を形成してもよい。この場合、上層引出電極層26は、引出配線22nと接する。
<Forming Second Electrode Layer 23b: Step S114>
Next, as shown in FIG. 4D, the second electrode layer 23b in contact with the wiring 22 is formed in the recess 21c (step S114). The second electrode layer 23 b is electrically separated from each of the main surfaces 21 a and 21 b. The second electrode layer 23b may be formed before the first electrode layer 23a is formed. Further, the upper extraction electrode layer 26 may be formed simultaneously with the second electrode layer 23 b. In this case, the upper layer lead-out electrode layer 26 is in contact with the lead-out wiring 22 n.
 第1電極層23aは、例えばスプレイ印刷法の他、蒸着法又はインクジェット法により形成される。第1方向Xにおける第2電極層23bの幅は、第1電極層23aの幅と等しい。 The first electrode layer 23a is formed by, for example, a vapor deposition method or an inkjet method in addition to the spray printing method. The width of the second electrode layer 23b in the first direction X is equal to the width of the first electrode layer 23a.
 <基材21を分割:ステップS121>
 次に、後工程S120では、例えば図5(a)に示すように、基材21を分割してもよい(ステップS121)。基材21は、例えば基材21の延在する方向に対して分割される。基材21は、配線22、第1電極層23a、及び第2電極層23bと離間した位置で分割される。なお、引出配線22n等を形成した部分を引出基材21nとして分割してもよい。
<Division of Base Material 21: Step S121>
Next, in the subsequent step S120, for example, as shown in FIG. 5A, the base material 21 may be divided (step S121). The base 21 is divided, for example, in the direction in which the base 21 extends. The base 21 is divided at a position separated from the wiring 22, the first electrode layer 23a, and the second electrode layer 23b. The portion on which the lead interconnection 22n and the like are formed may be divided as the lead base 21n.
 <各基材21を積層:ステップS122>
 次に、各基材21を積層する(ステップS122)。これにより、配線22、第1電極層23a、及び第2電極層23bを順番に積層した複数の積層セル部20が形成される。
<Laminating Each Base Material 21: Step S122>
Next, each base material 21 is laminated (step S122). As a result, a plurality of stacked cell units 20 in which the wiring 22, the first electrode layer 23a, and the second electrode layer 23b are sequentially stacked are formed.
 このとき、例えば図5(b)に示すように、各基材21の凹部21c内には、上側に積層された基材21に形成された第1電極層23aが配置される。第1電極層23aは、第2電極層23bと電気的に離間して配置され、凹部21cには未充填部が残される。 At this time, for example, as shown in FIG. 5 (b), the first electrode layer 23 a formed on the base 21 laminated on the upper side is disposed in the recess 21 c of each base 21. The first electrode layer 23a is disposed to be electrically separated from the second electrode layer 23b, and an unfilled portion is left in the recess 21c.
 なお、各基材21の積層された最上層には、引出基材21nが積層されてもよい。また、最下層における基材21の第2主面21bに形成された第1電極層23aは、下層引出電極層27として用いられる。このとき、積層方向Zから見て、各積層セル部20の有する上層引出電極層26、引出配線22n、複数の第1電極層23a、複数の第2電極層23b、配線22、及び下層引出電極層27は、重なって配置される。 Note that, on the uppermost layer on which the respective substrates 21 are laminated, the lead-out substrate 21n may be laminated. Further, the first electrode layer 23 a formed on the second major surface 21 b of the base material 21 in the lowermost layer is used as the lower layer extraction electrode layer 27. At this time, viewed from the stacking direction Z, the upper layer lead electrode layer 26 included in each stacked cell portion 20, the lead wire 22n, the plurality of first electrode layers 23a, the plurality of second electrode layers 23b, the wire 22, and the lower layer lead electrode Layers 27 are placed one on top of the other.
 各基材21は、例えば各主面21a、21bをプラズマ洗浄やUV洗浄により活性化処理した後、下側の基材21の第1主面21aと、上側の基材21の第2主面21bとを貼合することで、積層される。 Each substrate 21 is activated by, for example, plasma cleaning or UV cleaning of the main surfaces 21a and 21b, and then the first main surface 21a of the lower substrate 21 and the second main surface of the upper substrate 21. It is laminated by pasting 21b.
