JP2011149042A - Method for producing platinum-cobalt alloy fine particle - Google Patents

Method for producing platinum-cobalt alloy fine particle Download PDF

Info

Publication number
JP2011149042A
JP2011149042A JP2010010144A JP2010010144A JP2011149042A JP 2011149042 A JP2011149042 A JP 2011149042A JP 2010010144 A JP2010010144 A JP 2010010144A JP 2010010144 A JP2010010144 A JP 2010010144A JP 2011149042 A JP2011149042 A JP 2011149042A
Authority
JP
Japan
Prior art keywords
platinum
cobalt
fine particles
alloy fine
cobalt alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010010144A
Other languages
Japanese (ja)
Inventor
Nobuaki Mizutani
宣明 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010010144A priority Critical patent/JP2011149042A/en
Publication of JP2011149042A publication Critical patent/JP2011149042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing platinum-cobalt alloy fine particles having a smaller average diameter and capable of achieving high catalytic performance if used especially for manufacturing a supported catalyst for a fuel cell. <P>SOLUTION: The method for producing platinum-cobalt alloy fine particles includes adding to a solvent, a platinum (Pt) salt or complex, a cobalt (Co) salt or complex and a protective ligand in a molar ratio of 1.0-7.5 based on the total amount of the metal contained in the platinum and cobalt salts or complexes, and heating the mixture. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は燃料電池の製造技術に関し、特に白金−コバルト合金微粒子を製造する方法、該方法により得られる白金−コバルト合金微粒子、該合金微粒子を担持した燃料電池用担持触媒、ならびに該担持触媒を含む電極を備えた燃料電池に関する。   The present invention relates to a fuel cell manufacturing technique, and in particular, a method for producing platinum-cobalt alloy fine particles, platinum-cobalt alloy fine particles obtained by the method, a supported catalyst for fuel cells carrying the alloy fine particles, and the supported catalyst. The present invention relates to a fuel cell including an electrode.

近年、環境問題や資源問題への対策の一つとして、燃料電池に対する関心が高まっている。燃料電池は、電気的に接続された2つの電極に燃料と酸化剤を供給し、電気化学的に燃料の酸化を起こさせることで化学エネルギーを直接電気エネルギーに変換する装置である。電気化学的にエネルギーを取り出す燃料電池は、火力発電などとは異なってカルノーサイクルの制約を受けないため、高いエネルギー変換効率を示す。現在知られている燃料電池の種類としては、固体高分子型燃料電池(PEFC)、アルカリ電解質形燃料電池(AFC)およびリン酸型燃料電池(PAFC)などがある。これらの中でも固体高分子型燃料電池は作動温度が低く、出力密度が高く、かつ小型化が可能なため、車載用電源などとして有望視されている。   In recent years, interest in fuel cells has increased as one of countermeasures against environmental problems and resource problems. A fuel cell is a device that directly converts chemical energy into electrical energy by supplying fuel and an oxidant to two electrically connected electrodes and causing the fuel to be oxidized electrochemically. A fuel cell that extracts energy electrochemically is not subject to the Carnot cycle, unlike thermal power generation, and thus exhibits high energy conversion efficiency. Currently known types of fuel cells include polymer electrolyte fuel cells (PEFC), alkaline electrolyte fuel cells (AFC), and phosphoric acid fuel cells (PAFC). Among these, the polymer electrolyte fuel cell is considered promising as an in-vehicle power source because it has a low operating temperature, a high output density, and can be miniaturized.

固体高分子型燃料電池は一般的に、白金や白金−ルテニウムなどの白金系合金をカーボンに担持させた担持触媒を電極の触媒層に用いる。しかし白金は非常に高価な材料であるため、白金使用量を減らすことがコスト低減のための課題となっている。この課題を解決するための一つの手段として、可能な限り微粒子化して表面積を大きくした白金あるいは白金系合金をカーボンに担持させた担持触媒を製造することにより白金使用量を減らすことが挙げられる。   In general, a polymer electrolyte fuel cell uses a supported catalyst in which a platinum-based alloy such as platinum or platinum-ruthenium is supported on carbon as a catalyst layer of an electrode. However, since platinum is a very expensive material, reducing the amount of platinum used is an issue for cost reduction. One means for solving this problem is to reduce the amount of platinum used by producing a supported catalyst in which platinum or a platinum-based alloy having a surface area made as fine as possible and having a large surface area is supported on carbon.

金属微粒子を合成する方法としては、逆ミセル法、ポリオール法、ホットソープ法といった、金属塩または金属錯体を液中で還元する方法が知られている。例えば、特許文献1には、触媒前駆体を高級脂肪族カルボン酸および高級脂肪族アミンを加えた溶媒中に入れ、触媒前駆体を逆ミセル内部に閉じ込めた状態で還元反応させた後に担体に担持させることにより、粒径がそろったナノレベルの合金粒子が担持された担持触媒を得る方法が記載されている。特許文献2には、磁気記録媒体に用いる合金ナノパーティクルの製造方法が記載されており、該方法によれば直径の平均値が1〜3nmの範囲内にある鉄−白金合金ナノパーティクルが得られるとされている。特許文献3には、各種の合金ナノ粒子の製造方法が記載されている。しかし、いずれの文献にも、平均粒径が2nm程度以下である白金−コバルト合金微粒子を製造する方法について具体的には開示されていない。   As a method for synthesizing metal fine particles, a method of reducing a metal salt or a metal complex in a liquid, such as a reverse micelle method, a polyol method, or a hot soap method is known. For example, in Patent Document 1, a catalyst precursor is placed in a solvent to which a higher aliphatic carboxylic acid and a higher aliphatic amine are added, and the catalyst precursor is subjected to a reduction reaction in a state of being confined in a reverse micelle and then supported on a support. Describes a method for obtaining a supported catalyst on which nano-sized alloy particles having a uniform particle size are supported. Patent Document 2 describes a method for producing alloy nanoparticles for use in a magnetic recording medium. According to this method, iron-platinum alloy nanoparticles having an average diameter in the range of 1 to 3 nm are obtained. It is said that. Patent Document 3 describes a method for producing various alloy nanoparticles. However, none of the documents specifically discloses a method for producing platinum-cobalt alloy fine particles having an average particle diameter of about 2 nm or less.

固体高分子型燃料電池用電極触媒の技術分野における重要な課題の一つに、触媒材料が固体高分子電解質膜の劣化の原因とならないようにすることが挙げられる。この点において、例えば鉄やニッケルを触媒材料として用いた場合、鉄およびニッケルは酸性環境下では溶出してイオン化し、固体高分子電解質膜を劣化させることが知られている。一方、コバルトは、鉄やニッケルと比べるとそのような固体高分子電解質膜の劣化を引き起こしにくい材料であることが知られている。つまり、コバルトは電極触媒を製造するにあたって白金と合金化する金属として好適であり、平均粒径が非常に小さい白金−コバルト合金微粒子を製造する方法が求められていた。   One important issue in the technical field of electrode catalysts for polymer electrolyte fuel cells is to prevent the catalyst material from causing deterioration of the polymer electrolyte membrane. In this respect, for example, when iron or nickel is used as a catalyst material, it is known that iron and nickel are eluted and ionized in an acidic environment to deteriorate the solid polymer electrolyte membrane. On the other hand, cobalt is known to be a material that hardly causes deterioration of such a solid polymer electrolyte membrane as compared with iron or nickel. That is, cobalt is suitable as a metal to be alloyed with platinum in producing an electrode catalyst, and a method for producing platinum-cobalt alloy fine particles having an extremely small average particle diameter has been demanded.

WO2006/038676WO2006 / 038676 特開2004−169050号JP 2004-169050 A 特表2007−533862号Special table 2007-533862

本発明は、より小さい平均粒径を有し、特に燃料電池用担持触媒の製造に用いた場合に高い触媒性能を実現させることができる白金−コバルト合金微粒子を製造する方法を提供することを目的とする。   It is an object of the present invention to provide a method for producing platinum-cobalt alloy fine particles having a smaller average particle diameter and capable of realizing high catalyst performance particularly when used in the production of a supported catalyst for a fuel cell. And

本発明者は、白金−コバルト合金微粒子を製造する際に使用する保護配位子の量を最適化することにより、非常に小さい平均粒径を有する白金−コバルト合金微粒子が得られることを見出し、本発明を完成するに至った。本発明は以下の発明を包含する。   The present inventor has found that by optimizing the amount of protective ligand used when producing platinum-cobalt alloy fine particles, platinum-cobalt alloy fine particles having a very small average particle diameter can be obtained. The present invention has been completed. The present invention includes the following inventions.

(1)溶媒に、白金(Pt)の塩もしくは錯体およびコバルト(Co)の塩もしくは錯体と保護配位子を、前記白金およびコバルトの塩もしくは錯体に含まれる金属の総量に対してモル比で1.0〜7.5の量で加えて加熱することを含む、白金−コバルト合金微粒子の製造方法。
(2)保護配位子がC6−24脂肪族カルボン酸およびC6−24脂肪族アミンを含む、(1)に記載の方法。
(3)C6−24脂肪族カルボン酸がオレイン酸であり、C6−24脂肪族アミンがオレイルアミンである、(2)に記載の方法。
(4)平均粒径2nm以下、粒径分布幅が1nm以下、かつコバルト組成分布幅が10%以下である白金−コバルト合金微粒子。
(5)(1)〜(3)のいずれかに記載の方法により製造される、(4)に記載の白金−コバルト合金微粒子
(6)(4)または(5)に記載の白金−コバルト合金微粒子を担体に担持させた燃料電池用担持触媒。
(7)(6)に記載の担持触媒を含む電極を備えた燃料電池。
(1) A platinum (Pt) salt or complex and a cobalt (Co) salt or complex and a protective ligand in a solvent in a molar ratio to the total amount of metals contained in the platinum and cobalt salt or complex. A method for producing platinum-cobalt alloy fine particles, comprising adding and heating in an amount of 1.0 to 7.5.
(2) The method according to (1), wherein the protective ligand comprises a C 6-24 aliphatic carboxylic acid and a C 6-24 aliphatic amine.
(3) C 6-24 aliphatic carboxylic acid is oleic acid, a C 6-24 aliphatic amine is oleylamine, the method described in (2).
(4) Platinum-cobalt alloy fine particles having an average particle size of 2 nm or less, a particle size distribution width of 1 nm or less, and a cobalt composition distribution width of 10% or less.
(5) The platinum-cobalt alloy according to (4) or (5) produced by the method according to any one of (1) to (3) A fuel cell supported catalyst in which fine particles are supported on a carrier.
(7) A fuel cell comprising an electrode containing the supported catalyst according to (6).

本発明の方法によれば、平均粒径が非常に小さい白金−コバルト合金微粒子が得られる。そのような合金微粒子は、カーボンなどの担体に担持させて燃料電池の電極用触媒として用いることができる。該白金−コバルト合金微粒子の平均粒径が非常に小さいことから、それに比して表面積は大きくなり、活性も高くなる。また、触媒に用いる金属の量を減らすことができるため、燃料電池のコストダウンに貢献する。   According to the method of the present invention, platinum-cobalt alloy fine particles having an extremely small average particle diameter can be obtained. Such alloy fine particles can be supported on a carrier such as carbon and used as a catalyst for a fuel cell electrode. Since the average particle diameter of the platinum-cobalt alloy fine particles is very small, the surface area is increased and the activity is increased. In addition, since the amount of metal used for the catalyst can be reduced, it contributes to the cost reduction of the fuel cell.

実施例3で得られた白金−コバルト合金微粒子を測定した結果得られた粒径分布を示したものである。The particle size distribution obtained as a result of measuring the platinum-cobalt alloy fine particles obtained in Example 3 is shown. 白金−コバルト合金微粒子のSTEM像およびSTEM像上に示した分析位置3において得られたスペクトルを示したものである。The STEM image of the platinum-cobalt alloy fine particles and the spectrum obtained at the analysis position 3 shown on the STEM image are shown. 実施例2で得られた白金−コバルト合金微粒子を測定した結果得られたコバルト組成分布を示したものである。The cobalt composition distribution obtained as a result of measuring the platinum-cobalt alloy fine particles obtained in Example 2 is shown. 使用した保護配位子/金属比(モル比)に対して得られた白金−コバルト合金微粒子の平均粒径および粒径分布幅をプロットしたグラフである。It is the graph which plotted the average particle diameter and particle size distribution width of the platinum-cobalt alloy fine particle obtained with respect to the used protective ligand / metal ratio (molar ratio). 使用した保護配位子/金属比(モル比)に対してコバルト平均組成およびコバルト組成分布幅をプロットしたグラフである。It is the graph which plotted the cobalt average composition and the cobalt composition distribution width with respect to the used protective ligand / metal ratio (molar ratio). 実施例3と比較例2および4で得られた白金−コバルト合金微粒子担持カーボン触媒の電流密度比を表したグラフである。3 is a graph showing the current density ratio of platinum-cobalt alloy fine particle-supported carbon catalysts obtained in Example 3 and Comparative Examples 2 and 4. FIG.

本発明の第一の態様は、白金−コバルト合金微粒子を製造する方法に関する。本発明の方法は、まず溶媒に白金(Pt)の塩もしくは錯体およびコバルト(Co)の塩もしくは錯体、ならびに保護配位子を加え、次に得られた溶液を加熱することにより上記の塩もしくは錯体を還元させて、白金−コバルト合金微粒子を析出させるものである。   A first aspect of the present invention relates to a method for producing platinum-cobalt alloy fine particles. In the method of the present invention, a salt or complex of platinum (Pt) and a salt or complex of cobalt (Co) and a protective ligand are first added to a solvent, and then the obtained solution is heated to obtain the above salt or complex. The complex is reduced to precipitate platinum-cobalt alloy fine particles.

白金またはコバルトの塩もしくは錯体とは、還元されることによりそれぞれ白金またはコバルトを析出するような塩もしくは錯体を意味し、具体例としては白金またはコバルトの塩化物、硝酸塩、酢酸塩、あるいは白金またはコバルトのアセチルアセトナート錯体、アンミン錯体、エチレンジアミン錯体が挙げられる。これらの中でも、白金アセチルアセトナート錯体およびコバルトアセチルアセトナート錯体を用いることが好ましい。   A platinum or cobalt salt or complex means a salt or complex that, upon reduction, precipitates platinum or cobalt, respectively. Specific examples include platinum or cobalt chloride, nitrate, acetate, platinum or Examples include cobalt acetylacetonate complex, ammine complex, and ethylenediamine complex. Among these, it is preferable to use a platinum acetylacetonate complex and a cobalt acetylacetonate complex.

