JP2008031554A - Process for producing metal nanoparticle and metal nanoparticle produced by the process - Google Patents

Process for producing metal nanoparticle and metal nanoparticle produced by the process Download PDF

Info

Publication number
JP2008031554A
JP2008031554A JP2007168837A JP2007168837A JP2008031554A JP 2008031554 A JP2008031554 A JP 2008031554A JP 2007168837 A JP2007168837 A JP 2007168837A JP 2007168837 A JP2007168837 A JP 2007168837A JP 2008031554 A JP2008031554 A JP 2008031554A
Authority
JP
Japan
Prior art keywords
nanoparticles
alloy
salt
solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168837A
Other languages
Japanese (ja)
Other versions
JP5047706B2 (en
Inventor
Masaru Ito
賢 伊藤
Hiroshi Sugai
弘 菅井
Masahito Watanabe
雅人 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP2007168837A priority Critical patent/JP5047706B2/en
Publication of JP2008031554A publication Critical patent/JP2008031554A/en
Application granted granted Critical
Publication of JP5047706B2 publication Critical patent/JP5047706B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant

Abstract

<P>PROBLEM TO BE SOLVED: To provide a single-step process for producing a fine metal nanoparticle, in particular a regular alloy nanoparticle, which is performed in a solution. <P>SOLUTION: The production process is characterized in that a solution of a salt or a complex of a metal element is irradiated with a laser light so that the salt or complex is decomposed and/or reduced in the solution, thereby forming metal nanoparticles having an average particle diameter of 0.3 to 100 nm in the solution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属ナノ粒子の製造方法及び同製法で製造される金属ナノ粒子に関する。   The present invention relates to a method for producing metal nanoparticles and metal nanoparticles produced by the production method.

金属ナノ粒子は、ユニークな物理的、及び化学的性質の故に、その産業用途が注目されている。これまで金属ナノ粒子の製造方法として各種の方法が提案されている。大別すると、湿式法と乾式法が有り、湿式法の代表的なものは溶液中で金属の塩あるいは錯体を共存する還元剤によって還元する方法であり、乾式法の代表的なものは金属インゴットのガス中蒸発法(非特許文献1)である。金属ナノ粒子の中でも、合金のナノ粒子、特に、白金、パラジウム、金、銀、ロジウム、ルテニウム、イリジウム等の貴金属と、鉄、コバルト、ニッケル、銅、クロム等の卑金属との合金のナノ粒子には、触媒作用、電気磁気特性或いは光学特性の面で、実用上重要な合金が知られているにも拘らず、その製造には多段階の操作を要し、簡便な方法が知られていなかった。例えば、白金―コバルト、白金―ニッケル、白金―鉄、白金―コバルトークロム等の固溶体合金は、電気化学的な酸素還元質量活性が高く、燃料電池のカソード触媒の活性種として有用であるが、その調製に当たっては、例えばカーボン担体上の白金ナノ粒子にコバルト等の卑金属の塩を作用させ中和して卑金属の水酸化物で担持するか、又はヒドラジン等の還元剤で処理して金属として担持し、これを800〜900℃の高温で、水素還元・合金化処理するか或いはアルゴン流通下合金化処理して、合金触媒としている。この高温熱処理の為に通常合金結晶子径は5nm以上となり3nm以下の微細な合金触媒を得ることは困難であった(例えば、特許文献1)。   Metal nanoparticles are attracting attention for their industrial applications because of their unique physical and chemical properties. Various methods have been proposed so far for producing metal nanoparticles. Broadly speaking, there are wet methods and dry methods. A typical wet method is a method in which a metal salt or complex is reduced in a solution by a coexisting reducing agent, and a typical dry method is a metal ingot. The gas evaporation method (Non-patent Document 1). Among metal nanoparticles, alloy nanoparticles, especially alloys of noble metals such as platinum, palladium, gold, silver, rhodium, ruthenium and iridium with base metals such as iron, cobalt, nickel, copper and chromium Despite the fact that alloys that are practically important in terms of catalysis, electromagnetism or optical properties are known, their production requires multi-step operations and no simple method is known. It was. For example, solid solution alloys such as platinum-cobalt, platinum-nickel, platinum-iron, and platinum-cobalt-chromium have high electrochemical oxygen reduction mass activity and are useful as active species for fuel cell cathode catalysts. For the preparation, for example, platinum nanoparticles on a carbon support are allowed to react with a base metal salt such as cobalt and neutralized and supported with a base metal hydroxide, or treated with a reducing agent such as hydrazine and supported as a metal. Then, this is subjected to hydrogen reduction / alloying treatment at a high temperature of 800 to 900 ° C. or alloying treatment under argon flow to obtain an alloy catalyst. Due to this high temperature heat treatment, the alloy crystallite diameter is usually 5 nm or more, and it is difficult to obtain a fine alloy catalyst of 3 nm or less (for example, Patent Document 1).

他方、白金―鉄や白金−コバルト等の規則性合金ナノ粒子は高い磁気異方性の故に高密度磁気記録材料として注目されているが、この合金も、予め260℃〜300℃という高温の有機溶媒中のポリオール還元法で不規則性合金ナノ粒子を調製し、しかる後に、これを基板に担持した後、500℃以上の高温で再度熱処理して漸く目的とする規則性合金ナノ粒子を得ている(特許文献2、非特許文献2)。この規則性処理の故に、湿式ナノ粒子製法で得られる粒子径3nm未満の微細な規則性合金ナノ粒子は得られなかった。   On the other hand, ordered alloy nanoparticles such as platinum-iron and platinum-cobalt are attracting attention as high-density magnetic recording materials because of their high magnetic anisotropy. After preparing irregular alloy nanoparticles by a polyol reduction method in a solvent, and then supporting this on a substrate, heat treatment is again performed at a high temperature of 500 ° C. or higher to obtain the desired regular alloy nanoparticles. (Patent Document 2, Non-Patent Document 2). Because of this regularity treatment, fine regular alloy nanoparticles having a particle diameter of less than 3 nm obtained by the wet nanoparticle production method could not be obtained.

他方、レーザー光をナノ粒子の製造に利用する方法に関しては幾つかの先行技術が知られている。FeとCoあるいはFeとCr等の2種の遷移金属のカルボニル化合物の気体にレーザー光を照射して高温の結晶層であるγ相合金を、微粒子、粉末又は薄膜として得る方法が報告(特許文献3)された。この方法は気体化できる化合物を有する金属種に向くが、白金やパラジウムといった気体化し難い重元素の合金には適用困難であった。
前駆体非規則性合金ナノ粒子を含有する塗布液を支持体上に塗布した後、その塗膜にレーザー照射してCuAu型あるいはCu3Au型硬磁性規則化する製造方法が報告(特許文献4)された。また、非晶質ナノ粒子を有機配位子で保護したものを予めホットソープ法等の湿式法で製造し精製した後、有機配位子で安定化されたナノ粒子にレーザー光を照射して結晶化する磁性ナノ粒子の製法が報告(特許文献5)された。
On the other hand, several prior arts are known regarding methods of using laser light for the production of nanoparticles. A method of obtaining a high-temperature crystalline layer γ-phase alloy as fine particles, powder, or thin film by irradiating laser light to a gas of carbonyl compound of two kinds of transition metals such as Fe and Co or Fe and Cr (patent document) 3) This method is suitable for metal species having a compound that can be gasified, but is difficult to apply to alloys of heavy elements such as platinum and palladium that are difficult to gasify.
A manufacturing method in which a coating liquid containing precursor non-ordered alloy nanoparticles is applied on a support and then the coating film is irradiated with a laser to form a CuAu type or Cu 3 Au type hard magnetic order is reported (Patent Document 4). ) In addition, after manufacturing and purifying amorphous nanoparticles protected with organic ligands in advance by a wet method such as a hot soap method, the nanoparticles stabilized with organic ligands are irradiated with laser light. A method for producing crystallized magnetic nanoparticles has been reported (Patent Document 5).

これらの従来の製法は、目的とする結晶性合金ナノ粒子を得るのに、少なくとも2段階、途中の抽出等の精製や乾燥工程を加えると3〜5段階もの処理を必要とし、工程が長く煩雑であったり、大量の溶媒を用いて加熱したり洗浄したりすることによる資源とエネルギーのロスの多いプロセスであった。また、後半の熱処理の為に、折角前工程で得られた微粒子の凝集や粒径成長が避けられなかった。   These conventional production methods require at least two stages and three to five stages of processing when adding purification and drying processes such as extraction in the middle to obtain the desired crystalline alloy nanoparticles, and the process is long and complicated. It is a process with a lot of loss of resources and energy due to heating or cleaning with a large amount of solvent. In addition, due to the heat treatment in the latter half, the aggregation and particle size growth of the fine particles obtained in the pre-folding step cannot be avoided.

また従来レーザーアブレーション法で金属や金属酸化物の微粒子を形成する方法が広く知られている(例えば、特許文献6、特許文献7、及び非特許文献3)。これは液相中の固体の金属原料にレーザー光を照射して原料よりは粒径の小さい微粒子を得る方法であるが、分子からナノ粒子を形成するボトムアップ法ではなく、固体の塊を微細化する所謂トップダウン法である。この方法では、微粒化に限度が有り、粒度分布の制御が容易でない等の問題があった。   In addition, a method of forming fine particles of metal or metal oxide by a conventional laser ablation method is widely known (for example, Patent Document 6, Patent Document 7, and Non-Patent Document 3). This is a method of irradiating a solid metal raw material in the liquid phase with laser light to obtain fine particles with a particle size smaller than that of the raw material, but it is not a bottom-up method in which nanoparticles are formed from molecules, but a solid mass is finely divided. This is a so-called top-down method. This method has a problem that the atomization is limited and the control of the particle size distribution is not easy.

ところで、現在知られている磁性体の中で最も磁気異方性が高い合金の一つとされるPt-Fe合金の場合、これまで報告されている最も微細な粒子径は3〜4nmである。また強磁性粒子の粒子径を微細化していくと電子スピン間の交換相互作用が熱的な擾乱に負けて強磁性を示さなくなる超常磁性臨界径は、Pt-Fe合金の場合、300Kで3nm程度とされた(非特許文献4)。   By the way, in the case of a Pt—Fe alloy which is one of the alloys having the highest magnetic anisotropy among the currently known magnetic materials, the finest particle diameter reported so far is 3 to 4 nm. In addition, when the particle size of ferromagnetic particles is refined, the superparamagnetic critical diameter at which exchange interaction between electron spins loses ferromagnetism due to thermal disturbance is about 3 nm at 300K for Pt-Fe alloys. (Non-Patent Document 4).