 <中間部23cを形成:中間工程S123>
 次に、凹部21cに、ナノ粒子及び溶媒を含む中間部23cを形成する(中間工程S123)。中間部23cは、第1電極層23aと、第2電極層23bとの間に形成され、凹部21cの未充填部に充填される。これにより、変換部23が形成される。
<Formation of middle part 23c: middle process S123>
Next, an intermediate portion 23c including nanoparticles and a solvent is formed in the recess 21c (intermediate step S123). The intermediate portion 23c is formed between the first electrode layer 23a and the second electrode layer 23b, and is filled in the unfilled portion of the recess 21c. Thereby, the conversion unit 23 is formed.
 例えば積層体2を中間部23cの原液に浸すことで、毛細管現象によって凹部21cに中間部23cを充填することができる。中間部23cは、積層体2の第2方向Yにおける側面から、各基材21に形成された凹部21cに充填される。その後、例えば積層体2の側面を絶縁材料等で覆うことで、中間部23cの充填不良等を抑制することができる。 For example, by immersing the laminate 2 in the stock solution of the intermediate portion 23c, the intermediate portion 23c can be filled in the recess 21c by capillary action. The intermediate portion 23 c is filled from the side surface of the laminate 2 in the second direction Y into the recess 21 c formed in each base 21. Thereafter, for example, by covering the side surface of the laminate 2 with an insulating material or the like, it is possible to suppress the filling failure and the like of the intermediate portion 23c.
 <上層配線24を形成:接続工程S130>
 次に、複数の積層セル部20と接する上層配線24を形成する(接続工程S130)。上層配線24は、例えば図1(b)に示すように、積層体2の最上層に形成された引出基材21n上に形成される。なお、上層配線24を形成する前後において、下層配線25を形成してもよい。下層配線25は、各積層セル部20の最下部に形成された下層引出電極層27と接する。これにより、上層配線24と接する各積層セル部20は、電気的に接続される。
Forming the upper layer wiring 24: connection step S130
Next, the upper layer wire 24 in contact with the plurality of stacked cell units 20 is formed (connection step S130). The upper layer wiring 24 is formed on the lead-out base material 21 n formed in the uppermost layer of the laminate 2, for example, as shown in FIG. 1 (b). The lower layer wiring 25 may be formed before and after the upper layer wiring 24 is formed. The lower layer wire 25 is in contact with the lower layer lead electrode layer 27 formed at the lowermost portion of each stacked cell portion 20. Thus, the stacked cell units 20 in contact with the upper layer wiring 24 are electrically connected.
 上層配線24及び下層配線25は、例えば半導体素子形成プロセスで用いられる手法で実現してもよく、例えばスクリーン印刷法、エッチング法、インクジェット法、及びメッキ法の少なくとも何れかを用いて形成される。 The upper layer wiring 24 and the lower layer wiring 25 may be realized by, for example, a method used in a semiconductor element formation process, and are formed using, for example, at least one of a screen printing method, an etching method, an inkjet method, and a plating method.
 接続工程S130は、例えば電気的に接続する積層セル部20を選択したあとに、上層配線24を形成する。このとき、接続工程S130は、積層セル部20毎に短絡箇所を含むか否かを判定する判定工程と、短絡箇所を含まない積層セル部20のみと接する上層配線24を形成する配線形成工程とを有する。 In the connection step S130, for example, the upper layer wire 24 is formed after selecting the stacked cell unit 20 to be electrically connected. At this time, in the connection step S130, a determination step of determining whether or not each short circuited portion is included in each stacked cell portion 20, and a wire forming step of forming the upper layer wiring 24 in contact with only the stacked cell portion 20 not including the shorted portion Have.
 例えば図1(b)では、第3積層セル部20-3及び第6積層セル部20-6が短絡箇所を含み、短絡箇所を含まない第1積層セル部20-1、第2積層セル部20-2、第4積層セル部20-4、第5積層セル部20-5、第7積層セル部20-7、及び第8積層セル部20-8のみが電気的に接続されるように、上層配線24が形成されている。 For example, in FIG. 1B, the first stacked cell unit 20-1, the second stacked cell unit, and the third stacked cell unit 20-3 and the sixth stacked cell unit 20-6 do not include the short circuit location. 20-2, only the fourth stacked cell unit 20-4, the fifth stacked cell unit 20-5, the seventh stacked cell unit 20-7, and the eighth stacked cell unit 20-8 are electrically connected The upper layer wiring 24 is formed.
