JP2011146226A - Barrier film and organic electronic device - Google Patents

Barrier film and organic electronic device Download PDF

Info

Publication number
JP2011146226A
JP2011146226A JP2010005685A JP2010005685A JP2011146226A JP 2011146226 A JP2011146226 A JP 2011146226A JP 2010005685 A JP2010005685 A JP 2010005685A JP 2010005685 A JP2010005685 A JP 2010005685A JP 2011146226 A JP2011146226 A JP 2011146226A
Authority
JP
Japan
Prior art keywords
layer
inorganic layer
barrier film
organic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010005685A
Other languages
Japanese (ja)
Other versions
JP5381734B2 (en
Inventor
友香子 ▲高▼
Yukako Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010005685A priority Critical patent/JP5381734B2/en
Publication of JP2011146226A publication Critical patent/JP2011146226A/en
Application granted granted Critical
Publication of JP5381734B2 publication Critical patent/JP5381734B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a barrier film which is extremely high in performance and excellent in folding resistance (flexibility), curl resistance, smoothness, and adhesion, and to provide an organic electronic device using the barrier film. <P>SOLUTION: The barrier film includes a layer configuration formed by laminating at least an organic layer, a first inorganic layer, and a second inorganic layer on a resin base material in this order. The first inorganic layer contains at least silicon oxide or silicon oxynitride, the second inorganic layer contains at least silicon oxynitride, and the concentration ratio (O+N)/O of an element coupled to silicon of the second inorganic layer is larger than the element concentration ratio (O+N)/O of the first inorganic layer. Meanwhile, the element concentration ratio (O+N)/O is a number obtained by dividing the sum of the concentration of an oxygen element coupled to silicon and the oxygen element concentration by the concentration of the oxygen element coupled to silicon. In addition, the organic electronic device using the barrier film is provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、バリア性フィルムとそれを用いた有機電子デバイスに関する。より詳しくは、優れた水蒸気バリア性能を有するバリア性フィルムを用いた有機エレクトロルミネッセンス素子や有機太陽電池のような有機電子デバイスに関する。   The present invention relates to a barrier film and an organic electronic device using the same. More specifically, the present invention relates to an organic electronic device such as an organic electroluminescence element or an organic solar cell using a barrier film having excellent water vapor barrier performance.

従来、プラスチック基板やフィルム表面に酸化アルミニウム、酸化マグネシウム、酸化珪素等の金属酸化物の薄膜を形成したバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。また、近年では液晶表示素子、太陽電池、有機エレクトロルミネッセンス素子(以下、有機EL素子と略記する)基板等で使用されている。   Conventionally, a barrier film in which a thin film of a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on a plastic substrate or film surface is used for packaging an article, food, or the like that needs to block various gases such as water vapor and oxygen. Widely used in packaging applications to prevent alteration of industrial products and pharmaceuticals. In recent years, it has been used in liquid crystal display elements, solar cells, organic electroluminescence element (hereinafter abbreviated as organic EL elements) substrates, and the like.

既に、樹脂基材上に窒化酸化珪素層1(窒化酸化珪素層2よりも窒素リッチの膜)、窒化酸化珪素層2の順に積層する技術は開示されて(例えば、特許文献1参照)いる。しかしながら、水蒸気バリア性としては未だ不十分であり、平滑性にも問題があった。最近では有機EL素子等の水分に弱い有機物のバリア性フィルムとしては、水蒸気透過率が1×10−3g/m・dayを下回るようなバリア性能が求められている。 A technique for laminating a silicon nitride oxide layer 1 (a film richer in nitrogen than the silicon nitride oxide layer 2) and a silicon nitride oxide layer 2 in this order on a resin substrate has already been disclosed (see, for example, Patent Document 1). However, the water vapor barrier property is still insufficient and there is a problem in smoothness. Recently, as a barrier film made of an organic substance that is weak against moisture, such as an organic EL element, barrier performance is required such that the water vapor transmission rate is less than 1 × 10 −3 g / m 2 · day.

また、樹脂基材に有機層、第一無機層及び第一無機層よりも膜密度が0.5〜1.5高い第二無機層から構成する技術も開示されて(例えば、特許文献2参照)いる。しかしながら、第二無機層の膜密度がかなり高いため、膜として固く折り曲げ耐性及びカール耐性が不十分であった。   Also disclosed is a technique in which a resin substrate is composed of an organic layer, a first inorganic layer, and a second inorganic layer having a film density 0.5 to 1.5 higher than that of the first inorganic layer (see, for example, Patent Document 2). ) However, since the film density of the second inorganic layer is quite high, the film is hard as a film and has insufficient bending resistance and curl resistance.

更に、基材の一方の面にアンカー膜(シロキサン化合物)とガスバリア膜(SiN膜)を有する技術が開示されて(例えば、特許文献3参照)いる。しかしながら、ガスバリア層は粒子等で作製されている為、平滑性が不十分であった。 Furthermore, a technique having an anchor film (siloxane compound) and a gas barrier film (SiN x O y film) on one surface of a substrate is disclosed (for example, see Patent Document 3). However, since the gas barrier layer is made of particles or the like, the smoothness is insufficient.

特許第3859518号明細書Japanese Patent No. 3859518 特開2009−95989号公報JP 2009-95989 A 特開2009−226914号公報JP 2009-226914 A

本発明の目的は、極めて高いバリア性能、折り曲げ耐性(フレキシブル性)、カール耐性、平滑性及び密着性に優れるバリア性フィルムを提供すること、及びそれを用いた有機電子デバイスを提供することにある。   An object of the present invention is to provide a barrier film excellent in extremely high barrier performance, bending resistance (flexibility), curl resistance, smoothness and adhesion, and to provide an organic electronic device using the same. .

本発明者らは鋭意検討を重ねた結果、少なくとも有機層と無機層2層を有するバリア性フィルムにおいて上層の無機層が下層の無機層よりも、珪素に結合する元素濃度比(O+N)/Oが大きい構成にすることにより、緻密な構成で高いバリア性能を維持しながら膜の柔らかさも両立できることがわかった。膜が柔らかいことにより折り曲げ耐性が向上し、2スタック以上積層した場合のひび割れが防止できバリア性の劣化を防ぐことができる。本発明に係る上記課題は、以下の手段により解決される。   As a result of intensive investigations, the inventors of the present invention have found that the barrier layer film having at least two organic layers and the inorganic layer has an element concentration ratio (O + N) / O in which the upper inorganic layer is bonded to silicon more than the lower inorganic layer. It has been found that by adopting a large structure, it is possible to achieve both the softness of the film while maintaining a high barrier performance with a dense structure. Since the film is soft, bending resistance is improved, and cracking when two or more stacks are stacked can be prevented, and deterioration of barrier properties can be prevented. The above-mentioned problem according to the present invention is solved by the following means.

1.樹脂基材上に少なくとも有機層、第一無機層、第二無機層がこの順に積層された層構成を含むバリア性フィルムであって、該第一無機層は酸化珪素あるいは酸窒化珪素を少なくとも含有し、該第二無機層は酸窒化珪素を少なくとも含有し、かつ、該第二無機層の珪素に結合する元素濃度比(O+N)/Oが、該第一無機層の元素濃度比(O+N)/Oよりも大きいことを特徴とするバリア性フィルム。   1. A barrier film comprising a layer structure in which at least an organic layer, a first inorganic layer, and a second inorganic layer are laminated in this order on a resin substrate, wherein the first inorganic layer contains at least silicon oxide or silicon oxynitride The second inorganic layer contains at least silicon oxynitride, and the element concentration ratio (O + N) / O bonded to silicon of the second inorganic layer is the element concentration ratio (O + N) of the first inorganic layer. A barrier film characterized by being larger than / O.

尚、元素濃度比(O+N)/Oとは、珪素に結合する酸素元素濃度と窒素元素濃度の和を、珪素に結合する酸素元素濃度で除した数である。   The element concentration ratio (O + N) / O is a number obtained by dividing the sum of the oxygen element concentration bonded to silicon and the nitrogen element concentration by the oxygen element concentration bonded to silicon.

2.有機層、第一無機層、第二無機層がこの順に積層された層構成を1スタックとした場合、2スタック以上が積層されていることを特徴とする前記1記載のバリア性フィルム。   2. 2. The barrier film as described in 1 above, wherein two or more stacks are laminated when the layer configuration in which the organic layer, the first inorganic layer, and the second inorganic layer are laminated in this order is one stack.

3.前記第一無機層及び第二無機層が塗布によって得られていることを特徴とする前記1又は2記載のバリア性フィルム。   3. 3. The barrier film as described in 1 or 2 above, wherein the first inorganic layer and the second inorganic layer are obtained by coating.

4.前記第一無機層及び第二無機層がポリシラザン化合物を塗布することによって得られており、少なくとも第二無機層は塗布後に酸化処理が行なわれることを特徴とする前記1〜3のいずれか1項記載のバリア性フィルム。   4). The said 1st inorganic layer and the 2nd inorganic layer are obtained by apply | coating a polysilazane compound, At least 2nd inorganic layer is oxidized after application | coating, Any one of said 1-3 characterized by the above-mentioned. The barrier film according to the description.

5.前記酸化処理が、180nm以下の波長成分を有する真空紫外線を照射する処理であることを特徴とする前記4記載のバリア性フィルム。   5. 5. The barrier film as described in 4 above, wherein the oxidation treatment is a treatment of irradiating vacuum ultraviolet rays having a wavelength component of 180 nm or less.

6.前記真空紫外線を照射する処理が、酸素濃度0.001〜5%の雰囲気下で行われることを特徴とする前記5記載のバリア性フィルム。   6). 6. The barrier film according to 5 above, wherein the treatment of irradiating the vacuum ultraviolet ray is performed in an atmosphere having an oxygen concentration of 0.001 to 5%.

7.最上層に有機層を設けることを特徴とする前記1〜6のいずれか1項記載のバリア性フィルム。   7). 7. The barrier film according to any one of 1 to 6, wherein an organic layer is provided as the uppermost layer.

8.前記1〜7のいずれか1項に記載のバリア性フィルムを用いたことを特徴とする有機電子デバイス。   8). 8. An organic electronic device using the barrier film according to any one of 1 to 7 above.

本発明の上記手段により、有機電子デバイス(特に有機EL素子)に適用できるレベルの極めて高いバリア性能、折り曲げ耐性、平滑性及び密着性に優れるバリア性フィルムを提供すること、及び有機電子デバイスを提供することができた。   By the above-mentioned means of the present invention, providing a barrier film excellent in barrier performance, bending resistance, smoothness and adhesion that can be applied to an organic electronic device (especially an organic EL element), and providing an organic electronic device We were able to.

有機電子デバイスの構成例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example of an organic electronic device.

それぞれ、(a)第1電極が、導電性ポリマー含有層(単層)である例、(b)第1電極が、導電性ポリマー含有層と他の導電性層からなる二層構成である例、(c)補助電極(金属ワイヤ)を併用する例、(d)補助電極(金属グリッド)を併用する例である。   Examples where (a) the first electrode is a conductive polymer-containing layer (single layer) and (b) the first electrode is a two-layer configuration including a conductive polymer-containing layer and another conductive layer, respectively. (C) An example of using an auxiliary electrode (metal wire) together, (d) An example of using an auxiliary electrode (metal grid) together.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

(バリア性フィルムの層構成)
本発明は、樹脂基材上に少なくとも有機層、第一無機層、第二無機層がこの順に積層された層構成を含むバリア性フィルムであって、第一無機層は酸化珪素あるいは酸窒化珪素、第二無機層は酸窒化珪素を少なくとも含有し、第二無機層の珪素に結合する元素濃度比(O+N)/Oが第一無機層の元素濃度比(O+N)/Oよりも大きいことを特徴とする。
(Layer structure of barrier film)
The present invention is a barrier film including a layer structure in which at least an organic layer, a first inorganic layer, and a second inorganic layer are laminated in this order on a resin substrate, wherein the first inorganic layer is silicon oxide or silicon oxynitride The second inorganic layer contains at least silicon oxynitride, and the element concentration ratio (O + N) / O bonded to silicon of the second inorganic layer is larger than the element concentration ratio (O + N) / O of the first inorganic layer. Features.