即ち、将来の超高密度磁気記録素子用途には、出来るだけ微細な、例えは3nm以下の、強磁性ナノ粒子が要望されながら、そのような微細な規則性合金ナノ粒子の製造に有効な製法は確立されておらず、またもし有ったとしても超常磁性の壁に阻まれ常温域での強磁性の達成は困難と考えられてきた。   That is, for future ultra-high-density magnetic recording element applications, ferromagnetic nanoparticles as fine as possible, for example, 3 nm or less, are required, but a production method effective for producing such fine ordered alloy nanoparticles. It has been considered that it is difficult to achieve ferromagnetism in the normal temperature range because it is blocked by superparamagnetic walls, if any.

特開2000−323145JP2000-323145A 米国特許第6254662号U.S. Pat.No. 6,265,462 特許第3268793号、特開平5-65512Japanese Patent No. 3268793, Japanese Patent Laid-Open No. 5-65512 特開2003-260409JP2003-260409 特開2005-48213JP2005-48213 特開2005-272864JP2005-272864 特開2003-306319JP2003-306319 小田正明、超微粒子、林、上田、田崎編、115、1988、三田出版会Masaaki Oda, Ultrafine Particles, Hayashi, Ueda, Tazaki, 115, 1988, Mita Publishing S. Sun 等、Science, Vol.287, 1989, 17 March 2000S. Sun et al., Science, Vol.287, 1989, 17 March 2000 S. Koda et al, J.Phys. Chem. B, 103, p1226-1232(1999)S. Koda et al, J. Phys. Chem. B, 103, p1226-1232 (1999) M. Watanabe et al., Mater. Trans. JIM, Vol.37, 489, 1996M. Watanabe et al., Mater. Trans. JIM, Vol. 37, 489, 1996

本発明は上記従来技術の問題点を克服すべく、目的とする金属ナノ粒子、貴金属と卑金属との固溶体合金ナノ粒子、更には、従来追加的な規則化処理工程を要した規則性合金ナノ粒子をも、構成元素の塩及び/又は錯体の溶液或いは共溶液中で直接一段階で生成させる簡便で収率の高い製法を提供することを課題とする。   In order to overcome the above-mentioned problems of the prior art, the present invention aims at target metal nanoparticles, solid solution alloy nanoparticles of noble metal and base metal, and regular alloy nanoparticles that have conventionally required additional ordering treatment steps. It is another object of the present invention to provide a simple and high-yield production method in which a salt or / and complex solution of a constituent element is directly produced in a single step.

本発明は、上記課題を解決する手段として、金属元素の塩及び/又は錯体の溶液にレーザー光を照射して溶液中で該塩及び/又は錯体を分解及び/又は還元して該溶液中に平均粒径が0.3〜100nmの範囲の金属ナノ粒子を直接生成させることを含む金属ナノ粒子の製造方法を提供する。   As a means for solving the above-mentioned problems, the present invention provides a solution of a metal element salt and / or complex that is irradiated with laser light to decompose and / or reduce the salt and / or complex in the solution. There is provided a method for producing metal nanoparticles comprising directly producing metal nanoparticles having an average particle size in the range of 0.3 to 100 nm.

好適には平均粒径が0.3〜10nm、更に好適には平均粒径が0.3〜3nmの範囲の金属ナノ粒子の製造方法を提供する。   A method for producing metal nanoparticles having an average particle diameter of preferably 0.3 to 10 nm, more preferably an average particle diameter of 0.3 to 3 nm is provided.

また本発明は、溶液中にレーザー光を照射するにあたり、生成する金属ナノ粒子に配位して凝集を防ぐ配位性有機保護剤を予め溶液に共存させる上記の金属ナノ粒子の製造方法を提供する。   The present invention also provides the above-mentioned method for producing metal nanoparticles in which a coordinating organic protective agent that coordinates with the generated metal nanoparticles to prevent aggregation is preexisted in the solution when the solution is irradiated with laser light. To do.

更に、本発明は、溶液中にレーザー光を吸収し金属の塩及び/又は錯体の分解及び/又は還元を促進する分解・還元促進剤(以下、「促進剤」と略す)を共存させる上記金属ナノ粒子の製造方法を提供する。そして、上記促進剤が含酸素有機化合物である該金属ナノ粒子の製造方法、更には促進剤がアルコールである該金属ナノ粒子の製造方法を提供する。   Furthermore, the present invention provides the above-described metal in which a decomposition / reduction accelerator (hereinafter abbreviated as “accelerator”) that absorbs laser light and promotes decomposition and / or reduction of a metal salt and / or complex in a solution coexists. A method for producing nanoparticles is provided. And the manufacturing method of this metal nanoparticle whose said promoter is an oxygen-containing organic compound and also the manufacturing method of this metal nanoparticle whose promoter is alcohol are provided.

そして、前記金属元素の塩及び/又は錯体が、白金、パラジウム、金、銀、ロジウム、ルテニウム、及びイリジウムからなる群から選ばれる一つの金属元素の塩及び/又は錯体である上記金属ナノ粒子の製造方法を提供する。   The metal element salt and / or complex is a salt and / or complex of one metal element selected from the group consisting of platinum, palladium, gold, silver, rhodium, ruthenium, and iridium. A manufacturing method is provided.

また本発明は、前記金属元素の塩及び/又は錯体が、白金、パラジウム、金、銀、ロジウム、ルテニウム、及びイリジウムからなる群(A群)の少なくとも一つの元素の塩及び/又は錯体と、鉄、コバルト、ニッケル、銅、及びクロムからなる群(B群)の少なくとも一つの元素の塩及び/又は錯体とを含み、得られる金属ナノ粒子がこれらの元素の合金からなる上記合金ナノ粒子の製造方法を提供する。
また、該合金が固溶体合金である上記製造方法、更に、該合金が規則性合金である金属ナノ粒子の上記製造方法を提供する。
また、本発明は上記の製造方法で製造される、粒径が0.3〜100nmの範囲にある金属ナノ粒子を提供する。該合金ナノ粒子として、合金ナノ粒子、固溶体合金ナノ粒子、更には規則性合金ナノ粒子をも提供する。
In the present invention, the salt and / or complex of the metal element is a salt and / or complex of at least one element of the group (group A) consisting of platinum, palladium, gold, silver, rhodium, ruthenium, and iridium, The alloy nanoparticles comprising a salt and / or a complex of at least one element of the group consisting of iron, cobalt, nickel, copper, and chromium (group B), wherein the obtained metal nanoparticles are alloys of these elements. A manufacturing method is provided.
Moreover, the said manufacturing method whose said alloy is a solid solution alloy, Furthermore, the said manufacturing method of the metal nanoparticle whose this alloy is a regular alloy is provided.
Moreover, this invention provides the metal nanoparticle which is manufactured with said manufacturing method and has a particle size in the range of 0.3-100 nm. As the alloy nanoparticles, alloy nanoparticles, solid solution alloy nanoparticles, and regular alloy nanoparticles are also provided.

以下に、本発明について更に詳細に説明する。なお、本発明において「室温」とは15〜25℃を意味する。また、本発明においてナノ粒子とは、粒径が0.3〜100nmの領域の微粒子を指す。   Hereinafter, the present invention will be described in more detail. In the present invention, “room temperature” means 15 to 25 ° C. In the present invention, the nanoparticle refers to a fine particle having a particle size of 0.3 to 100 nm.

本発明の金属ナノ粒子の製造方法においては、原料として金属元素の塩及び/又は錯体を使用する。金属の種類には依存しないが、好ましくは、白金、パラジウム、金、銀、ロジウム、ルテニウム及びイリジウムからなる群(以下A群と略称、これらはしばしば貴金属元素と称される)の少なくとも一つである。本発明の金属ナノ粒子の製造方法は、金属元素の塩及び/又は錯体の溶液にレーザー光を照射して溶液中で該塩及び/又は錯体の分解及び/又は還元を起こさせる。すなわち、金属の塩及び/又は錯体としてはレーザー光照射下で、自発的に分解及び/又は還元を起こすものか、あるいは自発的な分解及び/又は還元は起こさないが、後述する分解・還元促進剤の添加によってレーザー光照射下で分解及び/又は還元を起こすものを選択する。塩としては、例えば、塩酸塩、臭化水素酸塩、沃化水素酸塩、塩素酸塩、臭素酸塩、沃素酸塩、硝酸塩、硫酸塩、更に、酢酸塩、プロピオン酸塩、酪酸塩、オレイン酸塩、安息香酸塩、ナフチル酸塩等の有機カルボン酸R−COOH(ここで、RはC1〜C20のアルキル基、アラルキル基、アルケニル基又はアリール基を示す)の塩を用いることが出来る。また錯体の配位子としては、CO、NO、R−COO、RCN、RNC、RN、RCOC(R)=C(O)R、R−C、R−C,RP,RPO(但し、Rは前記の通りであり、R,R,Rは独立にアルキル基、アラルキル基、又はアリール基であるか、あるいは、RとR、RとR又はRとRは連結して二価の基を構成してもよい)等の配位子を取ることができる。このような配位子の具体例としては、CHCOO、CCOO、CHCN、CCN、NH、CHCOCH=C(O)CH、CFCOCF=C(O)CF等を挙げることができ、好ましくはCHCOC(H)=C(O)CHである。 In the method for producing metal nanoparticles of the present invention, a salt and / or complex of a metal element is used as a raw material. Although it does not depend on the type of metal, it is preferably at least one of the group consisting of platinum, palladium, gold, silver, rhodium, ruthenium and iridium (hereinafter abbreviated as group A, these are often referred to as noble metal elements). is there. In the method for producing metal nanoparticles of the present invention, a solution of a salt and / or complex of a metal element is irradiated with laser light to cause decomposition and / or reduction of the salt and / or complex in the solution. That is, as a metal salt and / or complex, it does not spontaneously decompose and / or reduce under laser light irradiation, or does not spontaneously decompose and / or reduce, but promotes decomposition / reduction described later. A substance that decomposes and / or reduces under laser light irradiation by adding an agent is selected. Examples of the salt include hydrochloride, hydrobromide, hydroiodide, chlorate, bromate, iodate, nitrate, sulfate, acetate, propionate, butyrate, A salt of an organic carboxylic acid R—COOH such as oleate, benzoate or naphthylate (wherein R represents a C1-C20 alkyl group, aralkyl group, alkenyl group or aryl group) can be used. . Moreover, as a ligand of a complex, CO, NO, R—COO , RCN, RNC, R 1 R 2 R 3 N, R 1 COC (R 2 ) = C (O ) R 3 , R—C 6 H 4 O , R—C 6 H 4 S , R 1 R 2 R 3 P, R 1 R 2 R 3 PO (where R is as defined above, R 1 , R 2 , R 3 are independent) Or an alkyl group, an aralkyl group, or an aryl group, or R 1 and R 2 , R 2 and R 3, or R 3 and R 1 may be linked to form a divalent group) Can take a ligand. Specific examples of such a ligand include CH 3 COO , C 2 H 5 COO , CH 3 CN, C 6 H 5 CN, NH 3 , CH 3 COCH═C (O ) CH 3 , CF 3 COCF═C (O ) CF 3 and the like can be mentioned, and CH 3 COC (H) ═C (O ) CH 3 is preferable.

金属塩及び錯体の具体例としては、金属が白金の場合、塩化白金、塩化白金酸、塩化白金酸ナトリウム、塩化白金酸カリウム、テトラアンミン白金ジクロライド、ジニトロジアミノ白金、ジクロロジアンミン白金、アセチルアセトナート白金、p−フルオロアセチルアセトナート白金等を好適に使用できる。   Specific examples of metal salts and complexes include platinum chloride, chloroplatinic acid, sodium chloroplatinate, potassium chloroplatinate, tetraammineplatinum dichloride, dinitrodiaminoplatinum, dichlorodiammineplatinum, platinum acetylacetonate, when the metal is platinum. P-fluoroacetylacetonate platinum or the like can be preferably used.

また本発明の合金の製造に於いては、先ず構成元素の塩或いは錯体の共溶液を調製する。製造される合金が、A群の少なくとも一つの元素と、クロム、鉄、コバルト、ニッケル、及び銅からなる群(B群)の少なくとも一つの元素との合金である場合、A群の元素の塩及び/又は錯体及びB群の元素の塩及び/又は錯体の種類や形態には依存しないが、A群の元素の塩及び/又は錯体としては前出のものが好適に使用でき、B群の塩としては、塩酸塩、臭化水素酸塩、沃化水素酸塩、塩素酸塩、臭素酸塩、沃素酸塩、硝酸塩、硫酸塩、更に、酢酸塩、プロピオン酸塩、酪酸塩、オレイン酸塩、安息香酸塩、ナフチル酸塩等の有機カルボン酸R−COOH(ここで、Rは前記の通り)の塩を用いることが出来る。また錯体の配位子としては、CO、NO、R−COO、RCN、RNC、RN、RCOC(R)=C(O)R、R−C、R−C,RP,RPO(但し、R、R,R,及びRは前記の通りであり、RとR、RとR又はRとRは連結して二価の基を構成してもよい)等の配位子を取ることができる。このような配位子の具体例としては、CHCOO、CCOO、CHCN、CCN、NH、CHCOCH=C(O)CH、CFCOCF=C(O)CF等を挙げることができ、好ましくはCHCOC(H)=C(O)CHである。 In the production of the alloy of the present invention, a co-solution of constituent element salts or complexes is first prepared. When the alloy to be produced is an alloy of at least one element of group A and at least one element of group (group B) consisting of chromium, iron, cobalt, nickel, and copper, a salt of the element of group A And / or the salt and / or complex of the element and / or complex of the group B element, but the above-mentioned salts and / or complexes of the element A can be preferably used. Salts include hydrochloride, hydrobromide, hydroiodide, chlorate, bromate, iodate, nitrate, sulfate, acetate, propionate, butyrate, oleic acid A salt of an organic carboxylic acid R—COOH (wherein R is as described above) such as a salt, a benzoate, and a naphthylate can be used. Moreover, as a ligand of a complex, CO, NO, R—COO , RCN, RNC, R 1 R 2 R 3 N, R 1 COC (R 2 ) = C (O ) R 3 , R—C 6 H 4 O , R—C 6 H 4 S , R 1 R 2 R 3 P, R 1 R 2 R 3 PO (where R, R 1 , R 2 , and R 3 are as defined above, R 1 and R 2 , R 2 and R 3, or R 3 and R 1 may be linked to form a divalent group). Specific examples of such a ligand include CH 3 COO , C 2 H 5 COO , CH 3 CN, C 6 H 5 CN, NH 3 , CH 3 COCH═C (O ) CH 3 , CF 3 COCF═C (O ) CF 3 and the like can be mentioned, and CH 3 COC (H) ═C (O ) CH 3 is preferable.

B群の元素の金属塩としては、例えば、B群の金属が鉄の場合、塩としては、塩化第一鉄、塩化第二鉄、臭化鉄(II)、臭化鉄(III)、フッ化鉄(III)、硝酸第二鉄、硫酸第一鉄、酢酸第一鉄、クエン酸鉄(III)、アクリル酸鉄(III)、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウム、蓚酸鉄(III)アンモニウム、グルコン酸鉄(II)、グルコン酸鉄(III))、ナフテン酸鉄(II)等が使用でき、錯体としては鉄(III)アセチルアセトナート、鉄(III)エトキシド、ペンタカルボニル鉄、ナノカルボニル二鉄、ドデカカルボニル三鉄、フェロセン、シクロペンタジエニル鉄(I)ジカルボニル二量体等が好適に使用出来る。   Examples of the metal salt of the group B element include, when the group B metal is iron, examples of the salt include ferrous chloride, ferric chloride, iron (II) bromide, iron (III) bromide, and fluorine. Ferric (III), ferric nitrate, ferrous sulfate, ferrous acetate, iron (III) citrate, iron (III) acrylate, ferrous ammonium sulfate, ferric ammonium sulfate, iron oxalate ( III) Ammonium, iron (II) gluconate, iron (III) gluconate), iron (II) naphthenate, etc. can be used, and iron (III) acetylacetonate, iron (III) ethoxide, pentacarbonyl iron as the complex , Nanocarbonyl diiron, dodecacarbonyl triiron, ferrocene, cyclopentadienyl iron (I) dicarbonyl dimer and the like can be suitably used.

A群の元素を使用せず、B群の元素の少なくとも一つの塩又は錯体のみの溶液にレーザー光を照射した場合、照射初期には暗色のコロイドが得られ金属ナノ粒子が生成しているものと推測されるが、このコロイドを空気中で放置するとB群の金属の酸化物に特有な着色をしたコロイドへの変色が観察される。A群の元素を原料溶液に共存させるとこのような変色は起こらずA群の元素との合金化によってB群の金属の0価状態が安定化される。   When a laser beam is irradiated to a solution containing only at least one salt or complex of the element of group B without using the element of group A, a dark color colloid is obtained and metal nanoparticles are generated at the initial stage of irradiation. However, when this colloid is left in the air, discoloration to a colored colloid peculiar to the group B metal oxide is observed. When the group A element coexists in the raw material solution, such discoloration does not occur, and the zero-valent state of the group B metal is stabilized by alloying with the group A element.

溶媒としては、金属の塩或いは錯体を溶解することの出来る溶媒ならば特に限定されない。用いる塩や錯体の種類に応じて溶解度の高い溶媒を、水、メタノール、エタノール、n−プロパノール、イソプロパノール等のプロトン性の溶媒、ジエチルエーテル、テトラハイドロフラン、アセトン、アセトニトリル、メチレンジクロライド、クロロホルム等の非プロトン性の極性溶媒或いはベンゼン、トルエン、キシレン等の非極性溶媒から選択して用いることが出来る。特にメタノール、エタノール、n−プロパノール、イソプロパノール等のアルコール溶媒は、それ自体が分解・還元促進剤として機能するので好ましい。   The solvent is not particularly limited as long as it can dissolve a metal salt or complex. Depending on the type of salt or complex used, highly soluble solvents such as water, methanol, ethanol, n-propanol, isopropanol and other protic solvents, diethyl ether, tetrahydrofuran, acetone, acetonitrile, methylene dichloride, chloroform, etc. An aprotic polar solvent or a nonpolar solvent such as benzene, toluene or xylene can be selected and used. In particular, alcohol solvents such as methanol, ethanol, n-propanol and isopropanol are preferable because they themselves function as decomposition / reduction accelerators.

溶媒中の塩又は錯体の濃度は、該塩や錯体が溶媒に溶解していれば特に制限されない。通常1.0 mol/L〜0.0001 mol/L、好ましくは0.50 mol/L〜0.0005 mol/L、更に好ましくは 0.10 mol/L〜0.002 mol/Lである。   The concentration of the salt or complex in the solvent is not particularly limited as long as the salt or complex is dissolved in the solvent. Usually 1.0 mol / L to 0.0001 mol / L, preferably 0.50 mol / L to 0.0005 mol / L, more preferably 0.10 mol / L to 0.002 mol / L.

溶液に照射されるレーザーの波長としては、溶液が吸収を持つ波長であれば特に制限されない。通常200〜12000nm、好ましくは 300〜1100nmである。即ち赤外レーザー、可視レーザー、紫外レーザー、短波長紫外レーザー等が使用できる。Nd-YAGパルスレーザー(波長1064nm、第二次高調波532nm、第三次高調波355nm)やエキシマパルスレーザー(248.5 nm) 等が特に好適に利用出来る。レーザーのエネルギーやパルス幅、パルス数及び照射時間等は、原料塩や錯体の溶液中での分解・還元の度合に応じて最適化を行い、生成するナノ粒子の形状、組成、粒度分布等を制御することができる。通常、レーザーのエネルギーは1mJ〜10Jであり、出力は0.1W〜20W、パルス速度は0.1Hz〜20Hz、照射時間は1秒〜1時間が好ましい。   The wavelength of the laser applied to the solution is not particularly limited as long as the solution has a wavelength that absorbs. Usually, it is 200 to 12000 nm, preferably 300 to 1100 nm. That is, an infrared laser, a visible laser, an ultraviolet laser, a short wavelength ultraviolet laser, or the like can be used. An Nd-YAG pulse laser (wavelength 1064 nm, second harmonic 532 nm, third harmonic 355 nm), excimer pulse laser (248.5 nm), etc. can be used particularly suitably. Laser energy, pulse width, number of pulses, irradiation time, etc. are optimized according to the degree of decomposition / reduction in the solution of the raw material salt or complex, and the shape, composition, particle size distribution, etc. of the generated nanoparticles are determined. Can be controlled. Usually, the laser energy is preferably 1 mJ to 10 J, the output is 0.1 W to 20 W, the pulse speed is 0.1 Hz to 20 Hz, and the irradiation time is preferably 1 second to 1 hour.

溶液が水溶液系の場合には、該溶液を石英ビーカーに入れてその開放上面から直接垂直にレーザーを照射することもできるが、有機溶媒の場合には密閉容器を用いレーザー入射面側を石英窓として、雰囲気を予め不活性ガスで置換してからレーザー照射することが好ましい。容器のレーザー光入射面の反対側も石英窓としこちら側の石英窓に接してレーザーパワーメータを置き、溶液によって吸収されるレーザーパワーをモニターすることによって反応の進行度合、終点を検知することが出来る。   When the solution is an aqueous solution system, the solution can be put into a quartz beaker and irradiated with a laser directly vertically from its open upper surface. However, in the case of an organic solvent, a sealed container is used to place the laser incident surface side on the quartz window. As described above, it is preferable to perform laser irradiation after previously replacing the atmosphere with an inert gas. It is possible to detect the progress and end point of the reaction by monitoring the laser power absorbed by the solution by placing a laser power meter in contact with the quartz window on the opposite side of the laser light incident surface of the container. I can do it.

溶液中にレーザー光を照射するにあたり、生成する金属ナノ粒子に配位して凝集を防ぐ配位性有機保護剤を予め溶液に共存させることが好ましい。配位性有機保護剤は、金属ナノ粒子の表面を被覆又は表面に配位して金属ナノ粒子同士の凝集・融着を防ぐことができる有機化合物であれば特に制約はない。配位性有機保護剤としては、例えば金属錯体の形成に通常用いられる有機配位子、即ちR−X構造(Rはアルキル基、アルケニル基、又はアラルキル基、アリール基等を取り得、XはNH基、CN基,COOH基、OH基、又はSH基等を取り得る)、R−Y−R構造(R及びR2は夫々独立に前記の意味を有する、YはO,S,C=O,C=NH、又はNHCO等を取り得る)やZR構造(R、R及びRは前記の通りであり、ZはN又はP等をとり得る)の有機化合物モノマーや、これらの配位性官能基X、Y又はZを含むポリマーを用いることが出来、特に、C6〜C18の長鎖アルキルアミン、カルボン酸、エーテル又はニトリルや、三級アミンポリマーやポリエーテル、ポリエステル、ポリアミドなどのポリマーが好適に用いられる。これらの配位性有機化合物の種類とその溶液への添加量は、目的とする金属ナノ粒子の形状、粒子径、粒度分布や用途を勘案して、最適なものを選択し最適な量を使用する必要がある。即ち、過度に安定化させた場合、用途に応じて使用する際にこの配位子の分解や脱離が困難となり被毒作用を及ぼすことがある。 In irradiating the solution with laser light, it is preferable that a coordinating organic protective agent that coordinates with the generated metal nanoparticles to prevent aggregation is coexisted in the solution in advance. The coordinating organic protective agent is not particularly limited as long as it is an organic compound capable of covering or coordinating the surface of metal nanoparticles to prevent aggregation and fusion of metal nanoparticles. As the coordinating organic protective agent, for example, an organic ligand usually used for forming a metal complex, that is, an R 4 —X structure (R 4 can take an alkyl group, an alkenyl group, an aralkyl group, an aryl group, etc. Can be NH 2 group, CN group, COOH group, OH group, SH group or the like), R 1 —Y—R 2 structure (R 1 and R 2 each independently have the above meaning, Y is O , S, C═O, C═NH, NHCO, etc.) or ZR 1 R 2 R 3 structure (R 1 , R 2 and R 3 are as described above, Z is N or P, etc. Organic compound monomers and polymers containing these coordinating functional groups X, Y or Z can be used, and in particular, C6-C18 long-chain alkylamines, carboxylic acids, ethers or nitriles, tertiary Such as amine polymer, polyether, polyester, polyamide, etc. Rimmer is preferably used. The type of these coordinating organic compounds and the amount added to the solution should be selected and used in consideration of the shape, particle size, particle size distribution and application of the target metal nanoparticles. There is a need to. That is, if it is excessively stabilized, it may be difficult to decompose or desorb this ligand when it is used depending on the application, and may have a poisoning effect.

また本発明の金属ナノ粒子製造方法においては、金属の塩及び/又は錯体がレーザー光照射下で自発的な分解及び/又は還元を起こさない場合、出発原料である金属元素の塩又は錯体の溶液中に、レーザー光を吸収し金属元素の塩及び/又は錯体の分解を促進する分解・還元促進剤を共存させる。「分解・還元促進剤」とは、照射に使用するレーザー光の波長領域に吸収を持つ有機化合物であり、原料の塩及び/又は錯体のみの溶液ではレーザー光照射下で還元及び/又は分解が起こらないときにこれを添加することによって該金属の塩及び/又は錯体の還元及び/又は分解を起こさせることのできるものを指す。該分解・還元促進剤は、通常、室温でレーザー光を照射せずにこれのみを存在させても塩及び/又は錯体の分解及び/又は還元は全く起こらないか若しくは遅い。該分解・還元促進剤は、原料の塩及び/又は錯体の溶液に可溶性であることが好ましいので、そのようない溶媒と分解・還元促進剤を選択する。このような分解・還元促進剤としては含酸素有機化合物が好ましく、エタノール、1−プロパノール、2−プロパノール、2−ジメトキシエタノール等のアルコールが特に好適に使用出来る。   In the metal nanoparticle production method of the present invention, when the metal salt and / or complex does not spontaneously decompose and / or reduce under laser light irradiation, the solution of the metal element salt or complex as a starting material A decomposition / reduction accelerator that absorbs laser light and accelerates the decomposition of the metal element salt and / or complex is coexisted therein. A “decomposition / reduction accelerator” is an organic compound having absorption in the wavelength region of laser light used for irradiation, and reduction and / or decomposition can be performed under laser light irradiation in a solution containing only a salt and / or complex as a raw material. When it does not occur, it can be added to cause reduction and / or decomposition of the metal salt and / or complex. The decomposition / reduction accelerator usually does not decompose at all or slows down the salt and / or complex even if it is present alone without irradiation with laser light at room temperature. Since the decomposition / reduction accelerator is preferably soluble in the raw salt and / or complex solution, a solvent and a decomposition / reduction accelerator are selected. As such a decomposition / reduction accelerator, an oxygen-containing organic compound is preferable, and alcohols such as ethanol, 1-propanol, 2-propanol, and 2-dimethoxyethanol can be particularly preferably used.

本発明の製造方法では、金属ナノ粒子は、原料の塩や錯体が溶解していた溶液中に分散したコロイドとして得られる。配位性有機保護剤で安定化させたナノ粒子は減圧濃縮後、貧溶媒を添加することによりナノ粒子ゲルとして単離することも場合によっては可能である。   In the production method of the present invention, the metal nanoparticles are obtained as a colloid dispersed in a solution in which a salt or complex of a raw material is dissolved. In some cases, nanoparticles stabilized with a coordinating organic protective agent can be isolated as a nanoparticle gel by adding a poor solvent after concentration under reduced pressure.

他方、単離しないでコロイド液やそれを濃縮した分散液の状態で、直接基板に担持することも出来る。基板としてはシリコン基板、ガラス基板、ポリイミド基板やカーボンペーパー等常用の物が使用でき、これらの基板上に該コロイドを滴下法、ディップ法、スピンコート法等定法に従ってコーティングできる。更に、インクジェット法、ディップペンリソグラフィー法やコンタクトプリント法で基板上にパターニングする事も可能である。また該金属ナノ粒子を触媒として用いる場合は、コロイドのまま用いても良いし、アルミナ、シリカ、チタニア、ゼオライ、活性炭、カーボンブラック、カーボンナノチューブ、カーボンホーン等、常用の担体に吸着担持させて使用することもできる。   On the other hand, it can be directly supported on a substrate in the state of a colloidal liquid or a concentrated liquid dispersion without isolation. Usable substrates such as a silicon substrate, a glass substrate, a polyimide substrate, and carbon paper can be used as the substrate, and the colloid can be coated on these substrates according to a conventional method such as a dropping method, a dip method, or a spin coating method. Furthermore, it is also possible to pattern on the substrate by an ink jet method, a dip pen lithography method or a contact print method. When the metal nanoparticles are used as a catalyst, they may be used as colloids or used by adsorbing and supporting them on a conventional carrier such as alumina, silica, titania, zeolite, activated carbon, carbon black, carbon nanotube, carbon horn, etc. You can also

本発明の金属ナノ粒子の、形状、粒度分布、平均粒径等は、透過電子顕微鏡(TEM)で観察、測定される。100万〜1000万倍の拡大倍率の視野で、ランダムに少なくとも100個の粒子を選択し、透過像の形状と粒子径(代表径)を測定して、統計的に処理して数平均粒径μ、標準偏差σ、変動係数(σ/μ)を求める。また、コロイド溶液に光を照射して散乱光の光ドップラー効果から粒度分布を求める動的光散乱法(DPS)でも粒度分布を求めることが出来、強度換算、体積換算及び個数換算の3種の粒度分布が得られ、各々の分布におけるμ、σ及び(σ/μ)が計算されるが、本発明のナノ粒子のようなサブナノメーター級の粒子の粒度分布の測定には必ずしも有効ではない。   The shape, particle size distribution, average particle size and the like of the metal nanoparticles of the present invention are observed and measured with a transmission electron microscope (TEM). In the field of view of magnification of 1 million to 10 million times, select at least 100 particles randomly, measure the shape and particle diameter (representative diameter) of the transmission image, and statistically process it to obtain the number average particle diameter Find μ, standard deviation σ, and coefficient of variation (σ / μ). The particle size distribution can also be obtained by dynamic light scattering method (DPS), in which the colloidal solution is irradiated with light to obtain the particle size distribution from the optical Doppler effect of the scattered light. Particle size distributions are obtained and μ, σ, and (σ / μ) in each distribution are calculated, but are not necessarily effective in measuring the particle size distribution of sub-nanometer grade particles such as the nanoparticles of the present invention.

TEMと組合わせたエネルギー分散X線分析(EDX)を用いれば、TEMの高倍率の視野で観察される個々の粒子に電子線を照射して得られる特性X線のスペクトルから、ナノ粒子個々の元素分析が可能であり、これを複数粒子に関して測定して平均の組成を求める。
また、A群の金属元素とB群の金属元素との合金ナノ粒子の場合、平均粒径が3nmを超える粒子の場合はX線回折で回折パターンから、結晶構造が固溶体か規則性合金かを判別でき、回折角2θの単独金属の固有回折角2θからのズレの大きさによって合金化度を、メインピークの半値幅から結晶子径を評価できる。但し、平均粒径3nm以下、特に1nm以下の超微細なナノ粒子の場合、通常X線回折ピークは相当ブロードとなり、合金の結晶構造・規則性や結晶子径を評価することは困難を伴う。本発明では平均粒径3nm以下の微細なCuAu型の規則性合金ナノ粒子の製造が可能であり、その規則性の確認は、強磁性規則性合金特有の磁気特性の測定によって行われる。500万倍から1000万倍の高倍率のTEM観察で格子縞が観察される結晶化合金でも、単なる固溶体合金の場合は、振動試料測定法でMH曲線がヒステリシスループを示さない。規則性合金化している場合はMH曲線がヒステリシスループを示し、Mがゼロの時のHの値、即ち保持力Hcの大きさから規則性の度合を評価できる。現在知られている磁性体の中で最も磁気異方性が高い合金の一つとされるFePt合金の場合、これまで報告されている最も微細な粒子径は3〜4nmであり、従来はこれ以上微細になると超常磁性効果で常温領域では磁気異方性を示さなくなると考えられてきた。
Using energy dispersive X-ray analysis (EDX) in combination with TEM, each individual particle observed in a high-power field of TEM is irradiated with an electron beam. Elemental analysis is possible, and this is measured for multiple particles to determine the average composition.
Also, in the case of alloy nanoparticles of Group A metal elements and Group B metal elements, if the average particle diameter exceeds 3 nm, whether the crystal structure is a solid solution or a regular alloy is determined from the diffraction pattern by X-ray diffraction. The degree of alloying can be evaluated based on the deviation of the diffraction angle 2θ from the intrinsic diffraction angle 2θ of a single metal, and the crystallite diameter can be evaluated from the half width of the main peak. However, in the case of ultrafine nanoparticles having an average particle size of 3 nm or less, particularly 1 nm or less, the X-ray diffraction peak is usually broad, and it is difficult to evaluate the crystal structure / regularity and crystallite size of the alloy. In the present invention, fine CuAu-type ordered alloy nanoparticles having an average particle size of 3 nm or less can be produced, and the regularity is confirmed by measuring magnetic properties unique to the ferromagnetic ordered alloy. Even in a crystallized alloy in which lattice fringes are observed by TEM observation at a high magnification of 5 to 10 million times, in the case of a simple solid solution alloy, the MH curve does not show a hysteresis loop in the vibration sample measurement method. In the case of regular alloying, the MH curve shows a hysteresis loop, and the degree of regularity can be evaluated from the value of H when M is zero, that is, the magnitude of the holding force Hc. In the case of an FePt alloy, which is one of the alloys with the highest magnetic anisotropy among the currently known magnetic materials, the finest particle diameter reported so far is 3 to 4 nm, which is higher than the conventional one. It has been considered that magnetic anisotropy is no longer exhibited in the room temperature region due to the superparamagnetic effect when it becomes finer.

本発明の方法によれば、原料の塩又は錯体の溶液にレーザー光を一定時間照射するのみで、該溶液中に直接、平均粒径0.3〜100 nm、好ましくは平均粒径0.3〜30nm、更に好ましくは0.3〜3nmの金属ナノ粒子を製造することができる。   According to the method of the present invention, an average particle size of 0.3 to 100 nm, preferably an average particle size of 0.3 to 30 nm is preferably directly irradiated into a solution of a raw material salt or complex for a certain period of time, Preferably, metal nanoparticles of 0.3 to 3 nm can be produced.

複数の金属元素の共溶液を用いれば合金を直接製造出来る。A群の元素から白金、パラジウムのうち少なくとも一つを、B群の元素から、鉄、コバルトの内少なくとも一つを選択して、それらの塩又は錯体の共溶液にレーザーを照射することにより、従来300℃以上の高温湿式法で無定形合金ナノ粒子を製造後、追加的な規則化合金処理無しでは生成しなかったfct型(面心正方晶)規則性合金ナノ粒子を1段階で製造することが出来る。   An alloy can be directly produced by using a co-solution of a plurality of metal elements. By irradiating at least one of platinum and palladium from group A elements, at least one of iron and cobalt from group B elements, and irradiating a co-solution of salts or complexes thereof with a laser, Conventionally, after producing amorphous alloy nanoparticles by high-temperature wet process at 300 ° C or higher, fct-type (face-centered tetragonal) regular alloy nanoparticles that were not produced without additional ordered alloy treatment are produced in one step. I can do it.

しかも、VSM(振動試料型磁力計)評価によれば、本発明の製法で製造された微細な規則性合金は、従来、超常磁性に転移してもはや強磁性を示さなくなると考えられた3nm以下の粒子径でも強磁性を示し、現在まで報告された「最小の強磁性磁石」である可能性が高い。本発明の製造方法でこのような「最小の強磁性磁石」が出来る理由は、まだ不明だか、本発明の製法で製造される規則性合金の一軸磁気異方性エネルギー定数が従来考えられてきた値より大きいためではないかと推測される。   Moreover, according to the VSM (vibrating sample magnetometer) evaluation, the fine ordered alloy manufactured by the manufacturing method of the present invention is conventionally considered to be superparamagnetism and no longer exhibit ferromagnetism. It is highly possible that this is the smallest ferromagnetic magnet reported so far. The reason why such a “minimum ferromagnetic magnet” can be produced by the production method of the present invention is still unclear, or a uniaxial magnetic anisotropic energy constant of a regular alloy produced by the production method of the present invention has been conventionally considered. It is estimated that it is because it is larger than the value.

このような微小な強磁性ナノ粒子は広範な用途への応用の可能性があるが特に以下の3分野での応用が期待される;(1)超高密度磁気記録媒体、(2)医療診断用磁気標識ナノ粒子、(3)スピン依存単電子デバイス。   Such fine ferromagnetic nanoparticles may be applied to a wide range of applications, but are expected to be applied particularly in the following three fields: (1) ultra-high density magnetic recording media, (2) medical diagnosis Magnetically labeled nanoparticles, (3) spin-dependent single-electron devices.

(1)においては、媒体材料の強磁性体粒子は再生時のS/N比向上の為、出来るだけ粒径が小さく粒度分布のシャープな規則性ナノ粒子が必要であるが、FePtの場合、従来は強磁性を保つ最小粒子径は3nmが、記録密度は50Tb/in2が、それぞれ限度とされたが、本発明の製法で1nm以下まで粒子径を微細化できれば、更に数倍から1桁程度の記録密度向上が期待される。また垂直磁気記録を可能にする為にはFePtの磁化容易軸(c軸)を媒体面に垂直に揃える必要があるが、本発明のナノ粒子のように製造された状態で規則化していれば媒体基板に塗布後に垂直方向に強磁場を印荷して配向性を制御出来る可能性がある。従来のように製造後に規則化の為に高温処理が必要な場合にはこのような配向制御は不可能であった。   In (1), the ferromagnetic particles of the medium material require regular nanoparticles having a particle size as small as possible and a sharp particle size distribution in order to improve the S / N ratio during reproduction. In the case of FePt, In the past, the minimum particle diameter for maintaining ferromagnetism was 3 nm, and the recording density was 50 Tb / in 2. However, if the particle diameter can be reduced to 1 nm or less by the manufacturing method of the present invention, it is several times to an order of magnitude. Recording density is expected to be improved. In order to enable perpendicular magnetic recording, it is necessary to align the easy axis of magnetization (c-axis) of FePt perpendicular to the medium surface, but if it is ordered in the state of being manufactured like the nanoparticle of the present invention. There is a possibility that the orientation can be controlled by applying a strong magnetic field in the vertical direction after coating on the medium substrate. Such conventional orientation control is impossible when high temperature treatment is required for ordering after production as in the prior art.

(2)においては従来磁性酸化鉄ナノ粒子が使用されてきた。しかし磁性酸化鉄は常温では超常磁性であり、磁気検出を可能にするためには外部から磁場印荷を行う必要があった。   In (2), magnetic iron oxide nanoparticles have been used conventionally. However, magnetic iron oxide is superparamagnetic at room temperature, and it has been necessary to apply a magnetic field from the outside in order to enable magnetic detection.

酸化鉄ナノ粒子の代わりに本発明の規則性合金ナノ粒子を用いれば、外部磁場無しでも磁気検出が可能であり、検出システムの小型化と単純化が可能となる。また酸化鉄の強磁性状態での飽和磁化は5〜6kGであるが、例えば本発明の規則性合金FePtの飽和磁化は14.5kGと酸化鉄の2倍〜3倍の強度を有しており、FePt粒子を用いた方が酸化鉄に外部磁場印荷の場合の数倍〜1桁大きな磁気シグナル検出が可能である。   If the regular alloy nanoparticles of the present invention are used in place of the iron oxide nanoparticles, magnetic detection is possible without an external magnetic field, and the detection system can be downsized and simplified. The saturation magnetization of iron oxide in the ferromagnetic state is 5 to 6 kG. For example, the saturation magnetization of the regular alloy FePt of the present invention is 14.5 kG, which is twice to three times as strong as iron oxide. When using FePt particles, it is possible to detect a magnetic signal several times to an order of magnitude larger than that in the case of applying an external magnetic field to iron oxide.

(3)は、近年盛んに研究開発が行われているスピンエレクトロ二クスの分野での応用であり、磁性体の磁化の並行・反並行でスィッチングを行う強磁性体ドットの部分に本発明の粒径1nmレベルの規則性合金ナノ粒子を使用できる。   (3) is an application in the field of spin electronics, which has been actively researched and developed in recent years. The magnetic dots of the present invention are applied to the portion of the ferromagnetic material that performs switching in parallel and antiparallel to the magnetization of the magnetic material. Regular alloy nanoparticles having a particle size of 1 nm can be used.

以下に、本発明の実施例を示すが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited to the following examples.

<実施例1>
直径55mm、高さ70mm、内容積100mLの石英ビーカーに溶媒として超純水50mLを入れ、塩化白金酸H2PtCl6・6H2O 207mgとクエン酸一水和物210mgとを溶解させた。この石英ビーカーの側面からは、KrFガスを用いる波長248.5nmのエキシマパルスレーザーを、HV25kV、レーザーエネルギー630mJ、周波数40Hzで照射した。石英ビーカーのレーザー入射の反対側にレーザーパワーメータ検出器を置き、石英ビーカーを透過してくるレーザー光の出力をモニターし、レーザー光の透過量が飽和に達し反応が完結したと思われる10分後にレーザー照射を止めた。最初の黄色透明溶液は暗褐色のコロイド溶液に変化した。このコロイドを数滴サンプリングしてCu製シートメッシュ上に滴下し室温で数時間乾燥させた後、透過電子顕微鏡−エネルギー分散X線分析(TEM-EDX分析)を行った。TEMはHITACHI製HF-2200で加速電圧200kV、直接倍率20,000, 50,000, 100,000, 500,000倍で観察し、写真で10倍に拡大したTEM像を得た。EDXはNORAN製VANTAGEで加速電圧200kVで使用した。ビームサイズは1nmである。TEMにより平均粒径μ2.0nm、標準偏差σ0.2nmの、微細で且つ粒度分布の狭いナノ粒子の生成が確認された。電子線回折で2.19Å、1.94Å、1.38Åの回折環が観察され白金結晶であることが確認された。クエン酸一水和物は、白金塩のレーザー光照射下での分解・還元促進剤及び生成した白金ナノ粒子の配位性有機保護剤として機能している。
<Example 1>
A quartz beaker having a diameter of 55 mm, a height of 70 mm, and an internal volume of 100 mL was charged with 50 mL of ultrapure water as a solvent, and 207 mg of chloroplatinic acid H2PtCl6 · 6H2O and 210 mg of citric acid monohydrate were dissolved. From the side of this quartz beaker, an excimer pulse laser having a wavelength of 248.5 nm using KrF gas was irradiated at HV 25 kV, laser energy 630 mJ, and frequency 40 Hz. A laser power meter detector is placed on the opposite side of the quartz beaker to the laser incidence, and the output of the laser beam transmitted through the quartz beaker is monitored. The laser beam transmission reaches saturation and the reaction is considered to be complete for 10 minutes. Later, laser irradiation was stopped. The initial yellow clear solution turned into a dark brown colloidal solution. A few drops of this colloid were sampled and dropped on a Cu sheet mesh, dried at room temperature for several hours, and then subjected to transmission electron microscope-energy dispersive X-ray analysis (TEM-EDX analysis). TEM was observed with HITACHI HF-2200 at an acceleration voltage of 200 kV and direct magnification of 20,000, 50,000, 100,000, 500,000 times, and a TEM image magnified 10 times by a photograph was obtained. EDX was a NORAN VANTAGE with an acceleration voltage of 200 kV. The beam size is 1 nm. It was confirmed by TEM that fine particles having an average particle size of μ2.0 nm and a standard deviation σ of 0.2 nm and having a narrow particle size distribution were formed. As a result of electron diffraction, diffraction rings of 2.19 mm, 1.94 mm, and 1.38 mm were observed, confirming platinum crystals. Citric acid monohydrate functions as a decomposition / reduction accelerator for platinum salts under laser light irradiation and as a coordinating organic protective agent for the generated platinum nanoparticles.

<実施例2>
石英ビーカーに溶媒としてエタノール50mLを入れ、鉄(III)アセチルアセトナート47.1mgと白金(II)アセチルアセトナート26.2mg及び配位性有機保護剤としてポリN-ビニルピロリドン(PVP)11.1mgを溶解させた。エタノールは溶媒であると同時に鉄及び白金錯体の分解・還元促進剤として機能する。雰囲気を窒素置換した後、この石英ビーカーの側面から、エキシマパルスレーザーを、HV25kV、レーザーエネルギー410mJ、周波数40Hzで、20分間照射した。最初の黄色透明溶液は暗赤褐色のコロイド溶液に変化した。このコロイドをTEM-EDX分析したところ、平均粒径μ1.5nm、標準偏差σ0.2nmの、微細で且つ粒度分布の狭いナノ粒子の生成が確認された。粒子が微細すぎて、電子線回折では明瞭な回折環は検知されなかった。但し、倍率5,000,000の写真(図1参照)を見ると、微細ながらも各粒子の内部に格子縞が観察され結晶性が高いことを示した。
<Example 2>
Put 50 mL of ethanol as a solvent in a quartz beaker, 47.1 mg of iron (III) acetylacetonate and 26.2 mg of platinum (II) acetylacetonate, and 11.1 mg of poly N-vinylpyrrolidone (PVP) as a coordinating organic protective agent. Was dissolved. Ethanol functions as a solvent and an accelerator for decomposition and reduction of iron and platinum complexes. After the atmosphere was replaced with nitrogen, an excimer pulse laser was irradiated from the side surface of the quartz beaker for 20 minutes at HV 25 kV, laser energy 410 mJ, and frequency 40 Hz. The first clear yellow solution turned into a dark reddish brown colloidal solution. When this colloid was analyzed by TEM-EDX, it was confirmed that fine nanoparticles having an average particle diameter of μ1.5 nm and a standard deviation of σ0.2 nm and having a narrow particle size distribution were formed. The particles were too fine and no clear diffraction ring was detected by electron diffraction. However, when the photograph (refer FIG. 1) of magnification 5,000,000 was seen, although it was fine, the lattice fringe was observed inside each particle | grains and it showed that crystallinity was high.

EDXより、Cu及びCのピーク以外は、PtとFeのピークが検出され、酸素Oのピークは検出されなかった。FeとPtのピークの強度比は約1:1であった。   From EDX, Pt and Fe peaks were detected except for Cu and C peaks, and oxygen O peaks were not detected. The intensity ratio of the Fe and Pt peaks was about 1: 1.

コロイド溶液を室温で減圧蒸留して濃縮したコロイドを無反射シリコン板上に滴下して室温で風乾しX線回折測定を行った。図2にX線回折パターン(XRDパターン)とそのピーク分離曲線を示す。2θ=23degと40deg付近にピークを持つブロードな曲線が得られた。溶媒由来のベースラインを差っ引き、ピーク分離して、2θ=23 degのピークはfct(面心正方晶)FePt(001)に、2θ=40deg付近のピークはFe-Pt(111)に帰属され、結晶子径は夫々0.8nm、0.6nmと計算された。   A colloid obtained by concentrating the colloid solution under reduced pressure at room temperature was dropped on a non-reflective silicon plate and air-dried at room temperature, and X-ray diffraction measurement was performed. FIG. 2 shows an X-ray diffraction pattern (XRD pattern) and its peak separation curve. Broad curves with peaks around 2θ = 23 deg and 40 deg were obtained. Subtracting the solvent-derived baseline and separating the peaks, the peak at 2θ = 23 deg belongs to fct (face-centered tetragonal) FePt (001), and the peak near 2θ = 40 deg belongs to Fe-Pt (111) The crystallite diameters were calculated as 0.8 nm and 0.6 nm, respectively.

振動試料型磁力計(VSM)で最大磁場20kOeを印荷して室温で実施例2のFePt規則性合金ナノ粒子の磁化−磁場(MH)相関データを測定した。図3に得られたVSM磁気特性MH図を示す。明確なヒステリシスループを示し、磁気異方性を示した。保持力は1.04KOeであった。   Magnetization-magnetic field (MH) correlation data of the FePt ordered alloy nanoparticles of Example 2 were measured at room temperature by applying a maximum magnetic field of 20 kOe with a vibrating sample magnetometer (VSM). FIG. 3 shows the VSM magnetic characteristic MH diagram obtained. A clear hysteresis loop was shown, indicating magnetic anisotropy. The holding force was 1.04 KOe.

<実施例3>
実施例2において、配位性有機保護剤としてPVPの代わりに、オレイン酸70.6mgとオレイルアミン66.9mgとの混合物を溶解させた以外は実施例2と同様に処理して暗赤褐色のコロイドを得た。TEMにより平均粒径μ0.7nm、標準偏差σ0.08nmと、実施例1よりも更に微細なナノ粒子を得た。EDXからPt、Feが検出され強度比は約2:3であった。VSMで磁気異方性を示し、保持力は0.98kOeであった。実施例3のFePt規則性合金ナノ粒子のMH図を図4に示す。
<Example 3>
In Example 2, instead of PVP, a coordinating organic protective agent was treated in the same manner as in Example 2 except that a mixture of 70.6 mg of oleic acid and 66.9 mg of oleylamine was dissolved to give a dark reddish brown colloid. Obtained. Finer nanoparticles than Example 1 with an average particle size of μ0.7 nm and a standard deviation σ of 0.08 nm were obtained by TEM. Pt and Fe were detected from EDX, and the intensity ratio was about 2: 3. VSM showed magnetic anisotropy and the coercive force was 0.98 kOe. An MH diagram of the FePt ordered alloy nanoparticles of Example 3 is shown in FIG.

<実施例4>
実施例2において、溶媒エタノールの代わりに2―ジメトキシエタノール50mLを用いた以外は実施例2と同様に処理して暗赤褐色のコロイドを得た。TEMにより平均粒径μ2.0nm、標準偏差σ0.5nmであった。EDXからPt、Feが検出され、強度比は約3:2であった。VSMで磁気異方性を示し、保持力は0.73kOeであった。実施例4のFePt規則性合金ナノ粒子のMH図を図5に示す。
<Example 4>
In Example 2, a dark reddish brown colloid was obtained in the same manner as in Example 2 except that 50 mL of 2-dimethoxyethanol was used instead of the solvent ethanol. According to TEM, the average particle size was μ2.0 nm and the standard deviation was σ0.5 nm. Pt and Fe were detected from EDX, and the intensity ratio was about 3: 2. VSM showed magnetic anisotropy and the coercive force was 0.73 kOe. An MH diagram of the FePt ordered alloy nanoparticles of Example 4 is shown in FIG.

<実施例5>
石英ビーカーに溶媒としてエタノール50mLを入れ、鉄(III)アセチルアセトナート47.1mgとパラジウム(II)アセチルアセトナート20.4mg及びオレイン酸70.6mgとオレイルアミン66.9mgを溶解させた。雰囲気を窒素置換した後、この石英ビーカーの側面から、Nd:YAGレーザー(3倍波:波長355nm)を、ビーム径9.5mm直径、レーザーパワー0.9〜1.0W、周波数10Hzで、40分間照射した。最初の橙褐色透明溶液は黒色のコロイド溶液に変化した。このコロイドをTEMで観察したところ、平均粒子径μ1.5nm、標準偏差σ0.2nmの、微細で且つ粒度分布の狭いナノ粒子の生成が確認された。EDXではPd:Fe原子比=1:1のFePd合金と確認された。図6は実施例5のFePd合金ナノ粒子のTEM像である。
<Example 5>
Ethanol (50 mL) was placed in a quartz beaker as a solvent, and iron (III) acetylacetonate (47.1 mg), palladium (II) acetylacetonate (20.4 mg), oleic acid (70.6 mg) and oleylamine (66.9 mg) were dissolved. After substituting the atmosphere with nitrogen, from the side of this quartz beaker, an Nd: YAG laser (third harmonic: wavelength 355 nm) was applied with a beam diameter of 9.5 mm, a laser power of 0.9 to 1.0 W, and a frequency of 10 Hz. Irradiated for 1 minute. The first orange-brown clear solution turned into a black colloidal solution. When this colloid was observed by TEM, it was confirmed that fine nanoparticles having an average particle diameter of μ1.5 nm and a standard deviation of σ0.2 nm and having a narrow particle size distribution were formed. EDX confirmed the FePd alloy with a Pd: Fe atomic ratio of 1: 1. FIG. 6 is a TEM image of FePd alloy nanoparticles of Example 5.

<実施例6>
実施例5において、鉄(III)アセチルアセトナートの代わりにコバルト(III)アセチルアセトナート47.4mg、パラジウム(II)アセチルアセトナートの代わりに白金(II)アセチルアセトナート26.2mgを、それぞれ用い、Nd:YAGレーザーの代わりにKrFエキシマレーザー(波長248nm)を、23.5kV、レーザーパワー400mJで、20分照射した以外は、実施例5と同様に処理して、黒色のコロイド溶液を得た。このコロイドをTEMで観察したところ、平均粒子径μ1.0nm、標準偏差σ0.2nmの、微細で且つ粒度分布の狭いナノ粒子の生成が確認された。この粒子のEDX分析ではPt:Co原子比は1:1であり、CoPt合金と同定された。図7に実施例6のCoPt合金コロイドのTEM像を示す。
<Example 6>
In Example 5, 47.4 mg of cobalt (III) acetylacetonate was used instead of iron (III) acetylacetonate, and 26.2 mg of platinum (II) acetylacetonate was used instead of palladium (II) acetylacetonate, respectively. A black colloid solution was obtained in the same manner as in Example 5 except that a KrF excimer laser (wavelength: 248 nm) was used instead of the Nd: YAG laser at 23.5 kV and a laser power of 400 mJ for 20 minutes. . When this colloid was observed by TEM, it was confirmed that fine nanoparticles having an average particle size of μ1.0 nm and a standard deviation σ of 0.2 nm and having a narrow particle size distribution were formed. In the EDX analysis of this particle, the Pt: Co atomic ratio was 1: 1, and it was identified as a CoPt alloy. FIG. 7 shows a TEM image of the CoPt alloy colloid of Example 6.

<比較例1>
S.Sunらの製法(非特許文献1)に習って、以下の通り、ポリオール法でFe-Ptナノ粒子を製造した。
<Comparative Example 1>
Following the manufacturing method of S. Sun et al. (Non-Patent Document 1), Fe-Pt nanoparticles were manufactured by the polyol method as follows.

パイレックスビーカーにオクチルエーテル30mLを入れ、雰囲気をアルゴンガスで置換し、白金アセチルアセトナート0.197gと、鉄アセチルアセトナート0.177g及び1,2-ヘキサデカンジオール0.52gを加えて攪拌しながら95℃迄加熱し、10分間保持して全体を均一溶液とした。オレイル酸0.16mLとオレイルアミン0.17mLを添加して攪拌しながら昇温し、263℃にて5時間還流を保持した。室温まで放冷後、得られた黒色コロイドをサンプリングして無反射シリコン板上に滴下し、風乾後XRD測定を行った。Fe-Ptの固溶体合金に帰属される2θ=40degの(111)ピークが検出され、結晶子径は4nmと測定されたが、規則性合金の(001)に帰属される2θ=23deg付近には全くピークは検出されなかった。   Pyrex beaker was charged with 30 mL of octyl ether, the atmosphere was replaced with argon gas, and 0.197 g of platinum acetylacetonate, 0.177 g of iron acetylacetonate and 0.52 g of 1,2-hexadecanediol were added and stirred. The mixture was heated to 0 ° C. and held for 10 minutes to obtain a uniform solution as a whole. 0.16 mL of oleic acid and 0.17 mL of oleylamine were added, the temperature was increased while stirring, and the reflux was maintained at 263 ° C. for 5 hours. After allowing to cool to room temperature, the obtained black colloid was sampled and dropped on a non-reflective silicon plate, air-dried and then subjected to XRD measurement. A (111) peak of 2θ = 40 deg attributed to the solid solution alloy of Fe—Pt was detected and the crystallite diameter was measured to be 4 nm, but in the vicinity of 2θ = 23 deg attributed to (001) of the regular alloy. No peaks were detected.

このコロイドサンプルを実施例1に記載したと同様の方法でVSM磁気特性評価を行ったがヒステリシスループは得られず、保磁力は0であった。   This colloid sample was evaluated for VSM magnetic properties by the same method as described in Example 1, but no hysteresis loop was obtained and the coercive force was zero.

実施例2で得られた本発明のFePt規則性合金ナノ粒子のTEM写真を示す。The TEM photograph of the FePt ordered alloy nanoparticles of the present invention obtained in Example 2 is shown. 実施例2で得られた本発明のFePt規則性合金ナノ粒子のXRDパターンとそのピーク分離曲線を示す。The XRD pattern and peak separation curve of the FePt ordered alloy nanoparticles of the present invention obtained in Example 2 are shown. 実施例2で得られた本発明のFePt規則性合金ナノ粒子のVSM磁気特性MH図を示す。The VSM magnetic property MH figure of the FePt ordered alloy nanoparticle of this invention obtained in Example 2 is shown. 実施例3で得られた本発明のFePt規則性合金ナノ粒子のVSM磁気特性MH図を示す。The VSM magnetic property MH figure of the FePt ordered alloy nanoparticle of this invention obtained in Example 3 is shown. 実施例4で得られた本発明のFePt規則性合金ナノ粒子のVSM磁気特性MH図を示す。The VSM magnetic property MH figure of the FePt ordered alloy nanoparticle of this invention obtained in Example 4 is shown. 実施例5で得られた本発明のFePd合金ナノ粒子のTEM写真を示す。The TEM photograph of the FePd alloy nanoparticle of this invention obtained in Example 5 is shown. 実施例6で得られた本発明のCoPt合金ナノ粒子のTEM写真を示す。The TEM photograph of the CoPt alloy nanoparticle of this invention obtained in Example 6 is shown.

Claims (17)

金属元素の塩及び/又は錯体の溶液にレーザー光を照射して溶液中で該塩及び/又は錯体を分解及び/又は還元して該溶液中に平均粒径が0.3〜100nmの範囲の金属ナノ粒子を直接生成させることを含む金属ナノ粒子の製造方法。   The solution of the metal element salt and / or complex is irradiated with laser light to decompose and / or reduce the salt and / or complex in the solution, and the average particle size is in the range of 0.3 to 100 nm in the solution. A method for producing metal nanoparticles comprising directly producing metal nanoparticles. 金属ナノ粒子の平均粒径が0.3〜10nmである請求項1の製造方法。   The method according to claim 1, wherein the average particle diameter of the metal nanoparticles is 0.3 to 10 nm. 金属ナノ粒子の平均粒径が0.3〜3nmである請求項1の製造方法。   The method according to claim 1, wherein the average particle diameter of the metal nanoparticles is 0.3 to 3 nm. 前記レーザー光がエキシマパルスレーザー光又はNd:YAGレーザー光である請求項1〜3のいずれか1項に係る製造方法。   The manufacturing method according to claim 1, wherein the laser light is excimer pulse laser light or Nd: YAG laser light. 溶液中にレーザー光を照射するにあたり、生成する金属ナノ粒子に配位して凝集を防ぐ配位性有機保護剤を予め溶液に共存させる請求項1〜4のいずれか1項に係る製造方法。   The method according to any one of claims 1 to 4, wherein a coordinating organic protective agent that coordinates with the generated metal nanoparticles and prevents aggregation is coexisted in the solution in advance when the solution is irradiated with laser light. 溶液中に、レーザー光を吸収し金属の塩及び/又は錯体の分解及び/又は還元を促進する分解・還元促進剤を共存させる請求項1〜5のいずれか1項に係る製造方法。   The production method according to any one of claims 1 to 5, wherein a decomposition / reduction accelerator that absorbs laser light and promotes decomposition and / or reduction of a metal salt and / or complex coexists in the solution. 前記分解・還元促進剤が含酸素有機化合物である請求項6に係る製造方法。   The production method according to claim 6, wherein the decomposition / reduction accelerator is an oxygen-containing organic compound. 前記分解・還元促進剤がアルコールである請求項6又は7の製造方法。   The method according to claim 6 or 7, wherein the decomposition / reduction accelerator is an alcohol. 前記アルコールがエタノールである請求項8の製造方法。   The method according to claim 8, wherein the alcohol is ethanol. 前記金属元素の塩及び/又は錯体が、白金、パラジウム、金、銀、ロジウム、ルテニウム及びイリジウムからなる群から選ばれる一つの金属元素の塩及び/又は錯体である請求項1〜9のいずれか1項に係る製造方法。   The salt and / or complex of the metal element is a salt and / or complex of one metal element selected from the group consisting of platinum, palladium, gold, silver, rhodium, ruthenium and iridium. A manufacturing method according to item 1. 前記金属元素の塩及び/又は錯体が、白金、パラジウム、金、銀、ロジウム、ルテニウム及びイリジウムからなる群(A群)の少なくとも一つの元素の塩及び/又は錯体と、鉄、コバルト、ニッケル、銅及びクロムからなる群(B群)の少なくとも一つの元素の塩及び/又は錯体とを含み、得られる金属ナノ粒子がこれらの元素の合金からなる請求項1〜9のいずれか1項に係る製造方法。   The salt and / or complex of the metal element is platinum, palladium, gold, silver, rhodium, ruthenium and iridium, and the salt and / or complex of at least one element of the group (group A); iron, cobalt, nickel, It contains the salt and / or complex of at least one element of the group consisting of copper and chromium (group B), and the obtained metal nanoparticles are made of an alloy of these elements. Production method. 前記合金がA群の元素とB群の元素との固溶体合金である請求項11の方法。   The method of claim 11, wherein the alloy is a solid solution alloy of Group A elements and Group B elements. 前記合金がA群の元素とB群の元素との規則性合金である請求項11の方法。   The method of claim 11, wherein the alloy is a regular alloy of a group A element and a group B element. 請求項10に係る製造方法で製造される、平均粒径が0.3〜100nmの範囲の金属ナノ粒子。   Metal nanoparticles having an average particle size in the range of 0.3 to 100 nm, produced by the production method according to claim 10. 請求項11に係る製造方法で製造される、平均粒径が0.3〜100nmの範囲の合金ナノ粒子。   Alloy nanoparticles having an average particle size in the range of 0.3 to 100 nm, produced by the production method according to claim 11. 請求項12に係る製造方法で製造される、平均粒径が0.3〜100nmの範囲の固溶体合金ナノ粒子。   Solid solution alloy nanoparticles having an average particle size in the range of 0.3 to 100 nm, produced by the production method according to claim 12. 請求項13に係る製造方法で製造される、平均粒径が0.3〜100nmの範囲の規則性合金ナノ粒子。   Ordered alloy nanoparticles having an average particle size in the range of 0.3 to 100 nm, produced by the production method according to claim 13.
JP2007168837A 2006-06-30 2007-06-27 Method for producing metal nanoparticles Expired - Fee Related JP5047706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168837A JP5047706B2 (en) 2006-06-30 2007-06-27 Method for producing metal nanoparticles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006182563 2006-06-30
JP2006182563 2006-06-30
JP2007168837A JP5047706B2 (en) 2006-06-30 2007-06-27 Method for producing metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2008031554A true JP2008031554A (en) 2008-02-14
JP5047706B2 JP5047706B2 (en) 2012-10-10