 上述した工程を経て、本実施形態における熱電素子1が形成される。なお、形成された上層配線24に接続する第1配線101、熱電素子1を支持する基板103、及び下層配線25に接続する第2配線102を形成し、第1配線101及び第2配線102に負荷Rを接続することで、本実施形態における発電装置100を形成することができる。なお、下層配線25は、例えば基板103を形成する直前に形成してもよい。 The thermoelectric element 1 in the present embodiment is formed through the steps described above. A first wire 101 connected to the upper layer wire 24 formed, a substrate 103 for supporting the thermoelectric element 1, and a second wire 102 connected to the lower layer wire 25 are formed, and the first wire 101 and the second wire 102 are formed. By connecting the load R, the power generation device 100 in the present embodiment can be formed. The lower layer wiring 25 may be formed immediately before forming the substrate 103, for example.
 本実施形態によれば、接続工程S130は、複数の積層セル部20を電気的に接続する上層配線24を形成する。このため、全ての積層セル部20に対して上層配線24を接続する必要がなく、電気的に接続する積層セル部20を選択することができる。これにより、安定した特性を得ることが可能となる。 According to the present embodiment, in the connection step S130, the upper layer wire 24 electrically connecting the plurality of stacked cell units 20 is formed. Therefore, it is not necessary to connect the upper layer wiring 24 to all the stacked cell units 20, and the stacked cell unit 20 to be electrically connected can be selected. This makes it possible to obtain stable characteristics.
 また、本実施形態によれば、後工程S120は、配線22、第1電極層23a、及び第2電極層23bを順番に積層し、第1電極層23a及び第2電極層23bと接する位置に、中間部23cを形成する。このため、各積層セル部20の積層数に応じて熱電素子1の電圧を設定でき、上層配線24を介して接続する積層セル部20の数に応じて熱電素子1の電流を設定できる。これにより、用途に応じた最適な熱電素子1の特性を容易に設計することが可能となる。 Further, according to the present embodiment, in the post-process S120, the wire 22, the first electrode layer 23a, and the second electrode layer 23b are stacked in order, and at a position in contact with the first electrode layer 23a and the second electrode layer 23b. , Intermediate portion 23c. Therefore, the voltage of the thermoelectric element 1 can be set according to the number of stacked layers of each stacked cell unit 20, and the current of the thermoelectric element 1 can be set according to the number of stacked cell units 20 connected via the upper layer wiring 24. Thereby, it becomes possible to design easily the characteristic of the optimal thermoelectric element 1 according to a use.
 また、本実施形態によれば、基材21内に配線22及び中間部23cが形成される。このため、各積層セル部20内の変換部23を電気的に接続する配線22が、積層体2の内部に形成される。これにより、発電装置100の製造工程等において、配線22が劣化することを抑制でき、安定した特性を得ることが可能となる。 Further, according to the present embodiment, the wiring 22 and the intermediate portion 23 c are formed in the base 21. For this reason, the wiring 22 which electrically connects the conversion unit 23 in each stacked cell unit 20 is formed inside the stacked body 2. As a result, deterioration of the wiring 22 can be suppressed in the manufacturing process of the power generation apparatus 100 and the like, and stable characteristics can be obtained.
 また、本実施形態によれば、基材21の凹部21cに形成された中間部23cは、上側に積層された基材21の第2主面21bに形成された第1電極層23aに接する。すなわち、各変換部23を電気的に接続するために、構成を別途形成する必要が無い。このため、各構成の電気的接続に伴う接触抵抗を最小限に抑えることができる。これにより、熱電素子1の電気エネルギーの発生量を増加させることが可能となる。 Further, according to the present embodiment, the intermediate portion 23c formed in the recess 21c of the base 21 is in contact with the first electrode layer 23a formed on the second major surface 21b of the base 21 stacked on the upper side. That is, there is no need to form a separate structure in order to electrically connect the conversion units 23. For this reason, the contact resistance accompanying the electrical connection of each structure can be minimized. As a result, the amount of electrical energy generated by the thermoelectric element 1 can be increased.