本発明では“有機層、第一無機層、第二無機層”を1スタックとし2スタック以上あることが折り曲げ後のバリア性劣化を防止できることが好ましい。層の順序は基材側から有機層、第一無機層、第二無機層の順になっていることが必要である。   In the present invention, it is preferable that the “organic layer, the first inorganic layer, and the second inorganic layer” have one stack and that two or more stacks can prevent deterioration in barrier properties after bending. The order of the layers needs to be the order of the organic layer, the first inorganic layer, and the second inorganic layer from the substrate side.

(無機層)
本発明において、第一無機層は少なくとも酸化珪素あるいは酸窒化珪素を含有する。密着性の観点からは第一無機層は酸化珪素を含有することが好ましい。
(Inorganic layer)
In the present invention, the first inorganic layer contains at least silicon oxide or silicon oxynitride. From the viewpoint of adhesion, the first inorganic layer preferably contains silicon oxide.

本発明において、第二無機層は少なくとも酸窒化珪素を含有する。第二無機層は第一無機層よりも(O+N)/Oが大きいことを特徴としている。第一無機層が酸窒化珪素の場合には、酸窒化珪素中のOがNよりも多いことが好ましい。NよりもOが多いと積層した場合に有機層との密着性が向上するからである。第一無機層としては、(O+N)/Oが1.5以下、第二無機層としては(O+N)/Oが2.0以上であることが好ましい。(O+N)/Oが3.0以上であると上層が固くなりすぎてカール等が悪化することがあるので、第二無機層は(O+N)/Oが2.0以上3.0未満であることが好ましい。   In the present invention, the second inorganic layer contains at least silicon oxynitride. The second inorganic layer is characterized in that (O + N) / O is larger than that of the first inorganic layer. When the first inorganic layer is silicon oxynitride, it is preferable that O in the silicon oxynitride is larger than N. This is because when there is more O than N, the adhesion with the organic layer is improved when laminated. As the first inorganic layer, (O + N) / O is preferably 1.5 or less, and as the second inorganic layer, (O + N) / O is preferably 2.0 or more. When (O + N) / O is 3.0 or more, the upper layer becomes too hard and the curl or the like may be deteriorated. Therefore, the second inorganic layer has (O + N) / O of 2.0 or more and less than 3.0. It is preferable.

(O+N)/O比については、材料あるいは処理雰囲気のガス濃度を変えたり、処理方法を選択すること等によりコントロールしている。   The (O + N) / O ratio is controlled by changing the gas concentration of the material or the processing atmosphere or selecting a processing method.

無機層の成膜方法としては、蒸着法、スパッタリング法もしくはイオンプレーティング法等の物理的気相成長法(PVD)、化学的気相成長法(CVD)、ゾルゲル法等を用いることができるが生産性及び平滑性の観点から塗布方式であることが好ましい。   As a method for forming the inorganic layer, a vapor deposition method, a physical vapor deposition method (PVD) such as a sputtering method or an ion plating method, a chemical vapor deposition method (CVD), a sol-gel method, or the like can be used. From the viewpoint of productivity and smoothness, a coating method is preferred.

塗布方法は、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、スピンコート法、グラビアコート法、スライドコート法などの一般的な塗布方法を用いることが可能である。   As a coating method, general coating methods such as a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a spin coating method, a gravure coating method, and a slide coating method can be used. is there.

その中でも両無機層は少なくとも一層のポリシラザン化合物を含有する塗布液を塗布して作製することが好ましい。また、バリア性の観点から無機層(特に第二無機層)は酸化処理されていることが好ましい。   Among them, both inorganic layers are preferably prepared by applying a coating solution containing at least one polysilazane compound. Moreover, it is preferable that the inorganic layer (especially 2nd inorganic layer) is oxidized from a viewpoint of barrier property.

さらに本発明の無機層は塗布によって得られていることが好ましい。ドライプロセスで作製すると内部応力が働き、折り曲げ後のバリア性が悪くなったりカール耐性が悪くなる場合がある。二層ともドライプロセスで作製した場合には平滑性も不足することがある。   Further, the inorganic layer of the present invention is preferably obtained by coating. When produced by a dry process, internal stress works, and the barrier property after bending may deteriorate or the curl resistance may deteriorate. When both layers are produced by a dry process, the smoothness may be insufficient.

(ポリシラザン含有液の塗布膜)
本発明に係る第一無機層及び第二無機層はポリシラザン化合物を塗布し、少なくとも第二無機層は酸化処理によって得られていることが好ましい。
(Coating film of polysilazane-containing liquid)
The first inorganic layer and the second inorganic layer according to the present invention are preferably coated with a polysilazane compound, and at least the second inorganic layer is preferably obtained by oxidation treatment.

ポリシラザン化合物の塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布膜厚としては、乾燥後の膜厚が好ましくは10nm〜3μm程度、第一無機層としては50nm〜1μm程度が好ましく、第二無機層としては第一無機層より薄いことが好ましく30nm〜500nm程度であることが好ましい。3μmよりも大きいとひび割れが生じ易くなり、10nmより薄いとバリア性が得られなくなるからである。第二無機層が第一無機層よりも薄いことにより、よりひび割れが防止でき好ましい。   Any appropriate method can be adopted as a method for applying the polysilazane compound. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. As the coating film thickness, the film thickness after drying is preferably about 10 nm to 3 μm, the first inorganic layer is preferably about 50 nm to 1 μm, and the second inorganic layer is preferably thinner than the first inorganic layer, 30 nm to 500 nm. It is preferable that it is a grade. If it is larger than 3 μm, cracks are likely to occur, and if it is thinner than 10 nm, barrier properties cannot be obtained. It is preferable that the second inorganic layer is thinner than the first inorganic layer because cracking can be prevented more.

本発明で用いられる「ポリシラザン」とは、珪素−窒素結合を持つポリマーで、Si−N、Si−H、N−H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and includes SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y made of Si—N, Si—H, N—H, or the like. Such as a ceramic precursor inorganic polymer.

Figure 2011146226
Figure 2011146226

式中、R、R、及びRのそれぞれは、独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基などを表す。 In the formula, each of R 1 , R 2 , and R 3 independently represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, an alkoxy group, or the like.

本発明では、得られるバリア膜としての緻密性の観点からは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2, and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as the resulting barrier film.

一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。   On the other hand, the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to the base substrate is improved and the polysilazane is hard and brittle. The ceramic film can be provided with toughness, and there is an advantage that generation of cracks can be suppressed even when the (average) film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.

パーヒドロポリシラザンは直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。   Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.

低温でセラミック化するポリシラザンの別の例としては、上記化1のポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等が挙げられる。   As another example of polysilazane which is ceramicized at a low temperature, silicon alkoxide-added polysilazane obtained by reacting silicon alkoxide with polysilazane of the above chemical formula 1 (Japanese Patent Laid-Open No. 5-238827), glycidol addition obtained by reacting glycidol Polysilazane (JP-A-6-122852), alcohol-added polysilazane obtained by reacting an alcohol (JP-A-6-240208), metal carboxylate-added polysilazane obtained by reacting a metal carboxylate 6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (specialty) Kaihei 7-19 986 JP), and the like.

ポリシラザンを含有する液体を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは好ましくない。具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度、等目的にあわせて選択し、複数の溶剤を混合しても良い。   As an organic solvent for preparing a liquid containing polysilazane, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane. Specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, ethers such as halogenated hydrocarbon solvents, aliphatic ethers and alicyclic ethers can be used. Specific examples include hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran. These solvents may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of solvents may be mixed.

ポリシラザン含有塗布液中のポリシラザン濃度は目的とするシリカ膜厚や塗布液のポットライフによっても異なるが、0.2〜35質量%程度である。   The polysilazane concentration in the polysilazane-containing coating solution is about 0.2 to 35% by mass, although it varies depending on the target silica film thickness and the pot life of the coating solution.

有機ポリシラザンは、そのSiと結合する水素部分が一部アルキル基等で置換された誘導体であってもよい。アルキル基、特にもっとも分子量の少ないメチル基を有することにより下地基材との接着性が改善され、かつ硬くてもろいシリカ膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる。   The organic polysilazane may be a derivative in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like. By having an alkyl group, especially a methyl group having the smallest molecular weight, the adhesion to the base material can be improved, and the hard and brittle silica film can be toughened, and even if the film thickness is increased, cracks are not generated. Occurrence is suppressed.

酸化珪素化合物への転化を促進するために、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140などが挙げられる。   In order to promote the conversion to a silicon oxide compound, an amine or metal catalyst may be added. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd.

(酸化処理)
ポリシラザンの酸化処理としては、水蒸気酸化及び/又は加熱処理(乾燥処理を含む)、紫外線照射による処理等が知られている。その中でもよりフォトンエネルギーが大きい180nm以下の波長成分を有する真空紫外線照射によって処理することが好ましい。エネルギーが小さいとポリシラザンの効果が不十分となりバリア性が低くなる為である。
(Oxidation treatment)
As oxidation treatment of polysilazane, steam oxidation and / or heat treatment (including drying treatment), treatment by ultraviolet irradiation, and the like are known. Among them, it is preferable to perform the treatment by irradiation with vacuum ultraviolet rays having a wavelength component of 180 nm or less having a higher photon energy. This is because if the energy is small, the effect of polysilazane is insufficient and the barrier property is lowered.

(180nm以下の波長成分を有する真空紫外線照射による処理)
本発明において、好ましい方法として、真空紫外線照射による処理が挙げられる。真空紫外線照射による処理は、化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみによる作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、膜の形成をおこなう方法である。
(Treatment by vacuum ultraviolet radiation having a wavelength component of 180 nm or less)
In the present invention, a preferable method includes treatment by vacuum ultraviolet irradiation. The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, which is larger than the interatomic bonding force in the compound, and the oxidation reaction by active oxygen or ozone while directly cleaving the bonds of atoms by the action of only photons called photon processes. Is a method for forming a film at a relatively low temperature.

特に、本発明の好ましい方法であるポリシラザン膜の処理において、単層を塗布してからエキシマ照射処理を行なうと連続する2層の改質層ができる(これを本発明者らは第一無機層、第二無機層としている)。機構は明確にはなっていないが、本発明者らは光エネルギーによるシラザン化合物の直接切断と、気相で生成する活性酸素やオゾンによる表面酸化反応が同時に進行し、改質処理の表面側と内側で改質速度差が生じ、その結果連続する2層の改質層が形成されるものと推定している。   In particular, in the treatment of the polysilazane film, which is the preferred method of the present invention, when a single layer is applied and then the excimer irradiation treatment is performed, two continuous modified layers can be formed (this is the reason why the present inventors have formed the first inorganic layer). The second inorganic layer). Although the mechanism is not clear, the present inventors proceeded simultaneously with the direct cleavage of the silazane compound by light energy and the surface oxidation reaction by active oxygen or ozone generated in the gas phase, and the surface side of the modification treatment It is presumed that a reforming speed difference occurs inside, and as a result, two successive reforming layers are formed.

これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。   As a vacuum ultraviolet light source required for this, a rare gas excimer lamp is preferably used.

1.エキシマ発光とは、Xe、Kr、Ar、Neなどの希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電などによりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には
e+Xe→e+Xe
Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。
1. Excimer light emission is called an inert gas because atoms of rare gases such as Xe, Kr, Ar, and Ne do not form a molecule by chemically bonding. However, a rare gas atom (excited atom) that has gained energy by discharge or the like can combine with other atoms to form a molecule. When the rare gas is xenon, e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted. A feature of the excimer lamp is that the radiation is concentrated on one wavelength, and since only the necessary light is not emitted, the efficiency is high.

