JP2010006670A - Nanowire structure and method for producing the same - Google Patents

Nanowire structure and method for producing the same Download PDF

Info

Publication number
JP2010006670A
JP2010006670A JP2008170618A JP2008170618A JP2010006670A JP 2010006670 A JP2010006670 A JP 2010006670A JP 2008170618 A JP2008170618 A JP 2008170618A JP 2008170618 A JP2008170618 A JP 2008170618A JP 2010006670 A JP2010006670 A JP 2010006670A
Authority
JP
Japan
Prior art keywords
nanowire
nanowire structure
gallium nitride
single crystal
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008170618A
Other languages
Japanese (ja)
Inventor
Tasuku Inoue
翼 井上
Satoshi Takeda
聡 竹田
Shigeo Ohira
重男 大平
Naoki Arai
直樹 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Nippon Light Metal Co Ltd
Original Assignee
Shizuoka University NUC
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Nippon Light Metal Co Ltd filed Critical Shizuoka University NUC
Priority to JP2008170618A priority Critical patent/JP2010006670A/en
Publication of JP2010006670A publication Critical patent/JP2010006670A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide nanowire structures with which the turn-on electric field is reduced, the current density is increased, and the emission of electrons is made uniform; and to provide a method for producing the same. <P>SOLUTION: A catalyst layer composed of Ni or Pt is formed on a gallium oxide single crystal substrate, and then, gallium nitride nanowires each in the form of a wire having a diameter of 5-200 nm and a length of 5-50 μm are formed by reacting trimethyl gallium and ammonia on the catalytic layer in a temperature range of 850-1,000°C by a CVD method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノワイヤ構造体およびその製造方法に関するものであり、詳しくは、ターンオン電界の低減、電流密度の向上、電子放出の均一化を達成したナノワイヤ構造体およびその製造方法に関するものである。本発明のナノワイヤ構造体は、次世代平面ディスプレイとして開発が進められているフィールドエミッションディスプレイ(FED)用の電子源等にとくに有用である。   The present invention relates to a nanowire structure and a method for manufacturing the same, and more particularly to a nanowire structure that achieves a reduction in turn-on electric field, an improvement in current density, and uniform electron emission, and a method for manufacturing the nanowire structure. The nanowire structure of the present invention is particularly useful as an electron source for a field emission display (FED), which is being developed as a next generation flat display.

従来、FEDは金属やシリコンを微細加工技術により円錐状に先鋭化した素子を電子源として用いていたが、製造コストや大画面化で問題があった。最近になって、カーボンナノチューブ(CNT)がFEDの電子源として優れた特性を有することが確認され、CNTを電子源とするFEDも試作されるようになった。CNTを用いた電界放出電子源は、通常の熱電子源に比べ、加熱の必要がなく省エネ、高い電流密度、放出電子のエネルギー幅が狭いなど、高輝度の焦束電子の発生を揃えており、FEDのみならず真空マイクロエレクトロニクスの重要な電子源としての応用も図られている。しかしながら、CNTは寿命、耐久性に問題があり、長時間の使用できない欠点があった。   Conventionally, the FED has used a device in which metal or silicon is sharpened in a conical shape by a fine processing technique as an electron source. However, there has been a problem in manufacturing cost and enlargement of the screen. Recently, it has been confirmed that carbon nanotubes (CNT) have excellent characteristics as an electron source of FED, and FEDs using CNT as an electron source have also been prototyped. Field-emission electron sources using CNTs do not require heating as compared to ordinary thermionic sources, and energy generation, high current density, and narrow energy width of emitted electrons make generation of high-intensity focused electrons uniform. In addition to the FED, vacuum microelectronics are also being applied as important electron sources. However, CNT has problems in life and durability, and has a drawback that it cannot be used for a long time.

一方、金属、シリコン、CNT以外の電子源として窒化ガリウム(GaN)も検討されている(例えば非特許文献1参照)。GaNのナノワイヤから電子放出も確認されているが、非特許文献1に記載された技術の場合、GaNナノワイヤはSi基板上に作製されているため、放出した電子を蛍光体に照射したときなど発生する光を基板側から取り出せない。また、導電性基板として使うには抵抗も高いという問題もあった。これに対し、サファイアや石英などの透明な基板上にGaNナノワイヤを作製させることもできるが、この場合、基板は絶縁体であり、透明電極が必要になり、プロセスコストがかかるといった問題点があった。
Y.Inoue et al, phys. Stat. Sol. (c)4 (2007) 2366-2370.
On the other hand, gallium nitride (GaN) has been studied as an electron source other than metal, silicon, and CNT (see, for example, Non-Patent Document 1). Electron emission from GaN nanowires has also been confirmed, but in the case of the technique described in Non-Patent Document 1, since GaN nanowires are fabricated on a Si substrate, they are generated when the emitted electrons are irradiated onto phosphors. Light cannot be extracted from the substrate side. Also, there is a problem that the resistance is high when used as a conductive substrate. On the other hand, GaN nanowires can be fabricated on a transparent substrate such as sapphire or quartz. However, in this case, the substrate is an insulator, and a transparent electrode is required, which increases the process cost. It was.
Y. Inoue et al, phys. Stat. Sol. (C) 4 (2007) 2366-2370.

本発明は、上記課題を解決するためになされたもので、金属、シリコン、カーボン系材料にかわる電子源として電子親和力が比較的小さく、化学的および機械的に安定であることから電界電子放出材料として適し、ターンオン電界の低減、電流密度の向上、電子放出の均一化を達成できるナノワイヤ構造体およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has a relatively low electron affinity as an electron source for metals, silicon, and carbon-based materials, and is chemically and mechanically stable. An object of the present invention is to provide a nanowire structure that can achieve a reduction in turn-on electric field, an improvement in current density, and uniform emission of electrons, and a method for manufacturing the same.

本発明は、以下のとおりである。
1.酸化ガリウム単結晶基板上に、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成してなるナノワイヤ構造体。
2.前記窒化ガリウムナノワイヤを形成する前記酸化ガリウム単結晶基板の結晶方位が、(100)面であることを特徴とする前記1に記載のナノワイヤ構造体。
3.電圧印加によりターンオン電界強度が3〜4V/μmの電子放出特性を有するエミッタに用いられることを特徴とする前記1または2に記載のナノワイヤ構造体。
4.電圧印加により前記窒化ガリウムナノワイヤ全体から均一に電界放射することを特徴とする前記1〜3のいずれかに記載のナノワイヤ構造体。
5.酸化ガリウム単結晶基板上に、NiまたはPtからなる触媒層を形成し、前記触媒層上でトリメチルガリウムおよびアンモニアをCVD法により850〜1000℃の温度範囲で反応させ、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成することを特徴とするナノワイヤ構造体の製造方法。
6.前記触媒層の厚さが2nm〜5nmであることを特徴とする前記5に記載のナノワイヤ構造体の製造方法。
The present invention is as follows.
1. A nanowire structure in which a gallium nitride nanowire having a wire shape with a diameter of 5 nm to 200 nm and a length of 5 μm to 50 μm is formed on a gallium oxide single crystal substrate.
2. 2. The nanowire structure according to 1 above, wherein a crystal orientation of the gallium oxide single crystal substrate forming the gallium nitride nanowire is a (100) plane.
3. 3. The nanowire structure according to 1 or 2, which is used for an emitter having an electron emission characteristic with a turn-on electric field strength of 3 to 4 V / μm by applying a voltage.
4). 4. The nanowire structure according to any one of 1 to 3, wherein the electric field is uniformly emitted from the entire gallium nitride nanowire by voltage application.
5). A catalyst layer made of Ni or Pt is formed on a gallium oxide single crystal substrate, trimethylgallium and ammonia are reacted on the catalyst layer by a CVD method in a temperature range of 850 to 1000 ° C., and the diameter is 5 nm to 200 nm. A method for producing a nanowire structure, comprising forming a gallium nitride nanowire having a wire shape with a thickness of 5 μm to 50 μm.
6). 6. The method for producing a nanowire structure according to 5, wherein the catalyst layer has a thickness of 2 nm to 5 nm.

本発明によれば、酸化ガリウム単結晶基板上に径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成することで、金属、シリコン、カーボン系材料にかわる電子源として電子親和力が比較的小さく、化学的および機械的に安定であることから電界電子放出材料として適し、ターンオン電界の低減、電流密度の向上、電子放出の均一化を達成したナノワイヤ構造体およびその製造方法を提供することができる。
とくに、本発明のナノワイヤ構造体は、非特許文献1におけるSi基板を用いた場合に比べ、ターンオン電界強度を低減させることができた。これは、電界電子放出特性の向上に効果があるだけでなく、GaNナノワイヤをデバイス化する際、酸化ガリウムは透明導電性基板であるため、電極作製などの製造プロセス、および発光効率の観点からも効果があると考えられる。
According to the present invention, a gallium nitride nanowire having a wire shape with a diameter of 5 nm to 200 nm and a length of 5 μm to 50 μm is formed on a gallium oxide single crystal substrate, thereby changing to a metal, silicon, or carbon-based material. A nanowire structure that is suitable as a field electron emission material due to its relatively low electron affinity as an electron source and is chemically and mechanically stable, achieving a reduced turn-on electric field, improved current density, and uniform electron emission A manufacturing method thereof can be provided.
In particular, the nanowire structure of the present invention was able to reduce the turn-on electric field strength as compared with the case where the Si substrate in Non-Patent Document 1 was used. This is not only effective in improving the field electron emission characteristics, but also when manufacturing GaN nanowires as a device, since gallium oxide is a transparent conductive substrate, from the viewpoint of manufacturing processes such as electrode fabrication and luminous efficiency. It is considered effective.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

(酸化ガリウム単結晶基板)
本発明の発光素子における基板は、酸化ガリウム(β−Ga23)単結晶を用いる。β−Ga23単結晶は、フローティングゾーン(FZ法)や引上げ(CZ法)などで作製されるが、るつぼを用いないFZ法で作製する方法が高品質の単結晶が得られるので好ましい。FZ法で得られた単結晶を切断、研磨して表面を鏡面にし、例えば厚さ0.4mmほどのウエハとする。このときの結晶方位は研磨が容易で製造しやすい(100)面とするのがよい。FZ法で作製したβ−Ga23単結晶は、無色透明であり、光学的透過率はおよそ80%ほどであり、光吸収端はおよそ260nmである。β−Ga23単結晶は、添加元素なしでも作製する雰囲気による酸素欠損から発生した電子がキャリアとなって導電性を有するが、さらに導電性を向上させるために、Si、Ge、SnおよびAlから選択された少なくとも一種の元素を添加してなることが好ましい。これらドーピングする元素量は、β−Ga23単結晶に対し、20〜100ppmが好ましい。
(Gallium oxide single crystal substrate)
A gallium oxide (β-Ga 2 O 3 ) single crystal is used for the substrate in the light-emitting element of the present invention. β-Ga 2 O 3 single crystal is produced in a floating zone (FZ method) or pulling up (CZ method), but a method produced by FZ method without using a crucible is preferable because a high quality single crystal is obtained. . A single crystal obtained by the FZ method is cut and polished to give a mirror surface, for example, a wafer having a thickness of about 0.4 mm. The crystal orientation at this time is preferably a (100) plane that is easy to polish and easy to manufacture. The β-Ga 2 O 3 single crystal produced by the FZ method is colorless and transparent, the optical transmittance is about 80%, and the light absorption edge is about 260 nm. In the β-Ga 2 O 3 single crystal, electrons generated from oxygen vacancies in an atmosphere produced without an additive element become carriers and have conductivity, but in order to further improve conductivity, Si, Ge, Sn and It is preferable to add at least one element selected from Al. The amount of these doping elements is preferably 20 to 100 ppm with respect to the β-Ga 2 O 3 single crystal.

(窒化ガリウムナノワイヤの形成)
本発明における窒化ガリウムナノワイヤは、Vapor-Liquid-Solid(VLS)成長により形成するのが適している。この成長モードは、成長速度が非常に早いので、高アスペクト比を得るのに適した作製方法であると言える。
具体的には、本発明における窒化ガリウムナノワイヤは、酸化ガリウム単結晶基板上に、NiまたはPtからなる触媒層を形成し、前記触媒層上でトリメチルガリウムおよびアンモニアをCVD法により850〜1000℃の温度範囲で反応させる工程を経て製造することができる。
(Formation of gallium nitride nanowires)
The gallium nitride nanowire in the present invention is suitably formed by Vapor-Liquid-Solid (VLS) growth. This growth mode can be said to be a production method suitable for obtaining a high aspect ratio because the growth rate is very high.
Specifically, in the gallium nitride nanowire in the present invention, a catalyst layer made of Ni or Pt is formed on a gallium oxide single crystal substrate, and trimethyl gallium and ammonia are formed on the catalyst layer at 850 to 1000 ° C. by a CVD method. It can manufacture through the process made to react in a temperature range.

NiまたはPtからなる触媒層の形成方法としては、一般的な真空蒸着法、スパッタリング、イオンプレーティング法を採用することができる。
窒化ガリウムナノワイヤの径を細くし、かつアスペクト比を高め、電界電子放出特性を向上させるといった観点から、触媒層の厚さは、という理由から、2nm〜5nmであることが好ましい。
As a method for forming the catalyst layer made of Ni or Pt, a general vacuum deposition method, sputtering, or ion plating method can be employed.
From the viewpoints of reducing the diameter of the gallium nitride nanowire, increasing the aspect ratio, and improving the field electron emission characteristics, the thickness of the catalyst layer is preferably 2 nm to 5 nm.

次に、触媒層上でトリメチルガリウム(TMG)およびアンモニアをCVD法により850〜1000℃、好ましくは880〜920℃の温度範囲で反応させ、本発明における窒化ガリウムナノワイヤを形成する。上記温度以外のCVD法の条件として、例えばTMGのキャリアガスとしてH2を使用し、成長圧力として1〜10Torr等の条件が好適である。
なお、前記温度が850℃未満であると、窒化ガリウムナノワイヤの径が大きくなり、逆に1000℃を超えると、窒化ガリウムナノワイヤが成長しなくなり、好ましくない。
Next, trimethylgallium (TMG) and ammonia are reacted on the catalyst layer by a CVD method in a temperature range of 850 to 1000 ° C., preferably 880 to 920 ° C., to form the gallium nitride nanowire in the present invention. As the conditions of the CVD method other than the above temperature, for example, H 2 is used as a TMG carrier gas, and a growth pressure of 1 to 10 Torr is suitable.
When the temperature is lower than 850 ° C., the diameter of the gallium nitride nanowire increases. Conversely, when the temperature exceeds 1000 ° C., the gallium nitride nanowire does not grow, which is not preferable.

窒化ガリウムナノワイヤの密度は、触媒層の種類(Ni,Pt)、および厚さを変えることで制御できる。
また、窒化ガリウムナノワイヤの径および長さは、触媒層の種類および厚さを調整することで制御できる。
The density of the gallium nitride nanowire can be controlled by changing the type (Ni, Pt) and thickness of the catalyst layer.
Moreover, the diameter and length of the gallium nitride nanowire can be controlled by adjusting the type and thickness of the catalyst layer.

このようにして製造される本発明のナノワイヤ構造体は、酸化ガリウム単結晶基板上に、径が5nm〜200nm、長さが5μm〜50μm、さらに具体的には径が10〜100nm、長さが10μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤが形成されてなる。窒化ガリウムナノワイヤは、アスペクト比が高いほうが好ましく、例えばアスペクト比(長さ/径)は、100〜1000、好ましくは250〜800である。また、窒化ガリウムナノワイヤの密度は、1012〜1014本/mm2が好ましい。 The nanowire structure of the present invention thus manufactured has a diameter of 5 nm to 200 nm, a length of 5 μm to 50 μm, more specifically a diameter of 10 to 100 nm, and a length on a gallium oxide single crystal substrate. A gallium nitride nanowire having a wire shape of 10 μm to 50 μm is formed. The gallium nitride nanowire preferably has a high aspect ratio. For example, the aspect ratio (length / diameter) is 100 to 1000, preferably 250 to 800. The density of the gallium nitride nanowire is preferably 10 12 to 10 14 wires / mm 2 .

本発明のナノワイヤ構造体は、ターンオン電界強度を低減させることができ、電圧印加によるターンオン電界強度が3〜4V/μmの電子放出特性を有するエミッタに好適に用いられる。また、本発明のナノワイヤ構造体は、電圧印加により窒化ガリウムナノワイヤ全体から均一に電界放射される特性を有する。   The nanowire structure of the present invention can reduce the turn-on electric field strength, and is suitably used for an emitter having electron emission characteristics with a turn-on electric field strength of 3 to 4 V / μm by voltage application. In addition, the nanowire structure of the present invention has a characteristic that electric field is radiated uniformly from the entire gallium nitride nanowire when a voltage is applied.

以下、本発明のナノワイヤ構造体の電界電子放出特性について、従来のSi基板を用いた場合と比較しながら、以下の実施例で説明する。なお本発明は、以下の例に制限されるものではない。   Hereinafter, the field electron emission characteristics of the nanowire structure of the present invention will be described in the following examples, in comparison with the case of using a conventional Si substrate. Note that the present invention is not limited to the following examples.

実施例1
無添加のβ−Ga23単結晶を育成しウエハ状に加工した。単結晶育成は、酸化ガリウム粉末(純度4N)を原料とし、静水圧プレスで成形した成形体を大気中1600℃、10時間で焼結し、この焼結体を原料棒としてFZ装置を用いて単結晶育成を行った。成長速度は7.5mm/hとし、雰囲気ガスにはドライエアを用いた。装置としては、市販の光FZ装置(キャノンマシナリー社製商品名iAce)を用いた。作製した単結晶を切断し、CMP(化学機械)研磨により厚さ0.4mmのウエハ状に加工した。この場合の研磨面の結晶方位は(100)面であり、透過率はおよそ80%、抵抗率は1.43×10-1Ωcmである。
Example 1
An additive-free β-Ga 2 O 3 single crystal was grown and processed into a wafer shape. Single crystal growth uses gallium oxide powder (purity 4N) as a raw material, and a molded body formed by isostatic pressing is sintered in the atmosphere at 1600 ° C. for 10 hours, and this sintered body is used as a raw material rod using an FZ apparatus. Single crystal growth was performed. The growth rate was 7.5 mm / h, and dry air was used as the atmospheric gas. As a device, a commercially available optical FZ device (trade name iAce manufactured by Canon Machinery Co., Ltd.) was used. The produced single crystal was cut and processed into a wafer having a thickness of 0.4 mm by CMP (chemical mechanical) polishing. Crystal orientation of the polished surface in this case is (100) plane, the transmittance of about 80%, the resistivity is 1.43 × 10 -1 Ωcm.

得られた酸化ガリウム単結晶基板上に、Ptを触媒として電子ビーム蒸着法によりおよそ5nmの触媒層を形成した。   On the obtained gallium oxide single crystal substrate, a catalyst layer of about 5 nm was formed by electron beam evaporation using Pt as a catalyst.

続いて、形成した触媒層上でトリメチルガリウムおよびアンモニアをCVD法により反応させた。このときの条件は、キャリアガスには水素を用い、チェンバ内圧力:5Torr、基板表面温度:900℃、反応時間:60分とした。   Subsequently, trimethylgallium and ammonia were reacted on the formed catalyst layer by a CVD method. The conditions at this time were such that hydrogen was used as the carrier gas, the chamber internal pressure: 5 Torr, the substrate surface temperature: 900 ° C., and the reaction time: 60 minutes.

このようにして得られた窒化ガリウムナノワイヤのSEM写真を図1に示す。
実施例1における窒化ガリウムナノワイヤの径は、5〜20nm、長さは5〜10μmであり、ワイヤ状の形状をなし、平均密度は5×1012本/mm2であった。
An SEM photograph of the gallium nitride nanowire thus obtained is shown in FIG.
The diameter of the gallium nitride nanowire in Example 1 was 5 to 20 nm, the length was 5 to 10 μm, the wire shape was formed, and the average density was 5 × 10 12 wires / mm 2 .

次に、実施例1のナノワイヤ構造体を用いて電界電子放出特性の測定を行った。測定装置の概要を図2に示す。
図2において、陰極としてのステンレス製の土台101上に試料10(実施例1のナノワイヤ構造体)を設置し、土台101と陽極102との距離を0.9mmとした。陽極102上に蛍光板103を設置し、さらにその上にITO透明電極付きガラス板104を設置した。なお、陽極102の厚さは0.2mmである。
7.6×10-8Torrの真空下、0〜2.8kVの電圧範囲で5V刻みで電流計105により電流値を測定した。その結果を図3(a)に示す。図3(a)から分かるように、1.3kVにおいて電界電子放出を確認し、1.5kVにおいて前記ITO透明電極付きガラス板104を介した蛍光板103からの発光を肉眼で確認した。2.0kVおよび2.8kV印加時の蛍光板103からの発光の様子を図3(b)に示した。図3(a)の電流−電圧特性から、電流密度約32μA/cm2、ターンオン電界強度約3V/μmで電界電子放出が得られたことがわかる。 また、試料全体から比較的均一性が高く電界電子放出しているのが確認された。
Next, the field electron emission characteristics were measured using the nanowire structure of Example 1. An outline of the measuring apparatus is shown in FIG.
In FIG. 2, the sample 10 (the nanowire structure of Example 1) was placed on a stainless steel base 101 as a cathode, and the distance between the base 101 and the anode 102 was 0.9 mm. A fluorescent plate 103 was placed on the anode 102, and a glass plate 104 with an ITO transparent electrode was further placed thereon. The thickness of the anode 102 is 0.2 mm.
The current value was measured by the ammeter 105 in increments of 5 V in a voltage range of 0 to 2.8 kV under a vacuum of 7.6 × 10 −8 Torr. The result is shown in FIG. As can be seen from FIG. 3A, field electron emission was confirmed at 1.3 kV, and light emission from the fluorescent plate 103 through the glass plate 104 with the ITO transparent electrode was confirmed with the naked eye at 1.5 kV. FIG. 3B shows the state of light emission from the fluorescent plate 103 when 2.0 kV and 2.8 kV are applied. From the current-voltage characteristics of FIG. 3A, it can be seen that field electron emission was obtained at a current density of about 32 μA / cm 2 and a turn-on field strength of about 3 V / μm. It was also confirmed that field electrons were emitted from the entire sample with relatively high uniformity.

比較例1
実施例1において、酸化ガリウム単結晶基板の替わりに、Si基板を用いたこと以外は、実施例1を繰り返し、電界電子放出特性を測定した。図4(a)は、Si基板上に作製した窒化ガリウムナノワイヤの光学顕微鏡写真であり、(b)はSEM写真である((b)の上図は上面からの写真であり、下図は断面方向からみた写真である)。直径20〜100nm、長さ約20μmの窒化ガリウムナノワイヤが形成されているのが観察された。
比較例1のナノワイヤ構造体の電界電子放出特性を実施例1と同様な方法で測定した結果、図5に示すように、陽極間距離0.8mmとし、5×10-5Torrの真空下で、3.2kVあたりから電流が流れ始めており、電界強度としては約4V/μmであることがわかった。この値は、実施例1のナノワイヤ構造体のターンオン電界強度である約3V/μmに比べると高い結果となっており、酸化ガリウム単結晶基板上に窒化ガリウムナノワイヤを形成してなるナノワイヤ構造体の電界電子放出特性の方が良好であることがわかる。
Comparative Example 1
In Example 1, Example 1 was repeated except that a Si substrate was used instead of the gallium oxide single crystal substrate, and field electron emission characteristics were measured. 4A is an optical micrograph of a gallium nitride nanowire fabricated on a Si substrate, FIG. 4B is an SEM photograph (the upper diagram in FIG. 4B is a photograph from the top, and the lower diagram is the cross-sectional direction) It is a photograph taken from the viewpoint.) It was observed that gallium nitride nanowires having a diameter of 20 to 100 nm and a length of about 20 μm were formed.
The field electron emission characteristics of the nanowire structure of Comparative Example 1 were measured by the same method as in Example 1. As a result, as shown in FIG. 5, the distance between the anodes was 0.8 mm and the vacuum was 5 × 10 −5 Torr. It was found that current started to flow from around 3.2 kV and the electric field strength was about 4 V / μm. This value is higher than the turn-on field strength of about 3 V / μm, which is the turn-on field strength of the nanowire structure of Example 1, and the nanowire structure formed by forming the gallium nitride nanowire on the gallium oxide single crystal substrate. It can be seen that the field electron emission characteristics are better.

本発明のナノワイヤ構造体は、次世代平面ディスプレイとして開発が進められているフィールドエミッションディスプレイ(FED)用の電子源等にとくに有用である。   The nanowire structure of the present invention is particularly useful as an electron source for a field emission display (FED), which is being developed as a next generation flat display.

実施例1で形成した窒化ガリウムナノワイヤのSEM写真である。2 is a SEM photograph of the gallium nitride nanowire formed in Example 1. 実施例1で用いた電界電子放出特性の測定装置の概要を説明する図である。It is a figure explaining the outline | summary of the measuring apparatus of the field electron emission characteristic used in Example 1. FIG. (a)は実施例1のナノワイヤ構造体の電界電子放出特性を示すグラフであり、(b)は、2.0kVおよび2.8kV印加時の蛍光板からの発光の様子を示す写真である。(A) is a graph which shows the field electron emission characteristic of the nanowire structure of Example 1, (b) is a photograph which shows the mode of the light emission from the fluorescent screen at the time of 2.0 kV and 2.8 kV application. (a)は、比較例1のSi基板上に作製した窒化ガリウムナノワイヤの光学顕微鏡写真であり、(b)はSEM写真である。(A) is an optical microscope photograph of the gallium nitride nanowire produced on the Si substrate of Comparative Example 1, and (b) is an SEM photograph. 比較例1のナノワイヤ構造体の電界電子放出特性を示すグラフである。6 is a graph showing field electron emission characteristics of the nanowire structure of Comparative Example 1.

符号の説明Explanation of symbols

10 試料
101 土台
102 陽極
103 蛍光板
104 ITO透明電極付きガラス板
105 電流計
10 Sample 101 Base 102 Anode 103 Fluorescent Plate 104 Glass Plate with ITO Transparent Electrode 105 Ammeter

Claims (6)

酸化ガリウム単結晶基板上に、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成してなるナノワイヤ構造体。   A nanowire structure in which a gallium nitride nanowire having a wire shape with a diameter of 5 nm to 200 nm and a length of 5 μm to 50 μm is formed on a gallium oxide single crystal substrate. 前記窒化ガリウムナノワイヤを形成する前記酸化ガリウム単結晶基板の結晶方位が、(100)面であることを特徴とする請求項1に記載のナノワイヤ構造体。   2. The nanowire structure according to claim 1, wherein a crystal orientation of the gallium oxide single crystal substrate forming the gallium nitride nanowire is a (100) plane. 電圧印加によりターンオン電界強度が3〜4V/μmの電子放出特性を有するエミッタに用いられることを特徴とする請求項1または2に記載のナノワイヤ構造体。   3. The nanowire structure according to claim 1, wherein the nanowire structure is used for an emitter having an electron emission characteristic with a turn-on electric field strength of 3 to 4 V / μm by voltage application. 電圧印加により前記窒化ガリウムナノワイヤ全体から均一に電界放射することを特徴とする請求項1〜3のいずれかに記載のナノワイヤ構造体。   The nanowire structure according to any one of claims 1 to 3, wherein electric field is uniformly emitted from the entire gallium nitride nanowire by voltage application. 酸化ガリウム単結晶基板上に、NiまたはPtからなる触媒層を形成し、前記触媒層上でトリメチルガリウムおよびアンモニアをCVD法により850〜1000℃の温度範囲で反応させ、径が5nm〜200nm、長さが5μm〜50μmのワイヤ状の形態をした窒化ガリウムナノワイヤを形成することを特徴とするナノワイヤ構造体の製造方法。   A catalyst layer made of Ni or Pt is formed on a gallium oxide single crystal substrate, trimethylgallium and ammonia are reacted on the catalyst layer by a CVD method in a temperature range of 850 to 1000 ° C., and the diameter is 5 nm to 200 nm. A method for producing a nanowire structure, comprising forming a gallium nitride nanowire having a wire shape with a thickness of 5 μm to 50 μm. 前記触媒層の厚さが2nm〜5nmであることを特徴とする請求項5に記載のナノワイヤ構造体の製造方法。   The method for producing a nanowire structure according to claim 5, wherein the catalyst layer has a thickness of 2 nm to 5 nm.
JP2008170618A 2008-06-30 2008-06-30 Nanowire structure and method for producing the same Withdrawn JP2010006670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008170618A JP2010006670A (en) 2008-06-30 2008-06-30 Nanowire structure and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008170618A JP2010006670A (en) 2008-06-30 2008-06-30 Nanowire structure and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010006670A true JP2010006670A (en) 2010-01-14

Family

ID=41587587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008170618A Withdrawn JP2010006670A (en) 2008-06-30 2008-06-30 Nanowire structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010006670A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040096A (en) * 2015-06-25 2015-11-11 广东工业大学 Novel spiral GaN monocrystal nanowire and preparation method thereof
CN106319557A (en) * 2015-07-07 2017-01-11 中国科学院大连化学物理研究所 Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method
CN107628637A (en) * 2017-08-14 2018-01-26 南京大学 A kind of method for preparing III oxide and nitride nano post
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040096A (en) * 2015-06-25 2015-11-11 广东工业大学 Novel spiral GaN monocrystal nanowire and preparation method thereof
CN106319557A (en) * 2015-07-07 2017-01-11 中国科学院大连化学物理研究所 Photoelectrochemistry water decomposition GaN:ZnO photo-anode preparing method
US11239391B2 (en) 2017-04-10 2022-02-01 Norwegian University Of Science And Technology (Ntnu) Nanostructure
EP3610518B1 (en) * 2017-04-10 2023-09-13 Norwegian University of Science and Technology (NTNU) Nanostructure
CN107628637A (en) * 2017-08-14 2018-01-26 南京大学 A kind of method for preparing III oxide and nitride nano post

Similar Documents

Publication Publication Date Title
Zhu et al. Efficient field emission from ZnO nanoneedle arrays
Xu et al. Field emission from zinc oxide nanopins
JP4855758B2 (en) Method for producing diamond having acicular protrusion arrangement structure on surface
US7811149B2 (en) Method for fabricating carbon nanotube-based field emission device
Zhang et al. Growth of n-type 3C-SiC nanoneedles on carbon fabric: toward extremely flexible field emission devices
JP2007123280A (en) CARBON NANOTUBE HAVING ZnO PROTRUSION
JP2001348296A (en) Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
KR101137632B1 (en) Manufacturing method of metal oxide nanostructure and electronic device having the same
CN100482582C (en) Carbon nano-tube preparation method and apparatus
KR100896109B1 (en) Field emission electrode, manufacturing method thereof, and electronic device
JP2010006670A (en) Nanowire structure and method for producing the same
Chen et al. Zinc sulfide nanowire arrays on silicon wafers for field emitters
Chen et al. ZnO nanowire arrays grown on Al: ZnO buffer layers and their enhanced electron field emission
Kim et al. Position-controlled AlN/ZnO coaxial nanotube heterostructure arrays for electron emitter applications
JP4737672B2 (en) Film-forming method by plasma CVD, electron emission source, field emission display and illumination lamp
US20110056433A1 (en) Device for forming diamond film
JP2004107118A (en) Method for manufacturing graphite nano-fiber, electron emitting source and display element
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
JP4581381B2 (en) Method for producing gallium oxide nanostructure
EP3430636B1 (en) Method for controllably growing zno nanowires
JPWO2005031781A1 (en) Method for manufacturing diamond electron-emitting device and electron-emitting device
Huang et al. Controllable synthesis of novel In2O3 nanostructures and their field emission properties
KR100502817B1 (en) Field emission display using GaN nanorods
JP2011159405A (en) Field electron emitting element and method for manufacturing the same
KR101038670B1 (en) Carbon Nano-tube-based Cathode Fabrication Method for Growing Carbon Nano tubes on a Metal Tip without any Buffer Layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110906