 また、本実施形態によれば、各基材21を積層したあと、中間部23cを形成する。すなわち、各基材21を積層(ステップS122)したあと、中間部23cを形成(中間工程S123)する。このため、各基材21を固定した状態で、中間部23cを形成することができる。これにより、各基材21の積層に伴う中間部23cの劣化を抑制することが可能となる。 Further, according to the present embodiment, after the base materials 21 are stacked, the intermediate portion 23c is formed. That is, after laminating each base material 21 (Step S122), intermediate part 23c is formed (intermediate process S123). For this reason, in the state which fixed each base material 21, middle part 23c can be formed. Thereby, it becomes possible to suppress deterioration of middle part 23c accompanying lamination of each substrate 21.
 また、本実施形態によれば、各基材21を積層(ステップS122)するまえに、基材21を分割(ステップS121)する。このため、各基材21を積層する積層位置を精度良く設定することができる。これにより、さらに安定した特性を得ることが可能となる。 Further, according to the present embodiment, the base material 21 is divided (step S121) before laminating the base materials 21 (step S122). For this reason, the lamination position which laminates each base material 21 can be set up with sufficient accuracy. This makes it possible to obtain more stable characteristics.
 また、本実施形態によれば、例えば凹部21cを形成する方法として、エッチング法を用いる必要がない。このため、熱電素子1の製造に伴う設備投資の抑制、製造コストの削減、及びタスクの向上を実現することが可能となる。 Moreover, according to the present embodiment, it is not necessary to use an etching method, for example, as a method of forming the recess 21 c. For this reason, it is possible to realize the reduction of equipment investment, the reduction of the manufacturing cost, and the improvement of the task associated with the manufacture of the thermoelectric element 1.
 特に、基材21として樹脂フィルムを用いた場合、金型を用いた微細転写法により凹部21cを形成することができる。このため、真空プロセスを用いる必要なく、加工面積を容易に拡大することができる。また、ロール・トゥ・ロール等の連続生産プロセスへの対応も可能となる。 In particular, when a resin film is used as the substrate 21, the recess 21 c can be formed by a fine transfer method using a mold. Therefore, the processing area can be easily expanded without the need to use a vacuum process. In addition, it becomes possible to cope with continuous production processes such as roll-to-roll.
 また、基材21として樹脂フィルムを用いることで、基材21同士を容易に貼合することができ、中間部23cを充填するスペースを容易に制御することができる。このため、熱電素子1の生産性向上、製造コスト低減に加え、熱電素子1の特性バラつきを抑制することが可能となる。 Moreover, by using a resin film as the base material 21, base materials 21 comrades can be bonded easily and the space which fills the intermediate part 23c can be controlled easily. Therefore, in addition to the improvement of the productivity of the thermoelectric element 1 and the reduction of the manufacturing cost, it becomes possible to suppress the characteristic variation of the thermoelectric element 1.
 (熱電素子1の製造方法の変形例)
 次に、図6を参照して、本実施形態における熱電素子1の製造方法の変形例について説明する。図6は、本実施形態における熱電素子1の製造方法の第1~第4変形例を示すフローチャートである。
(Modification of manufacturing method of thermoelectric element 1)
Next, with reference to FIG. 6, the modification of the manufacturing method of the thermoelectric element 1 in this embodiment is demonstrated. FIG. 6 is a flowchart showing first to fourth modified examples of the method of manufacturing the thermoelectric element 1 in the present embodiment.
 例えば図6(a)及び図6(b)に示すように、後工程S120は、中間部23cを形成(中間工程S123)したあと、各基材21を積層(ステップS122)してもよい。この場合、例えばロール・トゥ・ロール等の連続塗布方法を用いて中間部23cを形成することができる。このため、中間部23cを形成する時間を短縮することができる。これにより、製造工程における時間の短縮を図ることが可能となる。 For example, as shown in FIGS. 6 (a) and 6 (b), after forming the intermediate portion 23c (intermediate step S123), the base members 21 may be laminated (step S122). In this case, the intermediate portion 23c can be formed using, for example, a continuous coating method such as roll-to-roll. For this reason, the time which forms intermediate part 23c can be shortened. This makes it possible to shorten the time in the manufacturing process.