白金の塩もしくは錯体とコバルトの塩もしくは錯体との比は、白金−コバルト合金微粒子における所望の組成比に応じて適宜調節することができる。例えば、本発明の方法において、白金の塩もしくは錯体とコバルトの塩もしくは錯体との比をモル比で1:1とした場合、得られる白金−コバルト合金微粒子の組成は、白金:コバルトのモル比で70:30〜80:20の範囲内、典型的には75:25となる。   The ratio of the platinum salt or complex to the cobalt salt or complex can be appropriately adjusted according to the desired composition ratio of the platinum-cobalt alloy fine particles. For example, in the method of the present invention, when the ratio of the platinum salt or complex to the cobalt salt or complex is 1: 1, the composition of the resulting platinum-cobalt alloy fine particles is platinum: cobalt molar ratio. In the range of 70:30 to 80:20, typically 75:25.

本明細書において、用語「保護配位子」とは、析出した金属(白金またはコバルト)の微粒子に配位することにより、それらの微粒子が凝集することを防ぐ(金属微粒子を有機溶媒中で分散安定化させる)ための化合物を意味する。本発明の方法において、保護配位子としてはC6−24脂肪族カルボン酸およびC6−24脂肪族アミン、特にC6−24脂肪族カルボン酸およびC6−24脂肪族アミンの組み合わせを含むものが挙げられる。そのような6〜24程度、特に10〜24程度の炭素鎖長を有するカルボン酸および脂肪族アミンであれば、金属微粒子に配位した際に、金属微粒子の凝集を防ぐ役割を十分果たすことが可能となる。C6−24脂肪族カルボン酸およびC6−24脂肪族アミンは飽和および不飽和のいずれであってもよい。なお、その他に利用可能な保護配位子としては、例えばTOA(トリオクチルアミン)やPVP(ポリビニルピロリドン)といった高分子化合物、CTAB(臭化ヘキサデシルトリメチルアンモニウム)、CTAC(塩化セチルトリメチルアンモニウム)、SDS(ドデシル硫酸)およびAOT(ジ(2−エチルヘキシル)スルホコハク酸ナトリウム)など、ならびにこれらの中の、あるいはこれらとC6−24脂肪族カルボン酸およびC6−24脂肪族アミンとの任意の組み合わせも挙げることができる。 In this specification, the term “protective ligand” means that the fine particles of the deposited metal (platinum or cobalt) are coordinated to prevent the fine particles from aggregating (dispersing the fine metal particles in an organic solvent). Means a compound to be stabilized). In the method of the present invention, the protecting ligand comprises a combination of C 6-24 aliphatic carboxylic acids and C 6-24 aliphatic amine, especially C 6-24 aliphatic carboxylic acids and C 6-24 aliphatic amine Things. Such carboxylic acids and aliphatic amines having a carbon chain length of about 6 to 24, particularly about 10 to 24, can sufficiently fulfill the role of preventing aggregation of the metal fine particles when coordinated to the metal fine particles. It becomes possible. The C 6-24 aliphatic carboxylic acid and the C 6-24 aliphatic amine may be either saturated or unsaturated. Other protective ligands that can be used include, for example, polymer compounds such as TOA (trioctylamine) and PVP (polyvinylpyrrolidone), CTAB (hexadecyltrimethylammonium bromide), CTAC (cetyltrimethylammonium chloride), SDS (dodecyl sulfate) and AOT (sodium di (2-ethylhexyl) sulfosuccinate) and the like, and any combination thereof in or with C 6-24 aliphatic carboxylic acid and C 6-24 aliphatic amine Can also be mentioned.

保護配位子として用いることができるC6−24脂肪族カルボン酸としては、例えばカプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エイコセン酸、エルカ酸、ネルボン酸、リノール酸、エイコサジエン酸、ドコサジエン酸、リノレン酸、ピノレン酸、エレオステアリン酸、ミード酸、エイコサトリエン酸およびアラキドン酸などが挙げられる。これらの中でも、オレイン酸が最も好ましい。C6−24脂肪族カルボン酸は複数混合して用いることもできる。また、C6−24脂肪族カルボン酸は、モノカルボン酸に限らず、ジカルボン酸などの多官能性カルボン酸であってもよい。 Examples of the C 6-24 aliphatic carboxylic acid that can be used as a protective ligand include capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, arachidonic acid, and behenic acid. , Lignoceric acid, myristoleic acid, palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, gadoleic acid, eicosenoic acid, erucic acid, nervonic acid, linoleic acid, eicosadienoic acid, docosadienoic acid, linolenic acid, pinolenic acid, eleostearic acid Acid, mead acid, eicosatrienoic acid, arachidonic acid and the like. Of these, oleic acid is most preferred. A plurality of C 6-24 aliphatic carboxylic acids may be used in combination. Further, the C 6-24 aliphatic carboxylic acid is not limited to a monocarboxylic acid, and may be a polyfunctional carboxylic acid such as a dicarboxylic acid.

保護配位子として用いることができるC6−24脂肪族アミンとしては、例えばデシルアミン、ウンデシルアミン、ラウリルアミン(ドデシルアミン)、トリデシルアミン、ミリスチルアミン(テトラデシルアミン)、ペンタデシルアミン、パルミチルアミン(セチルアミン)、ステアリルアミン(オクタデシルアミン)およびオレイルアミンなどが挙げられる。これらの中でもオレイルアミンが最も好ましい。C6−24脂肪族アミンは複数混合して用いることもできる。また、C6−24脂肪族アミンは、モノアミンに限らず、ジアミンなどの多官能性アミンであってもよい。なお、C6−24脂肪族アミンは、保護配位子としてのみならず、白金またはコバルトの塩もしくは錯体を還元する還元剤としても機能する。C6−24脂肪族アミンを保護配位子兼還元剤として使用することにより、他の還元剤を用いた場合にみられていたCoのみから構成される粗大粒子が生じないという効果を奏する。 Examples of the C 6-24 aliphatic amine that can be used as a protective ligand include decylamine, undecylamine, laurylamine (dodecylamine), tridecylamine, myristylamine (tetradecylamine), pentadecylamine, pal Examples include mytylamine (cetylamine), stearylamine (octadecylamine), and oleylamine. Of these, oleylamine is most preferred. A plurality of C 6-24 aliphatic amines may be used in combination. The C 6-24 aliphatic amine is not limited to a monoamine, and may be a polyfunctional amine such as diamine. The C 6-24 aliphatic amine functions not only as a protective ligand but also as a reducing agent for reducing a platinum or cobalt salt or complex. By using C 6-24 aliphatic amine as a protective ligand and reducing agent, there is an effect that coarse particles composed only of Co, which has been observed when other reducing agents are used, are not produced.

本発明の方法で用いるC6−24脂肪族カルボン酸とC6−24脂肪族アミンを組み合わせた保護配位子において、C6−24脂肪族カルボン酸とC6−24脂肪族アミンのモル比は1:2〜2:1の範囲内であることが好ましい。C6−24脂肪族カルボン酸は、上述したように保護配位子として金属微粒子に配位することにより金属微粒子の凝集を抑制する機能を有するが、一方でC6−24脂肪族カルボン酸はC6−24脂肪族アミンによる還元をも抑制すると考えられる。C6−24脂肪族カルボン酸とC6−24脂肪族アミンのモル比は、より好ましくは1:1.5〜1.5:1の範囲内、最も好ましくは1:1である。 In C 6-24 protecting ligand in combination an aliphatic carboxylic acid and a C 6-24 aliphatic amines used in the methods of the present invention, the molar ratio of C 6-24 aliphatic carboxylic acid and a C 6-24 aliphatic amine Is preferably in the range of 1: 2 to 2: 1. As described above, C 6-24 aliphatic carboxylic acid has a function of suppressing aggregation of metal fine particles by coordinating to metal fine particles as a protective ligand, while C 6-24 aliphatic carboxylic acid is It is thought that the reduction | restoration by C6-24 aliphatic amine is also suppressed. The molar ratio of C 6-24 aliphatic carboxylic acid and a C 6-24 aliphatic amines, more preferably 1: 1.5 to 1.5: 1 range, and most preferably 1: 1.