Family

ID=39121293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168837A Expired - Fee Related JP5047706B2 (en) 2006-06-30 2007-06-27 Method for producing metal nanoparticles

Country Status (1)

Country Link
JP (1) JP5047706B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251871A (en) * 2007-03-30 2008-10-16 3R Corp Method for manufacturing magnetic oxide nanoparticle, and manufacturing apparatus of magnetic oxide nanoparticle
JP2010077458A (en) * 2008-09-24 2010-04-08 Toyota Central R&D Labs Inc Metal nanoparticle, method for producing the same and metal nanoparticle production device
JP2011149042A (en) * 2010-01-20 2011-08-04 Toyota Motor Corp Method for producing platinum-cobalt alloy fine particle
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
JP5571375B2 (en) * 2007-03-22 2014-08-13 日立化成株式会社 Metal fine particles and method for producing the same, metal fine particle dispersion and method for producing the same
JPWO2015122430A1 (en) * 2014-02-13 2017-03-30 株式会社大阪ソーダ Method for producing metal nanoparticles
WO2020175142A1 (en) * 2019-02-28 2020-09-03 株式会社キャタラー Supported catalyst particles
JP2021511442A (en) * 2018-01-24 2021-05-06 ナノガップ スブ−エネエメ−パウダー ソシエダッド アノニマ How to generate atomic quantum clusters
JP2021104473A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR102295712B1 (en) * 2020-05-07 2021-08-31 서울대학교산학협력단 Alloy nanoparticle, method of forming the alloy nanoparticle, and alloy nanocatalyst comprising the alloy nanoparticle
CN113547130A (en) * 2021-07-12 2021-10-26 杭州苏铂科技有限公司 Laser-assisted functionalized gold nano-star preparation method
WO2023214558A1 (en) * 2022-05-02 2023-11-09 株式会社illuminus Method for producing fine particles, and colloidal solution

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261630A (en) * 1985-09-12 1987-03-18 Mitsubishi Electric Corp Method for forming metal colloid by photochemical reaction
JPS6263603A (en) * 1985-09-12 1987-03-20 Mitsubishi Electric Corp Formation of metallic colloid by photochemical reaction
JPH11323410A (en) * 1998-05-14 1999-11-26 Fujitsu Ltd Formation of chromium fine grain, production of photomask and method for modifying photomask
JP2003203334A (en) * 2001-12-28 2003-07-18 Dowa Mining Co Ltd Method of manufacturing alloy particulate for magnetic recording medium
JP2004292947A (en) * 2003-03-05 2004-10-21 Fuji Photo Film Co Ltd Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2005105408A (en) * 2003-09-12 2005-04-21 Fuji Photo Film Co Ltd Magnetic particle and method of producing the same and magnetic recording medium
JP2005183898A (en) * 2003-09-12 2005-07-07 Fuji Photo Film Co Ltd Magnetic particle, method of producing the same, and magnetic recording medium
JP2005314712A (en) * 2004-04-27 2005-11-10 Osaka Gas Co Ltd Composition for forming metal particulate and metal particulate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261630A (en) * 1985-09-12 1987-03-18 Mitsubishi Electric Corp Method for forming metal colloid by photochemical reaction
JPS6263603A (en) * 1985-09-12 1987-03-20 Mitsubishi Electric Corp Formation of metallic colloid by photochemical reaction
JPH11323410A (en) * 1998-05-14 1999-11-26 Fujitsu Ltd Formation of chromium fine grain, production of photomask and method for modifying photomask
JP2003203334A (en) * 2001-12-28 2003-07-18 Dowa Mining Co Ltd Method of manufacturing alloy particulate for magnetic recording medium
JP2004292947A (en) * 2003-03-05 2004-10-21 Fuji Photo Film Co Ltd Method for manufacturing magnetic particle, magnetic particle and magnetic recording medium
JP2005105408A (en) * 2003-09-12 2005-04-21 Fuji Photo Film Co Ltd Magnetic particle and method of producing the same and magnetic recording medium
JP2005183898A (en) * 2003-09-12 2005-07-07 Fuji Photo Film Co Ltd Magnetic particle, method of producing the same, and magnetic recording medium
JP2005314712A (en) * 2004-04-27 2005-11-10 Osaka Gas Co Ltd Composition for forming metal particulate and metal particulate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5571375B2 (en) * 2007-03-22 2014-08-13 日立化成株式会社 Metal fine particles and method for producing the same, metal fine particle dispersion and method for producing the same
JP2008251871A (en) * 2007-03-30 2008-10-16 3R Corp Method for manufacturing magnetic oxide nanoparticle, and manufacturing apparatus of magnetic oxide nanoparticle
JP2010077458A (en) * 2008-09-24 2010-04-08 Toyota Central R&D Labs Inc Metal nanoparticle, method for producing the same and metal nanoparticle production device
JP2011149042A (en) * 2010-01-20 2011-08-04 Toyota Motor Corp Method for producing platinum-cobalt alloy fine particle
JP2013185171A (en) * 2012-03-06 2013-09-19 Ulvac Japan Ltd Method for producing metal fine particle
JPWO2015122430A1 (en) * 2014-02-13 2017-03-30 株式会社大阪ソーダ Method for producing metal nanoparticles
JP7372511B2 (en) 2018-01-24 2023-11-01 ナノガップ スブ-エネエメ-パウダー ソシエダッド アノニマ How to generate atomic quantum clusters
JP2021511442A (en) * 2018-01-24 2021-05-06 ナノガップ スブ−エネエメ−パウダー ソシエダッド アノニマ How to generate atomic quantum clusters
JPWO2020175142A1 (en) * 2019-02-28 2021-11-25 株式会社キャタラー Supported catalyst particles
CN113423501A (en) * 2019-02-28 2021-09-21 株式会社科特拉 Supported catalyst particles
JP7093885B2 (en) 2019-02-28 2022-06-30 株式会社キャタラー Supported catalyst particles
WO2020175142A1 (en) * 2019-02-28 2020-09-03 株式会社キャタラー Supported catalyst particles
CN113423501B (en) * 2019-02-28 2023-11-03 株式会社科特拉 Supported catalyst particles
JP2021104473A (en) * 2019-12-26 2021-07-26 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP7173707B2 (en) 2019-12-26 2022-11-16 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR102295712B1 (en) * 2020-05-07 2021-08-31 서울대학교산학협력단 Alloy nanoparticle, method of forming the alloy nanoparticle, and alloy nanocatalyst comprising the alloy nanoparticle
CN113547130A (en) * 2021-07-12 2021-10-26 杭州苏铂科技有限公司 Laser-assisted functionalized gold nano-star preparation method
WO2023214558A1 (en) * 2022-05-02 2023-11-09 株式会社illuminus Method for producing fine particles, and colloidal solution

Also Published As

Publication number Publication date
JP5047706B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5047706B2 (en) Method for producing metal nanoparticles
US8167972B2 (en) Process for producing metal nanoparticle and metal nanoparticle produced by the process
Wang et al. Bimetallic nanocrystals: liquid‐phase synthesis and catalytic applications
Cheng et al. Syntheses and properties of metal nanomaterials with novel crystal phases
Duan et al. Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications
US6875253B2 (en) Metal alloy fine particles and method for producing thereof
Guo et al. Facile synthesis of near-monodisperse Ag@ Ni core–shell nanoparticles and their application for catalytic generation of hydrogen
Park et al. Characterization of superparamagnetic “core− shell” nanoparticles and monitoring their anisotropic phase transition to ferromagnetic “solid solution” nanoalloys
Xia et al. Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
Banadaki et al. Recent advances in facile synthesis of bimetallic nanostructures: An overview
US20060177660A1 (en) Core-shell nanostructures and microstructures
Rashid et al. Polymer assisted synthesis of chain-like cobalt-nickel alloy nanostructures: magnetically recoverable and reusable catalysts with high activities
US20050274225A1 (en) Methods for the preparation of metallic alloy nanoparticles and compositions thereof
Wang et al. One-step preparation of amorphous iron nanoparticles by laser ablation
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
Glaspell et al. Vapor-phase synthesis of metallic and intermetallic nanoparticles and nanowires: Magnetic and catalytic properties
US9309119B2 (en) Producing method of metal fine particles or metal oxide fine particles, metal fine particles or metal oxide fine particles, and metal-containing paste, and metal film or metal oxide film
Kaya et al. Detailed investigation of structural and magnetic properties of multiphase binary Pd-Co alloys prepared by modified polyol process
Sadeghi et al. Nanoplates controlled synthesis and catalytic activities of silver nanocrystals
JP2003166040A (en) Fine particles of metal alloy and manufacturing method therefor
Biausque et al. One-pot synthesis of size-and composition-controlled Ni-rich NiPt alloy nanoparticles in a reverse microemulsion system and their application
Long et al. Directed and random self-assembly of Pt–Au nanoparticles
Toshima et al. Recent progress in bimetallic nanoparticles: their preparation, structures and functions
US20050116195A1 (en) Microparticles and methods of making them
Zhang et al. Lactic acid based sol–gel process of Ag nanoparticles and crystalline phase control of Ni particles in aqueous sol–gel process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110815

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110824

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5047706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees