JP2011178605A - Method for manufacturing carbon nanotube structure and electron emission source using the carbon nanotube structure - Google Patents

Method for manufacturing carbon nanotube structure and electron emission source using the carbon nanotube structure Download PDF

Info

Publication number
JP2011178605A
JP2011178605A JP2010044824A JP2010044824A JP2011178605A JP 2011178605 A JP2011178605 A JP 2011178605A JP 2010044824 A JP2010044824 A JP 2010044824A JP 2010044824 A JP2010044824 A JP 2010044824A JP 2011178605 A JP2011178605 A JP 2011178605A
Authority
JP
Japan
Prior art keywords
cnt
substrate
tip
carbon nanotubes
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044824A
Other languages
Japanese (ja)
Other versions
JP5505786B2 (en
Inventor
Yasuaki Hayashi
康明 林
Kazunori Kotani
和範 小谷
Risa Utsunomiya
里佐 宇都宮
Teruaki Matsuba
晃明 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Nissin Electric Co Ltd
Original Assignee
Kyoto Institute of Technology NUC
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Nissin Electric Co Ltd filed Critical Kyoto Institute of Technology NUC
Priority to JP2010044824A priority Critical patent/JP5505786B2/en
Publication of JP2011178605A publication Critical patent/JP2011178605A/en
Application granted granted Critical
Publication of JP5505786B2 publication Critical patent/JP5505786B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for further lowering the tip density of carbon nanotube (CNT) acting as an electron source, by improving known technologies to solve the problem that the CNT as it grows has too high tip density to give good characteristics of the electron source in manufacturing the electron source using the carbon nanotube, the known technologies being for soaking a substrate having the grown CNT in a solution followed by drying to lower the tip density. <P>SOLUTION: A CNT structure is prepared by growing the CNT having a metal catalyst at its tip on a substrate by a plasma CVD method using DC discharge, and then soaking the substrate in a solvent followed by drying. Further, the CNT structure is then manufactured by subjecting the tip of the CNT structure to a similar plasma CVD method to grow the CNT again and to soaking the substrate in a solvent again followed by drying. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はカーボンナノチューブ構造体製造方法とそれを利用した電子放出源に関わるものである。 The present invention relates to a carbon nanotube structure manufacturing method and an electron emission source using the same.

カーボンナノチューブ(Carbon Nano Tube,以後CNTと記す)は1991年に日本の飯島澄男によってフラーレン合成の副産物として発見されたもので、これは炭素原子が結合して出来たグラフェンが筒状に丸まった形状をしている。このカーボンナノチューブは微細であり、機械的強度に優れしかも電気伝導率が良好なことから新しい素材として幅広い注目を集めてきた。特に、カーボンナノチューブが微細であることを利用して、電子放出源への応用が盛んに研究され、特にこれを用いた電界放出型平面ディスプレイ(Field Emission Display,FED)などへの応用が期待されている。 Carbon Nano Tube (hereinafter referred to as CNT) was discovered as a by-product of fullerene synthesis in 1991 by Sumio Iijima in Japan. I am doing. These carbon nanotubes have been attracting widespread attention as a new material because they are fine and have excellent mechanical strength and good electrical conductivity. In particular, application to an electron emission source has been actively researched by utilizing the fineness of carbon nanotubes, and in particular, application to a field emission flat panel display (Field Emission Display, FED) using the same is expected. ing.

CNTを用いたFEDを作製する方法としては、粉末状のCNTを溶液に分散させて、この溶液を基板に塗布して乾燥させた後、一定方向にCNTを配向させるための配向処理する方法が一般的に用いられてきた。このようにして配向させたCNTに電圧を印加すると、この先端に電界が集中し、電子が放出される。しかし、この方法では広い範囲に亘って均一にCNTを配向させることが難しく、これが一つの課題となっている。 As a method for producing an FED using CNTs, there is a method in which powdered CNTs are dispersed in a solution, this solution is applied to a substrate, dried, and then subjected to an alignment treatment for aligning the CNTs in a certain direction. It has been commonly used. When a voltage is applied to the aligned CNTs, the electric field concentrates on the tip and electrons are emitted. However, with this method, it is difficult to orient CNTs uniformly over a wide range, which is a problem.

この課題は、触媒金属を堆積させた基板上にプラズマCVD(Chemical Vapor Deposition,化学気相成長法)を用いて、直接CNTを配向成長させる方法を採用すれば避けることが出来る。これによって作製されたCNTの基板上における成長密度は10本/cm程度である。(ちなみにCNT作製のために最も良く用いられる熱CVD法で作製されたCNTの基板上における成長密度は1010本/cm程度とされる。) This problem can be avoided by adopting a method of aligning and growing CNTs directly on a substrate on which a catalytic metal is deposited by using plasma CVD (Chemical Vapor Deposition). This growth density on the substrate of the prepared CNT by is 10 nine / cm 2 approximately. (By the way, the growth density on the substrate of the CNT produced by the thermal CVD method most often used for producing the CNT is about 10 10 pieces / cm 2. )

一方、一般的に、基板上に成長させたCNTについて最大の電子放出電流密度を得るには、電子放出源となるCNT同士の間隔が、配向成長したCNTの高さ程度に空いている必要があることが報告されている(非特許文献1、非特許文献2、非特許文献3参照)。上記CNTの高さ(長さ)が数ミクロン程度であることを考慮すると、電子放出源となるCNTの間隔も数ミクロン程度にすることが望ましい。つまり、通常の熱CVDやプラズマCVDで作製したCNTの基板上における成長密度は、電子放出源となるCNTに充分に強く電界を集中させるには高すぎる。CNTの密度が高いとその先端への電界の集中がそれだけ妨げられるからである。 On the other hand, in general, in order to obtain the maximum electron emission current density for the CNT grown on the substrate, it is necessary that the interval between the CNTs serving as the electron emission source is as large as the height of the aligned and grown CNT. It has been reported (see Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). Considering that the height (length) of the CNT is about several microns, it is desirable that the interval between the CNTs serving as electron emission sources is also about several microns. That is, the growth density on the substrate of CNTs produced by normal thermal CVD or plasma CVD is too high to concentrate the electric field sufficiently strongly on the CNTs serving as the electron emission source. This is because if the density of CNTs is high, the concentration of the electric field at the tip thereof is hindered.

従って、電子放出源となるCNT同士の間隔が、配向成長したCNTの高さ程度に空いている状態にするには成長密度を10本/cm程度にまで下げなければならない。これを実現するために、従来は、基板上にパターニングした触媒金属を堆積させ、その上にCNTを配向成長させたり(非特許文献4参照)、CNT成長後にイオン照射して電子放出源の密度を低下させたりすることが行われてきた(特許文献1参照)。 Therefore, the growth density must be reduced to about 10 7 / cm 2 so that the interval between the CNTs serving as electron emission sources is as high as the height of the aligned and grown CNTs. In order to realize this, conventionally, a patterned catalyst metal is deposited on a substrate, and CNTs are oriented and grown on the substrate (see Non-Patent Document 4). Has been performed (see Patent Document 1).

一方、基板上に配向成長させたCNTを溶液に浸した後、これを乾燥させるとその過程で隣り合ったCNTが寄り添うように集合して先端部のみが束ねられ、完全に乾燥した後になっても分子間力によって複数のCNTの先端部が集合したままの状態(円錐状ないしは略ピラミッド状)を保つことが知られている。この現象を利用すれば電子放出源となるCNT同士の間隔を大きくし、その密度を低下させることが出来る(非特許文献5、特許文献2参照)。 On the other hand, after the CNTs grown on the substrate are immersed in the solution and then dried, the adjacent CNTs gather together so that only the tip part is bundled in the process, and the CNTs are completely dried. In addition, it is known that the state (conical shape or substantially pyramid shape) in which the tip portions of a plurality of CNTs remain gathered due to intermolecular force. If this phenomenon is utilized, the interval between CNTs serving as electron emission sources can be increased and the density thereof can be reduced (see Non-Patent Document 5 and Patent Document 2).

特開2006−247758JP 2006-247758 A 特開2006−196364JP 2006-196364 A

J.S.Suh,et.al.,Appl.Phys.Lett.80(2002)2392J. et al. S. Suh, et. al. , Appl. Phys. Lett. 80 (2002) 2392 L.Nilsson,et.al.,Appl.Phys.Lett.76(2000)2071L. Nilsson, et. al. , Appl. Phys. Lett. 76 (2000) 2071 G.C.Kokkoratis,et.al.,J.Appl.Phys.76(2002)4580G. C. Kokkoritis, et. al. , J .; Appl. Phys. 76 (2002) 4580 K.B.K.Teo,et.al.,Appl.Phys.Lett.80(2002)2011K. B. K. Teo, et. al. , Appl. Phys. Lett. 80 (2002) 2011 H.Busta,et.al.,Tech. Digest 17th International Vac. Microelectronics Conf.,2004,pp.30−31H. Busta, et. al. , Tech. Digest 17th International Vac. Microelectronics Conf. , 2004, pp. 30-31

しかしながら、上記の従来技術には幾つかの課題が存在する。例えば、非特許文献4記載の方法では、電子放出源の先端を尖鋭にすることが出来ないので、CNTの細さという電子放出源に好適な利点をうまく活用できない。また特許文献1記載の方法では、イオン照射のためにCNTが損傷し、その結晶性が損なわれるうえ、ディスプレイ用などの大面積基板に一様なイオン照射行うのは難しい。 However, there are several problems with the above-described prior art. For example, in the method described in Non-Patent Document 4, since the tip of the electron emission source cannot be sharpened, the advantage suitable for the electron emission source that the CNT is thin cannot be utilized well. In the method described in Patent Document 1, CNTs are damaged due to ion irradiation, the crystallinity thereof is impaired, and it is difficult to perform uniform ion irradiation on a large area substrate for a display or the like.

また、基板上に配向成長させたCNTを溶液に浸した後、これを乾燥させる工程を用いて作られたカーボンナノチューブ構造体に関しては、非特許文献5記載の方法で作製した場合、束ねられるCNTの本数が十本程度であるため、電子放出源の間隔が100nm以下であり、さらにこの間隔を大きくする必要があった。特許文献2記載の方法では電子放出源の間隔を確保するために触媒膜(触媒金属)のパターニングが必要であり、その分工程が煩雑になっていた。 In addition, a carbon nanotube structure made by using a step of immersing CNT grown on a substrate in a solution and then drying the CNT is bundled when produced by the method described in Non-Patent Document 5. Therefore, the distance between the electron emission sources is 100 nm or less, and it is necessary to further increase the distance. In the method described in Patent Document 2, patterning of the catalyst film (catalyst metal) is necessary to ensure the interval between the electron emission sources, and accordingly, the process becomes complicated.

上記の課題を解決する手段として、本発明のカーボンナノチューブ構造体の製造方法は、先端に金属触媒を保持した複数のカーボンナノチューブを、DC放電を用いるプラズマCVD法によって基板の上に配向成長させる工程と、前記複数のカーボンナノチューブを溶剤に浸す工程と、前記溶剤に浸した前記複数のカーボンナノチューブを乾燥させる工程とを含むことを特徴としている。 As a means for solving the above problems, the method for producing a carbon nanotube structure of the present invention includes a step of aligning and growing a plurality of carbon nanotubes holding a metal catalyst at the tip on a substrate by a plasma CVD method using DC discharge. And a step of immersing the plurality of carbon nanotubes in a solvent, and a step of drying the plurality of carbon nanotubes immersed in the solvent.

さらに本発明のもう一つのカーボンナノチューブ構造体の製造方法は、上記の課題を解決する手段として、先端に金属触媒を保持した複数のカーボンナノチューブを、DC放電を用いるプラズマCVD法によって基板の上に配向成長させる工程と、前記複数のカーボンナノチューブを溶剤に浸す工程と、前記溶剤に浸した前記複数のカーボンナノチューブを乾燥させる工程と、前記乾燥された複数のカーボンナノチューブの先端に再度複数のカーボンナノチューブを成長させる工程と、前記再度成長させた複数のカーボンナノチューブを含む前記複数のカーボンナノチューブを再度溶剤に浸す工程と、前記再度溶剤に浸した前記複数のカーボンナノチューブを再度乾燥させる工程とを含むことを特徴としている。 Furthermore, in another method for producing a carbon nanotube structure of the present invention, as a means for solving the above-described problem, a plurality of carbon nanotubes holding a metal catalyst at the tip are formed on a substrate by plasma CVD using DC discharge. A step of aligning growth, a step of immersing the plurality of carbon nanotubes in a solvent, a step of drying the plurality of carbon nanotubes immersed in the solvent, and a plurality of carbon nanotubes again at the tips of the plurality of dried carbon nanotubes A step of immersing the plurality of carbon nanotubes including the plurality of carbon nanotubes grown again, and a step of drying the plurality of carbon nanotubes immersed again in the solvent. It is characterized by.

また、本発明の電子放出源は、上記課題を解決するために、上記二つのいずれかの製造方法によって作製されたカーボンナノチューブ構造体を用いて構成されることを特徴としている。 Moreover, in order to solve the above-mentioned problems, the electron emission source of the present invention is characterized by being configured using a carbon nanotube structure produced by one of the above two production methods.

本発明に係るCNT構造体の製造方法は上記のような工程を含んでいるので、DC放電プラズマによって基板から真っ直ぐ立ち上がる非常に配向性の良いCNTを成長させることが出来る。そのため、溶剤に浸して乾燥させる処理を行うと極めて尖鋭な先端を持つCNT構造体を作製することが出来る。これによって電子放出源となるCNT構造物の先端に充分に強く電界を集中させることが出来る。従ってそれだけ低い電圧で電子を放出させることが可能となる。また、本CNTの構造物を用いれば良好な性能をもつ電子放出源を作製することが出来る。 Since the method for producing a CNT structure according to the present invention includes the steps as described above, it is possible to grow CNTs with very good orientation that rise straight from the substrate by DC discharge plasma. Therefore, a CNT structure having an extremely sharp tip can be produced by performing a treatment of immersing in a solvent and drying. As a result, the electric field can be concentrated sufficiently strongly at the tip of the CNT structure serving as an electron emission source. Therefore, it becomes possible to emit electrons at such a low voltage. Further, if the structure of the present CNT is used, an electron emission source having good performance can be produced.

また、本発明に係るもう一つのCNT構造体の製造方法は、上記の工程によって先端を束ねたCNTの上にさらにCNTを配向成長させるので、電子放出源となるCNT構造体の先端をさらに尖鋭にし、しかもその密度を下げることが出来る。従って電子放出源としてさらに好適なCNT構造体を製造することが出来る。また、このCNT構造体を用いれば一層良好な性能をもつ電子放出源を作製することが出来る。 Further, in another method for producing a CNT structure according to the present invention, the CNT structure is further oriented and grown on the CNT bundled at the tip by the above-described process, so that the tip of the CNT structure serving as an electron emission source is further sharpened. Moreover, the density can be lowered. Therefore, a CNT structure more suitable as an electron emission source can be manufactured. Further, if this CNT structure is used, an electron emission source having better performance can be produced.

本願発明の第一実施例に係るCNT構造体の製造方法に従って作製されたCNT構造体と比較例の電子顕微鏡写真である。It is an electron micrograph of the CNT structure produced according to the manufacturing method of the CNT structure concerning the first example of the present invention, and a comparative example. 図1の(a)、(b)、(c)、(d)の形態のそれぞれのCNT構造体について測定された電子放出特性を示すグラフである。2 is a graph showing electron emission characteristics measured for each CNT structure in the forms of (a), (b), (c), and (d) of FIG. 1. 本発明によるCNT構造体の製造に用いたプラズマCVD装置の概略を示す図である。It is a figure which shows the outline of the plasma CVD apparatus used for manufacture of the CNT structure by this invention. 本発明によるCNT構造体の電子放出特性を測定するために作製された電子放出源の概略を示す図である。It is a figure which shows the outline of the electron emission source produced in order to measure the electron emission characteristic of the CNT structure by this invention. 本願発明の第二実施例に係るCNT構造体の製造方法によって製造されるCNT構造体の製造途中の形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the form in the middle of manufacture of the CNT structure manufactured by the manufacturing method of the CNT structure which concerns on 2nd Example of this invention. 本願発明の第二実施例に係るCNT構造体の製造方法によって製造されたCNT構造体の形態を示す電子顕微鏡写真である。It is an electron micrograph which shows the form of the CNT structure manufactured by the manufacturing method of the CNT structure which concerns on 2nd Example of this invention. 本願発明の第二実施例に係るCNT構造体の成長の様子を示す模式図である。It is a schematic diagram which shows the mode of the growth of the CNT structure which concerns on 2nd Example of this invention.

本発明に係るCNT構造体の製造方法とこれを利用した電子放出源の作製工程、およびその特性測定について適宜図を用いながら、以下に詳細に説明する。 The manufacturing method of the CNT structure according to the present invention, the manufacturing process of the electron emission source using the CNT structure, and the measurement of the characteristics will be described in detail below with appropriate drawings.

《第一実施例》
1.基板の準備
まず、CNTを成長させる基板(触媒金属)となる鉄板(厚さ0.2mm、1cm角)を準備しこの基板を、アセトンを入れたビーカーに入れ、超音波洗浄した。超音波洗浄を終了すると、アセトンから基板を取り出して窒素ブロワで乾燥させた。
<< First Example >>
1. Preparation of substrate First, an iron plate (thickness: 0.2 mm, 1 cm square) serving as a substrate (catalyst metal) for growing CNTs was prepared, and this substrate was placed in a beaker containing acetone and subjected to ultrasonic cleaning. When the ultrasonic cleaning was completed, the substrate was taken out from acetone and dried with a nitrogen blower.

2.前処理工程
この基板30を図3に示すプラズマCVD装置の内部に設置し、真空ポンプ31によって内部を真空にした。その後、水素を流量調整器(MFC)32で流量を調整しながらチャンバー内に導入し、真空ポンプ31に繋がるバルブを操作して、チャンバー内部の圧力が1000Paから2000Paになるように調節した。その後、RF電源33を起動し、マッチングボックス(図示せず)によってRFの反射を0Wに調整しながら、RF電源出力を300Wから500Wに調整した。RFの周波数は13.56MHzである。
2. Pretreatment Step The substrate 30 was placed inside the plasma CVD apparatus shown in FIG. Thereafter, hydrogen was introduced into the chamber while adjusting the flow rate with a flow rate regulator (MFC) 32, and a valve connected to the vacuum pump 31 was operated to adjust the pressure inside the chamber to 1000 Pa to 2000 Pa. Thereafter, the RF power source 33 was activated, and the RF power source output was adjusted from 300 W to 500 W while adjusting the reflection of RF to 0 W by a matching box (not shown). The frequency of RF is 13.56 MHz.

RFプラズマが安定した後、DC電源34を起動し、300Vから600VのDCバイアスを基板30に印加し、15分間、一定の放電電流値に調整しながら、基板を水素プラズマに曝した。 After the RF plasma was stabilized, the DC power source 34 was started, a DC bias of 300 V to 600 V was applied to the substrate 30, and the substrate was exposed to the hydrogen plasma while adjusting to a constant discharge current value for 15 minutes.

3.成長工程
前工程が終了後、チャンバー内に水素に加えて、原料物質となるメタンを流量20ccmで導入し、CNTの成長工程を開始した。チャンバー内にメタンを導入するとチャンバー内の圧力、RFの反射、DC電源の電圧、温度が急変するので運転諸元を適宜調整した。チャンバー内のプラズマが安定していることを確認しながら、また基板の温度を監視しながらDC電源の電圧を調整した。基板温度は670度とした。この状態で、上記諸元を適宜調整しながらプラズマを安定に保って15分間CNTを成長させた。
3. After completion of the pre-growth step, methane as a raw material was introduced into the chamber at a flow rate of 20 ccm in addition to hydrogen, and the CNT growth step was started. When methane was introduced into the chamber, the pressure in the chamber, the reflection of RF, the voltage of the DC power source, and the temperature changed suddenly. While confirming that the plasma in the chamber was stable, and monitoring the temperature of the substrate, the voltage of the DC power source was adjusted. The substrate temperature was 670 degrees. In this state, CNTs were grown for 15 minutes while keeping the plasma stable while appropriately adjusting the above specifications.

4.終了工程
成長工程が終わると、メタンと水素の導入を停止し、真空ポンプ31へ繋がるバルブを全開にして、チャンバー内に残留した水素とメタンを完全に排出し、プラズマCVD装置が室温程度まで冷えるのを待った。プラズマCVD装置が充分冷えた後、チャンバーを大気開放し、基板を取り出した。なお、前工程と成長工程に用いたプラズマCVD装置は本発明の発明者のうち二名が発明したものであり、特許文献特開2006−57122に開示されたものと実質的に同一のものである。
4). When the growth process is completed, the introduction of methane and hydrogen is stopped, the valve connected to the vacuum pump 31 is fully opened, the hydrogen and methane remaining in the chamber are completely discharged, and the plasma CVD apparatus is cooled to about room temperature. I waited for you. After the plasma CVD apparatus was sufficiently cooled, the chamber was opened to the atmosphere and the substrate was taken out. The plasma CVD apparatus used for the pre-process and the growth process was invented by two of the inventors of the present invention and is substantially the same as that disclosed in Japanese Patent Application Laid-Open No. 2006-57122. .

鉄を基板すなわち触媒とし、本成長工程によって成長させたCNTは、先端に触媒である鉄粒子を保持したまま成長し、長さが3μmから5μm、密度は10本/cm、CNTの平均間隔は0.3μmであった。よって次の工程に移る前の状態ではCNTの高さと距離の比(高さを距離で除した値、即ちアスペクト比)は10から20であった。先端に鉄粒子を保持したまま成長するのは、本発明ではDC放電によるプラズマを用いているので、プラズマと基板の間のプラズマシースに生ずる強い電界で鉄粒子(触媒金属微粒子)が持ち上げられるためではないかと考えられている。先端に金属触媒を保持したCNTの成長は、R.S.Wagner and W.C.Ellis,Appl.Phys.Lett.,4(1964)89に記載の理論を用いて解析しうる。 Iron and substrate or catalyst, CNT grown by the growth process, the average growth while retaining the iron particles as a catalyst at the tip, a length from 3 [mu] m 5 [mu] m, density of 10 nine / cm 2, CNT The interval was 0.3 μm. Therefore, in the state before moving to the next step, the ratio of the height and distance of CNT (the value obtained by dividing the height by the distance, that is, the aspect ratio) was 10 to 20. The growth with the iron particles held at the tip uses the plasma by DC discharge in the present invention, so that the iron particles (catalyst metal fine particles) are lifted by a strong electric field generated in the plasma sheath between the plasma and the substrate. It is thought that. The growth of CNTs holding a metal catalyst at the tip is described in RS Wagner and W. C. Ellis, Appl. Phys. Lett. , 4 (1964) 89.