本発明の方法で用いる保護配位子の量は、原料として用いる白金およびコバルトの塩もしくは錯体に含まれる金属の総量に対してモル比で1.0〜7.5、より好ましくは1.0〜7.0の範囲内である。保護配位子は還元により析出した金属微粒子に配位することにより金属微粒子が凝集するのを抑制する一方、保護配位子を過剰に加えることは、還元を抑制することにより金属微粒子の粒径を大きくしてしまうと考えられるため好ましくない。それに対し、保護配位子を上述の範囲の量で用いると、平均粒径が非常に小さい白金−コバルト合金微粒子が得られる。保護配位子の白金およびコバルトの塩もしくは錯体に含まれる金属の総量に対するモル比は、特に1.0〜6.7の範囲内であると、得られる白金−コバルト合金微粒子の平均粒径が2nm以下となり、より好ましい。   The amount of the protective ligand used in the method of the present invention is 1.0 to 7.5, more preferably 1.0, in molar ratio to the total amount of metal contained in the platinum or cobalt salt or complex used as a raw material. Within the range of -7.0. The protective ligand suppresses the aggregation of the metal fine particles by coordinating with the metal fine particles precipitated by reduction, while the excessive addition of the protective ligand reduces the particle size of the metal fine particles by suppressing the reduction. It is not preferable because it is considered that the value of the value will be increased. On the other hand, when the protective ligand is used in an amount in the above range, platinum-cobalt alloy fine particles having a very small average particle diameter can be obtained. When the molar ratio of the protective ligand to the total amount of metals contained in the platinum or cobalt salt or complex is in the range of 1.0 to 6.7, the average particle diameter of the obtained platinum-cobalt alloy fine particles is 2 nm or less, which is more preferable.

本発明の方法で用いる溶媒は特に限定されるものではないが、具体例としては、例えば炭化水素類(ヘキサン、トリメチルペンタン、オクタンなどの脂肪族炭化水素類;シクロヘキサンなどの脂環式炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジクロロメタン、トリクロロエタンなどのハロゲン化炭化水素類など)、エステル類(酢酸メチル、酢酸エチルなど)、ケトン類(メチルエチルケトン、メチルイソブチルケトンなど)、エーテル類(ジエチルエーテル、ジプロピルエーテル、ジオクチルエーテルなど)などが挙げられる。これらの中でもエーテル類が好ましく、特にジオクチルエーテルが最も好ましい。   Although the solvent used in the method of the present invention is not particularly limited, specific examples thereof include hydrocarbons (aliphatic hydrocarbons such as hexane, trimethylpentane, and octane; alicyclic hydrocarbons such as cyclohexane). Aromatic hydrocarbons such as toluene and xylene; halogenated hydrocarbons such as dichloromethane and trichloroethane), esters (such as methyl acetate and ethyl acetate), ketones (such as methyl ethyl ketone and methyl isobutyl ketone), ethers ( Diethyl ether, dipropyl ether, dioctyl ether, etc.). Among these, ethers are preferable, and dioctyl ether is most preferable.

本発明の方法において、溶媒は、白金およびコバルトの塩もしくは錯体のそれぞれの濃度の合計が20〜40mmol/Lの濃度となる量、特に25〜35mmol/Lの濃度となる量を用いるのが好ましい。例えば、白金およびコバルトの塩もしくは錯体をそれぞれ1.5mmolずつ用いる場合、溶媒の量は75〜150mLの範囲の量、特に85〜120mLとするのが好ましい。一方、溶媒は、例えば保護配位子の濃度が20〜300mmol/L、好ましくは20〜280mmol/L、より好ましくは20〜267mmol/L、特に30〜210mmol/L、とりわけ30〜200mmol/Lとなる量で用いるのが好適である。   In the method of the present invention, the solvent is preferably used in such an amount that the total concentration of platinum and cobalt salts or complexes is 20 to 40 mmol / L, particularly 25 to 35 mmol / L. . For example, when 1.5 mmol each of platinum or cobalt salts or complexes are used, the amount of the solvent is preferably in the range of 75 to 150 mL, particularly 85 to 120 mL. On the other hand, for example, the concentration of the protective ligand is 20 to 300 mmol / L, preferably 20 to 280 mmol / L, more preferably 20 to 267 mmol / L, particularly 30 to 210 mmol / L, especially 30 to 200 mmol / L. Is preferably used in an amount of

本発明の方法において、白金およびコバルトの塩もしくは錯体と保護配位子とを含む溶液を加熱する際の加熱温度および加熱時間は、当業者であれば適宜調節することができるが、典型的には180℃〜280℃の範囲で1〜5時間、例えば210〜250℃で2〜3時間である。   In the method of the present invention, a heating temperature and a heating time for heating a solution containing a platinum or cobalt salt or complex and a protective ligand can be appropriately adjusted by those skilled in the art. Is 180 to 280 ° C. for 1 to 5 hours, for example, 210 to 250 ° C. for 2 to 3 hours.

本発明の第二の態様は、上記の方法により得られる白金−コバルト合金微粒子に関する。本発明の白金−コバルト合金微粒子は平均粒径が2nm以下であり、さらにその粒径分布幅が1nm以下(より好ましくは0.7nm以下)、かつコバルト組成分布幅が10%以下(より好ましくは7%以下)であることを特徴とする。粒径分布幅が1nm以下と非常に小さいことは、本発明の白金−コバルト合金微粒子は、各微粒子の粒径がほぼ均一であることを意味する。また、コバルト組成分布幅が10%以下と非常に小さいことは、本発明の白金−コバルト合金微粒子は、各微粒子の組成にバラつきがほとんど無いことを意味する。すなわち、本発明の白金−コバルト合金微粒子は、粒径が非常に小さく、かつ粒径および組成の両面において均一なものである。なお、平均粒径は小さいほど好ましいが、本発明の方法により得られる白金−コバルト合金微粒子の粒径の下限は、およそ0.5nmである。また、粒径分布幅やコバルト組成分布幅も小さいほど好ましいが、本発明により得られる白金−コバルト合金微粒子の粒径分布幅およびコバルト組成分布幅の下限は、およそ1%である。   The second aspect of the present invention relates to platinum-cobalt alloy fine particles obtained by the above method. The platinum-cobalt alloy fine particles of the present invention have an average particle size of 2 nm or less, a particle size distribution width of 1 nm or less (more preferably 0.7 nm or less), and a cobalt composition distribution width of 10% or less (more preferably). 7% or less). The very small particle size distribution width of 1 nm or less means that the fine particle of the platinum-cobalt alloy of the present invention has a substantially uniform particle size. In addition, the fact that the cobalt composition distribution width is as small as 10% or less means that the platinum-cobalt alloy fine particles of the present invention have almost no variation in the composition of each fine particle. That is, the platinum-cobalt alloy fine particles of the present invention have a very small particle size and are uniform in both particle size and composition. The average particle size is preferably as small as possible, but the lower limit of the particle size of the platinum-cobalt alloy fine particles obtained by the method of the present invention is about 0.5 nm. The smaller the particle size distribution width and the cobalt composition distribution width, the better. However, the lower limit of the particle size distribution width and cobalt composition distribution width of the platinum-cobalt alloy fine particles obtained by the present invention is about 1%.

