JP2011162898A - Carbon fiber precursor fiber and method for producing carbon fiber by using the same - Google Patents

Carbon fiber precursor fiber and method for producing carbon fiber by using the same Download PDF

Info

Publication number
JP2011162898A
JP2011162898A JP2010024905A JP2010024905A JP2011162898A JP 2011162898 A JP2011162898 A JP 2011162898A JP 2010024905 A JP2010024905 A JP 2010024905A JP 2010024905 A JP2010024905 A JP 2010024905A JP 2011162898 A JP2011162898 A JP 2011162898A
Authority
JP
Japan
Prior art keywords
carbon
fiber
carbon fiber
precursor
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010024905A
Other languages
Japanese (ja)
Inventor
Takaya Suzuki
貴也 鈴木
Hiroaki Zushi
博昭 圖子
Michael Woelki
ボエルキー,ミカエル
Christian Hunyar
ハンヤー,クリスチャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2010024905A priority Critical patent/JP2011162898A/en
Publication of JP2011162898A publication Critical patent/JP2011162898A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a means for efficiently performing especially a flame-resisting treatment for improving productivity of carbon fibers. <P>SOLUTION: The carbon fiber precursor fiber comprises: 100 pts.wt. of a polyacrylonitrile polymer and 0.01-5 pts.wt. of a carbon material having a microwave absorbing efficiency higher than that of the polyacrylonitrile polymer; and a relative dielectric constant [εr] of not less than 5 as an additive. The additive is preferably one or more substances selected from the group consisting of activated carbon, carbon nanotube (CNT), carbon nanofiber, fullerene, carbon black, graphite, silicon carbide, pitch coke, diamond, and diamond-like carbon. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリアクリロニトリル系炭素繊維の前駆体繊維と、それを用いた耐炎化繊維及び炭素繊維の製造方法に関する。 The present invention relates to a precursor fiber of polyacrylonitrile-based carbon fiber, a flameproof fiber using the same, and a method for producing carbon fiber.

一般的に、ポリアクリロニトリル系前駆体繊維を用いて炭素繊維を製造する方法としては、原料繊維にポリアクリロニトリル(PAN)等の前駆体繊維(プリカーサー)を使用し、200〜280℃の酸化性雰囲気下で延伸又は収縮を行いながら酸化処理(耐炎化処理)を行った後、300℃以上の不活性ガス雰囲気中で炭素化して製造する方法が一般的である。このようにして得られた炭素繊維は、軽量な上、高い強度や弾性率など良好な特性を有しているので、炭素繊維を利用した複合材料の工業的な用途は、スポーツ・レジャー分野、航空宇宙分野、自動車分野等に広がっている。 Generally, as a method for producing carbon fibers using polyacrylonitrile-based precursor fibers, precursor fibers (precursors) such as polyacrylonitrile (PAN) are used as raw fibers, and an oxidizing atmosphere at 200 to 280 ° C. A method is generally used in which an oxidation treatment (flame-proofing treatment) is performed while stretching or shrinking below, followed by carbonization in an inert gas atmosphere at 300 ° C. or higher. The carbon fiber obtained in this way is lightweight and has good characteristics such as high strength and elastic modulus, so industrial applications of composite materials using carbon fiber are in the sports / leisure field, It has spread to the aerospace field, the automobile field, etc.

炭素繊維の用途が拡大するにつれ、その生産性の向上・改善が問題となっている。炭素繊維の前記製造工程の中でも、とりわけ耐炎化処理工程は、炭素繊維の強度発現に大きく影響を及ぼし、古くから多くの検討が行われてきたが、生産性の向上に一番影響するのもこの工程である。従って、耐炎化処理を効率的に行う方法・手段の開発も強く望まれており、本発明は、この耐炎化処理工程の効率化に着目して、前駆体繊維の酸化処理にマイクロ波の照射を利用する技術を提供しようとするものである。 As the use of carbon fibers expands, the improvement and improvement of productivity has become a problem. Among the above-mentioned production processes of carbon fibers, the flameproofing treatment process in particular has a great influence on the development of carbon fiber strength, and many studies have been conducted for a long time. This is the process. Accordingly, development of a method and means for efficiently performing the flameproofing treatment is also strongly desired, and the present invention pays attention to the efficiency of this flameproofing treatment process, and microwave irradiation is applied to the oxidation treatment of the precursor fiber. It is intended to provide technology that uses the.

下記の特許文献1には、電極用導電助剤等に用いる炭素材料を、温和な温度条件で液相から直接製造する方法において、液状の炭素前駆体と該炭素前駆体よりマイクロ波吸収効率が高い物質の共存下、マイクロ波を照射することからなる炭素材料の製造方法が提案されている。しかしながら、特許文献1に提案されているものは、あくまでも粒子状の炭素材料であり、本発明の炭素繊維を目的とするものとは異なる。 In Patent Document 1 below, in a method of directly producing a carbon material used for a conductive auxiliary agent for an electrode from a liquid phase under a mild temperature condition, microwave absorption efficiency is higher than that of a liquid carbon precursor and the carbon precursor. A method for producing a carbon material has been proposed, which comprises irradiating microwaves in the presence of a high substance. However, what is proposed in Patent Document 1 is a particulate carbon material to the last, and is different from that intended for the carbon fiber of the present invention.

特許文献2には、焼成工程後の炭化収率に優れた炭素繊維前駆体繊維用ポリアクリロニトリル系重合体、及び炭素繊維前駆体繊維並びに炭素繊維を製造するために、ポリアクリロニトリル系重合体と、平均粒径が200nm以下の炭素系微粒子とを含む炭素繊維前駆体繊維用重合体組成物が提案されている。しかし、この発明は、あくまでも、炭素繊維の耐炎化工程及び炭素化工程(合わせて焼成工程)における炭素繊維の炭化収率を向上させるために、炭素繊維前駆体繊維用ポリアクリルニトリル系重合体に、炭素を主成分とする粒子をあらかじめ含有させておくというものである。なお、炭化収率とは、焼成工程において、加わる熱エネルギーによって繊維が酸化や環化によって重量減少した後の炭素繊維重量と、焼成工程前のポリアクリロニトリル系繊維の重量との比(%)を指し、炭素繊維の生産性を示す指標として用いられる。この発明は、マイクロ波に関するものでも、耐炎化処理工程の効率化に着目したものでもない。 Patent Document 2 discloses a polyacrylonitrile-based polymer for carbon fiber precursor fibers having an excellent carbonization yield after the firing step, and a polyacrylonitrile-based polymer for producing carbon fiber precursor fibers and carbon fibers, A polymer composition for carbon fiber precursor fibers containing carbon-based fine particles having an average particle diameter of 200 nm or less has been proposed. However, in order to improve the carbon fiber carbonization yield in the carbon fiber flameproofing process and the carbonization process (and firing process), the present invention is only applied to the polyacrylonitrile polymer for carbon fiber precursor fibers. In addition, particles containing carbon as a main component are contained in advance. The carbonization yield is the ratio (%) between the weight of the carbon fiber after the fiber is reduced in weight by oxidation and cyclization by the applied heat energy and the weight of the polyacrylonitrile fiber before the firing step in the firing step. It is used as an indicator of carbon fiber productivity. The present invention is neither related to microwaves nor focused on increasing the efficiency of the flameproofing process.

本出願人は、炭素繊維のプリカーサーをマイクロ波を用いて処理し、炭素繊維を連続的に製造する方法について提案した(特許文献3)。しかし、この提案は、マイクロ波の処理ゾーンとして同軸の内外二つのコンダクターを用いるという装置上の発明に係るものであって、今回の本出願人の提案とは観点が異なるものである。 The present applicant has proposed a method for continuously producing carbon fiber by treating a precursor of carbon fiber using a microwave (Patent Document 3). However, this proposal relates to an invention on the apparatus in which two coaxial inner and outer conductors are used as a microwave processing zone, and the viewpoint is different from the present applicant's proposal.

特開2008−247627号公報JP 2008-247627 A 特開2007−182657号公報JP 2007-182657 A 国際公開第2007/118596号パンフレットInternational Publication No. 2007/118596 Pamphlet

本発明の課題は、炭素繊維の生産性の向上を目的として、とりわけ耐炎化処理工程を効率的に行う方法・手段を提供することにある。 An object of the present invention is to provide a method and means for efficiently performing a flameproofing treatment process, in particular, for the purpose of improving the productivity of carbon fibers.

本発明は、ポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含むことを特徴とする炭素繊維前駆体繊維である。前記添加剤としては、活性炭、カーボンナノチューブ(CNT)、カーボンナノファイバー、フラーレン、カーボンブラック、黒鉛、炭化珪素、ピッチコークス、ダイヤモンド及びダイヤモンドライクカーボンからなる群から選ばれる1又は2以上の炭素材料が好ましい。また、添加剤は、動的光散乱式粒度分布測定法による平均粒径が200nm以下のものであるのが好ましい。 In the present invention, a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and having a relative dielectric constant [εr] of 5 or more is 0.01 to 100 parts by weight of the polyacrylonitrile polymer. It is a carbon fiber precursor fiber characterized by including 5 parts by weight as an additive. Examples of the additive include one or more carbon materials selected from the group consisting of activated carbon, carbon nanotube (CNT), carbon nanofiber, fullerene, carbon black, graphite, silicon carbide, pitch coke, diamond, and diamond-like carbon. preferable. The additive preferably has an average particle size of 200 nm or less as determined by a dynamic light scattering particle size distribution measurement method.

本発明の他の態様は、ポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含む炭素繊維前駆体繊維用重合体組成物を、湿式紡糸法又は乾・湿式紡糸法により紡糸し、乾燥し、次いで延伸することを特徴とする炭素繊維前駆体繊維の製造方法である。そして、本発明の更なる態様は、前記のごとくして得られた炭素繊維前駆体繊維に、マイクロ波を照射することによって耐炎化処理を行うこと、そして、得られた耐炎化繊維に、300〜800℃の不活性雰囲気中において予備炭素化処理を行い、次いで、1000〜2000℃の不活性雰囲気中において炭素化処理を行うことを特徴とする炭素繊維の製造方法である。 According to another aspect of the present invention, a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and a relative dielectric constant [εr] of 5 or more with respect to 100 parts by weight of the polyacrylonitrile polymer. A carbon fiber characterized by spinning a polymer composition for carbon fiber precursor fibers containing 0.01 to 5 parts by weight as an additive by a wet spinning method or a dry / wet spinning method, drying, and then stretching. It is a manufacturing method of precursor fiber. Further, according to a further aspect of the present invention, the carbon fiber precursor fiber obtained as described above is subjected to a flame resistance treatment by irradiating microwaves, and the obtained flame resistant fiber is subjected to 300 It is a carbon fiber manufacturing method characterized by performing a preliminary carbonization treatment in an inert atmosphere at ˜800 ° C. and then performing a carbonization treatment in an inert atmosphere at 1000 to 2000 ° C.

本発明の炭素繊維前駆体繊維用重合体組成物は、少量の添加剤を、好ましくは、平均粒径が200nm以下の粒子状のものを含んでいるので、紡糸性を損なうことなく、通常の湿式紡糸法又は乾・湿式紡糸法で、炭素繊維前駆体繊維(プリカーサー)を得ることができる。
そして、得られたプリカーサーは、従来の耐炎化工程よりも短時間のマイクロ波照射工程を経て、所望の耐炎化繊維とすることができ、その後の炭素化処理を通じて、従来の工程よりも効率的(短時間)に炭素繊維を得ることができる。
The polymer composition for carbon fiber precursor fibers according to the present invention contains a small amount of an additive, preferably in the form of particles having an average particle diameter of 200 nm or less. Carbon fiber precursor fibers (precursors) can be obtained by wet spinning or dry / wet spinning.
The obtained precursor can be made into a desired flame-resistant fiber through a microwave irradiation process that is shorter than the conventional flame-proofing process, and is more efficient than the conventional process through the subsequent carbonization treatment. Carbon fiber can be obtained in a short time.

従来の耐炎化工程において採用される熱風循環方式による耐炎化反応は、プリカーサーを200℃〜300℃の空気中で、発熱反応をコントロールしながら行ない、耐炎化繊維を得ている。本発明においては、プリカーサーにマイクロ波を照射する技術を用いて、耐炎化を行うものである。しかし、一般的にポリアクリロニトリル系のプリカーサーは誘電率が低く、マイクロ波を吸収するこができない。そのため、マイクロ波照射によって耐炎化を行なうために、150℃以上の雰囲気中で、ポリアクリル系のプリカーサーの環化反応や酸化反応を進行させて、誘電率を高めながら、マイクロ波を照射しなければ、耐炎化反応が進行しないという問題点があった。従来の熱風循環方式よりも温度が低くできるとはいえ、150℃以上に加熱するのでは熱エネルギー効率が良くない。本発明によると、誘電率の高い材料を含有するプリカーサーを作製し、かかるプリカーサーにマイクロ波を照射し、内部加熱も利用し、プリカーサーの耐炎化を効率よく実施して、耐炎化繊維を得ることができる。 The flameproofing reaction by the hot air circulation method employed in the conventional flameproofing process is performed in a precursor at 200 ° C. to 300 ° C. while controlling the exothermic reaction to obtain flameproofed fibers. In the present invention, flame resistance is achieved using a technique of irradiating the precursor with microwaves. However, in general, a polyacrylonitrile-based precursor has a low dielectric constant and cannot absorb microwaves. Therefore, in order to provide flame resistance by microwave irradiation, microwave irradiation must be performed while increasing the dielectric constant by advancing the cyclization reaction and oxidation reaction of the polyacrylic precursor in an atmosphere of 150 ° C or higher. In this case, there is a problem that the flameproofing reaction does not proceed. Although the temperature can be lower than that of the conventional hot air circulation system, heating to 150 ° C. or higher is not efficient in thermal energy. According to the present invention, a precursor containing a material having a high dielectric constant is produced, the precursor is irradiated with microwaves, internal heating is also used, and the precursor is made flame resistant efficiently to obtain a flame resistant fiber. Can do.

本発明の炭素繊維前駆体繊維に、マイクロ波を照射し耐炎化処理を行い、耐炎化繊維とする工程の概要を示す図である。It is a figure which shows the outline | summary of the process of irradiating a carbon fiber precursor fiber of this invention with a microwave, performing a flame resistance process, and setting it as a flame resistance fiber.

本発明は、ポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含むことを特徴とする炭素繊維前駆体繊維である。マイクロ波は電磁波の一種であって、誘電体、即ち、電気絶縁体の誘電損失による誘電加熱に好適である。マイクロ波は、ガラス、紙などを透過し、金属によって反射されるが、食品、水などには吸収されやすい性質を持っている。そして、吸収された電磁波エネルギーは熱に変わり、その物質を発熱させる。本発明の重合体組成物中には、マイクロ波吸収効率が高い物質が含まれているので、この重合体組成物から得られたプリカーサーを耐炎化処理するに際し、マイクロ波を照射することにより、重合体組成物全体が効率良く加熱され酸化されるのである。 In the present invention, a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and having a relative dielectric constant [εr] of 5 or more is 0.01 to 100 parts by weight of the polyacrylonitrile polymer. It is a carbon fiber precursor fiber characterized by including 5 parts by weight as an additive. Microwave is a kind of electromagnetic wave and is suitable for dielectric heating due to dielectric loss of a dielectric, that is, an electrical insulator. Microwaves pass through glass, paper, etc., and are reflected by metals, but have the property of being easily absorbed by food, water, and the like. The absorbed electromagnetic wave energy is converted into heat, and the substance generates heat. In the polymer composition of the present invention, since a substance having a high microwave absorption efficiency is contained, when the precursor obtained from this polymer composition is flameproofed, by irradiating microwaves, The entire polymer composition is efficiently heated and oxidized.

前記添加剤としては、ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高い物質で、かつ、誘電率の高い材料、即ち、比誘電率[εr]が5以上の炭素材料が適当である。具体的には、活性炭、カーボンナノチューブ(CNT)、カーボンナノファイバー、フラーレン、カーボンブラック、黒鉛、炭化珪素、ピッチコークス、ダイヤモンド及びダイヤモンドライクカーボンからなる群から選ばれる1又は2以上の物質が好ましい。また、添加剤は、プリカーサーの紡糸性やマイクロ波の吸収性を考慮すると、できるだけ微粒子状のものが好ましく、後述の動的光散乱式粒度分布測定法による平均粒径が200nm以下のものが適当である。 As the additive, a material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and having a high dielectric constant, that is, a carbon material having a relative dielectric constant [εr] of 5 or more is suitable. Specifically, one or more substances selected from the group consisting of activated carbon, carbon nanotube (CNT), carbon nanofiber, fullerene, carbon black, graphite, silicon carbide, pitch coke, diamond, and diamond-like carbon are preferable. The additive is preferably in the form of fine particles as much as possible in consideration of the spinnability of the precursor and the absorbability of the microwave, and those having an average particle size of 200 nm or less by a dynamic light scattering particle size distribution measurement method described later are appropriate. It is.

本発明で用いられる添加剤の粒径は、製糸可紡性を損なわないように粒径が200nm以下に制御されたものが好ましい。平均粒径200nm以下となる添加剤の粒径とは、有機溶媒、水に分散させた時の平均粒径が200nm以下となるものをいう。本発明において平均粒径とは、分散液を動的光散乱式粒度分布測定法により測定して得られる値のことをいう。平均粒径が200nmよりも大きくなると、重合体組成物中の分散性が悪くなり、炭素繊維前駆体繊維を製造する際の可紡性を損なわれるばかりではなく、炭素繊維を製造する際の延伸性不良、炭素繊維の品位、物性の低下につながるので好ましくない。 The additive used in the present invention preferably has a particle size controlled to 200 nm or less so as not to impair the spinnability. The particle diameter of the additive having an average particle diameter of 200 nm or less refers to an additive having an average particle diameter of 200 nm or less when dispersed in an organic solvent or water. In the present invention, the average particle diameter means a value obtained by measuring a dispersion liquid by a dynamic light scattering particle size distribution measuring method. When the average particle size is larger than 200 nm, the dispersibility in the polymer composition is deteriorated, not only the spinnability in producing the carbon fiber precursor fiber is impaired, but also the drawing in producing the carbon fiber. It is not preferable because it leads to poor quality, carbon fiber quality and physical properties.

本発明においては、前記のようなポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含むプリカーサー用重合体組成物を、湿式紡糸法又は乾・湿式紡糸法により紡糸し、乾燥し、次いで延伸して炭素繊維のプリカーサーを得る。 In the present invention, a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and a relative dielectric constant [εr] of 5 or more with respect to 100 parts by weight of the polyacrylonitrile polymer as described above. A polymer composition for a precursor containing 0.01 to 5 parts by weight as an additive is spun by a wet spinning method or a dry / wet spinning method, dried, and then stretched to obtain a carbon fiber precursor.

ポリアクリロニトリル系プリカーサーとしては、従来公知のポリアクリロニトリル系繊維が何ら制限なく使用できる。通常、アクリロニトリルを90重量%以上、好ましくは95重量%以上含有する単量体を単独又は共重合した紡糸溶液を紡糸して、炭素繊維原料(プリカーサー又は前駆体繊維)とする。紡糸方法としては、湿式又は乾湿式紡糸方法いずれの方法も用いることができるが、複合材料として用いる際のマトリックス樹脂とのアンカー効果による接着性を考慮すると、表面にひだを有する湿式紡糸方法がより好ましい。また、凝固した後は、水洗・乾燥・延伸して炭素繊維原料とすることが好ましい。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。 As the polyacrylonitrile-based precursor, conventionally known polyacrylonitrile-based fibers can be used without any limitation. Usually, a spinning solution in which a monomer containing acrylonitrile is 90% by weight or more, preferably 95% by weight or more is used alone or copolymerized is spun to obtain a carbon fiber raw material (precursor or precursor fiber). As the spinning method, either a wet or dry wet spinning method can be used, but in consideration of the adhesion due to the anchor effect with the matrix resin when used as a composite material, a wet spinning method having a pleat on the surface is more preferable. preferable. Moreover, after solidifying, it is preferable to wash with water, dry and stretch to obtain a carbon fiber raw material. As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

次いで、本発明においては、前記のごとくして得られた炭素繊維のプリカーサーに、マイクロ波を照射することによって耐炎化処理を行い耐炎化繊維を得る。マイクロ波を照射する方法・手段は特に限定されるものではなく、例えば、マグネトロンで発生させたマイクロ波が、プリカーサーに出来るだけ均一に当たり、加熱むらが生じないようにする工夫が必要である。好ましい方法・手段は、本出願人が既に提案した特許文献3に記載のものである。通常は、ポリアクリロニトリル系プリカーサーの耐炎化処理は、雰囲気ガス循環式の加熱炉で、プリカーサーを、供給ローラーと引き取りローラー間に複数回、所定の荷重をかけて延伸又は収縮させながら通過させることによって行われる。本発明においても同様なやり方を採用できる。 Next, in the present invention, the carbon fiber precursor obtained as described above is subjected to a flame resistance treatment by irradiating microwaves to obtain a flame resistant fiber. The method and means for irradiating the microwave are not particularly limited, and for example, it is necessary to devise a method to prevent the microwave generated by the magnetron from hitting the precursor as uniformly as possible and to prevent heating unevenness. A preferred method and means are those described in Patent Document 3 that has already been proposed by the present applicant. Usually, the flameproofing treatment of a polyacrylonitrile-based precursor is performed by passing the precursor several times between a supply roller and a take-up roller while stretching or shrinking it with a predetermined load in an atmosphere gas circulation type heating furnace. Done. A similar method can be adopted in the present invention.

加熱に利用されるマイクロ波の周波数としては、非通信用のIMSバンドが利用されており、日本では高い周波数の2.45GHzが一般的である。米国などでは915MHz帯も使用されており、本発明の性質上は特に限定されるものではない。かかるマイクロ波による加熱によると、従来の熱伝導および対流による熱炉に比べて、より短い時間とより少ない総エネルギー量でプリカーサーを加熱・酸化することができる。前記耐炎化処理工程では、炭素繊維のプリカーサーにマイクロ波を照射して耐炎化を行い、比重が1.3〜1.5の範囲にある耐炎化繊維が得られる。その時の、照射条件は周波数2.45GHz、915MHzのどちらでも可能であり、マグネトロンの出力は200〜1500Wが適当である。 As a microwave frequency used for heating, a non-communication IMS band is used, and a high frequency of 2.45 GHz is generally used in Japan. In the United States and the like, the 915 MHz band is also used, and there is no particular limitation on the nature of the present invention. According to such microwave heating, the precursor can be heated and oxidized in a shorter time and with a smaller total amount of energy as compared with a conventional heat conduction and convection furnace. In the flameproofing treatment step, the precursor of carbon fiber is irradiated with microwaves to make it flameproof, and a flameproof fiber having a specific gravity in the range of 1.3 to 1.5 is obtained. At that time, the irradiation conditions can be either a frequency of 2.45 GHz or 915 MHz, and the output of the magnetron is appropriately 200 to 1500 W.

上記、マイクロ波の周波数域における誘電率の測定方法は、JIS−C−2565に定められている、高周波における磁性材料の誘電率と透磁率を測定する標準的な方法を用いて、試料を含む測定系の入出力特性の測定を行い、得られた結果から比誘電率を導出することができる。 The above-described method for measuring the dielectric constant in the microwave frequency range includes a sample using a standard method for measuring the dielectric constant and permeability of a magnetic material at a high frequency as defined in JIS-C-2565. The input / output characteristics of the measurement system are measured, and the relative permittivity can be derived from the obtained results.

通常の耐炎化処理は、例えば、加熱空気等の酸化性雰囲気中200〜280℃の温度範囲内で行われる。この際、プリカーサーは、一般的に延伸倍率0.85〜1.3倍の範囲で延伸又は収縮処理される。この耐炎化処理は、繊維密度1.3〜1.5g/cm3の耐炎化繊維とするものであり、耐炎化時の糸にかかる張力は特に限定されるものではない。耐炎化処理過程では、延伸処理しなければポリアクリロニトリル系プリカーサーは、処理温度の上昇と共に収縮する。そこで、延伸応力を調節して延伸処理することにより延伸倍率を調節することができる。延伸倍率1.0とは、繊維に延伸応力を与えているが、収縮と延伸とのバランスがとれ延伸前と延伸後との長さが同一であることを示す。本発明においても、延伸倍率や繊維密度は従来の方法と同様な条件に設定すれば良いが、雰囲気温度は10〜150℃の範囲で行うことができる。 The normal flameproofing treatment is performed, for example, in a temperature range of 200 to 280 ° C. in an oxidizing atmosphere such as heated air. At this time, the precursor is generally stretched or contracted within a stretch ratio of 0.85 to 1.3. This flameproofing treatment is to make a flameproof fiber having a fiber density of 1.3 to 1.5 g / cm3, and the tension applied to the yarn at the time of flameproofing is not particularly limited. In the flameproofing process, the polyacrylonitrile-based precursor shrinks as the processing temperature rises unless it is stretched. Therefore, the stretching ratio can be adjusted by adjusting the stretching stress and performing a stretching treatment. A draw ratio of 1.0 indicates that a drawing stress is applied to the fiber, but shrinkage and drawing are balanced and the length before drawing and after drawing are the same. In the present invention, the draw ratio and fiber density may be set to the same conditions as in the conventional method, but the ambient temperature can be in the range of 10 to 150 ° C.

前記のごとくして得られた耐炎化繊維に、300〜800℃の不活性雰囲気中において予備炭素化処理を行い、次いで、1000〜2000℃の不活性雰囲気中において炭素化処理(必要に応じて、いわゆる黒鉛化処理することも含む)を行うことによって炭素繊維が得られる。かかる予備炭素化処理と炭素化処理は、耐炎化繊維を炭素化して炭素繊維を得る場合に、通常採用される条件・方法である。 The flame-resistant fiber obtained as described above is subjected to a preliminary carbonization treatment in an inert atmosphere at 300 to 800 ° C., and then carbonized in an inert atmosphere at 1000 to 2000 ° C. (if necessary Carbon fiber is obtained by performing so-called graphitization treatment. Such pre-carbonization treatment and carbonization treatment are conditions and methods that are usually employed when carbonizing flame-resistant fibers to obtain carbon fibers.

予備炭素化処理(第一炭素化処理)においては、耐炎化繊維を、不活性雰囲気中で、300〜800℃、好ましくは、300〜550℃の温度範囲内で、1.03〜1.07の延伸倍率で一次延伸処理し、次いで0.9〜1.01の延伸倍率で二次延伸処理して、繊維密度1.4〜1.7g/cm3の第一炭素化処理繊維を得る。第一炭素化工程において、一次延伸処理では、耐炎化繊維の弾性率が極小値まで低下した時点から9.8GPaに増加するまでの範囲、同繊維の密度が1.5g/cm3に達するまでの範囲で、1.03〜1.06の延伸倍率で延伸処理を行うのが好ましい。二次延伸処理においては、一次延伸処理後の繊維の密度が二次延伸処理中に上昇し続ける範囲で、0.9〜1.01倍の延伸倍率で延伸処理を行うのが好ましい。かかる条件を採用すると、結晶が成長することなく、緻密化され、ボイドの生成も抑制でき、最終的に高い緻密性を有した高強度炭素繊維を得ることができる。上記第一炭素化工程は、一つの炉若しくは二つ以上の炉で、連続的若しくは別々に処理することができる。 In the preliminary carbonization treatment (first carbonization treatment), the flameproof fiber is placed in an inert atmosphere at a temperature of 300 to 800 ° C., preferably 300 to 550 ° C., and 1.03 to 1.07. The first carbonized fiber having a fiber density of 1.4 to 1.7 g / cm 3 is obtained by performing a primary stretching process at a stretching ratio of 0.9 to 1.01 and a secondary stretching process at a stretching ratio of 0.9 to 1.01. In the first carbonization step, in the primary stretching treatment, the range from the time when the elastic modulus of the flameproof fiber decreases to the minimum value until it increases to 9.8 GPa, until the density of the fiber reaches 1.5 g / cm3. In the range, it is preferable to perform the stretching treatment at a stretching ratio of 1.03 to 1.06. In the secondary stretching process, it is preferable to perform the stretching process at a stretching ratio of 0.9 to 1.01 within a range in which the density of the fiber after the primary stretching process continues to rise during the secondary stretching process. When such conditions are employed, the crystals are densified without growing, the formation of voids can be suppressed, and finally high-strength carbon fibers having high density can be obtained. The first carbonization step can be performed continuously or separately in one furnace or two or more furnaces.

炭素化処理(第二炭素化処理)においては、上記第一炭素化処理繊維を、不活性雰囲気中で、第二炭素化工程において800〜2100℃、好ましくは、1000〜1450℃の温度範囲内で、同工程を一次処理と二次処理とに分けて延伸処理して、第二炭素化処理繊維を得る。一次処理では、第一炭素化処理繊維の密度が一次処理中上昇し続ける範囲、同繊維の窒素含有量が10質量%以上の範囲で、同繊維を延伸処理するのが好ましい。二次処理においては、一次処理繊維の密度が変化しない又は低下する範囲で、同繊維を延伸処理するのが好ましい。第二炭素化処理繊維の伸度は2.0%以上、より好ましくは2.2%以上である。また、第二炭素化処理繊維の直径は、5〜10μmであるのが好ましい。また、これら焼成工程は、単一設備で連続して処理することも、数個の設備で連続して処理することも可能であり、特に限定されるものではない。 In the carbonization treatment (second carbonization treatment), the first carbonized fiber is treated in an inert atmosphere at a temperature of 800 to 2100 ° C., preferably 1000 to 1450 ° C. in the second carbonization step. Then, the same process is divided into a primary treatment and a secondary treatment, and a drawing treatment is performed to obtain a second carbonized fiber. In the primary treatment, it is preferable to stretch the fiber in a range where the density of the first carbonized fiber continues to increase during the primary treatment, and in a range where the nitrogen content of the fiber is 10% by mass or more. In the secondary treatment, it is preferable to stretch the fiber in a range where the density of the primary treated fiber does not change or decreases. The elongation of the second carbonized fiber is 2.0% or more, more preferably 2.2% or more. Moreover, it is preferable that the diameter of a 2nd carbonization processing fiber is 5-10 micrometers. Moreover, these baking processes can be processed continuously with a single facility or with several facilities, and are not particularly limited.

上記で得られた炭素繊維は、必要に応じて黒鉛化処理(第三炭素化処理)に付してもよい。第三炭素化処理においては、上記第二炭素化処理繊維を1500〜2100℃、好ましくは、1550〜1900℃で更に炭素化又は黒鉛化処理する。 The carbon fiber obtained above may be subjected to graphitization treatment (third carbonization treatment) as necessary. In the third carbonization treatment, the second carbonization-treated fiber is further carbonized or graphitized at 1500 to 2100 ° C, preferably 1550 to 1900 ° C.

上記で得られた炭素繊維は、通常、引き続いて表面処理を施こされる。表面処理には気相、液相処理も用いることができるが、工程管理の簡便さと生産性を高める点から、電解処理による表面処理が好ましい。また電解処理に使用される電解液は従来の公知のものを使用することができ、硝酸、硝酸アンモニウム、硫酸、硫酸アンモニウム、水酸化ナトリウム等を用いることができ、無機酸、有機酸及びアルカリ問わず、特に限定されるものではない。また、通常、上記表面処理繊維は、引き続いてサイジング処理を施こされる。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。 The carbon fiber obtained above is usually subsequently subjected to a surface treatment. For the surface treatment, a gas phase or a liquid phase treatment can be used, but surface treatment by electrolytic treatment is preferable from the viewpoint of easy process control and productivity. Moreover, the electrolyte solution used for an electrolysis process can use the conventionally well-known thing, Nitric acid, ammonium nitrate, a sulfuric acid, ammonium sulfate, sodium hydroxide etc. can be used, regardless of an inorganic acid, an organic acid, and an alkali, It is not particularly limited. Usually, the surface-treated fiber is subsequently subjected to sizing treatment. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

本発明は、製糸可紡性を損なうことなく、マイクロ波による耐炎化を実施し、炭素繊維を製造するものであるが、以下、実施例と比較例により本発明を詳述する。 In the present invention, carbon fiber is manufactured by making flame resistance by microwave without impairing the spinning property, and the present invention will be described in detail below with reference to Examples and Comparative Examples.

実施例において、炭素繊維の樹脂含浸ストランド強度と弾性率は、JIS−R−7608に規定された方法により測定した、エポキシ樹脂含浸ストランド物性である。炭素繊維のサイジング剤の除去は、アセトンを用い3時間のソックスレー処理によって行い、その後繊維を風乾した。添加剤の平均粒径は、添加剤の分散液を、マイクロトラック粒度分布測定装置MT3000(日機装株式会社)を用いる、動的光散乱式粒度分布測定法により測定して得た。 In the examples, the resin-impregnated strand strength and elastic modulus of carbon fiber are the properties of epoxy resin-impregnated strands measured by the method defined in JIS-R-7608. The carbon fiber sizing agent was removed by Soxhlet treatment with acetone for 3 hours, and then the fiber was air-dried. The average particle size of the additive was obtained by measuring a dispersion of the additive by a dynamic light scattering particle size distribution measurement method using a Microtrac particle size distribution measuring device MT3000 (Nikkiso Co., Ltd.).

[実施例1〜5]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の100重量部に、表1に示したような所定量の各種添加剤を添加して炭素繊維前駆体用重合組成物を作製した。これを常法により湿式紡糸し、水洗、乾燥、延伸、オイリングして、繊度1.15dtex、フィラメント数12,000のプリカーサーを得た。かくして得られたプリカーサーを後述する製造工程で処理し、耐炎化繊維を得た。
[Examples 1 to 5]
A carbon fiber precursor is prepared by adding predetermined amounts of various additives as shown in Table 1 to 100 parts by weight of a copolymer consisting of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid. A polymerization composition was prepared. This was wet-spun by a conventional method, washed with water, dried, drawn, and oiled to obtain a precursor having a fineness of 1.15 dtex and a filament number of 12,000. The precursor thus obtained was processed in the production process described later to obtain flame resistant fibers.

プリカーサーにマイクロ波を照射し、耐炎化処理するための装置(耐炎化炉)の概要を図1に示した。図1において、プリカーサー1は耐炎化炉2を経て耐炎化繊維3に変性される。4はマイクロ波の発生装置であり、発生されたマイクロ波5は耐炎化炉2内に導かれる。6はマイクロ波のコントロール及びモニタリングシステムである。 An outline of an apparatus (flame-proofing furnace) for irradiating a precursor with microwaves and making it flame-proof is shown in FIG. In FIG. 1, a precursor 1 is modified into a flameproof fiber 3 through a flameproofing furnace 2. Reference numeral 4 denotes a microwave generator, and the generated microwave 5 is guided into the flameproofing furnace 2. 6 is a microwave control and monitoring system.

図1の装置を用いて、常温雰囲気中、マイクロ波を用いて耐炎化を行なった。マイクロ波の周波数は、一般的に使用することが出来る915MHz又は2.45GHzの両方を用いた。マイクロ波の出力は、照射する対象の容量や吸収効率により、適宜選択することが出来る。マイクロ波の照射時間は、用いる炭素繊維のプリカーサーの種類その他の条件により変わりうるが、本発明においては、耐炎化時の繊維損傷を最小限にするため、ON−OFFを繰り返すパルス照射方式で耐炎化を行った。耐炎化条件は表1に示したとおりである。本方法により、25〜35分間マイクロ波を照射し耐炎化を実施したところ、従来の約半分の時間で密度1.36〜1.38g/cm3の耐炎化繊維を得ることが出来た。 Using the apparatus of FIG. 1, flame resistance was performed using a microwave in a normal temperature atmosphere. The microwave frequency used was 915 MHz or 2.45 GHz, which can be generally used. The output of the microwave can be appropriately selected depending on the capacity of the object to be irradiated and the absorption efficiency. The microwave irradiation time may vary depending on the type of carbon fiber precursor used and other conditions, but in the present invention, in order to minimize fiber damage during flame resistance, flame resistance is achieved by a pulse irradiation system that repeats ON-OFF. Made. The flameproofing conditions are as shown in Table 1. When flame resistance was achieved by irradiating microwaves for 25 to 35 minutes by this method, flame resistant fibers having a density of 1.36 to 1.38 g / cm 3 could be obtained in about half of the conventional time.

次に得られた耐炎化繊維を純粋な窒素気流中300〜600℃の温度勾配を有する第一炭素化炉を通過せしめるに際して2〜8%の伸長を加え、更に同雰囲気中1100〜1200℃の最高温度を有する第二炭素化炉中において炭素化処理して炭素繊維を得た。得られた炭素繊維の物性(ストランド強度と弾性率)は表1に示したとおりであった。 Next, when the obtained flame-resistant fiber is passed through a first carbonization furnace having a temperature gradient of 300 to 600 ° C. in a pure nitrogen stream, elongation of 2 to 8% is added, and further 1100 to 1200 ° C. in the same atmosphere. Carbon fiber was obtained by carbonization in a second carbonization furnace having the highest temperature. The physical properties (strand strength and elastic modulus) of the obtained carbon fiber were as shown in Table 1.

[比較例1]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の100重量部に、添加剤として黒鉛を8重量部(本発明の範囲外)添加して炭素繊維前駆体用重合組成物を作製した。かかる炭素繊維前駆体用重合組成物は、湿式紡糸する際、可紡性の点で問題があり、十分な延伸が出来ず、その後、実施例1と同様の方法で、耐炎化処理、焼成を実施したが、ストランド強度と弾性率が低い炭素繊維しか得られなかった。結果は表1に示した。
[Comparative Example 1]
Carbon fiber precursor by adding 8 parts by weight of graphite (outside the scope of the present invention) as an additive to 100 parts by weight of a copolymer consisting of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid A polymerization composition was prepared. Such a polymer composition for a carbon fiber precursor has a problem in terms of spinnability during wet spinning, and cannot be sufficiently stretched. Thereafter, in the same manner as in Example 1, flameproofing treatment and firing are performed. Only carbon fibers with low strand strength and elastic modulus were obtained. The results are shown in Table 1.

[比較例2]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の炭素繊維前駆体用重合組成物(添加物を含まないもの)を、常法により湿式紡糸し、水洗、乾燥、延伸、オイリングして繊度1.15dtex、フィラメント数
12000の前駆体繊維を得た。上記前駆体繊維を、常温雰囲気中において、マイクロ波を用いて耐炎化を実施したが、常温雰囲気中では、ポリアクリロニトリル繊維の誘電率が低く、結果を表1に示したとおり、耐炎化反応が生じなかった。
[Comparative Example 2]
A polymer composition for carbon fiber precursor (containing no additive) composed of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid was wet-spun by a conventional method, washed with water, Drying, drawing and oiling were performed to obtain a precursor fiber having a fineness of 1.15 dtex and a filament number of 12,000. The precursor fiber was flame-resistant using microwaves in a normal temperature atmosphere. In the normal temperature atmosphere, the polyacrylonitrile fiber had a low dielectric constant, and as shown in Table 1, the flame resistance reaction was performed. Did not occur.

[比較例3]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の炭素繊維前駆体用重合組成物(添加物を含まないもの)を、常法により湿式紡糸し、水洗、乾燥、延伸、オイリングして繊度1.15dtex、フィラメント数
12000の前駆体繊維を得た。この前駆体繊維(プレカーサー)を220〜260℃の熱風循環型の耐炎化炉を60分間かけて通過せしめて、密度が1.37g/ccの耐炎化繊維を得た。耐炎化処理するに際して0〜6%の伸長操作を施した。次に得られた耐炎化繊維を純粋な窒素気流中300〜600℃の温度勾配を有する第一炭素化炉を通過せしめるに際して2〜8%の伸長を加え、更に同雰囲気中1100〜1200℃の最高温度を有する第二炭素化炉中において炭素化処理して炭素繊維を得た。このように従来の熱風循環方式による耐炎化処理を経て製造された炭素繊維は、表1に示したとおり、本発明の場合と同様の高いストランド強度と弾性率を有する。しかしながら、耐炎化に要する時間が、本発明の場合の約2倍かかっており、耐炎化効率が劣っている。
[Comparative Example 3]
A polymer composition for carbon fiber precursor (containing no additive) composed of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid was wet-spun by a conventional method, washed with water, Drying, drawing and oiling were performed to obtain a precursor fiber having a fineness of 1.15 dtex and a filament number of 12,000. This precursor fiber (precursor) was passed through a hot air circulation type flameproofing furnace at 220 to 260 ° C. over 60 minutes to obtain a flameproofed fiber having a density of 1.37 g / cc. When the flameproofing treatment was performed, an elongation operation of 0 to 6% was performed. Next, when the obtained flame-resistant fiber is passed through a first carbonization furnace having a temperature gradient of 300 to 600 ° C. in a pure nitrogen stream, elongation of 2 to 8% is added, and further 1100 to 1200 ° C. in the same atmosphere. Carbon fiber was obtained by carbonization in a second carbonization furnace having the highest temperature. Thus, as shown in Table 1, the carbon fibers produced through the flameproofing treatment by the conventional hot air circulation system have the same high strand strength and elastic modulus as in the case of the present invention. However, the time required for flame resistance is about twice that of the present invention, and the flame resistance efficiency is inferior.

[比較例4]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の100重量部に、添加剤としてSi3N4を0.5重量部添加して炭素繊維前駆体用重合組成物を作製した。以後は比較例2と同様に処理した。表1に示したようにSi3N4は、その比誘電率は9.0と大きいが、本発明の炭素材料ではないため、発熱挙動が弱く、常温雰囲気下では、耐炎化が進行し難い。
[Comparative Example 4]
To 100 parts by weight of a copolymer consisting of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid, 0.5 part by weight of Si3N4 is added as an additive to obtain a polymer composition for carbon fiber precursor. Produced. Thereafter, the same processing as in Comparative Example 2 was performed. As shown in Table 1, Si3N4 has a large relative dielectric constant of 9.0, but since it is not a carbon material of the present invention, its heat generation behavior is weak and flame resistance hardly progresses in a room temperature atmosphere.

[比較例5]
アクリロニトリル95重量部/アクリル酸メチル4重量部/イタコン酸1重量部よりなる共重合体の100重量部に、添加剤としてAlを0.5重量部添加して炭素繊維前駆体用重合組成物を作製した。上記炭素繊維前駆体用重合組成物を湿式紡糸し、水洗、乾燥、延伸、オイリングして繊度1.15dtex、フィラメント数
12000の前駆体繊維を得た。得られた炭素繊維前駆体繊維に、実施例1と同様の方法で、耐炎化処理、焼成を実施したが、金属(Al)材料が異物となり、十分な物性をもった炭素繊維を得ることが出来なかった。結果は表1に示した。
[Comparative Example 5]
To 100 parts by weight of a copolymer consisting of 95 parts by weight of acrylonitrile / 4 parts by weight of methyl acrylate / 1 part by weight of itaconic acid, 0.5 parts by weight of Al as an additive was added to obtain a polymer composition for carbon fiber precursor. Produced. The polymer composition for carbon fiber precursor was wet-spun, washed with water, dried, drawn, and oiled to obtain a precursor fiber having a fineness of 1.15 dtex and a filament number of 12,000. The obtained carbon fiber precursor fiber was subjected to flameproofing treatment and firing in the same manner as in Example 1. However, the metal (Al) material becomes a foreign substance, and carbon fibers having sufficient physical properties can be obtained. I could not do it. The results are shown in Table 1.

Figure 2011162898
Figure 2011162898

1 プリカーサー
2 耐炎化炉
3 耐炎化繊維
4 マイクロ波の発生装置
5 発生されたマイクロ波
6 マイクロ波のコントロール及びモニタリングシステム

DESCRIPTION OF SYMBOLS 1 Precursor 2 Flame resistant furnace 3 Flame resistant fiber 4 Microwave generator 5 Generated microwave 6 Microwave control and monitoring system

Claims (6)

ポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含むことを特徴とする炭素繊維前駆体繊維。 0.01-5 parts by weight of a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile-based polymer and having a relative dielectric constant [εr] of 5 or more with respect to 100 parts by weight of the polyacrylonitrile-based polymer. A carbon fiber precursor fiber comprising an additive as an additive. 添加剤が、活性炭、カーボンナノチューブ(CNT)、カーボンナノファイバー、フラーレン、カーボンブラック、黒鉛、炭化珪素、ピッチコークス、ダイヤモンド及びダイヤモンドライクカーボンからなる群から選ばれる1又は2以上の炭素材料であることを特徴とする請求項1記載の炭素繊維前駆体繊維。 The additive is one or more carbon materials selected from the group consisting of activated carbon, carbon nanotube (CNT), carbon nanofiber, fullerene, carbon black, graphite, silicon carbide, pitch coke, diamond and diamond-like carbon. The carbon fiber precursor fiber according to claim 1. 添加剤が、動的光散乱式粒度分布測定法による平均粒径が200nm以下のものであることを特徴とする請求項1又は2記載の炭素繊維前駆体繊維。 The carbon fiber precursor fiber according to claim 1 or 2, wherein the additive has an average particle diameter of 200 nm or less as measured by a dynamic light scattering particle size distribution measurement method. ポリアクリロニトリル系重合体100重量部に対して、該ポリアクリロニトリル系重合体よりもマイクロ波吸収効率が高く、かつ、比誘電率[εr]が5以上の炭素材料を0.01〜5重量部、添加剤として含む炭素繊維前駆体繊維用組成物を、湿式紡糸法又は乾・湿式紡糸法により紡糸し、乾燥し、次いで延伸することを特徴とする炭素繊維前駆体繊維の製造方法。 0.01-5 parts by weight of a carbon material having a microwave absorption efficiency higher than that of the polyacrylonitrile polymer and having a relative dielectric constant [εr] of 5 or more with respect to 100 parts by weight of the polyacrylonitrile polymer. A method for producing a carbon fiber precursor fiber comprising spinning a composition for carbon fiber precursor fibers contained as an additive by a wet spinning method or a dry / wet spinning method, drying and then stretching. 請求項4記載の製造方法によって得られた炭素繊維前駆体繊維に、マイクロ波を照射することによって耐炎化処理を行うことを特徴とする耐炎化繊維の製造方法。 A method for producing a flame-resistant fiber, comprising subjecting the carbon fiber precursor fiber obtained by the production method according to claim 4 to a flame resistance treatment by irradiating with microwaves. 請求項5記載の製造方法によって得られた耐炎化繊維に、300〜800℃の不活性雰囲気中において予備炭素化処理を行い、次いで、1000〜2000℃の不活性雰囲気中において炭素化処理を行うことを特徴とする炭素繊維の製造方法。

The flameproof fiber obtained by the production method according to claim 5 is subjected to a preliminary carbonization treatment in an inert atmosphere at 300 to 800 ° C, and then subjected to a carbonization treatment in an inert atmosphere at 1000 to 2000 ° C. A carbon fiber manufacturing method characterized by the above.

JP2010024905A 2010-02-06 2010-02-06 Carbon fiber precursor fiber and method for producing carbon fiber by using the same Pending JP2011162898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024905A JP2011162898A (en) 2010-02-06 2010-02-06 Carbon fiber precursor fiber and method for producing carbon fiber by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024905A JP2011162898A (en) 2010-02-06 2010-02-06 Carbon fiber precursor fiber and method for producing carbon fiber by using the same

Publications (1)

Publication Number Publication Date
JP2011162898A true JP2011162898A (en) 2011-08-25

Family

ID=44593925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024905A Pending JP2011162898A (en) 2010-02-06 2010-02-06 Carbon fiber precursor fiber and method for producing carbon fiber by using the same

Country Status (1)

Country Link
JP (1) JP2011162898A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
US9308705B2 (en) 2012-12-03 2016-04-12 Industrial Technology Research Institute Carbon fiber composite material and method for preparing the same
KR20160137526A (en) 2014-03-31 2016-11-30 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Carbon fiber manufacturing device and carbon fiber manufacturing method
KR20160138775A (en) * 2015-05-26 2016-12-06 한국과학기술연구원 Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR20160138776A (en) * 2015-05-26 2016-12-06 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
JP2016540131A (en) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク Polyacrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2017536486A (en) * 2014-10-08 2017-12-07 ジョージア テック リサーチ コーポレイション Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers
US10272651B1 (en) 2017-10-18 2019-04-30 Industrial Technology Research Institute Fiber composite and manufacturing method thereof
CN110093688A (en) * 2018-01-29 2019-08-06 永虹先进材料股份有限公司 Fiber preoxidation equipment
CN110093685A (en) * 2018-01-29 2019-08-06 永虹先进材料股份有限公司 Oxidized fibre manufacturing method and oxidized fibre
TWI695096B (en) * 2018-01-29 2020-06-01 永虹先進材料股份有限公司 Oxidized fiber manufacturing method
CN111805935A (en) * 2019-04-11 2020-10-23 财团法人工业技术研究院 Fiber composite structure
US11027534B2 (en) 2017-10-18 2021-06-08 Industrial Technology Research Institute Fiber composite material and manufacturing method thereof
CN114318593A (en) * 2021-12-10 2022-04-12 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
KR20220112493A (en) * 2021-02-04 2022-08-11 한국과학기술원 Carbon fiber and method of manufacturing the same
CN114892344A (en) * 2022-05-16 2022-08-12 南京工业大学 Preparation method of flame-retardant polyacrylonitrile-based nanofiber membrane for high-temperature filtration

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
US9308705B2 (en) 2012-12-03 2016-04-12 Industrial Technology Research Institute Carbon fiber composite material and method for preparing the same
US9868275B2 (en) 2012-12-03 2018-01-16 Industrial Technology Research Institute Method for preparing carbon fiber composite material
JP2016540131A (en) * 2013-06-21 2016-12-22 コーロン インダストリーズ インク Polyacrylonitrile-based precursor fiber for carbon fiber and method for producing the same
KR20160137526A (en) 2014-03-31 2016-11-30 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Carbon fiber manufacturing device and carbon fiber manufacturing method
US10260173B2 (en) 2014-03-31 2019-04-16 Teijin Limited Carbon fiber manufacturing device and carbon fiber manufacturing method
JP2017536486A (en) * 2014-10-08 2017-12-07 ジョージア テック リサーチ コーポレイション Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers
US10344404B2 (en) 2015-05-26 2019-07-09 Korea Institute Of Science And Technology Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR101689861B1 (en) * 2015-05-26 2016-12-26 한국과학기술연구원 Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR20160138776A (en) * 2015-05-26 2016-12-06 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
KR20160138775A (en) * 2015-05-26 2016-12-06 한국과학기술연구원 Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
KR101726822B1 (en) * 2015-05-26 2017-04-13 한국과학기술연구원 Ultrafine carbon fibers and their preparation method
US11027534B2 (en) 2017-10-18 2021-06-08 Industrial Technology Research Institute Fiber composite material and manufacturing method thereof
US10272651B1 (en) 2017-10-18 2019-04-30 Industrial Technology Research Institute Fiber composite and manufacturing method thereof
CN110093688A (en) * 2018-01-29 2019-08-06 永虹先进材料股份有限公司 Fiber preoxidation equipment
CN110093685A (en) * 2018-01-29 2019-08-06 永虹先进材料股份有限公司 Oxidized fibre manufacturing method and oxidized fibre
TWI695096B (en) * 2018-01-29 2020-06-01 永虹先進材料股份有限公司 Oxidized fiber manufacturing method
CN111805935A (en) * 2019-04-11 2020-10-23 财团法人工业技术研究院 Fiber composite structure
US10919272B2 (en) 2019-04-11 2021-02-16 Industrial Technology Research Institute Fiber composition structure
CN111805935B (en) * 2019-04-11 2022-01-07 财团法人工业技术研究院 Fiber composite structure
KR20220112493A (en) * 2021-02-04 2022-08-11 한국과학기술원 Carbon fiber and method of manufacturing the same
KR102544810B1 (en) * 2021-02-04 2023-06-20 한국과학기술원 Carbon fiber and method of manufacturing the same
CN114318593A (en) * 2021-12-10 2022-04-12 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
CN114318593B (en) * 2021-12-10 2023-01-17 山东大学 Fullerene-doped high-regularity carbon nanofiber and preparation method and application thereof
CN114892344A (en) * 2022-05-16 2022-08-12 南京工业大学 Preparation method of flame-retardant polyacrylonitrile-based nanofiber membrane for high-temperature filtration

Similar Documents

Publication Publication Date Title
JP2011162898A (en) Carbon fiber precursor fiber and method for producing carbon fiber by using the same
KR101689861B1 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
JP2018145541A (en) Carbon fiber bundle and method for production of the same
Liu et al. Microwave treatment of pre-oxidized fibers for improving their structure and mechanical properties
Zhang et al. Hydrogen peroxide modified polyacrylonitrile-based fibers and oxidative stabilization under microwave and conventional heating–The 1st comparative study
KR101327972B1 (en) Preparing method of stabilized carbon nano-fiber by radiation and thermal treatment, and the carbon nano-fiber prepared by the same method
Wei et al. Evaluation of graphitization and tensile property in microwave plasma treated carbon fiber
Hu et al. Electrospun nanofibers withstandable to high-temperature reactions: synergistic effect of polymer relaxation and solvent removal
JP4662450B2 (en) Carbon fiber manufacturing method
CN104651980A (en) Pre-oxidation method for preparing high-strength medium-model carbon fiber
JP5635740B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
KR102012753B1 (en) Precusor fiber for preparing carbon fiber, preparation method for producing the same and preparation method of carbon fiber
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
JP5849127B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP4271019B2 (en) Carbon fiber manufacturing method
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP2004091961A (en) Method for producing carbon fiber
JP2004197278A (en) Method for producing carbon fiber
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP2012117161A (en) Method for manufacturing carbon fiber bundle
JP3303424B2 (en) Method for producing acrylic carbon fiber

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110630