Xeエキシマランプは波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板などへの照射を可能としている。   The Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time. Therefore, compared with low-pressure mercury lamps with wavelengths of 185 nm and 254 nm and plasma cleaning, it is possible to shorten the process time associated with high throughput, reduce the equipment area, and irradiate organic materials and plastic substrates that are easily damaged by heat. .

本発明者らの検討によれば、エキシマ照射処理時の環境としては酸素濃度が0.001〜5%であると好ましい。さらには0.01〜3%であると性能が安定して好ましい。酸素濃度が5%を超えると結合の切断よりも活性酸素等を発生させる方にエネルギーを使用してしまい、0.001%以下であると酸化処理が不十分になり、生産性も悪化する為である。また、ステージ温度については熱をかけるとより反応が進み好ましい。その場合の温度は50℃以上、基材のTg以下の温度が基材を痛めずに反応性が良好になるために好ましい。   According to the study by the present inventors, the oxygen concentration is preferably 0.001 to 5% as the environment during the excimer irradiation treatment. Furthermore, if it is 0.01 to 3%, performance is stable and preferable. If the oxygen concentration exceeds 5%, energy is used to generate active oxygen rather than bond breakage, and if it is 0.001% or less, the oxidation treatment becomes insufficient and the productivity also deteriorates. It is. As for the stage temperature, it is preferable to apply heat to advance the reaction. In this case, the temperature is preferably 50 ° C. or more and Tg or less of the base material because the reactivity is improved without damaging the base material.

また、エキシマ照射を使用すると第一無機層と第二無機層を同時に作製することが可能となる。エキシマ照射では表面近くのみ、より改質することが可能でありその性質を利用することで低酸素濃度雰囲気下において反応時間を調整することにより、表面の数十nmのみNの含有率を多くすることが可能であることを本発明者らは見出した。   Moreover, when excimer irradiation is used, it becomes possible to produce a 1st inorganic layer and a 2nd inorganic layer simultaneously. Excimer irradiation can be further modified only near the surface, and by utilizing its properties, the reaction time is adjusted in a low oxygen concentration atmosphere, thereby increasing the N content only on the surface by several tens of nanometers. We have found that this is possible.

(最上層)
本発明では、最上層に有機層が設けられていることが更に好ましい。最上層に有機層があると折り曲げられた時等に無機層に欠陥ができた場合でも有機層があることで欠陥を補填でき、性能が安定したバリア性が高いフィルムが作製できるからである。
(Top layer)
In the present invention, it is more preferable that an organic layer is provided as the uppermost layer. This is because when the organic layer is the uppermost layer, even when the inorganic layer has a defect such as when it is bent, the organic layer can compensate for the defect and produce a film with stable performance and high barrier properties.

(樹脂基材)
樹脂基材は、有機層と無機層からなるバリア層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
(Resin base material)
The resin base material is not particularly limited as long as it is formed of an organic material that can hold a barrier layer composed of an organic layer and an inorganic layer.

例えばアクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂基材、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila−DEC、チッソ株式会社製)、更には前記プラスチックを2層以上積層して成る樹脂基材等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられ、また、光学的透明性、耐熱性、無機層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いることができる。基材の厚みは5〜500μm程度が好ましく、更に好ましくは25〜250μmである。本発明のバリア性フィルムは発光素子として使用する場合も鑑みて、ガラス転移温度(Tg)が100℃以上であることが好ましい。また、熱収縮率も低いことが好ましい。   For example, acrylic ester, methacrylate ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP) , Polystyrene (PS), nylon (Ny), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, and other resin base materials, silsesquioxane having an organic-inorganic hybrid structure Examples thereof include a heat-resistant transparent film having a skeleton (product name: Sila-DEC, manufactured by Chisso Corporation), and a resin substrate formed by laminating two or more layers of the plastic. In terms of cost and availability, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used. Also, optical transparency, heat resistance, inorganic layer and In terms of adhesion, a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used. As for the thickness of a base material, about 5-500 micrometers is preferable, More preferably, it is 25-250 micrometers. In view of the case where the barrier film of the present invention is used as a light emitting device, the glass transition temperature (Tg) is preferably 100 ° C. or higher. Moreover, it is preferable that a heat shrinkage rate is also low.

さらに、本発明に係る樹脂基材は透明であることが好ましい。基材が透明であり、基材上に形成する層も透明であることにより、透明なバリアフィルムとすることが可能となるため、太陽電池や有機EL素子等の透明基板とすることも可能となるからである。   Furthermore, the resin substrate according to the present invention is preferably transparent. Since the base material is transparent and the layer formed on the base material is also transparent, it becomes possible to make a transparent barrier film, so that it can be made a transparent substrate such as a solar cell or an organic EL element. Because it becomes.

また、上記に挙げたプラスチック等を用いた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。   Further, the resin base material using the plastics listed above may be an unstretched film or a stretched film.

本発明に用いられる樹脂基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となるプラスチックを押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2〜10倍が好ましい。   The resin base material used in the present invention can be produced by a conventionally known general method. For example, an unstretched substrate that is substantially amorphous and not oriented can be produced by melting a plastic material using an extruder, extruding it with an annular die or a T-die, and quenching it. In addition, the unstretched base material is subjected to a known method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, or the flow direction of the base material (vertical axis), or A stretched substrate can be produced by stretching in the direction perpendicular to the flow direction of the substrate (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the substrate, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.

また、本発明に係る樹脂基材においては、有機層を形成する前にコロナ処理を施してもよい。   Moreover, in the resin base material which concerns on this invention, you may give a corona treatment before forming an organic layer.

(有機層)
本発明の第一無機層と基材の間、もしくは、バリアフィルムの最上層に設けられる有機層は、バリアフィルムの曲げに対する応力を緩和する目的のほかに、突起等が存在する透明樹脂基材の粗面を平坦化し、あるいは、透明樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような有機層は、たとえば感光性樹脂を含有する組成物を塗布乾燥後、硬化させて形成されることが好ましい態様である。
(Organic layer)
The organic layer provided between the first inorganic layer and the base material of the present invention or the uppermost layer of the barrier film is a transparent resin base material in which protrusions and the like exist in addition to the purpose of relieving the stress against bending of the barrier film Is provided for flattening the rough surface or filling the unevenness and pinholes generated in the transparent inorganic compound layer by the projections present on the transparent resin substrate. Such an organic layer is preferably formed by, for example, coating and drying a composition containing a photosensitive resin, followed by curing.

有機層を構成する成分の基本骨格は、炭素、水素、酸素、窒素、硫黄等からなるものであり、珪素やチタン、アルミニウム、ジルコニウム等の無機原子を基本骨格にした場合は上述のような効果が得られにくい。   The basic skeleton of the components constituting the organic layer is composed of carbon, hydrogen, oxygen, nitrogen, sulfur, etc., and the effects described above when inorganic atoms such as silicon, titanium, aluminum, and zirconium are used as the basic skeleton. Is difficult to obtain.

有機層の感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。   As the photosensitive resin of the organic layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.

感光性樹脂の組成物は光重合開始剤を含有する。光重合開始剤としては、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミン)ベンゾフェノン、α−アミノ・アセトフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−tert−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジルジメチルケタール、ベンジルメトキシエチルアセタール、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−tert−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンズスベロン、メチレンアントロン、4−アジドベンジルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル[4−(メチルチオ)フェニル]−2−モノフォリノ−1−プロパン、2−ベンジル−2−ジメチルアミノ−1−(4−モノフォリノフェニル)−ブタノン−1、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、n−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。   The composition of the photosensitive resin contains a photopolymerization initiator. As photopolymerization initiators, benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, α-amino-acetophenone, 4,4-dichlorobenzophenone, 4-benzoyl-4-methyldiphenyl ketone, dibenzyl ketone, fluorenone, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, p-tert- Butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyldimethyl ketal, benzylmethoxyethyl acetal, benzoin methyl Ether, benzoin butyl ether, anthraquinone, 2-tert-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, benzanthrone, dibenzsuberone, methyleneanthrone, 4-azidobenzylacetophenone, 2,6-bis (p-azidobenzylidene ) Cyclohexane, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 2-phenyl-1,2-butadion-2- (o-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- ( o-ethoxycarbonyl) oxime, 1,3-diphenyl-propanetrione-2- (o-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione-2- (o-benzoyl) oxime, mihi -Ketone, 2-methyl [4- (methylthio) phenyl] -2-monoforino-1-propane, 2-benzyl-2-dimethylamino-1- (4-monoforinophenyl) -butanone-1, naphthalenesulfonyl chloride, Quinolinesulfonyl chloride, n-phenylthioacridone, 4,4-azobisisobutyronitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, carbon tetrabrominated, tribromophenyl sulfone, benzoin peroxide, Examples include a combination of a photoreducible dye such as eosin and methylene blue and a reducing agent such as ascorbic acid and triethanolamine. These photopolymerization initiators can be used alone or in combination of two or more.

有機層の形成方法は特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法により形成することが好ましい。   The method for forming the organic layer is not particularly limited, but it is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method.

有機層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、有機層の積層位置に関係なく、いずれの有機層においても、製膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。   In the formation of the organic layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. Further, in any organic layer, an appropriate resin or additive may be used for improving the film forming property and preventing the generation of pinholes in the film regardless of the position of the organic layer.

感光性樹脂を溶媒に溶解または分散させた塗布液を用いて有機層を形成する際に使用する溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α−もしくはβ−テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N−メチル−2−ピロリドン、ジエチルケトン、2−ヘプタノン、4−ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2−メトキシエチルアセテート、シクロヘキシルアセテート、2−エトキシエチルアセテート、3−メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3−エトキシプロピオン酸エチル、安息香酸メチル、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等を挙げることができる。   Solvents used when forming an organic layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, and propylene glycol, α -Or terpenes such as β-terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Group hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropiate Glycol ethers such as lenglycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carbitol acetate, Acetic esters such as ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate, diethylene glycol Dialkyl ether, dipropylene glycol Alkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide.

有機層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、30nm以下であることが好ましい。この範囲よりも大きい場合には、無機化合物を塗布した後の、凹凸を平滑化することが難しくなる場合がある。   The smoothness of the organic layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 30 nm or less. If it is larger than this range, it may be difficult to smooth the irregularities after applying the inorganic compound.

本発明における有機層の厚みとしては、1〜10μm、好ましくは2〜7μmであることが望ましい。1μm以上にすることにより、有機層を有するフィルムとしての平滑性を十分なものにし易くなり、10μm以下にすることにより、フィルムの光学特性のバランスを調整し易くなる。   The thickness of the organic layer in the present invention is 1 to 10 μm, preferably 2 to 7 μm. When the thickness is 1 μm or more, the smoothness of the film having an organic layer can be easily improved, and when the thickness is 10 μm or less, the balance of optical properties of the film can be easily adjusted.

(有機電子デバイスの構成)
本発明の有機電子デバイスの基本的構成の態様例を図1((a)〜(d))に示す。
(Organic electronic device configuration)
FIG. 1 ((a) to (d)) shows an example of the basic configuration of the organic electronic device of the present invention.

それぞれ、(a)第1電極が、導電性ポリマー含有層(単層)(21)である例、(b)第1電極が、導電性ポリマー含有層(21)と他の導電性層(14)からなる二層構成である例、(c)補助電極(金属ワイヤ)(22)を併用する例、(d)補助電極(金属グリッド)(23)を併用する例である。   Examples where (a) the first electrode is a conductive polymer-containing layer (single layer) (21) and (b) the first electrode is a conductive polymer-containing layer (21) and another conductive layer (14), respectively. ), An example in which the auxiliary electrode (metal wire) (22) is used in combination, and (d) an example in which the auxiliary electrode (metal grid) (23) is used in combination.