なお、本明細書において言及する合金微粒子の平均粒径および粒径分布幅は、X線小角散乱法を用いて得られた粒径分布から求めたものである。X線小角散乱法により求められる粒径分布曲線において、平均粒径はピークトップの半値幅の平均値とし、粒径分布幅はピークトップの半値幅とする。また、本明細書において言及する白金−コバルト合金微粒子の組成は、STEM−EDX(Scanning Transmission Electron Microscope - Energy Dispersive X-ray Analysis)により複数点測定した結果に基づくものである。STEM−EDX測定に基づいて求められるコバルト組成分布曲線において、平均コバルト組成はピークトップの半値幅の平均値とし、粒径分布幅はピークトップの半値幅とする。   The average particle size and the particle size distribution width of the alloy fine particles referred to in this specification are obtained from the particle size distribution obtained using the X-ray small angle scattering method. In the particle size distribution curve obtained by the X-ray small angle scattering method, the average particle size is the average value of the half width of the peak top, and the particle size distribution width is the half width of the peak top. Further, the composition of the platinum-cobalt alloy fine particles referred to in this specification is based on the result of measuring a plurality of points by STEM-EDX (Scanning Transmission Electron Microscope-Energy Dispersive X-ray Analysis). In the cobalt composition distribution curve obtained on the basis of STEM-EDX measurement, the average cobalt composition is the average value of the half-width of the peak top, and the particle size distribution width is the half-width of the peak top.

本発明の第三の態様は、上記の白金−コバルト合金微粒子を担体に担持させた燃料電池用担持触媒に関する。本発明の担持触媒は、上述した方法により調製される、溶媒に白金およびコバルトの塩もしくは錯体と保護配位子とを加えて加熱することにより得られる白金−コバルト合金微粒子が析出した溶液に、触媒担体を加えて合金微粒子を担持させ、固形物を濾別し、熱処理(例えば酸素1%雰囲気で160℃、3時間)することにより得られるものである。触媒担体としては、特に限定されるものではないが、例えばカーボンなどの導電体を好適に用いることができる。具体的には、活性炭、カーボンブラック、カーボン繊維、カーボンナノチューブ、カーボンナノホーン、グラファイト、グラファイトナノファイバー、フラーレン、フラーレンナノウィスカー、フラーレンナノファイバー、グラファイト化処理を施したフラーレンナノウィスカーおよびフラーレンナノファイバーなどを好適に用いることができる。特にカーボンブラックが好ましい。   A third aspect of the present invention relates to a supported catalyst for a fuel cell in which the above platinum-cobalt alloy fine particles are supported on a carrier. The supported catalyst of the present invention is prepared by the above-described method in a solution in which platinum-cobalt alloy fine particles obtained by adding a platinum or cobalt salt or complex and a protective ligand to a solvent and heating are precipitated. A catalyst carrier is added to support the alloy fine particles, the solid matter is filtered, and heat treatment (for example, 160 ° C. in an oxygen 1% atmosphere for 3 hours) is obtained. Although it does not specifically limit as a catalyst support | carrier, For example, conductors, such as carbon, can be used suitably. Specific examples include activated carbon, carbon black, carbon fiber, carbon nanotube, carbon nanohorn, graphite, graphite nanofiber, fullerene, fullerene nanowhisker, fullerene nanofiber, fullerene nanowhisker and fullerene nanofiber that have been graphitized. It can be used suitably. Carbon black is particularly preferable.

本発明の担持触媒は、平均粒径が非常に小さい白金−コバルト合金微粒子を担持したものであるため、金属使用量に対する金属表面積が大きく、その結果高い触媒活性を有する。また、該白金−コバルト合金微粒子が粒径および組成の両面において均一であることも、本発明の担持触媒の高い活性に貢献する。   Since the supported catalyst of the present invention supports platinum-cobalt alloy fine particles having an extremely small average particle diameter, the metal surface area relative to the amount of metal used is large, and as a result, the catalyst has high catalytic activity. Further, the fact that the platinum-cobalt alloy fine particles are uniform in both particle size and composition also contributes to the high activity of the supported catalyst of the present invention.

本発明の第四の態様は、上記の担持触媒を含む電極を備えた燃料電池に関する。本発明の燃料電池は、固体高分子型燃料電池であることが好ましい。金属微粒子を担体に担持させた触媒を電極に用いた燃料電池の構造およびその製造方法は、当業者に広く知られている。例えば、固体高分子型燃料電池は、膜電極接合体(MEA)が1対のセパレータで挟まれた構造を有し、膜電極接合体は固体高分子電解質膜が触媒層とガス拡散層の二層構造を有する1対のガス拡散電極によって挟まれた構成を有する。固体高分子型燃料電池の電極における触媒層は、例えば、金属微粒子を担持させた導電性のカーボンブラック粉末とパーフルオロカーボン系イオン交換樹脂などの高分子電解質膜前駆体とを混合し均一な分散液を得て、該分散液を、パーフルオロカーボン系イオン交換樹脂などからなる高分子電解質膜の両面に塗布して乾燥させた後に、両面を2枚のカーボンクロスまたはカーボンペーパーで密着させるか、あるいは該分散液を2枚のカーボンクロスまたはカーボンペーパー上に塗布して乾燥させた後に分散液が塗布された面が高分子電解質膜と密着するように高分子電解質膜の両面から挟みこむことなどにより形成することができる。   A fourth aspect of the present invention relates to a fuel cell provided with an electrode including the above supported catalyst. The fuel cell of the present invention is preferably a solid polymer fuel cell. The structure of a fuel cell using a catalyst in which metal fine particles are supported on a carrier as an electrode and a method for producing the same are well known to those skilled in the art. For example, a polymer electrolyte fuel cell has a structure in which a membrane electrode assembly (MEA) is sandwiched between a pair of separators. The membrane electrode assembly has a solid polymer electrolyte membrane consisting of a catalyst layer and a gas diffusion layer. The structure is sandwiched between a pair of gas diffusion electrodes having a layer structure. The catalyst layer in the electrode of the polymer electrolyte fuel cell is prepared by, for example, mixing a conductive carbon black powder carrying metal fine particles and a polymer electrolyte membrane precursor such as a perfluorocarbon-based ion exchange resin to form a uniform dispersion. The dispersion is applied to both sides of a polymer electrolyte membrane made of a perfluorocarbon-based ion exchange resin and dried, and then both sides are adhered with two carbon cloths or carbon paper, or Formed by applying the dispersion onto two carbon cloths or carbon paper and drying it, and sandwiching it from both sides of the polymer electrolyte membrane so that the surface on which the dispersion is applied is in close contact with the polymer electrolyte membrane. can do.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

1.白金−コバルト合金微粒子担持カーボン触媒の製造
[実施例1]
ジオクチルエーテル100ml中に、白金1.5mmolを含む白金アセチルアセトナートと、コバルト1.5mmolを含むコバルトアセチルアセトナートを添加し、これにオレイン酸1.5mmol(0.5ml)、オレイルアミン1.5mmol(0.5ml)を加え十分に攪拌した。230℃で1時間加熱して還元し、白金−コバルト合金微粒子を析出させた。還元終了後、冷却し、カーボンブラック(Ketjen EC、ケッチェンブラックインターナショナル製)1gを添加した。十分に撹拌し、白金−コバルト合金微粒子をカーボン上に担持させた。液体と固形物を濾別し、白金−コバルト合金微粒子担持カーボン触媒を取り出した。この触媒を酸素1%で160℃、3時間で熱処理した。
1. Production of platinum-cobalt alloy fine particle supported carbon catalyst [Example 1]
To 100 ml of dioctyl ether, platinum acetylacetonate containing 1.5 mmol of platinum and cobalt acetylacetonate containing 1.5 mmol of cobalt were added, and 1.5 mmol (0.5 ml) of oleic acid and 1.5 mmol of oleylamine ( 0.5 ml) was added and stirred thoroughly. It reduced by heating at 230 degreeC for 1 hour, and platinum-cobalt alloy fine particles were deposited. After the reduction, the mixture was cooled and 1 g of carbon black (Ketjen EC, manufactured by Ketjen Black International) was added. The mixture was sufficiently stirred, and platinum-cobalt alloy fine particles were supported on carbon. The liquid and the solid were separated by filtration, and the platinum-cobalt alloy fine particle supported carbon catalyst was taken out. This catalyst was heat-treated at 160 ° C. for 3 hours with 1% oxygen.

[実施例2]
オレイン酸を4.0mmol(1.3ml)、オレイルアミンを4.0mmol(1.3ml)用いた以外は実施例1と同様にした。
[Example 2]
Example 1 was repeated except that 4.0 mmol (1.3 ml) of oleic acid and 4.0 mmol (1.3 ml) of oleylamine were used.

[実施例3]
オレイン酸を10.0mmol(3.2ml)、オレイルアミンを10.0mmol(3.3ml)用いた以外は実施例1と同様にした。
[Example 3]
Example 1 was repeated except that 10.0 mmol (3.2 ml) of oleic acid and 10.0 mmol (3.3 ml) of oleylamine were used.

[比較例1]
ジオクチルエーテル100ml中に、白金1.5mmolを含む白金アセチルアセトナートと、コバルト1.5mmolを含むコバルトアセチルアセトナートを添加し、230℃で1時間加熱して還元し、白金−コバルト合金微粒子を析出させた。還元終了後、冷却し、カーボンブラック(Ketjen EC、ケッチェンブラックインターナショナル製)1gを添加した。十分に撹拌し、白金−コバルト合金微粒子をカーボン上に担持させた。液体と固形物を濾別し、白金−コバルト合金微粒子担持カーボン触媒を取り出した。この触媒を酸素1%で160℃、3時間で熱処理した。
[Comparative Example 1]
In 100 ml of dioctyl ether, platinum acetylacetonate containing 1.5 mmol of platinum and cobalt acetylacetonate containing 1.5 mmol of cobalt are added and reduced by heating at 230 ° C. for 1 hour to precipitate platinum-cobalt alloy fine particles. I let you. After the reduction, the mixture was cooled and 1 g of carbon black (Ketjen EC, manufactured by Ketjen Black International) was added. The mixture was sufficiently stirred, and platinum-cobalt alloy fine particles were supported on carbon. The liquid and the solid were separated by filtration, and the platinum-cobalt alloy fine particle supported carbon catalyst was taken out. This catalyst was heat-treated at 160 ° C. for 3 hours with 1% oxygen.

[比較例2]
オレイン酸を15mmol(4.8ml)、オレイルアミンを15mmol(5.0ml)用いた以外は実施例1と同様にした。
[Comparative Example 2]
Example 1 was repeated except that 15 mmol (4.8 ml) of oleic acid and 15 mmol (5.0 ml) of oleylamine were used.

[比較例3]
オレイン酸を45mmol(14.3ml)、オレイルアミンを45mmol(14.9ml)用いた以外は実施例1と同様にした。
[Comparative Example 3]
Example 1 was repeated except that 45 mmol (14.3 ml) of oleic acid and 45 mmol (14.9 ml) of oleylamine were used.

[比較例4]
市販品高比表面積カーボンブラックであるKetjen EC(ケッチェンブラックインターナショナル製)5.0gを純水1.2Lに加え分散させた。この分散液に、白金0.5gを含むヘキサヒドロキソ白金硝酸溶液、コバルト0.5gを含む硝酸コバルト溶液を滴下し、十分にカーボンと攪拌した。これに0.1Nアンモニア約100mLを添加してpHを約10とし、それぞれ水酸化物を形成させカーボン上に析出させた。さらにエタノールを用いて90℃で還元し、分散液をろ過した。得られた粉末を80℃で一晩乾燥させた後、この触媒を酸素1%で160℃、3時間で熱処理を行った。
[Comparative Example 4]
Commercially available high specific surface area carbon black Ketjen EC (Ketjen Black International) (5.0 g) was added to 1.2 L of pure water and dispersed. To this dispersion, a hexahydroxo platinum nitric acid solution containing 0.5 g of platinum and a cobalt nitrate solution containing 0.5 g of cobalt were dropped, and the mixture was sufficiently stirred with carbon. About 100 mL of 0.1N ammonia was added thereto to adjust the pH to about 10, and a hydroxide was formed and precipitated on carbon. Furthermore, it reduced at 90 degreeC using ethanol, and filtered the dispersion liquid. The obtained powder was dried at 80 ° C. overnight, and then the catalyst was heat-treated at 160 ° C. for 3 hours with 1% oxygen.

2.白金−コバルト合金微粒子の粒径測定
粒径測定はリガク製小角広角X線回折装置(RINT2000)を用い、解析にはリガク製“NANO−Solver(ver.3.1)”を用い、平均粒径、粒径分布を求めた。測定は、析出した白金−コバルト合金微粒子をカーボン上に担持させる前に取り出し、エタノールを加えて分散させた後に乾燥させた試料について行った。図1は実施例3で得られた白金−コバルト合金微粒子を測定した結果得られた粒径分布を示したものである。図示したように、平均粒径はピークトップの半値幅の平均値とし、粒径分布幅はピークトップの半値幅とした。
2. Particle size measurement of platinum-cobalt alloy fine particles The particle size is measured using a small-angle wide-angle X-ray diffractometer (RINT2000) manufactured by Rigaku, and “NANO-Solver (ver. 3.1)” manufactured by Rigaku is used for analysis. The particle size distribution was determined. The measurement was performed on a sample which was taken out before the deposited platinum-cobalt alloy fine particles were supported on carbon, and was dispersed after adding ethanol and dried. FIG. 1 shows the particle size distribution obtained as a result of measuring the platinum-cobalt alloy fine particles obtained in Example 3. As shown in the figure, the average particle size was the average value of the half width of the peak top, and the particle size distribution width was the half width of the peak top.

3.白金−コバルト合金微粒子の組成分布測定
粒子の組成はSTEM−EDXで白金−コバルト合金微粒子を1点ずつ測定し、白金−コバルトの原子比を測定して求めた。測定は、析出した白金−コバルト合金微粒子をカーボン上に担持させる前に取り出し、エタノールを加えて分散させた後に乾燥させた試料について行った。粒子を100点測定し、その分布から平均コバルト組成とコバルト組成分布幅を求めた。図2左は白金−コバルト合金微粒子のSTEM像であり、図2右はSTEM像上に示した分析位置3において得られたスペクトルである。図3は、実施例2で得られた白金−コバルト合金微粒子を測定した結果得られたコバルト組成分布を示したものである。図示したように、平均コバルト組成はピークトップの半値幅の平均値とし、粒径分布幅はピークトップの半値幅とした。
3. Composition distribution measurement of platinum-cobalt alloy fine particles The composition of the particles was determined by measuring the platinum-cobalt alloy fine particles one by one with STEM-EDX and measuring the atomic ratio of platinum-cobalt. The measurement was performed on a sample which was taken out before the deposited platinum-cobalt alloy fine particles were supported on carbon, and was dispersed after adding ethanol and dried. The particles were measured at 100 points, and the average cobalt composition and the cobalt composition distribution width were determined from the distribution. The left side of FIG. 2 is an STEM image of platinum-cobalt alloy fine particles, and the right side of FIG. 2 is a spectrum obtained at the analysis position 3 shown on the STEM image. FIG. 3 shows the cobalt composition distribution obtained as a result of measuring the platinum-cobalt alloy fine particles obtained in Example 2. As shown in the figure, the average cobalt composition was the average value of the half width of the peak top, and the particle size distribution width was the half width of the peak top.

4.白金−コバルト合金微粒子担持カーボン触媒の活性評価
回転ディスク電極(RDE)を用いて電流値を測定し、電流密度(A/g−Pt)を求めることにより触媒の活性評価を行った。回転ディスク電極を用いた酸素還元触媒評価方法は当業者に周知な方法である。この方法では、触媒を付着させた電極を卑方向(電位がマイナスになる方向)に掃印させて電極上で酸素還元反応を起こさせ、その際に流れる電流を測定する。酸素還元電流が大きいほど触媒活性が高いといえる。測定中電極は回転しており、電極の回転によって生じた流れにより電解液中の溶存酸素が電極表面の触媒付近に流入する。一般に回転数が大きくなるほど触媒付近の酸素濃度が高くなるため酸素還元電流が大きくなる。測定は以下の手順で行った。
4). Activity Evaluation of Platinum-Cobalt Alloy Fine Particle-Supported Carbon Catalyst The catalyst activity was evaluated by measuring the current value using a rotating disk electrode (RDE) and determining the current density (A / g-Pt). The oxygen reduction catalyst evaluation method using a rotating disk electrode is a method well known to those skilled in the art. In this method, the electrode to which the catalyst is attached is swept in the base direction (direction in which the potential becomes negative) to cause an oxygen reduction reaction on the electrode, and the current flowing at that time is measured. It can be said that the larger the oxygen reduction current, the higher the catalytic activity. The electrode is rotating during the measurement, and the dissolved oxygen in the electrolyte flows into the vicinity of the catalyst on the electrode surface due to the flow generated by the rotation of the electrode. In general, as the rotational speed increases, the oxygen concentration near the catalyst increases, so the oxygen reduction current increases. The measurement was performed according to the following procedure.

担持触媒粉末10mgを水10mlとエタノール10mlの混合溶液に分散させて触媒インクを得た。この触媒インクを2μlとってグラッシーカーボン製電極(φ5mm)上に塗布し、乾燥させてサンプル電極を作成した。このサンプル電極を回転ディスク電極装置(北斗電工製)にセットし、作用極とした。参照極には水素電極(RHE)、対極には白金電極をそれぞれ用いた。0.1Nの過塩素酸水溶液300mlに酸素を100ml/分の流量で30分間流して酸素を十分に飽和させたものを電解液として用いた。電極を1500rpmで回転させ、電極の電圧を水素電極に対して50mVから1000mVまで20mV/秒で掃印させて流れた電流値を測定した。850mVにおける電流値から単位白金量あたりの電流密度を求めた。   A catalyst ink was obtained by dispersing 10 mg of the supported catalyst powder in a mixed solution of 10 ml of water and 10 ml of ethanol. 2 μl of this catalyst ink was applied onto a glassy carbon electrode (φ5 mm) and dried to prepare a sample electrode. This sample electrode was set on a rotating disk electrode device (manufactured by Hokuto Denko) and used as a working electrode. A hydrogen electrode (RHE) was used as the reference electrode, and a platinum electrode was used as the counter electrode. A solution obtained by allowing oxygen to flow through 300 ml of a 0.1 N perchloric acid aqueous solution at a flow rate of 100 ml / min for 30 minutes to sufficiently saturate oxygen was used as an electrolytic solution. The electrode was rotated at 1500 rpm, and the voltage value of the electrode was swept from 50 mV to 1000 mV with respect to the hydrogen electrode at a rate of 20 mV / second, and the current value flowing was measured. The current density per unit platinum amount was determined from the current value at 850 mV.

5.結果
各測定結果を表1にまとめた。
5. Results The measurement results are summarized in Table 1.

Figure 2011149042
Figure 2011149042

図4は、使用した保護配位子/金属比(モル比)に対して得られた白金−コバルト合金微粒子の平均粒径および粒径分布幅をプロットしたグラフである。グラフからも明らかなように、保護配位子/金属比が1.0〜7.5の範囲である実施例1〜3の白金−コバルト合金微粒子は平均粒径が2nm以下であり、かつ粒径分布幅が1nm以下であった。   FIG. 4 is a graph plotting the average particle size and particle size distribution width of the obtained platinum-cobalt alloy fine particles against the protective ligand / metal ratio (molar ratio) used. As is apparent from the graph, the platinum-cobalt alloy fine particles of Examples 1 to 3 having a protective ligand / metal ratio in the range of 1.0 to 7.5 have an average particle size of 2 nm or less, and The diameter distribution width was 1 nm or less.

図5は、使用した保護配位子/金属比に対してコバルト平均組成およびコバルト組成分布幅をプロットしたグラフである。グラフからも明らかなように、保護配位子/金属比が1.0〜7.5の範囲である実施例1〜3の白金−コバルト合金微粒子はコバルト平均組成にバラつきがなく、かつコバルト組成分布幅が10%以下であった。   FIG. 5 is a graph plotting the average cobalt composition and the cobalt composition distribution width against the protective ligand / metal ratio used. As is apparent from the graph, the platinum-cobalt alloy fine particles of Examples 1 to 3 having a protective ligand / metal ratio in the range of 1.0 to 7.5 have no variation in the average cobalt composition, and the cobalt composition The distribution width was 10% or less.

図6は、実施例3と比較例2および4で得られた白金−コバルト合金微粒子担持カーボン触媒の電流密度比を表したグラフである。グラフからも明らかなように、保護配位子/金属比が1.0〜7.5の範囲内である実施例3の触媒は、保護配位子/金属比が10である比較例2の触媒、および保護配位子を用いずに調製した比較例4の触媒に対して、顕著に高い電流密度値を示した。高い電流密度は、試験に供された触媒の活性が高いことを意味するものである。   FIG. 6 is a graph showing the current density ratio of the platinum-cobalt alloy fine particle-supported carbon catalysts obtained in Example 3 and Comparative Examples 2 and 4. As is apparent from the graph, the catalyst of Example 3 in which the protective ligand / metal ratio is in the range of 1.0 to 7.5 is the same as that of Comparative Example 2 in which the protective ligand / metal ratio is 10. The catalyst and the catalyst of Comparative Example 4 prepared without using a protective ligand showed significantly higher current density values. A high current density means that the activity of the catalyst subjected to the test is high.

Claims (7)

溶媒に、白金(Pt)の塩もしくは錯体およびコバルト(Co)の塩もしくは錯体と保護配位子を、前記白金およびコバルトの塩もしくは錯体に含まれる金属の総量に対してモル比で1.0〜7.5の量で加えて加熱することを含む、白金−コバルト合金微粒子の製造方法。   In a solvent, platinum (Pt) salt or complex and cobalt (Co) salt or complex and protective ligand are added in a molar ratio of 1.0 to a total amount of metals contained in the platinum and cobalt salt or complex. A method for producing platinum-cobalt alloy fine particles, comprising adding and heating in an amount of -7.5. 保護配位子がC6−24脂肪族カルボン酸およびC6−24脂肪族アミンを含む、請求項1に記載の方法。 The method of claim 1, wherein the protective ligand comprises a C 6-24 aliphatic carboxylic acid and a C 6-24 aliphatic amine. 6−24脂肪族カルボン酸がオレイン酸であり、C6−24脂肪族アミンがオレイルアミンである、請求項2に記載の方法。 C 6-24 aliphatic carboxylic acid is oleic acid, C 6-24 aliphatic amine is oleylamine, The method of claim 2. 平均粒径2nm以下、粒径分布幅が1nm以下、かつコバルト組成分布幅が10%以下である白金−コバルト合金微粒子。   Platinum-cobalt alloy fine particles having an average particle size of 2 nm or less, a particle size distribution width of 1 nm or less, and a cobalt composition distribution width of 10% or less. 請求項1〜3のいずれか1項に記載の方法により製造される、請求項4に記載の白金−コバルト合金微粒子。   The platinum-cobalt alloy fine particles according to claim 4, which are produced by the method according to claim 1. 請求項4または5に記載の白金−コバルト合金微粒子を担体に担持させた燃料電池用担持触媒。   A supported catalyst for a fuel cell, wherein the platinum-cobalt alloy fine particles according to claim 4 or 5 are supported on a carrier. 請求項6に記載の担持触媒を含む電極を備えた燃料電池。   A fuel cell comprising an electrode comprising the supported catalyst according to claim 6.
JP2010010144A 2010-01-20 2010-01-20 Method for producing platinum-cobalt alloy fine particle Pending JP2011149042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010144A JP2011149042A (en) 2010-01-20 2010-01-20 Method for producing platinum-cobalt alloy fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010144A JP2011149042A (en) 2010-01-20 2010-01-20 Method for producing platinum-cobalt alloy fine particle

Publications (1)

Publication Number Publication Date
JP2011149042A true JP2011149042A (en) 2011-08-04

Family

ID=44536290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010144A Pending JP2011149042A (en) 2010-01-20 2010-01-20 Method for producing platinum-cobalt alloy fine particle

Country Status (1)

Country Link
JP (1) JP2011149042A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253296A (en) * 2012-06-07 2013-12-19 Osaka Gas Co Ltd Method for producing alloy particle
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
CN110899718A (en) * 2018-09-14 2020-03-24 上海铁路通信有限公司 Preparation method of large-particle-size cobalt particles with shell-core structures
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
CN113937305A (en) * 2021-09-30 2022-01-14 华中科技大学 Graphite carbon-coated platinum-cobalt alloy oxygen reduction electrocatalyst and preparation method thereof
CN114142044A (en) * 2021-11-09 2022-03-04 复旦大学 Carbon coating method of platinum-carbon catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038676A1 (en) * 2004-10-06 2006-04-13 Yamanashi University Method for producing electrode catalyst
WO2008001815A1 (en) * 2006-06-30 2008-01-03 N.E. Chemcat Corporation Process for producing metal nanoparticle and metal nanoparticle produced by the process
JP2008031554A (en) * 2006-06-30 2008-02-14 Ne Chemcat Corp Process for producing metal nanoparticle and metal nanoparticle produced by the process
JP2010182635A (en) * 2009-02-09 2010-08-19 Toyota Motor Corp Manufacturing method of supported catalyst for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038676A1 (en) * 2004-10-06 2006-04-13 Yamanashi University Method for producing electrode catalyst
WO2008001815A1 (en) * 2006-06-30 2008-01-03 N.E. Chemcat Corporation Process for producing metal nanoparticle and metal nanoparticle produced by the process
JP2008031554A (en) * 2006-06-30 2008-02-14 Ne Chemcat Corp Process for producing metal nanoparticle and metal nanoparticle produced by the process
JP2010182635A (en) * 2009-02-09 2010-08-19 Toyota Motor Corp Manufacturing method of supported catalyst for fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253296A (en) * 2012-06-07 2013-12-19 Osaka Gas Co Ltd Method for producing alloy particle
JP2014161786A (en) * 2013-02-25 2014-09-08 Nissan Motor Co Ltd Catalyst particle and method for producing the same
US11217796B2 (en) 2017-04-28 2022-01-04 Cataler Corporation Electrode catalyst for fuel cell and method of production of same
CN110899718A (en) * 2018-09-14 2020-03-24 上海铁路通信有限公司 Preparation method of large-particle-size cobalt particles with shell-core structures
CN110899718B (en) * 2018-09-14 2022-11-15 上海铁路通信有限公司 Preparation method of large-particle-size cobalt particles with shell-core structures
CN113937305A (en) * 2021-09-30 2022-01-14 华中科技大学 Graphite carbon-coated platinum-cobalt alloy oxygen reduction electrocatalyst and preparation method thereof
CN114142044A (en) * 2021-11-09 2022-03-04 复旦大学 Carbon coating method of platinum-carbon catalyst
CN114142044B (en) * 2021-11-09 2022-10-11 复旦大学 Carbon coating method of platinum-carbon catalyst

Similar Documents

Publication Publication Date Title
Fu et al. Robust bifunctional oxygen electrocatalyst with a “rigid and flexible” structure for air-cathodes
Li et al. Self-supported Pt nanoclusters via galvanic replacement from Cu 2 O nanocubes as efficient electrocatalysts
JP3651799B2 (en) Catalyst material for fuel cell, method for producing catalyst material for fuel cell, and fuel cell
Perivoliotis et al. Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction
CN106058275B (en) A kind of used in proton exchange membrane fuel cell carbon carries the preparation method and applications of PtCo intermetallic compound catalyst
Boone et al. Pt–Pd and Pt–Pd–(Cu or Fe or Co)/graphene nanoribbon nanocomposites as efficient catalysts toward the oxygen reduction reaction
JP2011149042A (en) Method for producing platinum-cobalt alloy fine particle
CN111244484B (en) Preparation method of sub-nano platinum-based ordered alloy
JP6583417B2 (en) Catalyst particles, electrode catalyst using the same, electrolyte membrane-electrode assembly, and fuel cell
Dembinska et al. Electrocatalytic oxygen reduction in alkaline medium at graphene-supported silver-iron carbon nitride sites generated during thermal decomposition of silver hexacyanoferrate
Li et al. Highly active carbon-supported Pt nanoparticles modified and dealloyed with Co for the oxygen reduction reaction
JP6161239B2 (en) Core-shell nanoparticle-supported catalyst body, process for producing the same, and fuel cell using the catalyst body
Feng et al. Morphology effect of MnO2 promoter to the catalytic performance of Pt toward methanol electrooxidation reaction
JP5375146B2 (en) Method for producing supported catalyst for fuel cell
KR101484188B1 (en) Method for preparing Pt catalyst, the Pt catalyst for oxygen reduction reaction prepared therefrom, and PEMFC including the Pt catalyst
Sharma et al. Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction
KR101838287B1 (en) Method for preparing N-doped carbon shell protected ordered PtFe nanoparticle and ordered PtFe nanoparticle obtained thereof and uses thereof
Chen et al. Nanostructured coral-like carbon as Pt support for fuel cells
Liu et al. One-pot synthesis of highly efficient carbon-supported polyhedral Pt 3 Ni alloy nanoparticles for oxygen reduction reaction
Jiang et al. Enhanced catalytic activity of ternary Pd-Ni-Ir nanoparticles supported on carbon toward formic acid electro-oxidation
JP6040954B2 (en) Method for producing fuel cell catalyst
Chen et al. Pt nanoparticles supported on non-carbon titanium chromium nitride nanotubes with high activity and durability for methanol oxidation reaction
Wang et al. Amorphous Pt@ PdCu/CNT catalyst for methanol electrooxidation
KR20200053431A (en) Au doped Pt alloy catalysts for fuel cell and method thereof
Huang et al. Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408