JP2011195432A - Method for producing flaky graphite and flaky graphite - Google Patents

Method for producing flaky graphite and flaky graphite Download PDF

Info

Publication number
JP2011195432A
JP2011195432A JP2010219810A JP2010219810A JP2011195432A JP 2011195432 A JP2011195432 A JP 2011195432A JP 2010219810 A JP2010219810 A JP 2010219810A JP 2010219810 A JP2010219810 A JP 2010219810A JP 2011195432 A JP2011195432 A JP 2011195432A
Authority
JP
Japan
Prior art keywords
graphite
compound
exfoliated
intercalation compound
exfoliated graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010219810A
Other languages
Japanese (ja)
Inventor
Masahiro Toyoda
昌宏 豊田
Takuya Wada
拓也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Oita University
Original Assignee
Sekisui Chemical Co Ltd
Oita University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Oita University filed Critical Sekisui Chemical Co Ltd
Priority to JP2010219810A priority Critical patent/JP2011195432A/en
Publication of JP2011195432A publication Critical patent/JP2011195432A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing flaky graphite, with which the flaky graphite having a few lamination layers of layer faces with one another and having a large area along the surface direction of the layer faces is produced.SOLUTION: In the method for producing the flaky graphite, a graphite compound is converted to a graphite intercalation compound with an electrochemical reaction, and the graphite intercalation compound is exfoliated between the layer faces so as to produce the flaky graphite, and consequently the flaky graphite having a large area along the surface direction of the layer faces and having extremely thin thickness is produced with ease, and can be used for various applications as a functional filler.

Description

本発明は、薄片化黒鉛の製造方法及び薄片化黒鉛に関する。   The present invention relates to a method for producing exfoliated graphite and exfoliated graphite.

近年、炭素骨格を有し且つ形状異方性の高い物質として、黒鉛をその層面間で剥離し、層面(グラフェン)の重なりが数十層以下になるまで薄片化した薄片化黒鉛が注目されており、薄片化黒鉛は非常に大きな表面積を有するため、樹脂などと複合化すると、少量の薄片化黒鉛の添加で各種機能が発現すると期待されている。   In recent years, exfoliated graphite, which has a carbon skeleton and has high shape anisotropy, has been attracted attention by exfoliating graphite between its layer surfaces and exfoliating until the layer surface (graphene) overlaps to several tens of layers or less. Since exfoliated graphite has a very large surface area, it is expected that various functions will be manifested by adding a small amount of exfoliated graphite when combined with a resin or the like.

薄片化黒鉛の製造方法としては、例えば、特許文献1に、硫酸及び過マンガン酸カリウムを用いて酸化させた黒鉛層間化合物を精製し、遠心分離した後、上澄みを除去することによって薄片化黒鉛を製造する製造方法が開示されている。   As a method for producing exfoliated graphite, for example, in Patent Document 1, a graphite intercalation compound oxidized using sulfuric acid and potassium permanganate is purified, centrifuged, and then exfoliated graphite is removed by removing a supernatant. A manufacturing method for manufacturing is disclosed.

特許文献2には、酸化グラファイトを急速加熱することにより酸化グラファイトを剥離する方法が提案されている。具体的な酸化方法として、濃硫酸、硝酸及び塩素酸カリウムを用いることが記載されている。   Patent Document 2 proposes a method of exfoliating graphite oxide by rapidly heating the graphite oxide. As a specific oxidation method, it is described that concentrated sulfuric acid, nitric acid and potassium chlorate are used.

しかしながら、特許文献1、2に記載の薄片化黒鉛の製造方法では、黒鉛が高度に剥離され且つ層面に沿った大きさが大きい薄片化黒鉛を製造することは困難であった。   However, in the method for producing exfoliated graphite described in Patent Documents 1 and 2, it has been difficult to produce exfoliated graphite having a large exfoliated graphite and a large size along the layer surface.

特開2002−053313号公報JP 2002-053313 A 特表2009−511415号公報Special table 2009-511415 gazette

本発明は、層面同士の積層数の少なく且つ層面の面方向に沿った面積の大きい薄片化黒鉛を製造する薄片化黒鉛の製造方法及びこの製造方法によって得られた薄片化黒鉛を提供する。   The present invention provides a method for producing exfoliated graphite, which produces exfoliated graphite having a small number of laminated layer surfaces and a large area along the surface direction of the layer surfaces, and exfoliated graphite obtained by this production method.

本発明の薄片化黒鉛の製造方法は、黒鉛化合物を電気化学反応によって黒鉛層間化合物とし、この黒鉛層間化合物をその層面間において剥離することを特徴とする。   The method for producing exfoliated graphite of the present invention is characterized in that a graphite compound is converted into a graphite intercalation compound by an electrochemical reaction, and the graphite intercalation compound is peeled between the layer surfaces.

本発明において用いられる黒鉛化合物としては、黒鉛、膨張黒鉛の何れであってもよいが、層面間から剥離し易いので、膨張黒鉛が好ましい。なお、黒鉛に官能基が化学的に結合してしても、或いは、黒鉛に官能基が弱い相互作用により疑似的に結合していてもよい。   The graphite compound used in the present invention may be either graphite or expanded graphite, but expanded graphite is preferred because it is easily peeled from between the layer surfaces. Note that a functional group may be chemically bonded to graphite, or a functional group may be artificially bonded to graphite due to weak interaction.

黒鉛としては、粒子全体で単一の多層構造を有する黒鉛が好ましく、例えば、天然黒鉛、キッシュ黒鉛、高配向性熱分解黒鉛などが挙げられる。天然黒鉛とキッシュ黒鉛は、各層面(基本層)が略単一の方位を有する単独の結晶又はその集合体であり、高配向性熱分解黒鉛の各層面(基本層)は異なる方位を有する多数の小さな結晶の集合体である。   As the graphite, graphite having a single multilayer structure as a whole is preferable, and examples thereof include natural graphite, quiche graphite, and highly oriented pyrolytic graphite. Natural graphite and quiche graphite are single crystals or aggregates in which each layer surface (basic layer) has a substantially single orientation, and each layer surface (basic layer) of highly oriented pyrolytic graphite has many different orientations. It is an aggregate of small crystals.

膨張黒鉛としては従来公知のものが用いられる。膨張黒鉛の製造方法としては、公知の方法が用いられ、例えば、硫酸と硝酸との混合水溶液中に天然黒鉛を浸漬した後、天然黒鉛を混合水溶液から取り出して水洗して残余化合物とする。この残余化合物を急速加熱して、天然黒鉛の層面間に進入した化合物の分解によって天然黒鉛の層面間の間隔を拡げて天然黒鉛を膨張させる膨張黒鉛の製造方法などが挙げられる。なお、膨張黒鉛は圧延することによってシート状として用いてもよい。   Conventionally known expanded graphite is used. As a method for producing expanded graphite, a known method is used. For example, after immersing natural graphite in a mixed aqueous solution of sulfuric acid and nitric acid, the natural graphite is taken out from the mixed aqueous solution and washed with water to obtain a residual compound. Examples include a method for producing expanded graphite in which the residual compound is rapidly heated and the natural graphite is expanded by expanding the interval between the natural graphite layers by decomposing the compound that has entered between the natural graphite layers. The expanded graphite may be used as a sheet by rolling.

本発明の薄片化黒鉛の製造方法では、黒鉛化合物を電気化学反応によって黒鉛層間化合物とする。具体的には、図1に示したように、黒鉛化合物1を含む陽極2と、陰極3とを電解質水溶液4中に浸漬し、陽極と陰極との間に直流電源Vを用いて直流電圧を印加する。   In the method for producing exfoliated graphite of the present invention, the graphite compound is converted into a graphite intercalation compound by an electrochemical reaction. Specifically, as shown in FIG. 1, an anode 2 containing a graphite compound 1 and a cathode 3 are immersed in an aqueous electrolyte solution 4, and a DC voltage is applied between the anode and the cathode using a DC power source V. Apply.

黒鉛化合物1を含む陽極としては、電極の一部に黒鉛化合物を用いた電極であっても、電極自体を黒鉛化合物から形成した電極であってもよいが、黒鉛化合物1を処理毎に交換する場合は、黒鉛化合物1の交換作業を効率良く行うことができるので、電極の一部に黒鉛化合物を用いた電極が好ましい。   The anode containing the graphite compound 1 may be an electrode using a graphite compound as a part of the electrode, or an electrode in which the electrode itself is formed from a graphite compound, but the graphite compound 1 is replaced for each treatment. In this case, since the replacement work of the graphite compound 1 can be performed efficiently, an electrode using a graphite compound as a part of the electrode is preferable.

電極の一部に黒鉛化合物を用いた電極としては、電気分解の際に通常、陽極として用いられる電極の表面に黒鉛化合物のシートを接触させた状態に巻回し固定させてなる電極、電気分解の際に通常、陽極として用いられる電極の表面に黒鉛化合物を接触させた状態に電気絶縁性の粘着テープを用いて固着させてなる電極などが挙げられ、電極から黒鉛層間化合物を容易に離脱させることができるので、電気分解の際に通常、陽極として用いられる電極の表面に黒鉛化合物のシートを接触させた状態に巻回し固定させてなる電極が好ましい。なお、電気分解の際に陽極として用いられる電極としては、例えば、白金、ステンレスなどの金属が挙げられ、酸性電解質水溶液を用いる場合には、白金が好ましい。   As an electrode using a graphite compound as a part of an electrode, an electrode formed by winding and fixing a sheet of a graphite compound in contact with a surface of an electrode usually used as an anode during electrolysis, In general, an electrode that is fixed with an electrically insulating adhesive tape in a state in which the graphite compound is in contact with the surface of the electrode used as an anode, and the graphite intercalation compound can be easily detached from the electrode. Therefore, an electrode obtained by winding and fixing a sheet of a graphite compound in contact with the surface of an electrode used as an anode during electrolysis is preferable. In addition, as an electrode used as an anode in the case of electrolysis, metals, such as platinum and stainless steel, are mentioned, for example, When using acidic electrolyte aqueous solution, platinum is preferable.

なお、電極自体を黒鉛化合物から形成した電極は、黒鉛化合物のシート又は棒状体を電極として用いればよい。   In addition, the electrode which formed electrode itself from the graphite compound should just use the sheet | seat or rod-shaped body of a graphite compound as an electrode.

黒鉛化合物における層面の面方向に沿った面積は、小さいと、得られる薄片化黒鉛における層面の面方向に沿った大きさが小さくなることがあり、大きいと、黒鉛層間化合物をその層面間から剥離する際に、黒鉛層間化合物の層面が割れてしまい、得られる薄片化黒鉛の大きさがかえって小さくなることがあるので、50〜2000mm2が好ましい。 If the area along the surface direction of the layer surface in the graphite compound is small, the size along the surface direction of the layer surface in the exfoliated graphite obtained may be small. If it is large, the graphite intercalation compound will be peeled from between the layer surfaces. In doing so, the layer surface of the graphite intercalation compound is cracked, and the size of the exfoliated graphite obtained may be reduced, so 50 to 2000 mm 2 is preferable.

又、黒鉛化合物の厚みは、薄いと、黒鉛化合物の取扱性が低下することがあり、厚いと、黒鉛層間化合物の薄片化が困難となることがあるので、10μm〜3mmが好ましい。   Further, if the thickness of the graphite compound is thin, the handleability of the graphite compound may be lowered, and if it is thick, it may be difficult to make the graphite intercalation compound flakes, so 10 μm to 3 mm is preferable.

なお、黒鉛化合物における層面の面方向に沿った面積及び厚みとは、黒鉛化合物が粒子状である場合には、粒子状の黒鉛化合物における層面の面方向に沿った面積及び厚みをいい、黒鉛化合物がシート状である場合には、シートを構成している黒鉛化合物における層面の面方向に沿った面積及び厚みをいう。   In addition, the area and thickness along the surface direction of the layer surface in the graphite compound means the area and thickness along the surface direction of the layer surface in the particulate graphite compound when the graphite compound is in the form of particles. When is in the form of a sheet, it refers to the area and thickness along the plane direction of the layer surface in the graphite compound constituting the sheet.

又、黒鉛化合物における層面の面方向に沿った面積とは、黒鉛化合物の面積が最も大きくなる方向から見た時の黒鉛化合物の面積をいう。黒鉛化合物の厚みとは、黒鉛化合物の面積が最も大きくなる方向から見た時の黒鉛化合物の表面に対して直交する方向の黒鉛化合物の最大寸法をいう。   Moreover, the area along the surface direction of the layer surface in the graphite compound means the area of the graphite compound when viewed from the direction in which the area of the graphite compound becomes the largest. The thickness of the graphite compound refers to the maximum dimension of the graphite compound in a direction orthogonal to the surface of the graphite compound when viewed from the direction in which the area of the graphite compound is maximized.

なお、黒鉛化合物における層面の面方向に沿った面積は、FE−SEMを用いて測定することができ、SEMで観察した任意の10視野に存在する全ての黒鉛化合物における層面の面方向に沿った面積を相加平均した値をいう。   In addition, the area along the surface direction of the layer surface in the graphite compound can be measured using the FE-SEM, and is along the surface direction of the layer surface in all the graphite compounds present in any 10 visual fields observed by the SEM. A value obtained by arithmetically averaging the areas.

又、黒鉛化合物の厚みは、FE−SEM又はAFMを用いて測定することができ、SEM又はAFMで観察した任意の10視野に存在する全ての黒鉛化合物の厚みを相加平均した値をいう。   Moreover, the thickness of a graphite compound can be measured using FE-SEM or AFM, and means the value which carried out the arithmetic mean of the thickness of all the graphite compounds which exist in arbitrary 10 visual fields observed with SEM or AFM.

又、陰極としては、電気分解の際に陰極として用いられる電極であれば、特に限定されず、例えば、白金、ステンレスなどの金属が挙げられ、酸性電解質水溶液を用いる場合には、白金が好ましい。   Further, the cathode is not particularly limited as long as it is an electrode used as a cathode during electrolysis, and examples thereof include metals such as platinum and stainless steel, and platinum is preferable when an acidic electrolyte aqueous solution is used.

上記陽極及び上記陰極を浸漬させる電解質水溶液としては、特に限定されず、例えば、硝酸水溶液、硫酸水溶液、塩酸水溶液、酢酸水溶液、ホウ酸水溶液、蟻酸水溶液などの種々の無機酸及び有機酸が挙げられ、硝酸水溶液が好ましい。   The electrolyte aqueous solution in which the anode and the cathode are immersed is not particularly limited, and examples thereof include various inorganic acids and organic acids such as nitric acid aqueous solution, sulfuric acid aqueous solution, hydrochloric acid aqueous solution, acetic acid aqueous solution, boric acid aqueous solution, and formic acid aqueous solution. Nitric acid aqueous solution is preferable.

電解質水溶液中における電解質の濃度は、その酸化度に依存するため、特に限定されないが、0.5〜20モル/リットルが好ましい。酸化力の強い電解質の場合は、高い電解質濃度が好ましいが、酸化力の弱い電解質の場合は、低い電解質濃度が好ましい。硝酸水溶液の場合には、電解質の濃度は10〜13モル/リットルが好ましい。硫酸水溶液の場合には、電解質の濃度は0.5〜5モル/リットルが好ましい。蟻酸水溶液の場合には、電解質の濃度は0.5〜5モル/リットルが好ましい。   The concentration of the electrolyte in the electrolyte aqueous solution is not particularly limited because it depends on the degree of oxidation, but is preferably 0.5 to 20 mol / liter. In the case of an electrolyte having a strong oxidizing power, a high electrolyte concentration is preferable, but in the case of an electrolyte having a weak oxidizing power, a low electrolyte concentration is preferable. In the case of an aqueous nitric acid solution, the concentration of the electrolyte is preferably 10 to 13 mol / liter. In the case of an aqueous sulfuric acid solution, the concentration of the electrolyte is preferably 0.5 to 5 mol / liter. In the case of formic acid aqueous solution, the concentration of the electrolyte is preferably 0.5 to 5 mol / liter.

次に、上記電解質水溶液中に、陰極と、黒鉛化合物を一部に含む陽極とを浸漬し、陽極と陰極との間に直流電源(ポテンショスタット/ガルバノスタット)を用いて定電流条件で電気分解を行う。電気分解の開始直後に自然電位から電位が上昇し,初期の電位上昇において、電解質が電離して生成された陰イオンが、黒鉛化合物の層面間にインターカレーション(挿入)される(黒鉛層間化合物の形成)。その後、チャージ量の増加に伴い、陽極の黒鉛化合物の電気化学的な酸化が始まり、黒鉛化合物の表面又は黒鉛化合物の層面間に黒鉛酸が生成される。なお、陽極と陰極との間の電位の上昇は、黒鉛層間化合物の形成状態、黒鉛層間化合物の層面の酸化状態によって異なり、換言すれば、黒鉛層間化合物の形成又は黒鉛層間化合物の層面の酸化による抵抗の変化に依存する。陽極と陰極との間の電位は,黒鉛層間化合物の酸化が完了した時点で、ほぼ飽和に達する。   Next, the cathode and an anode containing a graphite compound are immersed in the electrolyte aqueous solution, and electrolysis is performed under a constant current condition using a DC power source (potentiostat / galvanostat) between the anode and the cathode. I do. Immediately after the start of electrolysis, the potential increases from the natural potential, and in the initial potential increase, the anion generated by ionization of the electrolyte is intercalated (inserted) between the graphite compound layers (graphite intercalation compound). Formation). Thereafter, as the charge amount increases, electrochemical oxidation of the graphite compound of the anode starts, and graphite acid is generated between the surface of the graphite compound or the layer surface of the graphite compound. The increase in potential between the anode and the cathode varies depending on the formation state of the graphite intercalation compound and the oxidation state of the layer surface of the graphite intercalation compound, in other words, due to the formation of the graphite intercalation compound or the oxidation of the layer surface of the graphite intercalation compound. Depends on resistance change. The potential between the anode and the cathode almost reaches saturation when the oxidation of the graphite intercalation compound is completed.

初期の電位上昇においては、陽極方向に移動した陰イオンが、陽極の表面に配設された黒鉛化合物又は陽極自体を形成している黒鉛化合物の層面間に挿入され黒鉛層間化合物を形成する。この際、電解質に由来する陰イオンは、黒鉛化合物の層面間の内部にまで充分に進入し、層面間にて剥離の容易な黒鉛層間化合物を形成する。   In the initial potential increase, the anion moved in the anode direction is inserted between the graphite compound disposed on the surface of the anode or the graphite compound forming the anode itself to form a graphite intercalation compound. At this time, the anion derived from the electrolyte sufficiently penetrates to the inside between the layer surfaces of the graphite compound to form a graphite intercalation compound that is easily peeled between the layer surfaces.

又、過マンガン酸カリウムなどの酸化剤を用いる場合と異なり、黒鉛化合物から黒鉛層間化合物を生成する過程において不純物が生成し難く、更に、酸化剤のような発熱反応を生じないため、黒鉛層間化合物の大量生産にも適している。   In addition, unlike the case of using an oxidizing agent such as potassium permanganate, impurities are not easily generated in the process of generating a graphite intercalation compound from a graphite compound, and further, an exothermic reaction such as an oxidizing agent does not occur. Suitable for mass production.

更に、上述のように、水の電解反応は生じていないので、水の電解反応に伴う酸素は発生しておらず、黒鉛層間化合物を構成している層面の酸化を概ね防止することができる。従って、黒鉛層間化合物をその層面間において剥離して得られる薄片化黒鉛は、その層面の酸化が極めて少なく、導電性に優れた薄片化黒鉛を製造することができる。   Furthermore, as described above, since no water electrolysis occurs, oxygen accompanying the water electrolysis is not generated, and oxidation of the layer surface constituting the graphite intercalation compound can be generally prevented. Therefore, exfoliated graphite obtained by exfoliating the graphite intercalation compound between the layer surfaces can produce exfoliated graphite having very little oxidation of the layer surface and excellent conductivity.

即ち、各層面が酸化の少ない黒鉛層間化合物を製造したい場合には、電気分解を開始後、印加チャージ量が少なく、電位上昇の小さい条件下にて、黒鉛化合物の層面間に、電解質が電離して生成される陰イオンを挿入させて黒鉛層間化合物を製造すればよい。   That is, when it is desired to produce a graphite intercalation compound with less oxidation on each layer surface, the electrolyte is ionized between the layer surfaces of the graphite compound under the conditions that the applied charge is small and the potential rise is small after electrolysis is started. The graphite intercalation compound may be produced by inserting the anions generated in this manner.

なお、チャージ量とは、陽極と陰極との間を流れる電流(A)と時間(秒)との積であるクーロン量(C)を意味する。   The charge amount means a coulomb amount (C) that is a product of current (A) flowing between the anode and the cathode and time (seconds).

一方、黒鉛層間化合物の層面の酸化が多い黒鉛層間化合物を製造したい場合には、チャージ量の増加に伴い、陽極である黒鉛化合物の電気化学的な酸化が始まる急激な電位の上昇と、その後の電位変化が認められず、飽和状態に達した条件下にて、黒鉛層間化合物を製造すればよい。このようにして得られた黒鉛層間化合物は、その表面又は層面が酸化されている。   On the other hand, when it is desired to produce a graphite intercalation compound with a large amount of oxidation of the graphite intercalation compound layer, as the amount of charge increases, an abrupt increase in potential starts, and then the electrochemical oxidation of the graphite compound as the anode begins. What is necessary is just to manufacture a graphite intercalation compound on the conditions which an electric potential change is not recognized but reached the saturation state. The graphite intercalation compound thus obtained has its surface or layer surface oxidized.

このように、陽極と陰極との間に一定電流が流れるように、即ち、定電流電気分解を行い、初期の電位変化の小さいチャージ量では酸化の少ない黒鉛層間化合物が得られ、急激な電位上昇とその後の電位の飽和状態に達したチャージ量の領域では酸化が多い黒鉛層間化合物が得られる。この急激な電位上昇及び飽和に達するチャージ量は、電解質水溶液や陽極の重量などによって変化するために一概には決められないが、例えば、硝酸水溶液を電解質水溶液に用いた場合、陽極と陰極との間における計測電位が3V未満以下では酸化の少ない黒鉛層間化合物が得られ、陽極と陰極との間における計測電位が4V以上では酸化が多い黒鉛層間化合物が得られる。   In this way, constant current electrolysis is performed between the anode and the cathode, that is, constant current electrolysis is performed, and a graphite intercalation compound with little oxidation is obtained with a small charge amount with a small initial potential change, and the potential increases rapidly. Then, in the charge amount region where the potential saturation state is reached, a graphite intercalation compound with much oxidation is obtained. The amount of charge that reaches this sudden increase in potential and saturation cannot be determined unconditionally because it varies depending on the weight of the electrolyte aqueous solution or the anode. For example, when a nitric acid aqueous solution is used for the electrolyte aqueous solution, A graphite intercalation compound with little oxidation is obtained when the measured potential between the anode and the cathode is less than 3 V, and a graphite intercalation compound with much oxidation is obtained when the measured potential between the anode and the cathode is 4 V or more.

このように、黒鉛層間化合物の層面が酸化されることによって、各層面に酸化に起因した極性基(酸性官能基)が結合し、この極性基によっても黒鉛層間化合物の層面間が押し広げられ、この後に行われる黒鉛層間化合物の剥離をより容易に行うことができる。   Thus, by oxidizing the layer surface of the graphite intercalation compound, a polar group (acidic functional group) due to oxidation is bonded to each layer surface, and the layer surface of the graphite intercalation compound is also expanded by this polar group, Thereafter, the graphite intercalation compound can be peeled off more easily.

更に、このようにして得られた黒鉛層間化合物をその層面間において剥離して得られる薄片化黒鉛は、その層面の酸化によって層面の表面に極性基(酸性官能基)が結合した状態となっており、合成樹脂などと混合させて複合体とする場合には、合成樹脂の持つ極性基との間において相互作用を生じ、合成樹脂中に薄片化黒鉛を均一に且つ容易に混合することができる。   Further, exfoliated graphite obtained by exfoliating the graphite intercalation compound thus obtained between the layer surfaces is in a state in which polar groups (acidic functional groups) are bonded to the surface of the layer surface by oxidation of the layer surface. In the case of mixing with a synthetic resin or the like to form a composite, an interaction occurs with the polar group of the synthetic resin, and the exfoliated graphite can be uniformly and easily mixed in the synthetic resin. .

なお、上記合成樹脂としては、例えば、メタクリル系樹脂、アクリル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、ポリアミド樹脂、スチレン−アクリロニトリル共重合体などのポリスチレン系樹脂、ポリカーボネート系樹脂、ポリカプロラクトン、ポリカプロラクタム、ポリフッ素化エチレン、ポリ酢酸ビニル樹脂、ポリ塩化ビニル系樹脂、ポリイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、ポリブタジエン、ブチルゴム、スチレン−ブタジエン共重合体、ポリイソプレン、ポリジメチルシロキサンなどが挙げられる。なお、合成樹脂は単独で用いられても二種以上が併用されてもよい。又、モノマーとしては、上述の合成樹脂を構成しているモノマーが挙げられ、例えば、アクリル酸、アクリル酸メチル、メタクリル酸、メタクリル酸メチル、エチレン、プロピレン、スチレン、α−メチルスチレン、アクリロニトリル、酢酸ビニル、塩化ビニル、ブタジエン、イソプレンなどが挙げられる   Examples of the synthetic resin include methacrylic resins, acrylic resins, polyethylene resins, polypropylene resins, polyester resins, polyamide resins, polystyrene resins such as styrene-acrylonitrile copolymers, polycarbonate resins, and polyresins. Caprolactone, polycaprolactam, polyfluorinated ethylene, polyvinyl acetate resin, polyvinyl chloride resin, polyimide resin, epoxy resin, polyurethane resin, polybutadiene, butyl rubber, styrene-butadiene copolymer, polyisoprene, polydimethylsiloxane Etc. In addition, a synthetic resin may be used independently or 2 or more types may be used together. In addition, examples of the monomer include monomers constituting the above-described synthetic resin. For example, acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, ethylene, propylene, styrene, α-methylstyrene, acrylonitrile, acetic acid. Examples include vinyl, vinyl chloride, butadiene, and isoprene.

陽極と陰極との間に流れる電流密度は、小さいと、所定のクーロン量となるまでの処理時間が長くなることがあり、大きいと、電気的な衝撃によって電極や配線が破損することがあるので、0.3〜20A/gが好ましく、0.5〜10A/gがより好ましい。   If the current density flowing between the anode and the cathode is small, the processing time until the predetermined amount of coulomb is reached may be long, and if it is large, the electrode or wiring may be damaged by electrical shock. 0.3 to 20 A / g is preferable, and 0.5 to 10 A / g is more preferable.

上述のようにして得られた黒鉛層間化合物は、電解質水溶液中から取り出されて常温、常圧下にて乾燥される。乾燥温度は、黒鉛層間化合物の層面間に挿入された陰イオン又は黒鉛層間化合物の表面若しくは層面に形成された酸性官能基が分解する温度未満であることが好ましい。なお、電解質水溶液を用いた場合は、黒鉛層間化合物を室温にて1日風乾させればよい。   The graphite intercalation compound obtained as described above is taken out from the aqueous electrolyte solution and dried at room temperature and normal pressure. The drying temperature is preferably lower than the temperature at which the anion inserted between the layer surfaces of the graphite intercalation compound or the acidic functional group formed on the surface or layer surface of the graphite intercalation compound is decomposed. When an aqueous electrolyte solution is used, the graphite intercalation compound may be air-dried at room temperature for 1 day.

上述のようにして得られた黒鉛層間化合物は上述のように乾燥されるものの、層面間の間隔は極めて狭いため、層面間は完全に乾燥しておらず、黒鉛層間化合物の層面間には陰イオンが保持されていると推定される。   Although the graphite intercalation compound obtained as described above is dried as described above, the distance between the layer surfaces is extremely narrow, so that the layer surface is not completely dried, and the graphite intercalation compound is not exposed between the layer surfaces. It is presumed that ions are retained.

そして、黒鉛層間化合物は後述する剥離工程の前に急速加熱によって膨張させておくことが好ましい。黒鉛層間化合物を急速加熱する方法としては、特に限定されず、例えば、電気炉、好ましくは電気管状炉を用いて黒鉛層間化合物を急速加熱する方法、黒鉛層間化合物を集光加熱する方法などが挙げられ、電気炉を用いて黒鉛層間化合物を急速加熱する方法が好ましい。なお、黒鉛層間化合物の層面の酸化を防止するために、黒鉛層間化合物を窒素、ヘリウム、アルゴンなどの不活性ガス中にて急速加熱してもよい。   And it is preferable to expand the graphite intercalation compound by rapid heating before the peeling process mentioned later. The method for rapidly heating the graphite intercalation compound is not particularly limited, and examples thereof include a method for rapidly heating the graphite intercalation compound using an electric furnace, preferably an electric tubular furnace, and a method for concentrating and heating the graphite intercalation compound. The method of rapidly heating the graphite intercalation compound using an electric furnace is preferred. In order to prevent oxidation of the layer surface of the graphite intercalation compound, the graphite intercalation compound may be rapidly heated in an inert gas such as nitrogen, helium, or argon.

黒鉛層間化合物の急速加熱時の加熱温度は、低いと、黒鉛層間化合物の層面間に挿入させた陰イオンが分解せず、黒鉛層間化合物の層面間の間隔を押し広げる効果が低いことがあり、高いと、押し広げられた黒鉛層間化合物の層面間の距離がかえって狭くなることがあるので、300〜1100℃が好ましい。   When the heating temperature at the time of rapid heating of the graphite intercalation compound is low, the anion inserted between the layer surfaces of the graphite intercalation compound is not decomposed, and the effect of pushing the gap between the layer surfaces of the graphite intercalation compound may be low, If it is high, the distance between the layer surfaces of the expanded graphite intercalation compound may become narrower, so 300 to 1100 ° C. is preferable.

黒鉛層間化合物の急速加熱時の加熱時間は、短いと、黒鉛層間化合物の層面間に挿入させた陰イオンが分解せず、黒鉛層間化合物の層面間の間隔を押し広げる効果が低いことがあり、長いと、黒鉛層間化合物の層面の酸化が進みすぎて燃焼してしまうことがあるので、5〜100秒が好ましい。   When the heating time at the time of rapid heating of the graphite intercalation compound is short, the anion inserted between the layer surfaces of the graphite intercalation compound is not decomposed, and the effect of pushing the interval between the layer surfaces of the graphite intercalation compound may be low, If it is long, the oxidation of the layer surface of the graphite intercalation compound may progress too much and burn, so 5 to 100 seconds is preferable.

次に、黒鉛層間化合物をその層面間において剥離して黒鉛層間化合物を薄片化して薄片化黒鉛を製造する。黒鉛層間化合物をその層面間において剥離する方法としては、特に限定されず、例えば、黒鉛層間化合物に超音波、ラジオ波などを照射する方法、黒鉛層間化合物に物理的に応力を加える方法などが挙げられ、黒鉛層間化合物を媒体中に分散させた状態で行うことができることから、黒鉛層間化合物に超音波を照射する方法が好ましい。なお、黒鉛層間化合物を分散させる媒体としては、例えば、メタノール、エタノールなどのアルコール、水などが挙げられる。   Next, the graphite intercalation compound is peeled between the layer surfaces, and the graphite intercalation compound is exfoliated to produce exfoliated graphite. The method for peeling the graphite intercalation compound between the layer surfaces is not particularly limited, and examples thereof include a method of irradiating the graphite intercalation compound with ultrasonic waves and radio waves, and a method of physically applying stress to the graphite intercalation compound. Since the graphite intercalation compound can be dispersed in the medium, a method of irradiating the graphite intercalation compound with ultrasonic waves is preferable. Examples of the medium for dispersing the graphite intercalation compound include alcohols such as methanol and ethanol, and water.

黒鉛層間化合物に超音波を照射する照射条件としては、20〜100kHzの超音波を1〜60分間に亘って黒鉛層間化合物に照射することが好ましい。黒鉛層間化合物に超音波を照射する際における超音波の電気エネルギーは、100〜500Wが好ましい。   As irradiation conditions for irradiating the graphite intercalation compound with ultrasonic waves, it is preferable to irradiate the graphite intercalation compound with ultrasonic waves of 20 to 100 kHz for 1 to 60 minutes. The electrical energy of the ultrasonic waves when irradiating the graphite intercalation compound with ultrasonic waves is preferably 100 to 500W.

このようにして薄片化黒鉛を製造することができるが、上述のように、印加するチャージ量によっては、薄片化黒鉛の各層面が酸化されている場合があり、各層面は酸化グラフェンと呼ばれる。   In this way, exfoliated graphite can be produced. As described above, depending on the amount of charge applied, each layer surface of exfoliated graphite may be oxidized, and each layer surface is called graphene oxide.

この酸化グラフェンからなる薄片化黒鉛を導電膜などの用途に用いる場合には、高い導電性を得るために、酸化グラフェンを還元・脱酸素することが好ましい。薄片化黒鉛を構成している酸化グラフェンを還元・脱酸素する方法としては、特に限定されず、例えば、薄片化黒鉛を構成している酸化グラフェンに還元剤を接触させる方法が挙げられる。   When exfoliated graphite made of graphene oxide is used for applications such as a conductive film, it is preferable to reduce and deoxygenate graphene oxide in order to obtain high conductivity. The method for reducing and deoxygenating graphene oxide constituting exfoliated graphite is not particularly limited, and examples thereof include a method of bringing a reducing agent into contact with graphene oxide constituting exfoliated graphite.

薄片化黒鉛を構成している酸化グラフェンに還元剤を接触させる方法としては、例えば、薄片化黒鉛を含有する薄膜を形成し、この薄膜に還元剤を接触させることによって酸化グラフェンを還元・脱酸素させる方法、薄片化黒鉛を不活性ガス雰囲気下で加熱する方法などが挙げられる。   As a method of bringing a reducing agent into contact with graphene oxide constituting exfoliated graphite, for example, a thin film containing exfoliated graphite is formed, and graphene oxide is reduced and deoxygenated by bringing the reducing agent into contact with this thin film. And a method of heating exfoliated graphite in an inert gas atmosphere.

上述のようにして得られた薄片化黒鉛は、その層面の面方向に沿った面積が50〜1000μm2で且つ厚みが50nm未満であることが好ましく、層面の面方向に沿った面積が100〜1000μm2で且つ厚みが10nm未満であることがより好ましい。 The exfoliated graphite obtained as described above preferably has an area along the surface direction of the layer surface of 50 to 1000 μm 2 and a thickness of less than 50 nm, and has an area along the surface direction of the layer surface of 100 to 100 μm. More preferably, the thickness is 1000 μm 2 and the thickness is less than 10 nm.

本発明で得られる薄片化黒鉛は、その層面の面方向に沿って大きな面積を有し且つ厚みが極めて薄いので、機能性フィラーとして様々な用途に用いることができる。   The exfoliated graphite obtained in the present invention has a large area along the surface direction of the layer surface and is extremely thin, and can be used for various applications as a functional filler.

又、薄片化黒鉛における層面の面方向に沿った面積とは、薄片化黒鉛の面積が最も大きくなる方向から見た時の薄片化黒鉛の面積をいう。薄片化黒鉛の厚みとは、薄片化黒鉛の面積が最も大きくなる方向から見た時の薄片化黒鉛の表面に対して直交する方向の薄片化黒鉛の最大寸法をいう。   Moreover, the area along the surface direction of the layer surface in exfoliated graphite means the area of exfoliated graphite when viewed from the direction in which the area of exfoliated graphite becomes the largest. The thickness of exfoliated graphite refers to the maximum dimension of exfoliated graphite in the direction orthogonal to the surface of exfoliated graphite when viewed from the direction in which the area of exfoliated graphite is the largest.

なお、薄片化黒鉛における層面の面方向に沿った面積は、FE−SEMを用いて測定することができ、SEMで観察した任意の10視野に存在する全ての薄片化黒鉛における層面の面方向に沿った面積を相加平均した値をいう。   In addition, the area along the surface direction of the layer surface in exfoliated graphite can be measured using FE-SEM, and in the surface direction of the layer surface in all exfoliated graphite existing in any 10 visual fields observed by SEM. The value obtained by arithmetically averaging the areas along the line.

又、薄片化黒鉛の厚みは、FE−SEM又はAFMを用いて測定することができ、SEM又はAFMで観察した任意の10視野に存在する全ての薄片化黒鉛の厚みを相加平均した値をいう。   Moreover, the thickness of exfoliated graphite can be measured using FE-SEM or AFM, and the value obtained by arithmetically averaging the thicknesses of all exfoliated graphite existing in any 10 visual fields observed by SEM or AFM. Say.

そして、薄片化黒鉛において、元素分析によるCの元素量は65atm%以上であることが好ましい。なお、薄片化黒鉛における元素分析によるCの元素量は、ESCAによって測定することができる。   And in exfoliated graphite, it is preferable that the elemental amount of C by elemental analysis is 65 atm% or more. In addition, the elemental amount of C by elemental analysis in exfoliated graphite can be measured by ESCA.

本発明の薄片化黒鉛の製造方法は、黒鉛化合物を電気化学反応によって黒鉛層間化合物とし、この黒鉛層間化合物をその層面間において剥離して薄片化することを特徴とするので、層面の面方向に沿って大きな面積を有し且つ厚みが極めて薄い薄片化黒鉛を容易に製造することができ、機能性フィラーとして様々な用途に用いることができる。   The method for producing exfoliated graphite according to the present invention is characterized in that a graphite compound is converted into a graphite intercalation compound by an electrochemical reaction, and the graphite intercalation compound is exfoliated between the layer surfaces so as to be exfoliated. The exfoliated graphite having a large area along the line and extremely thin can be easily produced, and can be used for various applications as a functional filler.

そして、上記薄片化黒鉛の製造方法において、黒鉛化合物を含む陽極と、陰極とを電解質水溶液中に浸漬し、上記陽極と上記陰極との間に直流電圧を印加し、上記黒鉛化合物の層面間に電解質に由来する陰イオンを挿入させて黒鉛層間化合物を製造する場合には、陽極の黒鉛層間化合物の層面間に陰イオンを充分に挿入することができ、その後の黒鉛層間化合物の層面間における剥離を円滑に行って、層面の面方向に沿って大きな面積を有し且つ厚みが極めて薄い薄片化黒鉛をより容易に製造することができる。   Then, in the method for producing exfoliated graphite, an anode containing a graphite compound and a cathode are immersed in an aqueous electrolyte solution, a DC voltage is applied between the anode and the cathode, and a layer surface of the graphite compound is applied. When an anion derived from an electrolyte is inserted to produce a graphite intercalation compound, the anion can be sufficiently inserted between the layer surfaces of the graphite intercalation compound of the anode, and the subsequent exfoliation between the layer surfaces of the graphite intercalation compound Thus, exfoliated graphite having a large area along the surface direction of the layer surface and an extremely thin thickness can be more easily produced.

黒鉛化合物を電気化学反応によって黒鉛層間化合物を製造するための装置を示した模式図である。It is the schematic diagram which showed the apparatus for manufacturing a graphite intercalation compound by an electrochemical reaction.

次に本発明の実施例を説明するが、本発明は下記実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to the following examples.

(実施例1)
厚みが0.6mmの黒鉛化合物のシート(エアウォーター社製 商品名「PF‐60UHP」)から縦1cm×横2cmの平面長方形状の黒鉛化合物シート片を切り出した。
Example 1
From a graphite compound sheet having a thickness of 0.6 mm (trade name “PF-60UHP” manufactured by Air Water), a piece of a flat rectangular graphite compound sheet having a length of 1 cm and a width of 2 cm was cut out.

陽極及び陰極として白金電極を用意し、陽極の表面に黒鉛化合物シート片を巻回し、黒鉛化合物シート片を電気絶縁性の粘着テープを用いて陽極の表面に固定した。なお、参照極として銀・塩化銀電極を用意した。なお、電気絶縁性の粘着テープは、ポリテトラフルオロエチレン製の基材フィルム上にアクリル系粘着剤が積層一体化されてなるものであった。   Platinum electrodes were prepared as an anode and a cathode, a graphite compound sheet piece was wound around the surface of the anode, and the graphite compound sheet piece was fixed to the surface of the anode using an electrically insulating adhesive tape. A silver / silver chloride electrode was prepared as a reference electrode. The electrically insulating pressure-sensitive adhesive tape was obtained by laminating and integrating an acrylic pressure-sensitive adhesive on a base film made of polytetrafluoroethylene.

図1に示したように、電解質水溶液として濃度が13モル/リットルの硝酸水溶液300ミリリットルを用意し、この電解質水溶液4中に上記陽極2及び陰極3を浸漬した。なお、陽極2の表面に巻回した黒鉛化合物シート片1が電解質水溶液4中に完全に浸漬した状態とした。   As shown in FIG. 1, 300 ml of an aqueous nitric acid solution having a concentration of 13 mol / liter was prepared as an aqueous electrolyte solution, and the anode 2 and the cathode 3 were immersed in the aqueous electrolyte solution 4. The graphite compound sheet piece 1 wound around the surface of the anode 2 was completely immersed in the aqueous electrolyte solution 4.

しかる後、電気化学反応による処理は、ポテンショスタット/ガルバノスタット(北斗電工社製 商品名「HBA−151」)を用いて陽極2と陰極3との間に一定電流が流れるように設定し、電流密度0.5A/gにてチャージ量が2000Cとなるまで電気化学反応を行って、黒鉛化合物の層面間に硝酸イオンを水と共に挿入させて黒鉛層間化合物を製造すると共に、黒鉛層間化合物の層面を酸化した。   Thereafter, the treatment by electrochemical reaction is set so that a constant current flows between the anode 2 and the cathode 3 using a potentiostat / galvanostat (trade name “HBA-151” manufactured by Hokuto Denko Co., Ltd.). An electrochemical reaction is performed at a density of 0.5 A / g until the charge amount becomes 2000 C, and nitrate ions are inserted between the graphite compound layers with water to produce a graphite intercalation compound. Oxidized.

次に、得られた黒鉛層間化合物のシート片を電解質溶液から取り出し、黒鉛層間化合物のシート片をドラフト内で室温、常圧下にて24時間に亘って風乾した。次に、黒鉛層間化合物のシート片を1000℃に保持された電気管状炉に供給して5秒間に亘って急速加熱して膨張させた後、黒鉛層間化合物のシート片を電気管状炉から取り出した。   Next, the obtained sheet piece of graphite intercalation compound was taken out from the electrolyte solution, and the sheet piece of graphite intercalation compound was air-dried in a draft at room temperature and normal pressure for 24 hours. Next, the graphite intercalation compound sheet piece was supplied to an electric tubular furnace maintained at 1000 ° C. and rapidly heated for 5 seconds to expand, and then the graphite intercalation compound sheet piece was taken out of the electric tubular furnace. .

続いて、黒鉛層間化合物のシート片をメチルアルコール中に浸漬し、黒鉛層間化合物に20kHzの超音波を3分間に亘って200W照射して黒鉛層間化合物をその層面間において剥離することによって薄片化し、薄片化黒鉛を得た。   Subsequently, the graphite intercalation compound sheet piece was immersed in methyl alcohol, and the graphite intercalation compound was exfoliated between the layer surfaces by irradiating the graphite intercalation compound with 200 W of ultrasonic waves at a frequency of 200 W for 3 minutes. Exfoliated graphite was obtained.

得られた薄片化黒鉛をメチルアルコール中から取り出して乾燥させた後、薄片化黒鉛を炭素製のるつぼに入れた上で小型超高温炉(倉田技研社製 商品名「SCC−30/220」)の炉内に供給し、小型超高温炉の炉内を1800℃まで1.5時間かけて真空加熱した。   The obtained exfoliated graphite was taken out of methyl alcohol and dried, and then the exfoliated graphite was put in a carbon crucible and then a small ultra high temperature furnace (trade name “SCC-30 / 220” manufactured by Kurata Giken Co., Ltd.) The inside of the small ultra-high temperature furnace was heated in a vacuum to 1800 ° C. over 1.5 hours.

しかる後、小型超高温炉の炉内に高純度アルゴンガスを導入した上で、炉内を2800℃まで1時間かけて加熱し、アルゴンガス雰囲気下で炉内を2800℃にて30分間に亘って保持することによって薄片化黒鉛の還元・脱酸素を行った。   After that, after introducing high purity argon gas into the furnace of the small ultra high temperature furnace, the inside of the furnace is heated to 2800 ° C. over 1 hour, and the inside of the furnace is kept at 2800 ° C. for 30 minutes under an argon gas atmosphere. The exfoliated graphite was reduced and deoxygenated.

(実施例2)
電解質水溶液として1モル/リットルの蟻酸水溶液を用いたこと、電流密度を0.5A/gの代わりに2A/gとし2400Cとなるまで電気化学反応を行ったこと以外は実施例1と同様の要領で黒鉛層間化合物を製造すると共に、黒鉛層間化合物の層面を酸化した。
(Example 2)
The same procedure as in Example 1 except that a 1 mol / liter formic acid aqueous solution was used as the electrolyte aqueous solution and the electrochemical reaction was carried out until the current density was 2 A / g instead of 0.5 A / g until 2400 C was reached. While producing the graphite intercalation compound, the layer surface of the graphite intercalation compound was oxidized.

次に、得られた黒鉛層間化合物のシート片を電解質溶液から取り出し、黒鉛層間化合物のシート片をドラフト内で室温、常圧下にて24時間に亘って風乾した。次に、黒鉛層間化合物のシート片を実施例1と同様の要領で膨張させた後、黒鉛層間化合物のシート片を電気管状炉から取り出した。   Next, the obtained sheet piece of graphite intercalation compound was taken out from the electrolyte solution, and the sheet piece of graphite intercalation compound was air-dried in a draft at room temperature and normal pressure for 24 hours. Next, the sheet piece of graphite intercalation compound was expanded in the same manner as in Example 1, and then the sheet piece of graphite intercalation compound was taken out from the electric tubular furnace.

続いて、黒鉛層間化合物のシート片を実施例1と同様の要領で薄片化し、薄片化黒鉛を得た。薄片化黒鉛から充分に薄片化されていない黒鉛層間化合物を除去するために、薄片化黒鉛を遠心分離機に供給して3000rpmの回転速度にて遠心分離して薄片化が不充分な黒鉛層間化合物を除去した。   Subsequently, a sheet piece of the graphite intercalation compound was exfoliated in the same manner as in Example 1 to obtain exfoliated graphite. In order to remove the graphite intercalation compound that has not been exfoliated sufficiently from the exfoliated graphite, the exfoliated graphite is supplied to a centrifuge and centrifuged at a rotational speed of 3000 rpm, and the graphite intercalation compound is insufficiently exfoliated. Was removed.

得られた薄片化黒鉛をメチルアルコール中から取り出して乾燥させた。次に、小型超高温炉の炉内に薄片化黒鉛を供給した後に炉内に高純度アルゴンガスを導入し、炉内を1000℃まで1時間かけて加熱し、アルゴンガス雰囲気下で炉内を1000℃にて20分間に亘って保持することによって薄片化黒鉛の還元・脱酸素を行った。   The obtained exfoliated graphite was taken out from methyl alcohol and dried. Next, after supplying exfoliated graphite into the furnace of a small ultra-high temperature furnace, high purity argon gas is introduced into the furnace, the inside of the furnace is heated to 1000 ° C. over 1 hour, and the inside of the furnace is kept under an argon gas atmosphere. The exfoliated graphite was reduced and deoxygenated by holding at 1000 ° C. for 20 minutes.

(実施例3)
電解質水溶液として2モル/リットルの硫酸を用いたこと以外は実施例2と同様にして薄片化黒鉛を得た。
(Example 3)
Exfoliated graphite was obtained in the same manner as in Example 2 except that 2 mol / liter sulfuric acid was used as the aqueous electrolyte solution.

(実施例4)
チャージ量を300Cとしたこと以外は実施例1と同様にして薄片化黒鉛を得た。
Example 4
Exfoliated graphite was obtained in the same manner as in Example 1 except that the charge amount was 300C.

(実施例5)
薄片化黒鉛の還元・脱酸素を行わなかったこと以外は実施例2と同様にして薄片化黒鉛を得た。
(Example 5)
Exfoliated graphite was obtained in the same manner as in Example 2 except that exfoliated graphite was not reduced or deoxygenated.

(比較例1)
天然黒鉛粉末0.25gを濃硫酸水溶液11.5ミリリットル中に供給し、硫酸水溶液を氷で冷却しつつ硫酸水溶液を攪拌しながら、硫酸水溶液中に過マンガン酸カリウム1.5gをゆっくり加えて、硫酸水溶液中の黒鉛単結晶粉末と過マンガン酸カリウムとを約35℃にて30分間に亘って反応させた。
(Comparative Example 1)
While supplying 0.25 g of natural graphite powder into 11.5 ml of concentrated sulfuric acid aqueous solution and stirring the sulfuric acid aqueous solution while cooling the sulfuric acid aqueous solution with ice, 1.5 g of potassium permanganate was slowly added to the sulfuric acid aqueous solution, The graphite single crystal powder and the potassium permanganate in the sulfuric acid aqueous solution were reacted at about 35 ° C. for 30 minutes.

硫酸水溶液中に水23ミリリットルをゆっくり加えて98℃にて15分間に亘って放置した後、硫酸水溶液中に純水70ミリリットルと30重量%の過酸化水素水4.5ミリリットルを加えて反応を停止させた。   After slowly adding 23 ml of water to the sulfuric acid aqueous solution and leaving it at 98 ° C. for 15 minutes, 70 ml of pure water and 4.5 ml of 30% by weight hydrogen peroxide solution were added to the sulfuric acid aqueous solution to react. Stopped.

しかる後、硫酸水溶液を回転速度14000rpmにて30分間に亘って遠心分離して硫酸水溶液中から沈殿物を分離し、沈殿物を希塩酸及び水で洗浄して、薄片化黒鉛が水中に分散してなる薄片化黒鉛の分散液を得た。   Thereafter, the sulfuric acid aqueous solution is centrifuged at a rotational speed of 14,000 rpm for 30 minutes to separate the precipitate from the sulfuric acid aqueous solution, the precipitate is washed with dilute hydrochloric acid and water, and the exfoliated graphite is dispersed in water. A dispersion of exfoliated graphite was obtained.

(比較例2)
比較例1で得られた薄片化黒鉛の分散液を石英ガラス上で乾燥させた後、薄片化黒鉛にヒドラジン1水和物を添加して、薄片化黒鉛を90℃にて30分間に亘って加熱することによって薄片化黒鉛の薄膜を得た。
(Comparative Example 2)
After the exfoliated graphite dispersion obtained in Comparative Example 1 was dried on quartz glass, hydrazine monohydrate was added to the exfoliated graphite, and the exfoliated graphite was kept at 90 ° C. for 30 minutes. By heating, a thin film of exfoliated graphite was obtained.

得られた薄片化黒鉛について、層面の面方向の面積及び厚み、並びに、元素分析によるCの元素量を測定し、その結果を表1に示した。表1において「層面の面方向の面積」は単に「面積」と、「元素分析によるCの元素量」は単に「C元素量」と表記した。なお、薄片化黒鉛における層面の面方向の面積及び厚みは、FE−−SEM(日本電子株式会社製 商品名「JEM−2010FEF」)を用いて測定した。薄片化黒鉛における元素分析によるCの元素量は、ESCA(KRATOS社製 商品名「AXIS−165」)を用いて測定した。   About the obtained exfoliated graphite, the area and thickness of the layer surface in the plane direction, and the elemental amount of C by elemental analysis were measured, and the results are shown in Table 1. In Table 1, “area in the plane direction of the layer surface” is simply expressed as “area”, and “element amount of C by elemental analysis” is simply expressed as “C element amount”. In addition, the area and thickness of the layer surface in the exfoliated graphite were measured using FE--SEM (trade name “JEM-2010FEF” manufactured by JEOL Ltd.). The elemental amount of C by elemental analysis in exfoliated graphite was measured using ESCA (trade name “AXIS-165” manufactured by KRATOS).

Figure 2011195432
Figure 2011195432

1 黒鉛化合物
2 陽極
3 陰極
4 電解質水溶液
V 直流電源
1 Graphite Compound 2 Anode 3 Cathode 4 Electrolyte Aqueous Solution V DC Power Supply

Claims (6)

黒鉛化合物を電気化学反応によって黒鉛層間化合物とし、この黒鉛層間化合物をその層面間において剥離して薄片化することを特徴とする薄片化黒鉛の製造方法。 A method for producing exfoliated graphite, wherein a graphite compound is converted into a graphite intercalation compound by an electrochemical reaction, and the graphite intercalation compound is exfoliated between the layer surfaces. 黒鉛化合物を含む陽極と、陰極とを電解質水溶液中に浸漬し、上記陽極と上記陰極との間に直流電圧を印加し、上記黒鉛化合物の層面間に電解質に由来する陰イオンを挿入させて黒鉛層間化合物を製造することを特徴とする請求項1に記載の薄片化黒鉛の製造方法。 An anode containing a graphite compound and a cathode are immersed in an aqueous electrolyte solution, a DC voltage is applied between the anode and the cathode, and an anion derived from the electrolyte is inserted between the layer surfaces of the graphite compound. The method for producing exfoliated graphite according to claim 1, wherein an intercalation compound is produced. 電解質は、硝酸、硫酸、塩酸、酢酸、ホウ酸及び蟻酸からなる群から選ばれた少なくとも一種の電解質であることを特徴とする請求項1又は請求項2に記載の薄片化黒鉛の製造方法。 The method for producing exfoliated graphite according to claim 1 or 2, wherein the electrolyte is at least one electrolyte selected from the group consisting of nitric acid, sulfuric acid, hydrochloric acid, acetic acid, boric acid, and formic acid. 黒鉛層間化合物を300〜1200℃にて5〜100秒間に亘って加熱した上で上記黒鉛層間化合物をその層面間において剥離することを特徴とする請求項1乃至請求項3の何れか1項に記載の薄片化黒鉛の製造方法。 The graphite intercalation compound is peeled between the layer surfaces after heating the graphite intercalation compound at 300 to 1200 ° C for 5 to 100 seconds. The manufacturing method of exfoliated graphite of description. 請求項1乃至請求項4の何れか1項に記載の薄片化黒鉛の製造方法で製造された薄片化黒鉛であって、上記薄片化黒鉛の層面の面方向に沿った面積が50〜1000μm2で且つ上記薄片化黒鉛の厚みが50nm未満であることを特徴とする薄片化黒鉛。 The exfoliated graphite manufactured by the method for manufacturing exfoliated graphite according to any one of claims 1 to 4, wherein an area along the surface direction of the layer surface of the exfoliated graphite is 50 to 1000 µm 2. And the exfoliated graphite has a thickness of less than 50 nm. 請求項1乃至請求項4の何れか1項に記載の薄片化黒鉛の製造方法で製造された薄片化黒鉛であって、上記薄片化黒鉛の元素分析によるCの元素量が65atm%以上であることを特徴とする薄片化黒鉛。 The exfoliated graphite manufactured by the method for manufacturing exfoliated graphite according to any one of claims 1 to 4, wherein an elemental amount of C by elemental analysis of the exfoliated graphite is 65 atm% or more. Exfoliated graphite characterized by that.
JP2010219810A 2010-02-26 2010-09-29 Method for producing flaky graphite and flaky graphite Pending JP2011195432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010219810A JP2011195432A (en) 2010-02-26 2010-09-29 Method for producing flaky graphite and flaky graphite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010041665 2010-02-26
JP2010041665 2010-02-26
JP2010219810A JP2011195432A (en) 2010-02-26 2010-09-29 Method for producing flaky graphite and flaky graphite

Publications (1)

Publication Number Publication Date
JP2011195432A true JP2011195432A (en) 2011-10-06

Family

ID=44874102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010219810A Pending JP2011195432A (en) 2010-02-26 2010-09-29 Method for producing flaky graphite and flaky graphite

Country Status (1)

Country Link
JP (1) JP2011195432A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122045A1 (en) * 2012-02-14 2013-08-22 積水化学工業株式会社 Method for producing flake graphite, and flake graphite
WO2014136757A1 (en) * 2013-03-06 2014-09-12 積水化学工業株式会社 Method for producing random-structure gic, method for producing flaked graphite dispersion, flaked graphite dispersion, and flaked graphite
JP2015101494A (en) * 2013-11-22 2015-06-04 東海カーボン株式会社 Method for manufacturing graphene dispersion and method for manufacturing graphene thin film
JP2016084266A (en) * 2014-10-24 2016-05-19 株式会社TPSTPS Co., Ltd. Method and apparatus for producing graphene oxide
JP2017502168A (en) * 2013-11-20 2017-01-19 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Production of graphene oxide
CN113518761A (en) * 2018-12-19 2021-10-19 株式会社钟化 Method for producing thin plate-like structure of graphite, and flaked graphite and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562807A (en) * 1978-11-06 1980-05-12 Agency Of Ind Science & Technol Production of expanded graphite
JPS6385010A (en) * 1986-09-26 1988-04-15 Agency Of Ind Science & Technol Production of carbon film
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure
WO2008152680A1 (en) * 2007-06-14 2008-12-18 Kyosetu Corporation Process for producing carbon nanosheet
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
WO2009123771A2 (en) * 2008-02-05 2009-10-08 Crain John M Coatings containing functionalized graphene sheets and articles coated therewith

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562807A (en) * 1978-11-06 1980-05-12 Agency Of Ind Science & Technol Production of expanded graphite
JPS6385010A (en) * 1986-09-26 1988-04-15 Agency Of Ind Science & Technol Production of carbon film
JP2002053313A (en) * 2000-08-09 2002-02-19 Mitsubishi Gas Chem Co Inc Thin-filmy particle having skeleton consisting of carbon
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003238131A (en) * 2002-02-08 2003-08-27 Mitsubishi Gas Chem Co Inc Random aggregate of thin particle with carbon skeletal structure
JP2009511415A (en) * 2005-10-14 2009-03-19 ザ、トラスティーズ オブ プリンストン ユニバーシティ Thermally exfoliated graphite oxide
WO2008152680A1 (en) * 2007-06-14 2008-12-18 Kyosetu Corporation Process for producing carbon nanosheet
WO2009123771A2 (en) * 2008-02-05 2009-10-08 Crain John M Coatings containing functionalized graphene sheets and articles coated therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014016630; 恵良正浩 他: '"微粒子黒鉛の膨張化"' 第87回日本化学会講演予稿集 No.1, 20070312, p.239左上 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013122045A1 (en) * 2012-02-14 2013-08-22 積水化学工業株式会社 Method for producing flake graphite, and flake graphite
JP5407008B1 (en) * 2012-02-14 2014-02-05 積水化学工業株式会社 Method for producing exfoliated graphite and exfoliated graphite
US10167198B2 (en) 2012-02-14 2019-01-01 Sekisui Chemical Co., Ltd. Method for producing flake graphite, and flake graphite
WO2014136757A1 (en) * 2013-03-06 2014-09-12 積水化学工業株式会社 Method for producing random-structure gic, method for producing flaked graphite dispersion, flaked graphite dispersion, and flaked graphite
JPWO2014136757A1 (en) * 2013-03-06 2017-02-09 積水化学工業株式会社 Method for producing random structure GIC, method for producing exfoliated graphite dispersion, exfoliated graphite dispersion and exfoliated graphite
US9919926B2 (en) 2013-03-06 2018-03-20 Sekisui Chemical Co., Ltd. Method for producing random-structure GIC, method for producing exfoliated graphite dispersion liquid, exfoliated graphite dispersion liquid, and exfoliated graphite
JP2017502168A (en) * 2013-11-20 2017-01-19 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Production of graphene oxide
JP2015101494A (en) * 2013-11-22 2015-06-04 東海カーボン株式会社 Method for manufacturing graphene dispersion and method for manufacturing graphene thin film
JP2016084266A (en) * 2014-10-24 2016-05-19 株式会社TPSTPS Co., Ltd. Method and apparatus for producing graphene oxide
CN113518761A (en) * 2018-12-19 2021-10-19 株式会社钟化 Method for producing thin plate-like structure of graphite, and flaked graphite and method for producing same

Similar Documents

Publication Publication Date Title
JP2011195432A (en) Method for producing flaky graphite and flaky graphite
CN102757038B (en) Method for preparing graphene
WO2017128929A1 (en) Method for preparing graphene dispersion and article thereof
KR102203157B1 (en) Method and apparatus for transfer of films among substrates
CN105186004B (en) A kind of used as negative electrode of Li-ion battery copper current collector and its preparation method and application
WO2012073861A1 (en) Carbonaceous material, process for producing carbonaceous material, process for producing flaked graphite, and flaked graphite
TWI529204B (en) Composite material and manufacturing method thereof
JP2011219318A (en) Graphite dispersion liquid, method for manufacturing the same, and graphite powder
CN102730671A (en) Copper-graphene composite material and method for preparation of graphene film on copper-based metal surface
JP2011213583A (en) Method for producing graphite intercalation compound
TW201431782A (en) Graphite oxide preparation method
CN107777674A (en) A kind of method that two-dimensional material is prepared using atmospheric plasma
CN108557813B (en) Method for preparing oversized single-layer graphene oxide by one-step method
WO2015184473A1 (en) Hybrid graphene materials and methods of fabrication
KR101320407B1 (en) Direct transfer method of graphene sheet
TW201714335A (en) Manufacturing method of negative electrode plate in secondary battery to deposit the graphene target material on the micro-structure on the copper foil surface for forming the graphene layer to increase the cycle life of the whole graphene negative electrode and the reversible capacity
KR101653181B1 (en) Method for production of graphene
KR101348901B1 (en) Preparation of reduced graphene oxide by liquid phase process and reduced graphene oxide prepared by the same method
KR101573241B1 (en) Three-dimensional Grapheene Structure and Manufacturing method of Thereof and Elctrode using thereof
KR20110065971A (en) Method of fabricating graphene oxide
KR101282741B1 (en) Method of continuous mass manufacturing of nanoflake using electrochemical reaction with ultrasonic wave irradiation
CN112143289B (en) Porous niobium carbide MXene/reduced graphene oxide-based conductive ink and preparation method thereof
JP5937813B2 (en) Amino group-modified carbon material, method for producing the same, and composite material
Anwar et al. Electrochemical exfoliation of pencil graphite core by salt electrolyte
CN108147402B (en) Preparation method of high-quality graphene material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140812