当該図1に示されているように、本発明の有機電子デバイスは、基本的構成要素として、基板(10)上に対向する第1電極(11)と第2電極(12)を有し、第1電極(11)と第2電極(12)電極間に少なくとも1層の有機機能層(13)を有する。   As shown in FIG. 1, the organic electronic device of the present invention has a first electrode (11) and a second electrode (12) facing each other on a substrate (10) as basic components. At least one organic functional layer (13) is provided between the first electrode (11) and the second electrode (12).

本発明に係る有機機能層(13)としては、有機発光層、有機光電変換層、液晶ポリマー層など特に限定無く挙げることができるが、本発明は、有機機能層が薄膜でかつ電流駆動系のデバイスである有機発光層、有機光電変換層である場合において、特に有効である。更に、本発明のバリア性フィルムは、電子デバイスの中でも最もバリア性が必要である有機発光層、又は、有機光電変換層を設けた有機EL素子、又は、有機光電変換素子に適用することが好ましい。   Examples of the organic functional layer (13) according to the present invention include, but are not limited to, an organic light emitting layer, an organic photoelectric conversion layer, a liquid crystal polymer layer, and the like. This is particularly effective when the device is an organic light emitting layer or an organic photoelectric conversion layer. Furthermore, the barrier film of the present invention is preferably applied to an organic light emitting layer or an organic EL element provided with an organic photoelectric conversion layer, or an organic photoelectric conversion element, which requires the most barrier property among electronic devices. .

(封止)
本発明のバリア性フィルムを、有機電子デバイスとして適用する場合について説明する。
(Sealing)
The case where the barrier film of the present invention is applied as an organic electronic device will be described.

まず、本発明のバリア性フィルムの第2無機層の上に、例えば、有機EL素子の場合、陽極層/正孔注入・輸送層/発光層/電子注入・輸送層/陰極層等、各種の有機化合物からなる機能層を作製する。得られた有機EL素子の全体若しくは上部を封止する。   First, on the second inorganic layer of the barrier film of the present invention, for example, in the case of an organic EL device, various types such as an anode layer / hole injection / transport layer / light emitting layer / electron injection / transport layer / cathode layer, etc. A functional layer made of an organic compound is prepared. The whole or upper part of the obtained organic EL element is sealed.

封止部材としては、本発明のバリア性フィルム、ポリエチレンテレフタレート、ポリカーボネート、ポリスチレン、ナイロン、ポリ塩化ビニル等のプラスチック、およびこれらの複合物、ガラス等が挙げられ、必要に応じて、特に樹脂フィルムの場合には、樹脂基板と同様、アルミニウム、酸化アルミニウム、酸化ケイ素、窒化ケイ素等のガスバリア層を積層したものを用いることができる。ガスバリア層は、封止部材成形前に封止部材の両面若しくは片面にスパッタリング、蒸着等により形成することもできるし、封止後に封止部材の両面若しくは片面に同様な方法で形成してもよい。これについても、酸素透過度が1×10−3cm/(m・24h・atm)以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10−3g/(m・24h)以下のものであることが好ましい。 Examples of the sealing member include the barrier film of the present invention, polyethylene terephthalate, polycarbonate, polystyrene, nylon, polyvinyl chloride, and the like, and composites thereof, glass, and the like. In this case, as in the case of the resin substrate, a laminate of gas barrier layers such as aluminum, aluminum oxide, silicon oxide, and silicon nitride can be used. The gas barrier layer can be formed by sputtering, vapor deposition or the like on both surfaces or one surface of the sealing member before molding the sealing member, or may be formed on both surfaces or one surface of the sealing member after sealing by a similar method. . Also about this, oxygen permeability is 1 × 10 −3 cm 3 / (m 2 · 24 h · atm) or less, water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 X10 −3 g / (m 2 · 24 h) or less is preferable.

バリア性フィルム1の作製
(樹脂基材)
樹脂基材として、両面に易接着加工された125μmの厚さのポリエステルフィルム(帝人デュポンフィルム株式会社製、テトロンO3)の基板を、170℃で30分アニール加熱処理したものを用いた。
Production of barrier film 1 (resin substrate)
As a resin base material, a substrate of a 125 μm thick polyester film (Tetron O3, manufactured by Teijin DuPont Films, Ltd.) that was easily bonded on both sides was annealed and heated at 170 ° C. for 30 minutes.

(有機層の形成)
上記樹脂基材上に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布、乾燥後の(平均)膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cm硬化を行い、平滑層を形成した。
(Formation of organic layer)
On the resin base material, a UV curable organic / inorganic hybrid hard coating material OPSTAR Z7501 manufactured by JSR Corporation is applied, applied with a wire bar so that the (average) film thickness after drying is 4 μm, and then drying conditions; After drying at 80 ° C. for 3 minutes, a high pressure mercury lamp was used in an air atmosphere, curing conditions; 1.0 J / cm 2 curing was performed to form a smooth layer.

このときの最大断面高さRt(p)は16nmであった。   The maximum cross-sectional height Rt (p) at this time was 16 nm.

表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さである。   The surface roughness is calculated from an uneven cross-sectional curve continuously measured with an AFM (Atomic Force Microscope) and a detector having a stylus with a minimum tip radius, and the measurement direction is 30 μm with a stylus with a minimum tip radius. This is the average roughness for the amplitude of fine irregularities, measured many times in the section.

(無機層)
スパッタ装置の真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入、反応ガスとして酸素を分圧で0.006Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開き第一無機層の形成を開始した。150nmの膜が堆積したところでシャッターを閉じて成膜を終了し、バリア性フィルム1を得た。この条件で成膜した元素濃度比(O+N)/OをXPSで測定したところ、1.40であった。続いて、放電ガスとしてアルゴンを分圧で0.5Pa導入し、雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの第二無機層の形成を開始した。40nmの膜が堆積したところでシャッターを閉じて成膜を終了した。この条件で成膜した元素濃度比(O+N)/OをXPSで測定したところ、3.10であった。
(Inorganic layer)
The film on which the organic layer is formed is set in a vacuum chamber of a sputtering apparatus, and vacuum is drawn up to 10 −4 Pa. Argon is introduced as a discharge gas at a partial pressure of 0.5 Pa, and oxygen as a reaction gas is set at a partial pressure of 0.00. 006 Pa was introduced. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of the first inorganic layer was started. When the film with a thickness of 150 nm was deposited, the shutter was closed to finish the film formation, and the barrier film 1 was obtained. When the element concentration ratio (O + N) / O formed under these conditions was measured by XPS, it was 1.40. Subsequently, 0.5 Pa was introduced as a discharge gas at a partial pressure of 0.5 Pa, and when the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of the second inorganic layer on the film was started. When the 40 nm film was deposited, the shutter was closed to complete the film formation. The element concentration ratio (O + N) / O formed under these conditions was 3.10 as measured by XPS.

OとNの比率に関しては、膜をスパッタで削りながらXPSを測定することにより測定できる。装置は、VG Scientific社製ESCALab200Rを用いた。   The ratio of O and N can be measured by measuring XPS while scraping the film by sputtering. As the apparatus, ESCALab200R manufactured by VG Scientific was used.

バリア性フィルム2の作製
第一無機層を下記に変更した以外は、バリア性フィルム1と同様にしてバリア性フィルム2を得た。
Preparation of Barrier Film 2 A barrier film 2 was obtained in the same manner as the barrier film 1 except that the first inorganic layer was changed to the following.

第一無機層;低温硬化性の触媒を含有するペルヒドロポリシラザンのジブチルエーテル溶液(固形分量20質量%、AZエレクトロニックマテリアルズ社製、商品名:アクアミカ NAX120−20)を用いて、乾燥後の膜厚200nmとなる様に、スピンコート塗布方式で塗布、乾燥し、次いで、60℃90%の環境で1時間熱処理を施し、バリア性フィルム2を得た。熱処理後、FT−IRを測定したところ、ほとんどがSiOに変化しており、(O+N)/OをXPSで測定したところ、1.02であった。 First inorganic layer: membrane after drying using a dibutyl ether solution of a perhydropolysilazane containing a low-temperature curable catalyst (solid content: 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NAX120-20) The film was applied and dried by a spin coat application method so as to have a thickness of 200 nm, and then heat-treated in an environment of 60 ° C. and 90% for 1 hour to obtain a barrier film 2. After the heat treatment, was measured for FT-IR, little has changed in the SiO 2, was measured by XPS of the (O + N) / O, it was 1.02.

バリア性フィルム3の作製
無機層を下記に変更した以外は、バリア性フィルム1と同様にしてバリア性フィルム3を得た。
Preparation of Barrier Film 3 A barrier film 3 was obtained in the same manner as the barrier film 1 except that the inorganic layer was changed to the following.

触媒を含有しないペルヒドロポリシラザン(PHPS)のジブチルエーテル溶液(固形分量20質量%、AZエレクトロニックマテリアルズ社製、商品名:アクアミカNN320)を乾燥後の膜厚が300nmとなる様に、スピンコート塗布方式で塗布、乾燥し、下記の真空紫外線処理装置及び条件を用いて処理を行なったところ、膜が2層化しスパッタXPSで確認したところ第一無機層の(O+N)/O=1.05、第二無機層の(O+N)/O=2.10となり、膜厚としては250nm、50nmとなっていることを断層TEMにより確認した。   Spin coat coating so that the film thickness after drying a dibutyl ether solution of perhydropolysilazane (PHPS) containing no catalyst (solid content 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NN320) is 300 nm. When the film was applied and dried using the following vacuum ultraviolet ray treatment apparatus and conditions, the film was formed into two layers and confirmed by sputtering XPS. As a result, (O + N) /O=1.05 of the first inorganic layer, It was confirmed by tomography TEM that the second inorganic layer had (O + N) /O=2.10 and the film thickness was 250 nm and 50 nm.

(真空紫外線処理装置)
株式会社エム・ディ・コム製エキシマ照射装置、波長172nm、ランプ封入ガスXe 稼動ステージ上に固定した試料を以下の条件で改質処理を行った。
(Vacuum UV treatment equipment)
An excimer irradiation apparatus manufactured by M.D.Com Co., Ltd., wavelength 172 nm, lamp-filled gas Xe A sample fixed on the operating stage was subjected to a modification treatment under the following conditions.

(条件)
エキシマ光強度 60mW/cm(172nm)
試料と光源の距離 1mm
ステージ加熱温度 80℃
照射装置内の酸素濃度 0.5%
エキシマ照射時間 20秒
バリア性フィルム4の作製
バリア性フィルム3の作製の際、エキシマ照射時の酸素濃度を6%に変更した以外はバリア性フィルム3と同様にしてバリア性フィルム4を得た。
(conditions)
Excimer light intensity 60 mW / cm 2 (172 nm)
1mm distance between sample and light source
Stage heating temperature 80 ℃
Oxygen concentration in irradiation device 0.5%
Excimer irradiation time 20 seconds Preparation of barrier film 4 Barrier film 4 was obtained in the same manner as barrier film 3 except that the oxygen concentration during excimer irradiation was changed to 6% when barrier film 3 was manufactured.

バリア性フィルム5の作製
第二無機層を下記に変更した以外は、バリア性フィルム2と同様にしてバリア性フィルム5を得た。
Preparation of Barrier Film 5 A barrier film 5 was obtained in the same manner as the barrier film 2 except that the second inorganic layer was changed to the following.