 また、各基材21を積層する前に、中間部23cを形成するため、溶媒を用いずにナノ粒子を充填するだけで中間部23cを形成することができる。これにより、溶媒の気化等に伴う積層体2の劣化を抑制することが可能となる。 Moreover, before laminating each base material 21, in order to form intermediate part 23c, intermediate part 23c can be formed only by filling nanoparticles without using a solvent. Thereby, it becomes possible to suppress deterioration of layered product 2 accompanying vaporization of a solvent, etc.
 例えば図6(c)及び図6(d)に示すように、後工程S120は、各基材21を積層(ステップS122)したあと、基材21を分割(ステップS121)してもよい。このため、積層体2を形成した状態で、一度に各基材21を分割することができる。これにより、製造工程における時間の短縮を図ることが可能となる。 For example, as shown in FIG.6 (c) and FIG.6 (d), you may divide | segment the base material 21 (step S121) after laminating | stacking each base material 21 (step S122) as post-process S120. For this reason, each base material 21 can be divided | segmented at once in the state in which the laminated body 2 was formed. This makes it possible to shorten the time in the manufacturing process.
 本発明の実施形態を説明したが、実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 While embodiments of the present invention have been described, the embodiments are presented by way of example only and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are included in the invention described in the claims and the equivalent scope thereof.
1    :熱電素子
2    :積層体
20   :積層セル部
21   :基材
21a  :第1主面
21b  :第2主面
21c  :凹部
21n  :引出基材
22   :配線
22n  :引出配線
23   :変換部
23a  :第1電極層
23b  :第2電極層
23c  :中間部
24   :上層配線
25   :下層配線
26   :上層引出電極層
27   :下層引出電極層
100  :発電装置
101  :第1配線
102  :第2配線
103  :基板
R    :負荷
S110 :前工程
S120 :後工程
S130 :接続工程
X    :第1方向
Y    :第2方向
Z    :積層方向
1: Thermoelectric element 2: Laminated body 20: Laminated cell portion 21: Base 21a: First main surface 21b: Second main surface 21c: Recess 21n: Lead base 22: Wiring 22n: Lead wiring 23: Conversion portion 23a: First electrode layer 23b: second electrode layer 23c: middle portion 24: upper layer wire 25: lower layer wire 26: upper layer lead electrode layer 27: lower layer lead electrode layer 100: power generation device 101: first wire 102: second wire 103: Substrate R: Load S110: Pre-process S120: Post-process S130: Connection process X: first direction Y: second direction Z: stacking direction

Claims (7)

  1.  熱エネルギーを電気エネルギーに変換する熱電素子であって、
     交互に接して積層された複数の変換部と、複数の配線とを有する第1積層セル部及び第2積層セル部を有する積層体を備え、
     前記変換部は、
      第1電極層と、
      前記第1電極層とは異なる仕事関数を有する第2電極層と、
      前記第1電極層と、前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、
     を有し、
     前記積層体の積層方向から見て、前記第1積層セル部は、前記第2積層セル部と離間して配置され、
     前記積層体は、前記第1積層セル部及び前記第2積層セル部の有する複数の前記変換部を電気的に接続する上層配線を有すること
     を特徴とする熱電素子。
    A thermoelectric element that converts thermal energy into electrical energy, and
    A stacked body having a first stacked cell portion and a second stacked cell portion having a plurality of conversion portions stacked alternately in contact with each other and a plurality of wires;
    The conversion unit is
    A first electrode layer,
    A second electrode layer having a work function different from that of the first electrode layer;
    An intermediate portion provided between and in contact with the first electrode layer and the second electrode layer and containing nanoparticles;
    Have
    When viewed from the stacking direction of the stacked body, the first stacked cell portion is disposed apart from the second stacked cell portion,
    The thermoelectric element according to claim 1, wherein the stacked body includes an upper layer wiring that electrically connects the plurality of conversion units included in the first stacked cell unit and the second stacked cell unit.
  2.  前記積層体は、交互に接して積層された複数の前記変換部と、複数の前記配線とを有する第3積層セル部を有し、
     前記積層方向から見て、前記第3積層セル部は、前記第1積層セル部、前記第2積層セル部、及び前記上層配線と電気的に離間すること
     を特徴とする請求項1記載の熱電素子。
    The stacked body includes a third stacked cell portion including a plurality of the conversion portions stacked in contact with each other and a plurality of the wires.
    When viewed from the stacking direction, the third stacked cell portion is electrically separated from the first stacked cell portion, the second stacked cell portion, and the upper layer wiring. element.
  3.  前記積層体は、積層された複数の基材を有し、
     前記第1積層セル部の有する1つの前記変換部及び前記配線、並びに前記第2積層セル部の有する1つの前記変換部及び前記配線は、1つの前記基材内に設けられること
     を特徴とする請求項1又は2記載の熱電素子。
    The laminate comprises a plurality of laminated substrates,
    The one conversion unit and the wiring included in the first stacked cell unit, and the one conversion unit and the wiring included in the second stacked cell unit are provided in one base material. The thermoelectric element of Claim 1 or 2.
  4.  前記積層体は、最上層に積層された引出基材を有し、
     前記第1積層セル部及び前記第2積層セル部は、前記引出基材内に設けられ、前記上層配線と接する引出配線を有し、
     前記積層方向から見て、前記第1積層セル部の有する前記引出配線、複数の前記変換部、及び複数の前記配線は、重なって配置され、
     前記積層方向から見て、前記第2積層セル部の有する前記引出配線、複数の前記変換部、及び複数の前記配線は、重なって配置されること
     を特徴とする請求項3記載の熱電素子。
    The laminate has a drawn substrate laminated to the top layer,
    The first stacked cell portion and the second stacked cell portion are provided in the lead-out base material, and have lead-out wiring in contact with the upper-layer wiring,
    When viewed from the stacking direction, the lead-out wiring of the first stacked cell unit, the plurality of conversion units, and the plurality of wirings are arranged to overlap each other,
    4. The thermoelectric element according to claim 3, wherein, when viewed from the stacking direction, the lead-out wiring, the plurality of the conversion portions, and the plurality of the wirings included in the second stacked cell unit are disposed overlapping each other.
  5.  熱エネルギーを電気エネルギーに変換する発電装置であって、
     交互に接して積層された複数の変換部と、複数の配線とを有する第1積層セル部及び第2積層セル部を有する積層体と、
     前記積層体と接続された第1配線及び第2配線と、
    を備え、
     前記変換部は、
      第1電極層と、
      前記第1電極層とは異なる仕事関数を有する第2電極層と、
      前記第1電極層と、前記第2電極層との間に接して設けられ、ナノ粒子を含む中間部と、
     を有し、
     前記積層体の積層方向から見て、前記第1積層セル部は、前記第2積層セル部と離間して配置され、
     前記積層体は、前記第1積層セル部及び前記第2積層セル部の有する複数の前記変換部を電気的に接続する上層配線を有すること
     を特徴とする発電装置。
    A power generation device for converting thermal energy into electrical energy, comprising:
    A stacked body having a first stacked cell portion and a second stacked cell portion having a plurality of conversion portions stacked in contact with each other and a plurality of wires;
    A first wire and a second wire connected to the laminate;
    Equipped with
    The conversion unit is
    A first electrode layer,
    A second electrode layer having a work function different from that of the first electrode layer;
    An intermediate portion provided between and in contact with the first electrode layer and the second electrode layer and containing nanoparticles;
    Have
    When viewed from the stacking direction of the stacked body, the first stacked cell portion is disposed apart from the second stacked cell portion,
    The power generation device according to claim 1, wherein the stacked body includes an upper layer wiring that electrically connects the plurality of conversion units included in the first stacked cell unit and the second stacked cell unit.
  6.  熱エネルギーを電気エネルギーに変換する熱電素子の製造方法であって、
     複数の配線、複数の第1電極層、及び複数の第2電極層を形成する前工程と、
     前記配線、前記第1電極層、及び前記第2電極層を順番に積層した複数の積層セル部を形成する後工程と、
     複数の前記積層セル部と接する上層配線を形成する接続工程と、
     を備え、
     前記後工程は、前記第1電極層及び前記第2電極層と接する位置に、ナノ粒子を含む中間部を形成する中間工程を有すること
     を特徴とする熱電素子の製造方法。
    A method of manufacturing a thermoelectric device for converting thermal energy into electrical energy, comprising:
    A step of forming a plurality of wires, a plurality of first electrode layers, and a plurality of second electrode layers;
    Forming a plurality of stacked cell portions in which the wiring, the first electrode layer, and the second electrode layer are sequentially stacked;
    A connection step of forming an upper layer wire in contact with the plurality of stacked cell portions;
    Equipped with
    The post-process includes an intermediate step of forming an intermediate portion including nanoparticles at a position in contact with the first electrode layer and the second electrode layer.
  7.  前記接続工程は、
      複数の前記積層セル部毎に、短絡箇所を含むか否かを判定する判定工程と、
      前記短絡箇所を含まない前記積層セル部のみと接する前記上層配線を形成する配線形成工程と、
     を有すること
     を特徴とする請求項6記載の熱電素子の製造方法。
    The connection step is
    A determination step of determining whether or not a short circuit location is included in each of the plurality of stacked cell units;
    A wire forming step of forming the upper layer wire in contact with only the stacked cell portion not including the short circuited portion;
    The method of manufacturing a thermoelectric element according to claim 6, comprising:
PCT/JP2018/040039 2017-10-31 2018-10-29 Thermoelectric element, power generation device, and thermoelectric element production method WO2019088004A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211231 2017-10-31
JP2017211231A JP6411613B1 (en) 2017-10-31 2017-10-31 Thermoelectric element, power generation apparatus, and method of manufacturing thermoelectric element

Publications (1)

Publication Number Publication Date
WO2019088004A1 true WO2019088004A1 (en) 2019-05-09

Family

ID=63920608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040039 WO2019088004A1 (en) 2017-10-31 2018-10-29 Thermoelectric element, power generation device, and thermoelectric element production method

Country Status (2)

Country Link
JP (1) JP6411613B1 (en)
WO (1) WO2019088004A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10559864B2 (en) 2014-02-13 2020-02-11 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
US11101421B2 (en) 2019-02-25 2021-08-24 Birmingham Technologies, Inc. Nano-scale energy conversion device
US11244816B2 (en) 2019-02-25 2022-02-08 Birmingham Technologies, Inc. Method of manufacturing and operating nano-scale energy conversion device
JP7261461B2 (en) * 2019-03-12 2023-04-20 株式会社Gceインスティチュート Semiconductor integrated circuit device with power generation function
US11124864B2 (en) 2019-05-20 2021-09-21 Birmingham Technologies, Inc. Method of fabricating nano-structures with engineered nano-scale electrospray depositions
US11649525B2 (en) 2020-05-01 2023-05-16 Birmingham Technologies, Inc. Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method
US11417506B1 (en) 2020-10-15 2022-08-16 Birmingham Technologies, Inc. Apparatus including thermal energy harvesting thermionic device integrated with electronics, and related systems and methods
JP6942394B1 (en) * 2020-11-05 2021-09-29 株式会社Gceインスティチュート Power generation elements, control systems, power generation devices, electronic devices and power generation methods
US11616186B1 (en) 2021-06-28 2023-03-28 Birmingham Technologies, Inc. Thermal-transfer apparatus including thermionic devices, and related methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198384A (en) * 1989-12-27 1991-08-29 Hitachi Ltd Thermoelectric conversion module
JP2002540636A (en) * 1999-03-11 2002-11-26 エネコ インコーポレイテッド Hybrid thermionic energy converter and method thereof
WO2005036662A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Thermoelectric transducer, its manufacturing method, cooling apparatus using same, and method for controlling the cooling apparatus
JP2005539401A (en) * 2002-09-13 2005-12-22 エネコ インコーポレイテッド Tunneling effect energy converter
JP2008147323A (en) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof
JP2010010637A (en) * 2008-06-29 2010-01-14 Hiroshi Nagayoshi Thermoelectric power generator
JP2011124412A (en) * 2009-12-11 2011-06-23 Denso Corp Thermoelectric power generation element
JP2011222654A (en) * 2010-04-07 2011-11-04 Kondo Yoshitomi Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system
JP2013225550A (en) * 2012-04-20 2013-10-31 Fujitsu Ltd Thermoelectric conversion device and process of manufacturing the same
JP2014236058A (en) * 2013-05-31 2014-12-15 株式会社デンソー Thermal electron power-generation device
US20150229013A1 (en) * 2014-02-13 2015-08-13 Joseph G. Birmingham Nanofluid contact potential difference battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198384A (en) * 1989-12-27 1991-08-29 Hitachi Ltd Thermoelectric conversion module
JP2002540636A (en) * 1999-03-11 2002-11-26 エネコ インコーポレイテッド Hybrid thermionic energy converter and method thereof
JP2005539401A (en) * 2002-09-13 2005-12-22 エネコ インコーポレイテッド Tunneling effect energy converter
WO2005036662A1 (en) * 2003-10-07 2005-04-21 Matsushita Electric Industrial Co., Ltd. Thermoelectric transducer, its manufacturing method, cooling apparatus using same, and method for controlling the cooling apparatus
JP2008147323A (en) * 2006-12-08 2008-06-26 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof
JP2010010637A (en) * 2008-06-29 2010-01-14 Hiroshi Nagayoshi Thermoelectric power generator
JP2011124412A (en) * 2009-12-11 2011-06-23 Denso Corp Thermoelectric power generation element
JP2011222654A (en) * 2010-04-07 2011-11-04 Kondo Yoshitomi Structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion element, structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion assembly unit, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion module, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion panel, structure and production method of multi-concatenation seebeck coefficient amplification thermoelectric conversion sheet, and structure of multi-concatenation seebeck coefficient amplification thermoelectric conversion system
JP2013225550A (en) * 2012-04-20 2013-10-31 Fujitsu Ltd Thermoelectric conversion device and process of manufacturing the same
JP2014236058A (en) * 2013-05-31 2014-12-15 株式会社デンソー Thermal electron power-generation device
US20150229013A1 (en) * 2014-02-13 2015-08-13 Joseph G. Birmingham Nanofluid contact potential difference battery

Also Published As

Publication number Publication date
JP6411613B1 (en) 2018-10-24
JP2019083290A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2019088004A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
WO2019088001A1 (en) Thermoelectric element, power generation device, and thermoelectric element production method
JP6521400B1 (en) Method of manufacturing thermoelectric element
JP6521401B1 (en) Thermoelectric element, power generation device, and method of manufacturing thermoelectric element
WO2019167691A1 (en) Thermoelectric element, thermoelectric device and method for forming thermoelectric element
JP7197857B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP2021122066A (en) Through-electrode substrate
JP7197855B2 (en) Thermoelectric element manufacturing method
WO2021182028A1 (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP7197856B2 (en) Thermoelectric element manufacturing method
JP2020064947A (en) Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element
JP2020145303A (en) Thermoelectric element, semiconductor integrated circuit device with electric generator, electronic apparatus, and method of manufacturing thermoelectric element
JP7105438B2 (en) Thermoelectric element manufacturing method
JP7244819B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP7244043B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
JP7244042B2 (en) Thermoelectric element, power generator, electronic device, and method for manufacturing thermoelectric element
WO2023038104A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic apparatus
WO2023038106A1 (en) Method for manufacturing power generation element, power generation element, power generation device, and electronic device
WO2022097419A1 (en) Power generation element, control system, power generation device, electronic apparatus, and power generation method
JP2022052523A (en) Power generation element, power generation device, electronic apparatus, and manufacturing method for power generation element
JP6779555B1 (en) Power generation elements, power generation equipment, electronic devices, and methods for manufacturing power generation elements
WO2023286363A1 (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element
JP2020064946A (en) Thermoelectric element, power generator, electronic device, and manufacturing method of thermoelectric element
JP2022060936A (en) Method for manufacturing power generation element, power generation element member, power generation device, and electronic apparatus
JP2022124833A (en) Power generation element, power generation device, electronic device, and method for manufacturing power generation element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18873829

Country of ref document: EP

Kind code of ref document: A1