5.浸漬/乾燥工程
以上の工程によって基板を作製した後、以下の三通りの溶剤への浸漬と乾燥の処理を行って、三種の異なるCNT構造体を製造した。
(1)蒸留水に五分間浸漬した後、常温乾燥して出来たCNT構造物。
(2)エタノール(通常の洗浄に用いる純度99.5%のもの)に五分間浸漬した後、常温乾燥して出来たCNT構造体。
(3)蒸留水と上記エタノールを等量混合した溶剤に五分間浸漬し、常温乾燥して出来たCNT構造体。
また、この浸漬/乾燥工程を行わない基板(即ち生のCNT構造体)も比較例として準備した。この四種類のCNT構造物の電子顕微鏡写真を図1に示す。写真内のスケールは6μmである。
5). After producing the substrate by the above-described steps of immersion / drying, the following three types of solvent immersion and drying were performed to produce three different types of CNT structures.
(1) A CNT structure made by dipping in distilled water for 5 minutes and then drying at room temperature.
(2) A CNT structure obtained by dipping in ethanol (having a purity of 99.5% used for normal cleaning) for 5 minutes and then drying at room temperature.
(3) A CNT structure obtained by immersing in a solvent in which equal amounts of distilled water and ethanol are mixed for 5 minutes and drying at room temperature.
In addition, a substrate (that is, a raw CNT structure) not subjected to this immersion / drying process was also prepared as a comparative example. Electron micrographs of these four types of CNT structures are shown in FIG. The scale in the photograph is 6 μm.

これら四つの異なるCNT構造体の電子顕微鏡写真を図1に示す。図中の写真について、(a)は浸漬/乾燥工程を行わない状態のCNT構造体、(b)は上記(1)の浸漬と乾燥の処理によって出来たCNT構造体、(c)は上記(2)の処理によって出来たCNT構造体、(d)は上記(3)の処理によって出来たCNT構造体である。図1の写真から判るように、溶剤への浸漬と乾燥の工程を経たもののほうが、乾燥の際に分子間力によってCNTの先端がくっついて束ねられてゆくため、尖った先端の密度が低くなっている。これは電子源として好適に用いることの出来る構造である。なお、溶剤としてはエタノールよりも蒸発速度の速いイソプロピルアルコールなどは、より多くのCNTを束ねる効果があると予想され、溶剤としてより好適に用いることが出来ると考えられる。電子放出源として作用する尖った先端の密度は(a)が4.4×10本/cm程度、(c)が2.5×10本/cm程度になっており、ほぼ望ましい程度にまで密度を低下させることが出来た。一方、(b)についてはCNTが横方向に繋がってウォール状に変形しており、(d)は先端の曲率半径が大きいことがわかる。また(c)についてアスペクト比は4.6であった。 Electron micrographs of these four different CNT structures are shown in FIG. Regarding the photograph in the figure, (a) is a CNT structure without the immersion / drying process, (b) is a CNT structure formed by the immersion and drying process of (1), and (c) is the above ( The CNT structure made by the process of 2), and (d) is the CNT structure made by the process of (3). As can be seen from the photograph in FIG. 1, the tip of the CNT that has undergone the steps of immersion in the solvent and drying is stuck and bundled by intermolecular force during drying, so the density of the sharp tip becomes lower. ing. This is a structure that can be suitably used as an electron source. Note that isopropyl alcohol, which has a higher evaporation rate than ethanol, is expected to have an effect of bundling more CNTs as a solvent, and can be used more suitably as a solvent. The density of the sharp tip that acts as an electron emission source is approximately 4.4 × 10 8 / cm 2 in (a) and approximately 2.5 × 10 7 / cm 2 in (c), which is almost desirable. The density could be reduced to the extent. On the other hand, in (b), the CNTs are connected in the lateral direction and deformed into a wall shape, and (d) shows that the radius of curvature at the tip is large. The aspect ratio for (c) was 4.6.

6.電子放出源作製工程
本発明に係るCNT構造体の電子放出源としての特性を測定するために作製された電子放出源の断面図を図4に示す。前記5.の浸漬/乾燥工程を経たCNT構造体を電子源に加工するためには、通常知られている半導体デバイスの工程やプロセスを用いれば良い。
6). Electron Emission Source Manufacturing Process FIG. 4 shows a cross-sectional view of an electron emission source manufactured for measuring the characteristics of the CNT structure according to the present invention as an electron emission source. 5. above. In order to process the CNT structure that has undergone the immersion / drying step into an electron source, generally known semiconductor device steps and processes may be used.

図4に示すように、前記4.の工程までの処理によってCNT構造体を成長させた基板30上に、中央に直径10mmの孔を持つ、厚さ200μmの雲母板40をスペーサー(絶縁物)として載せた。基板30は陰極(カソード)として機能する。これとは別に、陽極(アノード)として機能する透明導電膜41(ITO、Indium Tin Oxide)を堆積させたガラス42(石英ガラス)を準備し、図4に示すように、透明導電膜41と基板30で雲母板40を挟みつけた。これによって同じ構造を持つ電子放出源を、上記4.の浸漬/乾燥工程を経た四つの異なるCNT構造体、即ち(a)前記の浸漬/乾燥工程を行わないCNT構造体,(b)蒸留水に五分間浸漬した後、常温乾燥して出来たCNT構造物、(c)エタノール(通常の洗浄に用いる純度99.5%のもの)に五分間浸漬した後、常温乾燥して出来たCNT構造体、(d)蒸留水と上記エタノールを等量混合した溶剤に五分間浸漬し、常温乾燥して出来たCNT構造体のそれぞれについて作製した。 As shown in FIG. A mica plate 40 having a thickness of 10 mm in the center and having a thickness of 10 μm was placed as a spacer (insulator) on the substrate 30 on which the CNT structure was grown by the processes up to this step. The substrate 30 functions as a cathode (cathode). Separately, glass 42 (quartz glass) on which a transparent conductive film 41 (ITO, Indium Tin Oxide) functioning as an anode is deposited, and as shown in FIG. 4, the transparent conductive film 41 and the substrate are prepared. 30, the mica plate 40 was sandwiched. As a result, an electron emission source having the same structure can be obtained as described above in 4. 4 different CNT structures that have undergone the soaking / drying process, ie, (a) CNT structures that are not subjected to the soaking / drying process, (b) CNTs that have been soaked in distilled water for 5 minutes and then dried at room temperature Structure, (c) CNT structure formed by dipping in ethanol (purity of 99.5% used for normal cleaning) for 5 minutes and then drying at room temperature, (d) mixing equal amounts of distilled water and the above ethanol Each of the CNT structures formed by immersing in the solvent for 5 minutes and drying at room temperature was prepared.

7.電子放出源の特性測定
これらの四つの電子放出源を、ステンレス製の真空容器内に設置し、この真空容器内をターボ分子ポンプによって1×10−5Pa程度の真空度まで排気した。この電子放出源に印加した電圧は最大で1500Vであった。これら四種類の電子放出源の電子放出特性を図2に示す。図2中の(a)、(b)、(c)、(d)はそれぞれ図1中の写真のCNT構造体に対応する。
7). Measurement of Electron Emission Source Characteristics These four electron emission sources were placed in a stainless steel vacuum vessel, and the vacuum vessel was evacuated to a vacuum degree of about 1 × 10 −5 Pa by a turbo molecular pump. The maximum voltage applied to this electron emission source was 1500V. The electron emission characteristics of these four types of electron emission sources are shown in FIG. (A), (b), (c), and (d) in FIG. 2 respectively correspond to the CNT structures in the photograph in FIG.

図2から判るように電子放出源としての電界放出の起こりやすさについて(a)が最も起こりにくく、(c)が最も起こりやすくなっている。(b)と(d)は(c)ほどではないが、(a)よりは電界放出を起こしやすくなっており、4.浸漬/乾燥工程によって先端を束ねて電子源となる尖った先端の密度を低下させた効果は明らかである。電子顕微鏡写真に見られるCNT構造体の形状と図2に見られる電子放出特性は良い対応をしめしていると言える。 As can be seen from FIG. 2, (a) is the least likely to occur and (c) is the most likely to occur as the electron emission source. (B) and (d) are not as severe as (c), but are more susceptible to field emission than (a). The effect of reducing the density of the sharp tip that becomes the electron source by bundling the tip by the dipping / drying process is clear. It can be said that the shape of the CNT structure seen in the electron micrograph shows a good correspondence with the electron emission characteristics seen in FIG.

《第二実施例》
次に第二実施例について述べる。第二実施例では、第一実施例の5.浸漬/乾燥工程で作製した四つのCNT構造体のうち、(c)のエタノールに五分間浸漬した後、常温乾燥して出来たCNT構造体にさらに、第一実施例中の2.前処理工程、3.成長工程および4.終了工程を施した。ただし、2.前処理工程の水素プラズマに曝す時間は10分間とした。第二実施例中のここまでの工程を二段階成長法と呼ぶことにする。
<< Second Example >>
Next, a second embodiment will be described. In the second embodiment, 5. of the first embodiment. Of the four CNT structures prepared in the dipping / drying step, the CNT structure obtained by dipping in ethanol (c) for 5 minutes and then drying at room temperature is further added to 2. 2. Pretreatment process, 3. growth process and An end step was performed. However, 2. The time of exposure to hydrogen plasma in the pretreatment step was 10 minutes. The process so far in the second embodiment will be referred to as a two-stage growth method.

第一実施例で述べた工程によって作製したCNT構造体は先端に金属触媒を保持したまま成長しているので、2.前処理工程によって先端の金属触媒が活性化し、二段階成長法によってCNT構造体の先端にさらに、一本乃至は数本のCNTを成長させることが出来た。これの電子顕微鏡写真を図5に示している。二段階成長法を経たCNT構造体は尖った先端の密度が図1の(c)よりも低下していることが判る。さらに、第二実施例においては、二段階成長法の後にさらにエタノールによる浸漬/乾燥工程を実施した。この浸漬/乾燥工程は第一実施例の工程と同じである。その結果作製されたCNT構造体の電子顕微鏡写真を図6に示す。これによると尖った先端の密度はさらに低下していることが判る。なお、図6中のスケールは6μmである。 Since the CNT structure produced by the process described in the first embodiment grows with the metal catalyst held at the tip, 2. The metal catalyst at the tip was activated by the pretreatment process, and one or several CNTs could be further grown on the tip of the CNT structure by the two-stage growth method. An electron micrograph of this is shown in FIG. It can be seen that the density of the pointed tip of the CNT structure that has undergone the two-step growth method is lower than that in FIG. Furthermore, in the second example, an immersion / drying step with ethanol was further performed after the two-stage growth method. This dipping / drying process is the same as the process of the first embodiment. An electron micrograph of the resulting CNT structure is shown in FIG. According to this, it can be seen that the density of the sharp tip is further lowered. Note that the scale in FIG. 6 is 6 μm.

第一実施例の3.成長工程を終了した段階におけるCNTの成長密度は、上にも述べた通り、10本/cm程度であり、平均のCNTの間隔は0.3μm、CNTの高さと距離の比は10から20であったが、第一実施例の4.浸漬/乾燥工程を経た段階では、4.6であった。第二実施例におけるCNT構造体においては、二段階成長法を施した段階で、高さと距離の比は2.2、その後の浸漬/乾燥工程を経たものは2であった。これは第一実施例よりもCNT構造体の先端の密度が低下していることを意味する。これは電子放出源として好適に用いることの出来る形状のCNT構造体であり、これを用いた電子放出源はより低い電圧で電子を放出することが出来る。また、基板(鉄)のパターニング等の工程を行わなくとも、充分に先端の密度を下げることが出来る。 3 of the first embodiment. Growth densities of the CNT in step to complete the growth process is, as mentioned above, is 10 nine / cm 2 or so, the interval of the mean of the CNT is 0.3 [mu] m, height and distance ratio of CNT from 10 20 of the first example. In the stage after the immersion / drying process, it was 4.6. In the CNT structure in the second example, at the stage where the two-step growth method was applied, the ratio of height to distance was 2.2, and that after the subsequent immersion / drying process was 2. This means that the density of the tip of the CNT structure is lower than in the first embodiment. This is a CNT structure having a shape that can be suitably used as an electron emission source, and an electron emission source using the CNT structure can emit electrons at a lower voltage. Further, the density of the tip can be sufficiently reduced without performing a process such as patterning of the substrate (iron).

第二実施例に従う工程によって作製した、CNT構造体の成長の様子を示す模式的に示したのが図7である。第二実施例の工程によって、基板30(鉄)の上に成長したCNT構造体の先端に保持された金属触媒(鉄)から、CNTが再成長している。ここで第二実施例において、何本のCNTを束ねることが出来るかについて考えてみる。成長密度が10本/cmのCNTは、それらの間隔が0.3μmである。これらが100本束ねられた場合、CNTの平均距離が十分の一となるので、CNT構造体の高さと距離の比は2以下になるはずである。この値を第二実施例で作製したCNT構造体と比較すると、100本程度あるいはそれ以上の本数のCNTを束ねることが出来たということが判る。 FIG. 7 schematically shows the state of growth of the CNT structure produced by the process according to the second embodiment. By the process of the second embodiment, CNTs are regrown from the metal catalyst (iron) held at the tip of the CNT structure grown on the substrate 30 (iron). Here, let us consider how many CNTs can be bundled in the second embodiment. CNT growth density 10 nine / cm 2 is that their spacing is 0.3 [mu] m. When 100 of these are bundled, the average distance of the CNTs is one tenth, so the ratio of the height and distance of the CNT structure should be 2 or less. When this value is compared with the CNT structure produced in the second embodiment, it can be seen that about 100 or more CNTs could be bundled.

なお、本発明の主旨から逸脱しない範囲で種々の変形が可能である。例えば、本発明に係る電子源にさらに加工を行う場合にこれを容易にしたり、その強度を増すために、本発明の工程で作製した電子源の間を絶縁性の材料で満たし、その後、電子源の先端を切り落とすなどの加工を行ったものも本願発明の範囲に入ることになる。本発明はCNTから電子源として用いることのできる構造体を製造する方法として優れており、当該分野の発展に資するところ大である。
Various modifications can be made without departing from the gist of the present invention. For example, in order to further process the electron source according to the present invention or to increase its strength, the space between the electron sources produced in the process of the present invention is filled with an insulating material, and then the electron source Those processed by cutting off the tip of the source are also within the scope of the present invention. The present invention is excellent as a method for producing a structure that can be used as an electron source from CNTs, and greatly contributes to the development of this field.

30.基板
31.真空ポンプ
32.流量調節器
33.RF電源
34.DC電源
40.雲母板
41.透明導電膜
42.ガラス

30. Substrate 31. Vacuum pump 32. Flow controller 33. RF power supply 34. DC power supply 40. Mica plate 41. Transparent conductive film 42. Glass

Claims (3)

カーボンナノチューブ構造体の製造方法であって、
先端に金属触媒を保持した複数のカーボンナノチューブを、DC放電を用いるプラズマCVD法によって基板の上に配向成長させる工程と、
前記複数のカーボンナノチューブを溶剤に浸す工程と、
前記溶剤に浸した前記複数のカーボンナノチューブを乾燥させる工程とを含むことを特徴とするカーボンナノチューブ構造体の製造方法。
A method of manufacturing a carbon nanotube structure,
A step of aligning and growing a plurality of carbon nanotubes holding a metal catalyst at the tip on a substrate by a plasma CVD method using DC discharge;
Immersing the plurality of carbon nanotubes in a solvent;
And a step of drying the plurality of carbon nanotubes immersed in the solvent.
カーボンナノチューブ構造体の製造方法であって、
先端に金属触媒を保持した複数のカーボンナノチューブを、DC放電を用いるプラズマCVD法によって基板の上に配向成長させる工程と、
配向成長させた複数のカーボンナノチューブを溶剤に浸す工程と、
前記溶剤に浸した前記複数のカーボンナノチューブを乾燥させる工程と、
前記乾燥した複数のカーボンナノチューブの先端に再度複数のカーボンナノチューブを成長させる工程と、
前記再度成長させた複数のカーボンナノチューブを含む前記複数のカーボンナノチューブを再度溶剤に浸す工程と、
前記再度溶剤に浸した前記複数のカーボンナノチューブを再度乾燥させる工程とを含むことを特徴とするカーボンナノチューブ構造体の製造方法。
A method of manufacturing a carbon nanotube structure,
A step of aligning and growing a plurality of carbon nanotubes holding a metal catalyst at the tip on a substrate by a plasma CVD method using DC discharge;
Immersing a plurality of aligned carbon nanotubes in a solvent; and
Drying the plurality of carbon nanotubes immersed in the solvent;
Growing a plurality of carbon nanotubes again at the tips of the dried carbon nanotubes;
Immersing the plurality of carbon nanotubes including the plurality of carbon nanotubes grown again in a solvent; and
And a step of drying again the plurality of carbon nanotubes soaked in the solvent.
請求項1または請求項2の製造方法によって作製されたカーボンナノチューブ構造体を用いた電子放出源。




An electron emission source using a carbon nanotube structure produced by the production method according to claim 1.




JP2010044824A 2010-03-02 2010-03-02 Carbon nanotube structure manufacturing method and electron emission source using the same Active JP5505786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010044824A JP5505786B2 (en) 2010-03-02 2010-03-02 Carbon nanotube structure manufacturing method and electron emission source using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044824A JP5505786B2 (en) 2010-03-02 2010-03-02 Carbon nanotube structure manufacturing method and electron emission source using the same

Publications (2)

Publication Number Publication Date
JP2011178605A true JP2011178605A (en) 2011-09-15
JP5505786B2 JP5505786B2 (en) 2014-05-28

Family

ID=44690535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044824A Active JP5505786B2 (en) 2010-03-02 2010-03-02 Carbon nanotube structure manufacturing method and electron emission source using the same

Country Status (1)

Country Link
JP (1) JP5505786B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
JP2005276601A (en) * 2004-03-24 2005-10-06 Mitsubishi Electric Corp Field emission type electron emitting element and its manufacturing method
JP2006057122A (en) * 2004-08-18 2006-03-02 Kyoto Institute Of Technology Plasma chemical vapor deposition system and plasma chemical vapor deposition method
JP2006196364A (en) * 2005-01-14 2006-07-27 Toshiba Corp Field electron emission element and its manufacturing method
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002518280A (en) * 1998-06-19 2002-06-25 ザ・リサーチ・ファウンデーション・オブ・ステイト・ユニバーシティ・オブ・ニューヨーク Aligned free-standing carbon nanotubes and their synthesis
JP2005276601A (en) * 2004-03-24 2005-10-06 Mitsubishi Electric Corp Field emission type electron emitting element and its manufacturing method
JP2006057122A (en) * 2004-08-18 2006-03-02 Kyoto Institute Of Technology Plasma chemical vapor deposition system and plasma chemical vapor deposition method
JP2006196364A (en) * 2005-01-14 2006-07-27 Toshiba Corp Field electron emission element and its manufacturing method
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013062393; 小谷和範 他: '"プラズマ配向カーボンナノチューブの電子源密度制御と電界電子放出特性"' 2008年(平成20年)秋季第69回応用物理学会学術講演会講演予稿集 第1分冊, 20080902, p.419中段 *
JPN6013062394; Kazunori Odani et al.: '"Fabrication of Field-Emission Electron Sources of Carbon Nanotubes by RF-DC Plasma CVD and Post-Tre' プラズマ科学シンポジウム2009/第26回プラズマプロセシング研究会(PSS-2009/SPP-26)プロシーディングス , 200902, p.32-33 *

Also Published As

Publication number Publication date
JP5505786B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
Xu et al. Controlling growth and field emission property of aligned carbon nanotubes on porous silicon substrates
US20090200912A1 (en) Methods for Growing Carbon Nanotubes on Single Crystal Substrates
Lim et al. Effect of gas exposure on field emission properties of carbon nanotube arrays
Seelaboyina et al. Enhanced field emission from aligned multistage carbon nanotube emitter arrays
Passacantando et al. Field emission from a selected multiwall carbon nanotube
Wang et al. Nucleation and growth of well-aligned, uniform-sized carbon nanotubes by microwave plasma chemical vapor depositon
JP2007123280A (en) CARBON NANOTUBE HAVING ZnO PROTRUSION
Nayeri et al. Surface structure and field emission properties of cost effectively synthesized zinc oxide nanowire/multiwalled carbon nanotube heterojunction arrays
CN102024637B (en) Method for preparing zinc oxide nano column array field emission component
Yu et al. Patterned carbon nanotube field emitter using the regular array of an anodic aluminium oxide template
Cole et al. Engineered carbon nanotube field emission devices
Wang et al. Growth and field-emission properties of single-crystalline conic ZnO nanotubes
Chen et al. ZnO nanowire arrays grown on Al: ZnO buffer layers and their enhanced electron field emission
CN104882346A (en) Method for preparing field emission cathode of carbon nanotube array coated with carbon nanoparticles
Yin et al. Postgrowth processing of carbon nanotube arrays-enabling new functionalities and applications
Li et al. Aligned rutile TiO2 nanorods: facile synthesis and field emission
KR101977436B1 (en) Aligned Carbon nanotube struscture having wall form, method for manufacturing the same and electric device using the same
JP5505786B2 (en) Carbon nanotube structure manufacturing method and electron emission source using the same
Minh et al. Selective growth of carbon nanotubes on Si microfabricated tips and application for electron field emitters
JP2010006670A (en) Nanowire structure and method for producing the same
Tabatabaei et al. Remote and direct plasma regions for low-temperature growth of carbon nanotubes on glass substrates for display applications
Chang et al. Low-temperature process in growing carbon nanotube
Hu et al. Field electron emission from structure-controlled one-dimensional CuO arrays synthesized by wet chemical process
Kim et al. Long-term stability of various carbon-nanotube-based micro-tip emitters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140306

R150 Certificate of patent or registration of utility model

Ref document number: 5505786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250