第二無機層;触媒を含有しないペルヒドロポリシラザン(PHPS)のジブチルエーテル溶液(固形分量20質量%、AZエレクトロニックマテリアルズ社製、商品名:アクアミカNN320)を乾燥後の膜厚が60nmとなる様に、スピンコート塗布方式で塗布、乾燥し、UVオゾン処理(低圧水銀ランプ)装置を用いて20分処理を施した。   Second inorganic layer: catalyst-free perhydropolysilazane (PHPS) dibutyl ether solution (solid content 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NN320) so that the film thickness after drying is 60 nm. Then, it was applied and dried by a spin coat application method, and then subjected to a treatment for 20 minutes using a UV ozone treatment (low pressure mercury lamp) apparatus.

バリア性フィルム6の作製
第二無機層を下記に変更した以外は、バリア性フィルム2と同様にしてバリア性フィルム6を得た。
Preparation of Barrier Film 6 A barrier film 6 was obtained in the same manner as the barrier film 2 except that the second inorganic layer was changed to the following.

第二無機層;パラジウム触媒を含有するポリシラザンのジブチルエーテル溶液(固形分量20質量%、AZエレクトロニックマテリアルズ社製、商品名:アクアミカNL120A)を乾燥後の膜厚が60nmとなる様に、スピンコート塗布方式で塗布し、60℃90%で3時間処理を施した。   Second inorganic layer: polysilazane dibutyl ether solution containing palladium catalyst (solid content 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NL120A), spin-coated so that the film thickness after drying is 60 nm It apply | coated by the apply | coating system and processed for 3 hours at 60 degreeC90%.

バリア性フィルム7の作製
バリア性フィルム3で作製した、「有機層、第一無機層、第二無機層」を1スタックとして、2スタック構成のバリア性フィルム7を得た。
Preparation of Barrier Film 7 A barrier film 7 having a two-stack structure was obtained with the “organic layer, first inorganic layer, and second inorganic layer” prepared with the barrier film 3 as one stack.

バリア性フィルム8の作製
バリア性フィルム3で作製した、「有機層、第一無機層、第二無機層」を1スタックとして、3スタック構成のバリア性フィルム8を得た。
Production of Barrier Film 8 The “organic layer, first inorganic layer, and second inorganic layer” produced with the barrier film 3 was used as one stack to obtain a barrier film 8 having a three-stack configuration.

バリア性フィルム9の作製
バリア性フィルム3の最上層に、更に、バリア性フィルム1で用いた有機層を塗布して、バリア性フィルム9を得た。
Production of Barrier Film 9 The organic layer used in the barrier film 1 was further applied to the uppermost layer of the barrier film 3 to obtain the barrier film 9.

バリア性フィルム10の作製
バリア性フィルム1で用いた樹脂基材に、2官能のエポキシアクリレート(昭和高分子:VR−60−LAV)25質量%、ジエチレングリコール50質量%、酢酸エチル24質量%、シランカップリング剤1質量%からなる均一な混合溶液をスピンコーターで塗布し、80℃10分加熱乾燥後さらにUV照射で硬化させて2μmの樹脂層を形成した。つぎに、スパッタ装置の真空槽内に前記有機物層を形成したフィルムをセットし10−4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの第一無機層の形成を開始した。5nmの膜が堆積したところでシャッターを閉じて成膜を終了した。この条件で成膜した第一無機層の元素濃度比(O+N)/OをXPSで測定したところ、3.33であった。続いて、放電ガスとしてアルゴンを分圧で0.5Pa導入、反応ガスとして酸素を分圧で0.005Pa導入した。雰囲気圧力が安定したところで放電を開始しSiターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの第二無機層の形成を開始した。95nmの膜が堆積したところでシャッターを閉じて成膜を終了した。この条件で成膜した第二無機層の元素濃度比(O+N)/OをXPSで測定したところ、1.54であった。真空槽内に大気を導入してからバリア性フィルム10を取り出した。
Preparation of barrier film 10 The resin base material used in barrier film 1 is 25% by mass of bifunctional epoxy acrylate (Showa Polymer: VR-60-LAV), 50% by mass of diethylene glycol, 24% by mass of ethyl acetate, and silane. A uniform mixed solution consisting of 1% by mass of a coupling agent was applied by a spin coater, heated and dried at 80 ° C. for 10 minutes, and further cured by UV irradiation to form a 2 μm resin layer. Next, the film on which the organic layer was formed was set in the vacuum chamber of the sputtering apparatus, and was evacuated to a level of 10 −4 Pa. Argon was introduced as a discharge gas at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of the first inorganic layer on the film was started. When the 5 nm film was deposited, the shutter was closed to complete the film formation. When the element concentration ratio (O + N) / O of the first inorganic layer formed under these conditions was measured by XPS, it was 3.33. Subsequently, 0.5 Pa was introduced as a discharge gas at a partial pressure of 0.5 Pa, and oxygen was introduced as a reaction gas at a partial pressure of 0.005 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the Si 3 N 4 target, and a sputtering process was started. When the process was stabilized, the shutter was opened and the formation of the second inorganic layer on the film was started. When the 95 nm film was deposited, the shutter was closed to complete the film formation. When the element concentration ratio (O + N) / O of the second inorganic layer formed under these conditions was measured by XPS, it was 1.54. After introducing the atmosphere into the vacuum chamber, the barrier film 10 was taken out.

バリア性フィルム11の作製
バリア性フィルム1で用いた樹脂基材に、2−ブチル−2−エチル−プロパンジオールジアクリレート(共栄社化学(株)製、ライトアクリレートBEPG−A)15g、カプロラクトン2−ヒドロキシエチルメタクリレートのフォスフェート(日本化薬(株)製、KAYAMER PM−21)4.5g、シランカップリング剤(信越化学工業(株)製、KBM−503)0.5g、紫外線重合開始剤(チバ・ジャパン社製、商品名:Cibaイルガキュアー907)0.6g、2−ブタノン190gの混合溶液を液厚が5μmとなるようにワイヤーバーを用いて塗布した。室温にて2時間乾燥した後、窒素置換法により酸素濃度が0.45%となったチャンバー内にて高圧水銀ランプの紫外線を照射(積算照射量約2J/cm)して有機層を硬化させた。このとき膜厚は500nm±50nmであった。ターゲットとしてケイ素(Si)を、放電ガスとしてアルゴンを、反応ガスとして酸素を用いて、スパッタリング装置により膜厚200nmの第1無機層(酸化ケイ素)を形成した。成膜圧力は0.1Paとした。ターゲットとしてアルミニウム(Al)を、放電ガスとしてアルゴンを、反応ガスとして窒素を用いて、スパッタリング装置により膜厚50nmの窒化アルミニウム層を形成した。成膜圧力は0.1Paとした。
Production of Barrier Film 11 To the resin substrate used in barrier film 1, 15 g of 2-butyl-2-ethyl-propanediol diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate BEPG-A), caprolactone 2-hydroxy Ethyl methacrylate phosphate (Nippon Kayaku Co., Ltd., KAYAMER PM-21) 4.5 g, Silane coupling agent (Shin-Etsu Chemical Co., Ltd., KBM-503) 0.5 g, UV polymerization initiator (Ciba -Japan company make, brand name: Ciba Irgacure 907) The mixed solution of 0.6g and 2-butanone 190g was apply | coated using the wire bar so that liquid thickness might be set to 5 micrometers. After drying at room temperature for 2 hours, the organic layer is cured by irradiating UV light from a high-pressure mercury lamp (accumulated dose: about 2 J / cm 2 ) in a chamber in which the oxygen concentration is 0.45% by nitrogen substitution. I let you. At this time, the film thickness was 500 nm ± 50 nm. A first inorganic layer (silicon oxide) having a thickness of 200 nm was formed by a sputtering apparatus using silicon (Si) as a target, argon as a discharge gas, and oxygen as a reaction gas. The film forming pressure was 0.1 Pa. An aluminum nitride layer having a thickness of 50 nm was formed by a sputtering apparatus using aluminum (Al) as a target, argon as a discharge gas, and nitrogen as a reaction gas. The film forming pressure was 0.1 Pa.

得られた各バリア性フィルム1〜11について、以下の評価を行った。   The following evaluation was performed about each obtained barrier film 1-11.

(評価方法)
(水蒸気透過率の評価)
以下の測定方法により評価した。
(Evaluation methods)
(Evaluation of water vapor transmission rate)
The following measurement methods were used for evaluation.

蒸着装置:日本電子(株)製真空蒸着装置JEE−400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3〜5mm、粒状)
水蒸気バリア性評価用セルの作製
バリアフィルム試料のガスバリア層面に、真空蒸着装置(日本電子製真空蒸着装置JEE−400)を用い、透明導電膜を付ける前のバリアフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製、)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、上記屈曲の処理を行わなかったバリアフィルムについても同様に、水蒸気バリア性評価用セルを作製した。
Vapor deposition apparatus: Vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor-impermeable metal: Aluminum (φ3-5mm, granular)
Production of cell for evaluating water vapor barrier property A part (12 mm) of a barrier film sample to be vapor-deposited before applying a transparent conductive film on a gas barrier layer surface of the barrier film sample using a vacuum vapor deposition apparatus (vacuum vapor deposition apparatus JEE-400 manufactured by JEOL Other than 9 x 12 mm masks, metal calcium was vapor-deposited. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After sealing with aluminum, the vacuum state is released, and in a dry nitrogen gas atmosphere, the silica sealing side (through Nagase Chemtex Co., Ltd.) is sealed on quartz glass with a thickness of 0.2 mm via a sealing UV curable resin (manufactured by Nagase ChemteX). An evaluation cell was produced by facing and irradiating with ultraviolet rays. In addition, in order to confirm the change in the gas barrier property before and after bending, a water vapor barrier property evaluation cell was similarly prepared for the barrier film which was not subjected to the bending treatment.

得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005−283561号公報に記載の方法に基づき、金属カルシウムの腐蝕量からセル内に透過した水分量を計算した。   The obtained sample with both sides sealed was stored under high temperature and high humidity of 60 ° C. and 90% RH, and permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. The amount of water was calculated.

なお、バリアフィルム面から以外の水蒸気の透過が無いことを確認するために、比較試料としてバリアフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐蝕が発生しないことを確認した。   In addition, in order to confirm that there is no permeation of water vapor other than from the barrier film surface, instead of the barrier film sample as a comparative sample, a sample in which metallic calcium was vapor-deposited using a quartz glass plate having a thickness of 0.2 mm, The same 60 ° C., 90% RH high temperature and high humidity storage was performed, and it was confirmed that no metallic calcium corrosion occurred even after 1000 hours.

得られた水分量から以下の5段階に分類した。   The obtained water content was classified into the following five stages.

5:1×10−4g/m/day未満
4:1×10−4g/m/day以上、5×10−4g/m/day未満
3:5×10−4g/m/day以上、1×10−3g/m/day未満
2:1×10−3g/m/day以上、1×10−2g/m/day未満
1:1×10−2g/m/day以上
(平滑性(表面粗さ))
表面粗さRaは、AFM(原子間力顕微鏡;Digital Instrments社製DI3100)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さから求めた。
Less than 5: 1 × 10 −4 g / m 2 / day 4: 1 × 10 −4 g / m 2 / day or more and less than 5 × 10 −4 g / m 2 / day 3: 5 × 10 −4 g / day m 2 / day or more, less than 1 × 10 −3 g / m 2 / day 2: 1 × 10 −3 g / m 2 / day or more, less than 1 × 10 −2 g / m 2 / day 1: 1 × 10 -2 g / m 2 / day or more (Smoothness (surface roughness))
The surface roughness Ra is calculated from the cross-sectional curve of the unevenness measured continuously with a detector having a stylus having a minimum tip radius with an AFM (Atomic Force Microscope; DI3100 manufactured by Digital Instruments), and the surface roughness Ra is measured. The measurement was performed many times in a section having a measuring direction of 30 μm with a needle, and the average roughness regarding the amplitude of fine irregularities was obtained.

○:5nm未満
△:5nm以上10nm未満
×:10nm以上
(折り曲げ後のバリア性(フレキシブル性))
半径10mmの曲率になるように、180度の角度で100回の屈曲を繰り返した試料の水蒸気透過率の評価を行い、屈曲をしなかった試料からの劣化度合いを評価した。
○: Less than 5 nm Δ: 5 nm or more and less than 10 nm ×: 10 nm or more (barrier property after bending (flexibility))
The water vapor permeability of a sample that was bent 100 times at an angle of 180 degrees was evaluated so that the curvature was 10 mm in radius, and the degree of deterioration from the sample that was not bent was evaluated.

屈曲試験後の水蒸気透過度/屈曲なしの水蒸気透過度(%)
◎:90%以上
○:80%以上90%未満
△:60%以上80%未満
×:60%未満
(密着性)
JIS−K5400のクロスカット密着試験方法に従って行った。メッキ処理後の試料についてクロス状のカット線を引き、日東電工(株)製のセロハンテープNo.29を貼り付けて、テープをはがし、膜の剥離状態を調べた。膜残存率をFとし、クロスカットしたマス目の数をn、テープ剥離後に膜がまだ付着しているマス目の数をnとしたとき、F=n/n×100(%)を計算し、以下の基準で評価した。
Water vapor transmission rate after bending test / Water vapor transmission rate without bending (%)
◎: 90% or more ○: 80% or more and less than 90% △: 60% or more and less than 80% ×: less than 60% (Adhesiveness)
The cross cut adhesion test method of JIS-K5400 was used. A cross-shaped cut line is drawn on the sample after the plating treatment, and cellophane tape No. 1 manufactured by Nitto Denko Corporation is drawn. 29 was affixed, the tape was peeled off, and the peeled state of the film was examined. F = n 1 / n × 100 (%), where F is the remaining rate of the film, n is the number of cross-cut grids, and n 1 is the number of grids to which the film is still attached after tape peeling. Calculated and evaluated according to the following criteria.

◎:F≧90%
○:90%>F≧80%
△:80%>F≧70%
×:70%>F
(カール)
出来上がったバリア性フィルム(8.9×12.7cm)を水平な台の上に置き、4隅の持ち上がりの高さを測定した。4隅の持ち上がりの高さの差の平均値(mm単位)をカールとし、以下の4段階で評価した。
A: F ≧ 90%
○: 90%> F ≧ 80%
Δ: 80%> F ≧ 70%
×: 70%> F
(curl)
The completed barrier film (8.9 × 12.7 cm) was placed on a horizontal table, and the height of lifting at the four corners was measured. The average value (mm unit) of the difference in lifting height at the four corners was defined as curl, and the evaluation was made in the following four stages.

○:5mm未満
△:5mm以上10mm未満
×:10mm以上
○: Less than 5 mm Δ: 5 mm or more and less than 10 mm ×: 10 mm or more

Figure 2011146226
Figure 2011146226

表1より、本発明により作製したバリア性フィルムと比較例について、有機層、第一無機層、第二無機層がこの順に積層され、第二無機層が第一無機層よりも窒素が多いバリア性フィルムは比較例よりもバリア性が向上していることがわかった。さらに、塗布により無機層を作製するとよりフレキシブル適性があり適していることがわかった。   From Table 1, for the barrier film produced according to the present invention and the comparative example, the organic layer, the first inorganic layer, and the second inorganic layer are laminated in this order, and the second inorganic layer has more nitrogen than the first inorganic layer. It was found that the barrier film had improved barrier properties as compared with the comparative example. Furthermore, it has been found that when an inorganic layer is produced by coating, it is more flexible and suitable.

また、最上層に有機層があると折り曲げられた場合でもバリア性を維持できることがわかった。   It was also found that the barrier property can be maintained even when folded when the uppermost layer is an organic layer.

実施例2
《有機電子デバイス(有機EL素子)101の作製》
〈第1電極層の形成〉
実施例1で作製したバリア性フィルム1の第二無機層の上に厚さ120nmのITO(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極層を形成した。なお、パターンは発光面積が50mm平方になるようなパターンとした。
Example 2
<< Production of Organic Electronic Device (Organic EL Element) 101 >>
<Formation of first electrode layer>
A 120 nm thick ITO (indium tin oxide) film is formed on the second inorganic layer of the barrier film 1 produced in Example 1 by sputtering, and patterned by photolithography to form a first electrode layer. did. The pattern was such that the light emission area was 50 mm square.

〈正孔輸送層の形成〉
第1電極層が形成されたバリア性フィルム1の第1電極層の上に、以下に示す正孔輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚みが50nmになるように塗布した。
<Formation of hole transport layer>
On the 1st electrode layer of the barrier film 1 in which the 1st electrode layer was formed, after apply | coating the coating liquid for positive hole transport layer formation shown below with an extrusion coater, it dried and formed the positive hole transport layer. . The coating liquid for forming the hole transport layer was applied so that the thickness after drying was 50 nm.

正孔輸送層形成用塗布液を塗布する前に、バリア性フィルム1の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用し行った。 Before coating the hole transport layer forming coating solution, the cleaning surface modification treatment of the barrier film 1 was performed using a low-pressure mercury lamp with a wavelength of 184.9 nm at an irradiation intensity of 15 mW / cm 2 and a distance of 10 mm. . The charge removal treatment was performed using a static eliminator with weak X-rays.

(塗布条件)
塗布工程は大気中、25℃相対湿度50%の環境で行った。
(Application conditions)
The coating process was performed in the atmosphere at 25 ° C. and a relative humidity of 50%.

(正孔輸送層形成用塗布液の準備)
ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水で65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
(Preparation of coating solution for hole transport layer formation)
A solution prepared by diluting polyethylene dioxythiophene / polystyrene sulfonate (PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with pure water at 65% and methanol at 5% was prepared as a coating solution for forming a hole transport layer.

(乾燥及び加熱処理条件)
正孔輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
(Drying and heat treatment conditions)
After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment. The back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.

〈発光層の形成〉
引き続き、正孔輸送層迄を形成したバリア性フィルム1の正孔輸送層の上に、以下に示す白色発光層形成用塗布液を押出し塗布機で塗布した後、乾燥し発光層を形成した。白色発光層形成用塗布液は乾燥後の厚みが40nmになるように塗布した。
<Formation of light emitting layer>
Subsequently, on the hole transport layer of the barrier film 1 formed up to the hole transport layer, the following white light emitting layer forming coating solution was applied by an extrusion coater and then dried to form a light emitting layer. The white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.

(白色発光層形成用塗布液)
ホスト材のH−Aを1.0gと、ドーパント材D−Aを100mg、ドーパント材D−Bを0.2mg、ドーパント材D−Cを0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
(Coating liquid for white light emitting layer formation)
The host material HA is 1.0 g, the dopant material DA is 100 mg, the dopant material DB is 0.2 mg, the dopant material DC is 0.2 mg, and dissolved in 100 g of toluene to form a white light emitting layer. It was prepared as a coating solution.

Figure 2011146226
Figure 2011146226

(塗布条件)
塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とし、塗布速度1m/minで行った。
(Application conditions)
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, a coating temperature of 25 ° C., and a coating speed of 1 m / min.

(乾燥及び加熱処理条件)
白色発光層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
(Drying and heat treatment conditions)
After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film forming surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., followed by a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.

〈電子輸送層の形成〉
引き続き、発光層迄を形成したのち、以下に示す電子輸送層形成用塗布液を押出し塗布機で塗布した後、乾燥し電子輸送層を形成した。電子輸送層形成用塗布液は乾燥後の厚みが30nmになるように塗布した。
<Formation of electron transport layer>
Subsequently, after forming the light emitting layer, the following coating liquid for forming an electron transport layer was applied by an extrusion coater and then dried to form an electron transport layer. The coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.

(塗布条件)
塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とし、塗布速度1m/minで行った。
(Application conditions)
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more, the coating temperature of the electron transport layer forming coating solution was 25 ° C., and the coating speed was 1 m / min.

(電子輸送層形成用塗布液)
電子輸送層はE−Aを2,2,3,3−テトラフルオロ−1−プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
(Coating liquid for electron transport layer formation)
The electron transport layer was prepared by dissolving EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.

Figure 2011146226
Figure 2011146226

(乾燥及び加熱処理条件)
電子輸送層形成用塗布液を塗布した後、製膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で温度200℃で加熱処理を行い、電子輸送層を形成した。
(Drying and heat treatment conditions)
After applying the coating solution for forming the electron transport layer, the solvent is removed at a height of 100 mm toward the film forming surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 60 ° C. Then, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.

(電子注入層の形成)
引き続き、形成された電子輸送層の上に電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10−4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
(Formation of electron injection layer)
Subsequently, an electron injection layer was formed on the formed electron transport layer. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.

(第2電極の形成)
引き続き、形成された電子注入層の上に第1電極の上に取り出し電極になる部分を除き、形成された電子注入層の上に5×10−4Paの真空下にて第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
Subsequently, the second electrode forming material is formed on the formed electron injection layer under a vacuum of 5 × 10 −4 Pa except for the portion that becomes the take-out electrode on the first electrode on the formed electron injection layer. A mask pattern was formed by vapor deposition so that a light emitting area was 50 mm square by using aluminum as an extraction electrode, and a second electrode having a thickness of 100 nm was laminated.

(裁断)
第2電極まで形成したバリア性フィルム1を、再び窒素雰囲気に移動し、規定の大きさに裁断し、有機EL素子を作製した。
(Cutting)
The barrier film 1 formed up to the second electrode was moved again to a nitrogen atmosphere and cut into a prescribed size to produce an organic EL device.

(電極リード接続)
作製した有機EL素子に、ソニーケミカル&インフォメーションデバイス株式会社製異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element, and a flexible printed circuit board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12.5 μm, surface Treated NiAu plating).

圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。   Pressure bonding conditions: Pressure bonding was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.

(封止)
電極リード(フレキシブルプリント基板)を接続した有機EL素子を、市販のロールラミネート装置を用いて封止部材を接着し、有機EL素子101を製作した。
(Sealing)
A sealing member was bonded to the organic EL element to which the electrode lead (flexible printed circuit board) was connected using a commercially available roll laminating apparatus, and the organic EL element 101 was manufactured.

なお、封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚み1.5μm)ものを用いた。   In addition, as a sealing member, a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.), a polyethylene terephthalate (PET) film (12 μm thick) with an adhesive for dry lamination (two-component reaction type urethane adhesive). The laminate used (adhesive layer thickness 1.5 μm) was used.

アルミニウム面に熱硬化性接着剤を、ディスペンサを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布した。   A thermosetting adhesive was uniformly applied to the aluminum surface with a thickness of 20 μm along the adhesive surface (shiny surface) of the aluminum foil using a dispenser.

熱硬化接着剤としては以下のエポキシ系接着剤を用いた。   The following epoxy adhesives were used as the thermosetting adhesive.

ビスフェノールAジグリシジルエーテル(DGEBA)
ジシアンジアミド(DICY)
エポキシアダクト系硬化促進剤
しかる後、封止基板を、取り出し電極および電極リードの接合部を覆うようにして密着・配置して、圧着ロールを用いて圧着条件、圧着ロール温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。
Bisphenol A diglycidyl ether (DGEBA)
Dicyandiamide (DICY)
Epoxy adduct-based curing accelerator After that, the sealing substrate is closely attached and arranged so as to cover the joint portion of the take-out electrode and the electrode lead, and pressure bonding conditions using the pressure roll, pressure roll temperature 120 ° C., pressure 0. Close sealing was performed at 5 MPa and an apparatus speed of 0.3 m / min.

《有機EL素子102〜111の作製》
有機EL素子101の作製において、バリア性フィルム1の代わりにバリア性フィルム2〜11を用いて、有機EL素子102〜111を作製した。
<< Production of organic EL elements 102 to 111 >>
In the production of the organic EL element 101, the organic EL elements 102 to 111 were produced using the barrier films 2 to 11 instead of the barrier film 1.

《有機EL素子の評価》
得られた有機EL素子101〜111を、60℃90%RHに300時間保管し保管前の状態と比較を行った。
<< Evaluation of organic EL elements >>
The obtained organic EL elements 101 to 111 were stored at 60 ° C. and 90% RH for 300 hours and compared with the state before storage.

(黒点の評価方法)
試料に1mA/cmの電流を印加し発光させ、100倍のマイクロスコープ(株式会社モリテックス製MS−804、レンズMP−ZE25−200)でパネルの一部分を拡大し、撮影を行った。撮影画像を2mm四方に切り抜き、目視で観察を行い、黒点の状況を調べた。
(Spot evaluation method)
A current of 1 mA / cm 2 was applied to the sample to emit light, and a part of the panel was magnified with a 100 × microscope (Mortex Co., Ltd. MS-804, lens MP-ZE25-200), and photographing was performed. The photographed image was cut out in a 2 mm square and visually observed to examine the situation of black spots.

A: 0時間から300時間まで、劣化が認められない
B: 0時間から300時間まで、わずかに劣化が認められる
C: 0時間から300時間まで、劣化が認められるが実技上問題ないレベル
D: 0時間から300時間まで、大きく劣化が認められ実技上問題のあるレベル
(高温高湿保存性)
各有機EL素子を、60℃、相対湿度90%の環境下に250時間の保存を行った後、各有機EL素子に2.5mA/cmの一定電流で駆動させた時の発光輝度の変化の測定を行い、未処理の各有機EL素子の各特性と比較し、下記の基準に従って高温高湿保存性の評価を行った。測定には、駆動電源として株式会社エーディーシー製電圧/電流発生・測定器R6243、輝度測定器としてコニカミノルタセンシング社製、分光放射輝度計CS−2000を用いた。
A: No degradation is observed from 0 to 300 hours B: Slight degradation is observed from 0 to 300 hours C: Degradation is observed from 0 to 300 hours, but there is no practical problem D: From 0 hours to 300 hours, a level with significant deterioration and practical problems (high temperature and high humidity storage)
Changes in emission luminance when each organic EL element is stored at 60 ° C. and 90% relative humidity for 250 hours and then driven to a constant current of 2.5 mA / cm 2. Was measured and compared with each characteristic of each untreated organic EL element, and high temperature and high humidity storage stability was evaluated according to the following criteria. For the measurement, voltage / current generation / measurement device R6243 manufactured by ADC Co., Ltd. was used as the driving power source, and a spectral radiance meter CS-2000 manufactured by Konica Minolta Sensing Co., Ltd. was used as the luminance measurement device.

A:未処理品に対し、電流密度一定時の輝度変動が5%未満である
B:未処理品に対し、電流密度一定時の輝度変動が5%以上、10%未満である
C:未処理品に対し、電流密度一定時の輝度変動が10%以上である
A: Luminance variation at a constant current density is less than 5% for untreated products B: Luminance variation at a constant current density is 5% or more and less than 10% for untreated products C: Untreated The brightness fluctuation when the current density is constant is 10% or more.

Figure 2011146226
Figure 2011146226

表2より、バリア性が高いフィルムを用いた場合には、比較例よりもダークスポットが少なく、輝度変動も小さいことがわかった。   From Table 2, it was found that when a film having a high barrier property was used, there were fewer dark spots and luminance variations were smaller than in the comparative example.

実施例3
有機光電変換素子の作製
本発明のバリア性フィルム3及び11を用い、それぞれ、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて2mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
Example 3
Production of Organic Photoelectric Conversion Element Each of the barrier films 3 and 11 of the present invention and a 150 nm thick indium tin oxide (ITO) transparent conductive film deposited (sheet resistance 10 Ω / □) is used for ordinary photolithography technology. And wet etching were used to perform patterning to a width of 2 mm to form a first electrode. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.

この透明基板上に、導電性高分子であるBaytron P4083(スタルクヴィテック社製)を(平均)膜厚が30nmになるように塗布乾燥した後、150℃で30分間熱処理させ正孔輸送層を製膜した。   On this transparent substrate, Baytron P4083 (manufactured by Starck Vitec), which is a conductive polymer, is applied and dried so that the (average) film thickness is 30 nm, and then heat treated at 150 ° C. for 30 minutes to form a hole transport layer. A film was formed.

これ以降は、基板を窒素チャンバー中に持ち込み、窒素雰囲気下で作製した。   Thereafter, the substrate was brought into a nitrogen chamber and manufactured in a nitrogen atmosphere.

まず、窒素雰囲気下で上記基板を150℃で10分間加熱処理した。次に、クロロベンゼンにP3HT(プレクトロニクス社製:レジオレギュラーポリ−3−ヘキシルチオフェン)とPCBM(フロンティアカーボン社製:6,6−フェニル−C61−ブチリックアシッドメチルエステル)を3.0質量%になるように1:0.8で混合した液を調製し、フィルタでろ過しながら(平均)膜厚が100nmになるように塗布を行い、室温で放置して乾燥させた。続けて、150℃で15分間加熱処理を行い、光電変換層を製膜した。 First, the substrate was heat-treated at 150 ° C. for 10 minutes in a nitrogen atmosphere. Next, P3HT in chlorobenzene (plectrovirus Toro Nix Co., Ltd. regioregular poly-3-hexylthiophene) and PCBM (manufactured by Frontier Carbon Corporation: 6,6-phenyl -C 61 - butyric acid methyl ester) and 3.0 wt% Then, a liquid mixed at 1: 0.8 was prepared so that the film thickness was 100 nm and the film was filtered (filtered), and allowed to dry at room temperature. Subsequently, a heat treatment was performed at 150 ° C. for 15 minutes to form a photoelectric conversion layer.

次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10−4Pa以下まで真空蒸着装置内を減圧した後、蒸着速度0.01nm/秒でフッ化リチウムを0.6nm積層し、更に続けて、2mm幅のシャドウマスクを通して(受光部が2×2mmに成るように直行させて蒸着)、蒸着速度0.2nm/秒でAlメタルを100nm積層することで第2の電極を形成した。得られた有機光電変換素子を窒素チャンバーに移動し、封止用キャップとUV硬化樹脂を用いて封止を行って、受光部が2×2mmサイズの有機光電変換素子を作製した。 Next, the substrate on which the series of functional layers is formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 × 10 −4 Pa or less, and then fluorinated at a deposition rate of 0.01 nm / second. Laminate 0.6 nm of lithium, and then continue to deposit 100 nm of Al metal at a deposition rate of 0.2 nm / sec through a shadow mask with a width of 2 mm (vaporization is performed so that the light receiving part is 2 × 2 mm). A second electrode was formed. The obtained organic photoelectric conversion element was moved to a nitrogen chamber, and sealed using a sealing cap and a UV curable resin, to produce an organic photoelectric conversion element having a light receiving portion of 2 × 2 mm size.

(有機光電変換素子の封止)
窒素ガス(不活性ガス)によりパージされた環境下で、バリア性フィルム3及び11の二枚を用い、ガスバリア層を設けた面に、シール材としてエポキシ系光硬化型接着剤を塗布した。上述した方法によって得られたバリア性フィルム3及び11に対応する有機光電変換素子を、上記接着剤を塗布した二枚のバリア性フィルム3及び11の接着剤塗布面の間に挟み込んで密着させた後、片側の基板側からUV光を照射して硬化させ、有機光電変換素子203及び211とした。
(Sealing of organic photoelectric conversion elements)
In an environment purged with nitrogen gas (inert gas), an epoxy photo-curing adhesive was applied as a sealing material to the surface provided with the gas barrier layer using two barrier films 3 and 11. The organic photoelectric conversion elements corresponding to the barrier films 3 and 11 obtained by the above-described method were sandwiched and adhered between the adhesive coating surfaces of the two barrier films 3 and 11 coated with the adhesive. Thereafter, the organic photoelectric conversion elements 203 and 211 were obtained by curing by irradiating UV light from one side of the substrate.

(評価)
<有機光電変換素子耐久性の評価>
《エネルギー変換効率の評価》
上記作製した光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を4.0mmにしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFF(%)を、同素子上に形成した4箇所の受光部をそれぞれ測定し、下記式1に従って求めたエネルギー変換効率PCE(%)の4点平均値を見積もった。
(式1)PCE(%)=〔Jsc(mA/cm)×Voc(V)×FF(%)〕/100mW/cm
初期電池特性としての変換効率を測定し、性能の経時的低下の度合いを温度60℃、湿度90%RH環境で1000時間保存した加速試験後の変換効率残存率により評価した。
(Evaluation)
<Evaluation of durability of organic photoelectric conversion element>
<Evaluation of energy conversion efficiency>
About the produced photoelectric conversion element, the light of the intensity | strength of 100 mW / cm < 2 > of a solar simulator (AM1.5G filter) is irradiated, the mask which made the effective area 4.0mm < 2 > is piled up on a light-receiving part, and IV characteristic is evaluated. Thus, the short-circuit current density Jsc (mA / cm 2 ), the open-circuit voltage Voc (V), and the fill factor FF (%) are respectively measured at the four light receiving portions formed on the same element, and obtained according to the following formula 1. The four-point average value of the energy conversion efficiency PCE (%) was estimated.
(Formula 1) PCE (%) = [Jsc (mA / cm 2 ) × Voc (V) × FF (%)] / 100 mW / cm 2
The conversion efficiency as the initial battery characteristics was measured, and the degree of deterioration over time was evaluated by the conversion efficiency remaining rate after the acceleration test stored for 1000 hours in a temperature 60 ° C., humidity 90% RH environment.

加速試験後の変換効率/初期変換効率の比は、有機光電変換素子203及び211において、それぞれ、90%及び40%であった。   The ratio of the conversion efficiency / initial conversion efficiency after the acceleration test was 90% and 40% in the organic photoelectric conversion elements 203 and 211, respectively.

10 基板
11 第1電極
12 第2電極
13 有機機能層
14 他の導電性層
21 導電性ポリマー含有層
22 補助電極(金属ワイヤ)
23 補助電極(金属グリッド)
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 1st electrode 12 2nd electrode 13 Organic functional layer 14 Other electroconductive layer 21 Conductive polymer content layer 22 Auxiliary electrode (metal wire)
23 Auxiliary electrode (metal grid)

Claims (8)

樹脂基材上に少なくとも有機層、第一無機層、第二無機層がこの順に積層された層構成を含むバリア性フィルムであって、該第一無機層は酸化珪素あるいは酸窒化珪素を少なくとも含有し、該第二無機層は酸窒化珪素を少なくとも含有し、かつ、該第二無機層の珪素に結合する元素濃度比(O+N)/Oが、該第一無機層の元素濃度比(O+N)/Oよりも大きいことを特徴とするバリア性フィルム。
尚、元素濃度比(O+N)/Oとは、珪素に結合する酸素元素濃度と窒素元素濃度の和を、珪素に結合する酸素元素濃度で除した数である。
A barrier film comprising a layer structure in which at least an organic layer, a first inorganic layer, and a second inorganic layer are laminated in this order on a resin substrate, wherein the first inorganic layer contains at least silicon oxide or silicon oxynitride The second inorganic layer contains at least silicon oxynitride, and the element concentration ratio (O + N) / O bonded to silicon of the second inorganic layer is the element concentration ratio (O + N) of the first inorganic layer. A barrier film characterized by being larger than / O.
The element concentration ratio (O + N) / O is a number obtained by dividing the sum of the oxygen element concentration bonded to silicon and the nitrogen element concentration by the oxygen element concentration bonded to silicon.
有機層、第一無機層、第二無機層がこの順に積層された層構成を1スタックとした場合、2スタック以上が積層されていることを特徴とする請求項1記載のバリア性フィルム。   2. The barrier film according to claim 1, wherein when the layer structure in which the organic layer, the first inorganic layer, and the second inorganic layer are laminated in this order is one stack, two or more stacks are laminated. 前記第一無機層及び第二無機層が塗布によって得られていることを特徴とする請求項1又は2記載のバリア性フィルム。   The barrier film according to claim 1 or 2, wherein the first inorganic layer and the second inorganic layer are obtained by coating. 前記第一無機層及び第二無機層がポリシラザン化合物を塗布することによって得られており、少なくとも第二無機層は塗布後に酸化処理が行なわれることを特徴とする請求項1〜3のいずれか1項記載のバリア性フィルム。   The said 1st inorganic layer and the 2nd inorganic layer are obtained by apply | coating a polysilazane compound, At least 2nd inorganic layer is oxidized after application | coating, The any one of Claims 1-3 characterized by the above-mentioned. The barrier film according to Item. 前記酸化処理が、180nm以下の波長成分を有する真空紫外線を照射する処理であることを特徴とする請求項4記載のバリア性フィルム。   The barrier film according to claim 4, wherein the oxidation treatment is a treatment of irradiating a vacuum ultraviolet ray having a wavelength component of 180 nm or less. 前記真空紫外線を照射する処理が、酸素濃度0.001〜5%の雰囲気下で行われることを特徴とする請求項5記載のバリア性フィルム。   The barrier film according to claim 5, wherein the treatment of irradiating the vacuum ultraviolet ray is performed in an atmosphere having an oxygen concentration of 0.001 to 5%. 最上層に有機層を設けることを特徴とする請求項1〜6のいずれか1項記載のバリア性フィルム。   The barrier film according to any one of claims 1 to 6, wherein an organic layer is provided as an uppermost layer. 請求項1〜7のいずれか1項に記載のバリア性フィルムを用いたことを特徴とする有機電子デバイス。   An organic electronic device using the barrier film according to claim 1.
JP2010005685A 2010-01-14 2010-01-14 Barrier film and organic electronic device Expired - Fee Related JP5381734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005685A JP5381734B2 (en) 2010-01-14 2010-01-14 Barrier film and organic electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005685A JP5381734B2 (en) 2010-01-14 2010-01-14 Barrier film and organic electronic device

Publications (2)

Publication Number Publication Date
JP2011146226A true JP2011146226A (en) 2011-07-28
JP5381734B2 JP5381734B2 (en) 2014-01-08

Family

ID=44460915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005685A Expired - Fee Related JP5381734B2 (en) 2010-01-14 2010-01-14 Barrier film and organic electronic device

Country Status (1)

Country Link
JP (1) JP5381734B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226673A (en) * 2012-04-24 2013-11-07 Konica Minolta Inc Gas barrier film and its forming method, and electronic device containing the gas barrier film
WO2014057980A1 (en) 2012-10-11 2014-04-17 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Method for forming dense silicic film
WO2014157685A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Gas barrier laminate, member for electronic device, and electronic device
JP2015512561A (en) * 2012-03-23 2015-04-27 アルケマ フランス Use of multilayer structures based on halogenated polymers as protective sheets for photovoltaic modules
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
US9771654B2 (en) * 2011-09-26 2017-09-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer structure offering improved impermeability to gases
JP6421401B1 (en) * 2017-07-20 2018-11-14 東洋インキScホールディングス株式会社 Active energy ray curable overcoat varnish

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281861A (en) * 1995-04-19 1996-10-29 Mitsui Toatsu Chem Inc Gas barrier film
JPH10194873A (en) * 1996-12-27 1998-07-28 Tonen Corp Formation of thin silicon nitride film
JP2002222691A (en) * 2000-07-24 2002-08-09 Tdk Corp Luminescent element
JP2002532850A (en) * 1998-12-16 2002-10-02 バッテル・メモリアル・インスティチュート Environmental barrier material for organic light emitting device and method of manufacturing the same
JP2003206361A (en) * 2002-01-15 2003-07-22 Sumitomo Bakelite Co Ltd Transparent moisture barrier film
JP2005071929A (en) * 2003-08-27 2005-03-17 Osaka Industrial Promotion Organization Electronic device and its manufacturing method
JP2005209356A (en) * 2004-01-20 2005-08-04 Toppan Printing Co Ltd Organic el element and color filter
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
JP2006297737A (en) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd Gas-barrier film
JP2007062305A (en) * 2005-09-02 2007-03-15 Japan Advanced Institute Of Science & Technology Hokuriku Transparent gas barrier substrate
JP2007237702A (en) * 2006-03-13 2007-09-20 Fujifilm Corp Gas barrier film and organic device using this
JP2008181088A (en) * 2000-04-20 2008-08-07 Battelle Memorial Inst Encapsulated display device
JP2009503157A (en) * 2005-07-26 2009-01-29 クラリアント・インターナシヨナル・リミテッド Method for forming a thin glass-like coating on a substrate to reduce gas permeation
JP2009095989A (en) * 2007-10-12 2009-05-07 Fujifilm Corp Gas barrier film and environmental susceptible device
JP2009255040A (en) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd Flexible gas barrier film and method for manufacturing the same
JP2009283149A (en) * 2008-05-19 2009-12-03 Seiko Epson Corp Method of manufacturing electro-optical device as well as electro-optical device and electronic equipment
JP2010528894A (en) * 2007-06-01 2010-08-26 エルジー・ケム・リミテッド Composite film and manufacturing method thereof
JP2011146144A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Light emitting element

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08281861A (en) * 1995-04-19 1996-10-29 Mitsui Toatsu Chem Inc Gas barrier film
JPH10194873A (en) * 1996-12-27 1998-07-28 Tonen Corp Formation of thin silicon nitride film
JP2002532850A (en) * 1998-12-16 2002-10-02 バッテル・メモリアル・インスティチュート Environmental barrier material for organic light emitting device and method of manufacturing the same
JP2008181088A (en) * 2000-04-20 2008-08-07 Battelle Memorial Inst Encapsulated display device
JP2002222691A (en) * 2000-07-24 2002-08-09 Tdk Corp Luminescent element
JP2003206361A (en) * 2002-01-15 2003-07-22 Sumitomo Bakelite Co Ltd Transparent moisture barrier film
JP2005071929A (en) * 2003-08-27 2005-03-17 Osaka Industrial Promotion Organization Electronic device and its manufacturing method
JP2005209356A (en) * 2004-01-20 2005-08-04 Toppan Printing Co Ltd Organic el element and color filter
JP2005235467A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Organic el element
JP2006297737A (en) * 2005-04-20 2006-11-02 Fuji Photo Film Co Ltd Gas-barrier film
JP2009503157A (en) * 2005-07-26 2009-01-29 クラリアント・インターナシヨナル・リミテッド Method for forming a thin glass-like coating on a substrate to reduce gas permeation
JP2007062305A (en) * 2005-09-02 2007-03-15 Japan Advanced Institute Of Science & Technology Hokuriku Transparent gas barrier substrate
JP2007237702A (en) * 2006-03-13 2007-09-20 Fujifilm Corp Gas barrier film and organic device using this
JP2010528894A (en) * 2007-06-01 2010-08-26 エルジー・ケム・リミテッド Composite film and manufacturing method thereof
JP2009095989A (en) * 2007-10-12 2009-05-07 Fujifilm Corp Gas barrier film and environmental susceptible device
JP2009255040A (en) * 2008-03-25 2009-11-05 Kyodo Printing Co Ltd Flexible gas barrier film and method for manufacturing the same
JP2009283149A (en) * 2008-05-19 2009-12-03 Seiko Epson Corp Method of manufacturing electro-optical device as well as electro-optical device and electronic equipment
JP2011146144A (en) * 2010-01-12 2011-07-28 Konica Minolta Holdings Inc Light emitting element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9771654B2 (en) * 2011-09-26 2017-09-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Multilayer structure offering improved impermeability to gases
JP2015512561A (en) * 2012-03-23 2015-04-27 アルケマ フランス Use of multilayer structures based on halogenated polymers as protective sheets for photovoltaic modules
JP2013226673A (en) * 2012-04-24 2013-11-07 Konica Minolta Inc Gas barrier film and its forming method, and electronic device containing the gas barrier film
US9534145B2 (en) 2012-10-11 2017-01-03 Yuki Ozaki Method for forming dense silicic film
WO2014057980A1 (en) 2012-10-11 2014-04-17 Azエレクトロニックマテリアルズマニュファクチャリング株式会社 Method for forming dense silicic film
WO2014157685A1 (en) 2013-03-29 2014-10-02 リンテック株式会社 Gas barrier laminate, member for electronic device, and electronic device
US10323317B2 (en) 2013-03-29 2019-06-18 Lintec Corporation Gas barrier laminate, member for electronic device, and electronic device
KR20150135521A (en) 2013-03-29 2015-12-02 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
EP2979860A4 (en) * 2013-03-29 2016-09-21 Lintec Corp Gas barrier laminate, member for electronic device, and electronic device
JPWO2014157685A1 (en) * 2013-03-29 2017-02-16 リンテック株式会社 GAS BARRIER LAMINATE, ELECTRONIC DEVICE MEMBER AND ELECTRONIC DEVICE
JP2018171929A (en) * 2013-03-29 2018-11-08 リンテック株式会社 Gass barrier laminate, member for electronic device, and electronic device
KR102267093B1 (en) 2013-03-29 2021-06-18 린텍 가부시키가이샤 Gas barrier laminate, member for electronic device, and electronic device
JP2019107906A (en) * 2013-03-29 2019-07-04 リンテック株式会社 Gas barrier laminate, member for electronic device, and electronic device
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
JP2019019256A (en) * 2017-07-20 2019-02-07 東洋インキScホールディングス株式会社 Active energy ray-curable overcoat varnish
JP6421401B1 (en) * 2017-07-20 2018-11-14 東洋インキScホールディングス株式会社 Active energy ray curable overcoat varnish

Also Published As

Publication number Publication date
JP5381734B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5445179B2 (en) Gas barrier film, method for producing gas barrier film, and organic electronic device
JP5402818B2 (en) Gas barrier film and method for producing gas barrier film
JP5540949B2 (en) Gas barrier film, organic photoelectric conversion element, organic electroluminescence element
JP5716752B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
JP5381734B2 (en) Barrier film and organic electronic device
JP5540803B2 (en) Method for producing gas barrier film
JP5835344B2 (en) Gas barrier film and electronic equipment
US9359505B2 (en) Gas barrier film, process for production of gas barrier film, and electronic device
JP5888329B2 (en) Gas barrier film, method for producing gas barrier film, and electronic device
JP5447022B2 (en) Gas barrier film, production method thereof, and organic photoelectric conversion element using the gas barrier film
JP5659477B2 (en) Barrier film, manufacturing method thereof, and organic photoelectric conversion element
JP5581834B2 (en) Method for producing gas barrier film, organic electronic device
JPWO2011027619A1 (en) Barrier film and manufacturing method thereof
JP2012067193A (en) Method for cleaning gas barrier film, gas barrier package and organic electronic device
JP5549448B2 (en) Barrier film, method for producing barrier film, and organic electronic device
JP5712509B2 (en) Barrier film manufacturing method
JP2012000599A (en) Barrier film and method of manufacturing the same, organic electronic device, and method of manufacturing the same
JP2012076403A (en) Barrier film, and organic electronic device
JP2012064378A (en) Manufacturing method of organic electronic panel
JP5636646B2 (en) Barrier film manufacturing method, barrier film and organic photoelectric conversion device manufacturing method
JP2011073417A (en) Barrier film, method of producing barrier film, and organic photoelectric conversion element
JP5594099B2 (en) Method for producing gas barrier film
JP5552979B2 (en) Method for producing gas barrier film, organic electronic device having the gas barrier film
JP5552975B2 (en) Gas barrier film and organic electronic device having gas barrier film
JP2016171038A (en) Method for manufacturing electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees