JP2011116915A - ポリエステルの重合装置 - Google Patents

ポリエステルの重合装置 Download PDF

Info

Publication number
JP2011116915A
JP2011116915A JP2009277798A JP2009277798A JP2011116915A JP 2011116915 A JP2011116915 A JP 2011116915A JP 2009277798 A JP2009277798 A JP 2009277798A JP 2009277798 A JP2009277798 A JP 2009277798A JP 2011116915 A JP2011116915 A JP 2011116915A
Authority
JP
Japan
Prior art keywords
reactor
reaction
polymerization
polyester
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009277798A
Other languages
English (en)
Inventor
Kenichiro Oka
憲一郎 岡
Toshiaki Matsuo
俊明 松尾
Masayuki Kamikawa
将行 上川
Yasunari Sase
康成 佐世
Takeyuki Kondo
健之 近藤
Masashi Oda
将史 小田
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2009277798A priority Critical patent/JP2011116915A/ja
Publication of JP2011116915A publication Critical patent/JP2011116915A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

【課題】ポリマーを製造する第2の反応器の構造脆弱性の除去を図ったポリエステルの製造装置を提供する。
【解決手段】オリゴマーを製造する第1の反応器10と、低重合度ポリマーを製造する第2の反応器20と、更に縮重合させて高重合度ポリマーを製造する第3の反応器30とを備えたポリエステル連続製造装置であって、前記第2の反応器20は、複数の反応室201から構成され、反応室201が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置220を設置した装置とすることで、反応室201内部の完全混合と同時に、反応室間で逆流を生じさないプラグフロー性能を確保しつつ、反応器の構造脆弱部分である攪拌翼を除去することができる。
【選択図】図4

Description

本発明はポリエステル連続製造方法及びそのための装置に関するものである。
ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンサクシネート及びポリエチレンサクシネート等のポリエステルは、ジカルボン酸とグリコールを原料とし、これらの混合物に触媒を添加した後、エステル化工程、重合工程を経て、製造される。重合工程では、ジカルボン酸のカルボキシル基2つがそれぞれグリコールとエステル化反応して生成するモノマー同士が縮重合反応することにより平均重合度3以上のポリエステルが生成する。ポリエステルの製造装置としては、例えば、特許文献1に記載のものが知られている。
特許文献1には、平均重合度20〜70の低重合度ポリマーを製造する第2の反応器である初期重合器の構造について言及されている。本方式によれば、初期重合器は、縦型円筒状の槽であり、該槽内には同心円状に2槽に分割された反応室が存在し、各反応室内に攪拌翼及び加熱装置が設けられ、攪拌翼が槽本体上部に取り付けられた駆動装置に連結した一本の回転軸に固定され、また槽内の上部には揮発物の出口が設けられており、各反応室において加熱、攪拌がなされ、重合反応が進行する。
特開2003−64171号公報 特公平8−19241号公報
特許文献1に記載された第2の反応器では、一本の回転軸に内外2槽の反応室を攪拌する攪拌翼が固定されているため、構造的に脆弱である。また、軸ブレを起こした場合、反応室に設置した加熱装置と攪拌翼が接触し、加熱装置及び攪拌翼が損傷する可能性がある。また、上記特許文献1に記載された第2の反応器は、攪拌翼の駆動に要するエネルギーが大きいという問題もある。
したがって、本発明の目的は、平均粘度1Pa・s以上の低重合度ポリマーを製造する第2の反応器において、攪拌動力が不要で、構造脆弱性のないポリエステル連続製造装置を提供することにある。
本発明者らは、複数の反応室から構成され、反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されている第2の反応器を用いることにより、攪拌動力が不要で、構造脆弱性のないポリエステル連続製造装置を実現できることを見出し、本発明を完成した。
すなわち、本発明は以下の発明を包含する。
(1)ジカルボン酸又はその誘導体とグリコールとを反応させてオリゴマーを製造する第1の反応器と、第1の反応器からのオリゴマーを縮重合させて低重合度ポリマーを製造する第2の反応器と、第2の反応器からの低重合度ポリマーを更に縮重合させて高重合度ポリマーを製造する第3の反応器とを備えたポリエステル連続製造装置であって、
第2の反応器は、複数の反応室から構成され、反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されている、前記ポリエステル連続製造装置。
(2)第2の反応器内部の単一空間に上方及び下方から交互に挿入された仕切板によって、相互に上部又は下部で交互に接続された複数の反応室が形成されている、(1)記載のポリエステル連続製造装置。
(3)仕切板が可動であり、それによって、反応室の反応液保持量が可変であり、かつ反応器内における反応液の滞留時間が可変である、(2)記載のポリエステル連続製造装置。
(4)第2の反応器の反応室内にポリエステル重合反応に寄与しない材料からなる整流部材が設置されている、(1)〜(3)のいずれかに記載のポリエステル連続製造装置。
(5)第2の反応器の反応室の底面近傍に散気装置が設置されている、(1)〜(4)のいずれかに記載のポリエステル連続製造装置。
(6)第1の反応器と、第2の反応器と、第3の反応器とを備え、第2の反応器が複数の反応室から構成され、反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されているポリエステル連続製造装置でポリエステルを連続製造する方法であって、第1の反応器において、ジカルボン酸又はその誘導体とグリコールとを反応させてオリゴマーを製造する工程、第2の反応器において、第1の反応器からのオリゴマーを縮重合させて低重合度ポリマーを製造する工程、第3の反応器において、第2の反応器からの低重合度ポリマーを更に縮重合させて高重合度ポリマーを製造する工程を含む、前記方法。
(7)第2の反応器内部の単一空間に上方及び下方から交互に挿入された仕切板によって、相互に上部又は下部で交互に接続された複数の反応室が形成されている、(6)記載の方法。
(8)仕切板を動かすことにより、反応室の反応液保持量を変化させる、及び/又は反応器内における反応液の滞留時間を変化させる、(7)記載の方法。
(9)第2の反応器の反応室内にポリエステル重合反応に寄与しない材料からなる整流部材が設置されており、それにより反応液の滞留が防止される、(6)〜(8)のいずれかに記載の方法。
(10)第2の反応器の反応室の底面近傍に散気装置が設置されており、それにより反応液の滞留が防止される、(6)〜(9)のいずれかに記載の方法。
本発明によれば、攪拌動力が不要で、構造脆弱性が小さいポリエステル製造装置を実現できる。
本発明に係るPBT(ポリブチレンテレフタレート)の連続製造プロセスの一実施形態を示す全体装置(システム)構成図である。 本発明における第1の反応器(エステル化反応器)の一実施形態を示す縦断面図である。 本発明における第2の反応器(初期重合器)の一実施形態を示す縦断面図である。 本発明における第2の反応器(初期重合器)の一実施形態を示す縦断面図である。 本発明における第3の反応器(最終重合器)の一実施形態を示す縦断面図である。 図5に示す第3の反応器(最終重合器)の一実施形態の側面断面図である。
本発明のポリエステル連続製造装置は、少なくとも第1の反応器、第2の反応器及び第3の反応器を有する。第2の反応器は複数の反応室から構成され、この複数の反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されている。第1の反応器の前段、第1の反応器と第2の反応器の間、又は第3の反応器の後段に、更なる反応器を有する場合も、本発明に包含される。また、第1の反応器、第2の反応器、及び第3の反応器として、それぞれ複数の反応器を備える場合も、本発明に包含される。
本発明で製造するポリエステルは、ジカルボン酸又はその誘導体とグリコールとから製造しうるものであれば特に制限されない。例えば、テレフタル酸又はその誘導体とブタンジオール(例えば、1,4−ブタンジオール)から製造されるポリブチレンテレフタレート、テレフタル酸又はその誘導体とエチレングリコールから製造されるポリエチレンテレフタレート、テレフタル酸又はその誘導体とトリメチレングリコールから製造されるポリトリメチレンテレフタレート、コハク酸又はその誘導体とブタンジオール(例えば、1,4−ブタンジオール)から製造されるポリブチレンサクシネート、及びコハク酸又はその誘導体とエチレングリコールから製造されるポリエチレンサクシネートが挙げられる。ジカルボン酸の誘導体としては、例えば、ジカルボン酸のモノアルキルエステル(例えば、メチルエステル、エチルエステル)、ジアルキルエステル(例えば、ジメチルエステル、ジエチルエステル)が挙げられる。
第1の反応器では、所定の温度及び圧力で、ジカルボン酸又はその誘導体とグリコールのエステル化反応を行いオリゴマーを製造する。従って、第1の反応器をエステル化反応器と称する場合もある。本発明において、第1の反応器で製造されるオリゴマーは、通常、平均重合度3〜7程度、好ましくは2〜5程度である。第1の反応器における反応温度は通常220℃〜260℃、好ましくは240℃〜250℃で、圧力は200Torr〜800Torr、好ましくは200Torr〜400Torrである。反応器における加熱方法としては、当技術分野において通常用いられる方法を使用することができ、例えば、反応器外周部に熱媒のジャケットを設置し、反応器壁面を通して伝熱により反応液を加熱する方法、又は反応器内部の伝熱管(コイル)を通して伝熱により加熱する方法等があり、これらを単独で使用しても組み合わせて使用してもよい。第1の反応器としては、エステル化によりポリエステルを製造する際に通常使用する反応器を利用できる。このような反応器として、縦型反応器、横型反応器又はタンク型反応器を用いることができる。反応器の攪拌装置における攪拌翼としてはパドル翼、タービン翼、アンカー翼、ダブルモーション翼、ヘリカルリボン翼などを使用することができる。また、エステル化反応を実施する第1の反応器として、複数の反応器を設置してもよい。
重合反応触媒は、第1の反応器、第1の反応器と第2の反応器の間、又は第2の反応器のいずれにおいて添加してもよいが、好ましくは、第1の反応器へ添加される。触媒は単独で又は2種以上組み合わせて使用できる。
触媒(重合反応触媒)としては、エステル交換反応に用いられる広範な触媒を使用できる。例えば、Li、Mg、Ca、Ba、La、Ce、Ti、Zr、Hf、V、Mn、Fe、Co、Ir、Ni、Zn、Ge、Snなどの金属を含む金属化合物、例えば、有機酸塩、金属アルコキシド及び金属錯体(アセチルアセトナートなど)等の有機金属化合物、ならびに金属酸化物、金属水酸化物、炭酸塩、リン酸塩、硫酸塩、硝酸塩及び塩化物などの無機金属化合物が例示される。これらの金属化合物触媒の中でも、チタン化合物、特に、チタンテトラエトキシド、チタンテトライソプロポキシド、チタンテトラブトキシドなどのチタンアルコキシド等の有機チタン化合物が好ましい。オクチル酸スズ等のスズ系化合物又は三酸化アンチモン等のアンチモン系化合物を使用するのが好ましい場合もある。
触媒は、その種類や組み合わせにより、反応速度が異なるだけでなく、生成するポリエステルの色相及び熱安定性等の品質に大きな影響を及ぼすことがよく知られている。触媒としては現在最も多く工業的に使用されている有機チタン化合物が価格や性能面で優れている。しかし、この触媒を用いても生成したポリエステル重合物の着色は避けられない。このため、安定剤として燐系安定剤(例えば、リン酸、トリメチルホスフェート、トリフェニルホスフェート等)を併用して改善することが好ましい。また、触媒や安定剤の投入位置を工夫して品質を安定させることもできる。触媒として有機チタン化合物を用いる場合、触媒の量は、通常、チタン金属換算濃度で20〜100ppmとすることが好ましく、また安定剤の量はリン金属濃度で0〜600ppmとすることが好ましい。
第2の反応器では、第1の反応器から供給されたオリゴマーを所定の温度及び圧力でエステル交換反応に基づく縮重合反応に付し、低重合度ポリマーを製造する。ここで低重合度ポリマーは、エステル化反応後、最終縮重合反応前(第3の反応器に入る前)のポリエステルをさし、通常、平均重合度20〜70程度のポリエステル、または平均粘度1Pa・s以上で100Pa・s未満のポリエステルをさす。
平均重合度20〜70の低重合度ポリマーを製造する初期重合器(第2の反応器)において、特開2003−64171号公報に示されるような縦型円筒状の槽が同心円状に2槽に分割されてなる反応室の各々に攪拌翼及び加熱装置が設けられ、攪拌翼が槽本体上部に取り付けられた駆動装置に連結した一本の回転軸に固定された構造の重合器を用いた場合、一本の回転軸に内外2槽の反応室を攪拌する攪拌翼が固定されているため、軸ブレに対して構造的に脆弱である。また、軸ブレを起こした場合、反応室に設置した加熱装置と接触し、加熱装置及び攪拌翼が損傷する可能性がある。本発明のポリエステル連続製造装置では、第2の反応器(初期重合器)が複数の反応室から構成されており、反応室が相互に上部又は下部で交互に接続され、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されていることで、重合に関わる混合性能及びプラグフロー性能を保持したまま、攪拌翼を除去することができる。
第2の反応器における反応温度は、通常200〜260℃、好ましくは230〜255℃程度である。圧力は、通常、低圧(例えば、0.5〜20kPa程度)で行う。加熱方法としては、例えば、反応器内部の伝熱管(コイル)を通して伝熱により加熱する方法が挙げられる。第2の反応器に構成される反応室の数は、2以上であれば特に制限されないが、通常4〜30個、好ましくは4〜8個である。
第2の反応器において、独立した複数の反応室を用意する代わりに、反応器内部の単一空間に仕切板を上方及び下方から交互に挿入することで、複数の反応室と反応室間の相互接続を実現することができる。
第2の反応器において、上記仕切板が可動であれば、反応室の反応液保持量を変化させることができ、反応器内における反応液の滞留時間を変化させることもできる。これにより生産量の増減や、反応速度の異なるポリエステルの製造にも対応できる。
第2の反応器において、好ましくは反応器内壁と仕切板の接続部近傍に、ポリエステル重合反応に寄与しない材料からなる整流部材を設置することで、反応液の滞留を防止できる。
第2の反応器において、反応室の底面近傍に散気装置(例えば、気泡発生装置)を設置することで、反応液の滞留を防止すると共に、反応室内の反応液をより完全に混合できる。
第3の反応器では、第2の反応器から供給される低重合度ポリマーを所定の温度及び圧力で更に縮重合反応させることで、高重合度ポリマー(ポリエステル)を製造する。第3の反応器における反応温度は、通常200〜260℃、好ましくは230〜255℃程度である。圧力は、通常、低圧(例えば、0.05kPa〜1.0kPa程度)で行う。第3の反応器で最終的に製造されるポリエステルは、通常、平均重合度90以上(好ましくは平均重合度150〜200)又は平均粘度100Pa・s以上(好ましくは平均粘度500〜2500Pa・s)である。
第3の反応器(最終重合器)としては特に制限されず、縦型反応器、横型反応器又はタンク型反応器を用いることができる。2つ以上の反応器を直列に配置しても構わないし、反応器を1つとしても構わない。攪拌翼としては格子翼、車輪翼、メガネ翼、ハイブリッド翼、パドル翼、タービン翼、アンカー翼、ダブルモーション翼、ヘリカルリボン翼などを使用することができる。反応液の粘度が上昇する第3の反応器としては、二軸攪拌機を設けた反応器を使うことが望ましい。特に、攪拌軸をセルフクリーニング可能な横型二軸重合器の適用が望ましい。そのような二軸重合器としては、日立プラントテクノロジー製の格子翼重合器(特許1899479号公報)、メガネ翼重合器(特許第4112908号公報)などが挙げられる。
第3の反応器には、反応温度を上記温度に設定するための加熱装置が設置される。加熱方法としては、当技術分野において通常用いられる方法を使用することができ、例えば、反応器外周部に熱媒のジャケットを設置し、反応器壁面を通して伝熱により反応液を加熱する方法、又は反応器内部の伝熱管(コイル)を通して伝熱により加熱する方法等があり、これらを単独で使用しても組み合わせて使用してもよい。
第3の反応器から排出される留出液は、湿式コンデンサにより冷却・凝縮させた後、第3の反応器上部に設置した蒸留塔に流入させ、高沸点留分に含まれるグリコールを回収し、第1反応器又はその前段に還流させて再使用してもよい。
以下、本発明に係るポリエステルの製造装置の実施形態について図面を用いてより詳細に説明する。
図1は、本発明に係るポリエステル連続製造プロセスの一実施形態を示す全体装置(システム)構成図である。ポリエステルの一例として、PBT(ポリブチレンテレフタレート)の場合を説明するが、図1のシステムはPBTの製造の場合に限定されるものではない。工業的なポリエステルの製造方法として、直接エステル化法が、経済的に非常に有利であるので、最近ではポリエステルの製造には直接エステル化方法が多く採用されている。図において、1は、PBTの原料であるジカルボン酸としてのTPA(テレフタル酸)とグリコールとしてのBD(1,4−ブタンジオール)を所定の割合で混合、攪拌する原料調整槽である。原料調整槽1から得られる原料は、原料供給ライン2から原料入口105を通してエステル化反応器(第1の反応器)10へ供給される。この段階で重合反応触媒(CAT)や、安定剤及び品質調整剤などの添加物(ADD)を加えてもよいが、図1の実施形態では重合反応触媒や添加剤はエステル化反応器10へ触媒投入ライン14から触媒供給口108を通して投入される。
次に、第1の反応器(エステル化反応器)10について図1及び図2を用いて簡単に説明する。即ち、エステル化反応器10の外周部は、図2に示すように反応液を反応温度に保つために熱媒ジャケット101を用いた構造になっている。熱媒ジャケット101には、ジャケット液相熱媒出口又は気相熱媒入口102とジャケット液相熱媒入口又は気相熱媒出口103が接続される。105は原料入口、106はオリゴマー出口である。107はBD供給口、108は触媒供給口である。130は蒸気出口である。
図2の実施形態では、エステル化反応器10内で反応液104に浸漬される部分に、多重のリング状の伝熱管下部ヘッダ111と多重のリング状の伝熱管上部ヘッダ113との間を数千本のマルチ伝熱管(直径が20mm程度で、長さが100〜150cm程度の伝熱管)112で接続して構成される加熱手段11が設置されている。245〜260℃程度の温度の熱媒が、液相熱媒の場合には、液相熱媒が外部から伝熱管液相熱媒入口110より伝熱管下部ヘッダ111に供給され、供給された液相熱媒がマルチ伝熱管112内を下部から上部へ流動し、伝熱管上部ヘッダ113から伝熱管液相熱媒出口114を介して外部に流出される。熱媒が油等の気相熱媒(スチームガス)の場合には、気相熱媒が外部から伝熱管気相熱媒入口114より伝熱管上部ヘッダ113に供給され、供給された気相熱媒がマルチ伝熱管112内を上部から下部へ流動し、伝熱管下部ヘッダ111から伝熱管気相熱媒出口110を介して外部に流出される。
第1の反応器(エステル化反応器)10において、反応により生成する水は水蒸気の形をとり、気化したBD蒸気及び副生するTHF蒸気と共に気相部12を形成する。このときの推奨すべき反応条件としては、温度は220℃〜260℃、望ましくは240℃〜250℃で、圧力は200Torr〜800Torr、望ましくは200Torr〜400Torrである。減圧により反応副生成物を迅速に除去できるため、2時間以下の滞留時間で目標のエステル化率に到達可能となる。このようにエステル化反応速度が向上することによりエステル化反応時間が短縮され、副反応生成物であるTHFの生成量を大幅に低減できる。この時のTHF生成量は、原料TPAのモル分率で15〜25mol%/h程度である。
反応液から出た揮発分である気相部12のガスは、第1の反応器の上方に設けられた蒸留塔(図示せず)により水とTHF及びBDとに分離され、水とTHFは系外に除去され、BDは精製工程等を経て再び系内あるいは原料用として蒸留塔下部よりBD循環ライン42によりBDタンク40に戻される。循環BDはBDタンク40からBD供給ライン41により原料調整槽1に供給されるが、BDタンク40内の循環BDは必要に応じてBD精製処理(図示せず)を行い原料BDの純度を調整してもよい。さらに必要に応じて、第2の反応器(初期重合器)20及び第3の反応器(最終重合器)30に設置される減圧装置の湿式コンデンサ(図示せず)から排出された循環BDをBD循環ライン43よりBDタンク40に戻し、BD原単位をさらに向上させてもよい。この場合、新BDは、最終重合器30の湿式コンデンサへ新BD供給ライン45より供給し、BD循環ライン44から第2の反応器20の湿式コンデンサへ供給し、BD循環ライン43よりBDタンク40に供給する。
エステル化反応器10で所定のエステル化率に到達した反応液は、連絡管13を経由して初期重合器(第2の反応器)20に供給される。即ち、反応液は、エステル化反応器10で所定のエステル化率に到達したとき、連絡管13の途中に設けたオリゴマーポンプ15により初期重合器(第2の反応器)20に供給される。
次に、本発明の特徴である第2の反応器(初期重合器)20について具体的に図1、図3〜4を用いて説明する。図1において、初期重合器20は複数の反応室201a―dに分割されており、第1反応室201aの下部には、反応液の入口ノズル216が取り付けられ、最終反応室201dの下部には、反応液の出口ノズル217が取り付けられている。さらに、容器本体の上部に揮発物の出口ノズル218が設けられ、配管で凝縮器及び真空引き装置(図示せず)に接続される。なお、図1では初期重合器20は4つの反応室から構成されているが、反応室の数は2以上であれば、その数に制限はない。なお、図3においては独立した反応室を配管等で接続した形態になっており、図4においては反応器内部の単一空間を上方及び下方から交互に挿入された仕切板260a―b、261で仕切ることで相互に上部又は下部で交互に接続された複数の反応室を形成する形態となっている。
反応室は上部又は下部で相互に接続されており、入口側から数えて奇数個目の反応室では反応液の流れは鉛直上向きとなり、偶数個目の反応室では鉛直下向きとなる。すなわち、初期重合器20全体での反応液の流れは、鉛直上下方向の蛇行流となる。また、反応液の流れが鉛直上向きとなる奇数個目の反応室にのみ、加熱装置220a―bが設置される。
このような装置において、入口ノズル216より連続して供給された反応液は、まず第1反応室201a内に入り、伝熱コイル220aで加熱され、縮重合反応が進行し、副生成物として1,4−ブタンジオール等の揮発物が気泡210となって生成する。生成した1,4−ブタンジオール等の揮発物は液面250aを通じて蒸発し、揮発物の出口ノズル218より凝縮器に捕集される。同時に気泡210は反応室201a内の反応液を乱流状態にし、気泡上昇に伴って反応液を混合するため、反応室201aは完全混合槽となる。続いて反応液は2番目の反応室201bに入るが、偶数個目の反応室には加熱装置が設置されていないため、ここでの気泡発生は微小である。反応室201a、201bの反応液の流れを考えると、反応液の流れが鉛直上向きとなる反応室201aでのみ、液面に向かって上昇する気泡210によって反応液の流れが加速される一方、反応液の流れが鉛直下向きとなる反応室201bにおいては鉛直下向きの流れを阻害する気泡210が無いため、特に駆動力が無くとも、出口ノズル217に向かう反応液の上下方向の蛇行流が逆流を生じることなく自然に形成される。3番目の反応室201c及び4番目の反応室201dにおいても同様の現象が生じる。第一の反応室201aから最終反応室201dへの流れは、図3においては反応室が独立であり、図4においては仕切板260a―b、261で分離されていることに加え、反応液が逆流を生じないことから、反応液のショートパスが無く、また加熱装置を設置した反応室は完全混合槽を成すため、品質の良い重合物を連続して生産することができる。
このとき、奇数個目の反応室の幅D1と偶数個目の反応室の幅D2について、数値解析等で仔細検討した結果、奇数個目の反応室における流速v1と偶数個目の反応室における流速v2の比v1/v2は、0.9〜1.1の範囲であった。すなわち、装置製作に当たっては、D1とD2の比は0.9〜1.1以内、通常は1で製作することが望ましい。
また、反応室201a―dには、その内部にポリエステル重合反応に寄与しない材料からなる整流部材240a―d、241a―dを設置することができる。設置場所は隣接する反応室からの反応液の流入口と同じ高さ、かつ、反応室内で対面する位置が望ましい。この整流部材240a―d、241a―dを設置することにより、反応室へ流入する、又は反応室から流出する反応液の流れを円滑にし、整流部材を設置した位置における反応液の滞留を防止することができる。
また、反応室201a―dには、その底部近傍に散気装置230a―dを設けることができる。設置場所は反応室の底部中央が望ましいが、これに限定されるものではない。この散気装置230a―dを設置することにより、散気気泡231により、反応室底部での反応液の滞留を防止すると同時に、反応室内の流れの乱流強度を増し、反応室内において反応液をより完全に混合することができる。
また、図4において、反応室201a―dを形成する仕切板260a―b、261の高さを可変とすることで初期重合器20の反応室に保持される反応液の体積を変化させることができ、これによって、初期重合器20内での反応液の滞留時間を変化させることができる。仕切板の高さを可変とするひとつの方法として、初期重合器20内壁に溝を切り、複数の板を溝にはめ込むことで仕切板260a―b、261を形成する方法がある。この方法によれば、はめ込む板の高さ又は幅を変えることで、仕切板260a―b、261の高さを任意に設定することができる。図4に示すとおり、反応液の液面250a―bの高さは、仕切板260a―bの高さによって規定される。仕切板260a―bの高さをH、初期重合器20の内部底面積をSとすると、初期重合器20内の反応液の体積Vは近似的に
V=H×S ……(1)
で表される。
一方、入口ノズル216から流入する反応液の流量Qは、ポリエステルの一日あたりの予定生産量から決定される。また、平均滞留時間τは、生産するポリエステルの種類及び要求される重合度によって決定される。Qとτは
V=Q×τ ……(2)
の関係にある。
式(1)(2)より、H,S,Q,τの間に
H=Q×τ/S ……(3)
なる関係式が成立する。生産計画の変更などで、Q又はτを変動させる必要が生じた場合、式(3)から計算した高さHに仕切板260a―bを設定することで、適切な生産量と滞留時間とを同時に満たすことが可能となる。
このようにして反応が進んだ反応液は、最終反応室201dの下部より反応液の出口ノズル217を通って次の最終重合器30へ送られる。
このような装置でPBTを重合する場合には、平均重合度2〜5のビスヒドロキシブチルテレフタレートを入口ノズル216より連続供給して重縮合反応を進め、生成した1,4−ブタンジオール及び水の蒸気を初期重合器20内で分離し、初期重合器20の出口ノズル217より平均重合度20〜70のPBTの重合物を得ることができる。操作条件は例えば温度230〜255℃、圧力0.5〜20kPaの範囲で行われる。
初期重合器(第2の反応器)20で所定の反応時間を経過した反応液は、連絡管21を経てプレポリマーポンプ22により最終重合器(第3の反応器)30に供給される。
次に、第3の反応器(最終重合器)30について、図1、図5〜6を用いて簡単に説明する。最終重合器(第3の反応器)30は、初期重合器(第2の反応器)20から得られる平均重合度20〜70の低重合度ポリマー(プレポリマー)である平均粘度1〜45Pa・s程度のPBTから、一度に平均重合度150〜200の高重合度ポリマーである平均粘度500〜2500Pa・s程度のPBT50を製造するものである。このように反応液の平均粘度は、1〜45Pa・sの低粘度から500〜2500Pa・s程度の高粘度の範囲に亘って使用できる高粘度液処理用の攪拌装置をもった反応器を用いなければならない。このような攪拌装置としては、特公平8−19241号公報に記載の連続攪拌装置(メガネ翼式重合器)などを用いることができる。
このときの反応条件としては、230℃〜255℃で、圧力は0.665kPa〜0.067kPaで反応させる。特にPBTの品質の評価項目の1つであるポリマー酸価の値をできるだけ低くするには、反応温度を250℃以下(250℃を含む)にすることが望ましい。従って、最終重合器30の外周も、図5及び図6に示すように、ポリマーを反応温度に保つために、断面がメガネ形状をした熱媒ジャケット構造301とすることが好ましい。3011は熱媒ジャケット301に対する熱媒入口、3012は熱媒出口である。302はプレポリマー入口、303はポリマー出口である。304は蒸気出口である。321a、321bは攪拌軸32a、32bの各々の軸受である。
入口302より供給された低粘度のプレポリマー(低重合度ポリマー)は、図6に示すように、お互いの攪拌翼31a、31bが互いに逆方向に中央から外側へ回転する構成のために外側に引き伸ばされながら、良好な表面更新作用を受け、プレポリマーの内部から揮発成分が蒸発して反応が促進されて粘度が徐々に上昇し、500〜2500Pa・s程度の高粘度の高重合度ポリマー50が出口303から排出される。
第1〜第3の反応器の滞留時間は4〜7.5時間であるが、品質面から、重合工程全体の滞留時間は2〜4時間が最適な範囲である。また、滞留時間は必要に応じて、温度と圧力を調整することにより長くすることが可能であり、例えば生産量を減少させる場合に、品質の変動を最小限に保つために実施されることがある。
なお、PBT(ポリブチレンテレフタレート)の連続製造において、本発明の方式を適用せず、第2の反応器である初期重合器に、特許文献1に記載された重合器を適用した場合と、本発明の第2の反応器を適用した場合では、生成されるポリマーの平均重合度は150程度と同等であった。すなわち、本発明によって、同等の品質を確保しつつ、攪拌翼という可動部をなくすことができ、構造脆弱性を回避できることが明らかとなった。
以上説明したように、本発明によれば、ポリエステルの連続製造装置(システム)を構成する第2の反応器(初期重合器)において、攪拌翼を排除することができ、構造上の脆弱性をなくすことができ、その結果、装置トラブルの危険性なく、品質の良好なポリエステルを連続生産できる。
1…原料調整槽、2…原料供給ライン、10…エステル化反応器(第1の反応器)、101…熱媒ジャケット、102…ジャケット液相熱媒出口又はジャケット気相熱媒入口、103…ジャケット液相熱媒入口又はジャケット気相熱媒出口、104…反応液、105…原料入口、106…オリゴマー出口、107…BD供給口、108…触媒供給口、110…伝熱管液相熱媒入口又は伝熱管気相熱媒出口、111…伝熱管下部ヘッダ、112…マルチ伝熱管、113…伝熱管上部ヘッダ、114…伝熱管液相熱媒出口又は伝熱管気相熱媒入口、120…攪拌翼、121…攪拌軸、122…攪拌駆動軸、130…蒸気出口、11…加熱手段、12…気相部、13…連絡管、14…触媒投入ライン、15…オリゴマーポンプ、20…初期重合器(第2の反応器)、21…連絡管、22…プレポリマーポンプ、201…反応室、210…気泡、216…反応液の入口ノズル、217…反応液の出口ノズル、218…揮発物の出口ノズル、220…加熱装置、230…散気装置、231…散気気泡、240,241…整流部材、250…反応液液面、260、261…仕切板、30…最終重合器(第3の反応器)、301…熱媒ジャケット、302…プレポリマー入口、303…ポリマー出口、304…蒸気出口、321…軸受、31…攪拌翼、32…攪拌軸、35…攪拌駆動軸、335…熱媒入口、336…熱媒出口、40…BDタンク、41…BD供給ライン、42、43、44…BD循環ライン、45…新BD供給ライン、50…ポリマー、3011…熱媒ジャケットに対する熱媒入口、3012…熱媒ジャケットに対する熱媒出口。

Claims (10)

  1. ジカルボン酸又はその誘導体とグリコールとを反応させてオリゴマーを製造する第1の反応器と、第1の反応器からのオリゴマーを縮重合させて低重合度ポリマーを製造する第2の反応器と、第2の反応器からの低重合度ポリマーを更に縮重合させて高重合度ポリマーを製造する第3の反応器とを備えたポリエステル連続製造装置であって、
    第2の反応器は、複数の反応室から構成され、反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されている、前記ポリエステル連続製造装置。
  2. 第2の反応器内部の単一空間に上方及び下方から交互に挿入された仕切板によって、相互に上部又は下部で交互に接続された複数の反応室が形成されている、請求項1記載のポリエステル連続製造装置。
  3. 仕切板が可動であり、それによって、反応室の反応液保持量が可変であり、かつ反応器内における反応液の滞留時間が可変である、請求項2記載のポリエステル連続製造装置。
  4. 第2の反応器の反応室内にポリエステル重合反応に寄与しない材料からなる整流部材が設置されている、請求項1〜3のいずれか1項記載のポリエステル連続製造装置。
  5. 第2の反応器の反応室の底面近傍に散気装置が設置されている、請求項1〜4のいずれか1項記載のポリエステル連続製造装置。
  6. 第1の反応器と、第2の反応器と、第3の反応器とを備え、第2の反応器が複数の反応室から構成され、反応室が相互に上部又は下部で交互に接続された構造を有し、反応液が下部より流入し上部より流出する反応室の内部にのみ加熱装置が設置されているポリエステル連続製造装置でポリエステルを連続製造する方法であって、第1の反応器において、ジカルボン酸又はその誘導体とグリコールとを反応させてオリゴマーを製造する工程、第2の反応器において、第1の反応器からのオリゴマーを縮重合させて低重合度ポリマーを製造する工程、第3の反応器において、第2の反応器からの低重合度ポリマーを更に縮重合させて高重合度ポリマーを製造する工程を含む、前記方法。
  7. 第2の反応器内部の単一空間に上方及び下方から交互に挿入された仕切板によって、相互に上部又は下部で交互に接続された複数の反応室が形成されている、請求項6記載の方法。
  8. 仕切板を動かすことにより、反応室の反応液保持量を変化させる、及び/又は反応器内における反応液の滞留時間を変化させる、請求項7記載の方法。
  9. 第2の反応器の反応室内にポリエステル重合反応に寄与しない材料からなる整流部材が設置されており、それにより反応液の滞留が防止される、請求項6〜8のいずれか1項記載の方法。
  10. 第2の反応器の反応室の底面近傍に散気装置が設置されており、それにより反応液の滞留が防止される、請求項6〜9のいずれか1項記載の方法。
JP2009277798A 2009-12-07 2009-12-07 ポリエステルの重合装置 Pending JP2011116915A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009277798A JP2011116915A (ja) 2009-12-07 2009-12-07 ポリエステルの重合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009277798A JP2011116915A (ja) 2009-12-07 2009-12-07 ポリエステルの重合装置

Publications (1)

Publication Number Publication Date
JP2011116915A true JP2011116915A (ja) 2011-06-16

Family

ID=44282614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009277798A Pending JP2011116915A (ja) 2009-12-07 2009-12-07 ポリエステルの重合装置

Country Status (1)

Country Link
JP (1) JP2011116915A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682194A (zh) * 2020-12-31 2022-07-01 中国石油化工集团公司 一种终缩聚反应釜及其应用
CN114682193A (zh) * 2020-12-31 2022-07-01 中国石油化工集团公司 一种终缩聚反应釜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114682194A (zh) * 2020-12-31 2022-07-01 中国石油化工集团公司 一种终缩聚反应釜及其应用
CN114682193A (zh) * 2020-12-31 2022-07-01 中国石油化工集团公司 一种终缩聚反应釜
CN114682194B (zh) * 2020-12-31 2024-01-26 中国石油化工集团公司 一种终缩聚反应釜及其应用
CN114682193B (zh) * 2020-12-31 2024-01-30 中国石油化工集团公司 一种终缩聚反应釜

Similar Documents

Publication Publication Date Title
JP3847765B2 (ja) ポリブチレンテレフタレートの連続製造方法
TW541321B (en) Process and apparatus for continuous polycondensation
KR100351783B1 (ko) 폴리부틸렌 테레프탈레이트의 제조방법 및 장치
US20070116615A1 (en) Tower reactor and use thereof for the continuous production of high molecular weight polyesters
CN107567470B (zh) 应用纯化的对苯二甲酸和1,4-丁二醇制备聚对苯二甲酸丁二醇酯的连续方法
JP2011116915A (ja) ポリエステルの重合装置
KR101537424B1 (ko) 가열 및 상 분리가 최적화된 반응기 시스템
JP4428417B2 (ja) ポリエステルの製造装置およびその方法
JP4599976B2 (ja) ポリブチレンテレフタレートの製造装置及びその方法
JP3489408B2 (ja) ポリエステルの連続製造装置
JP5115512B2 (ja) ポリエステルの製造装置
JP2000344874A (ja) ポリブチレンテレフタレートの製造方法及び製造装置
JP3722138B2 (ja) 連続重縮合装置及び連続重縮合方法
JP3489554B2 (ja) ポリブチレンテレフタレートの連続製造装置
JP2010248531A (ja) ポリブチレンテレフタレートの製造装置及びその方法
JP2005097602A (ja) ポリブチレンテレフタレートオリゴマーの製造装置および製造方法
JP2004002902A (ja) ポリブチレンテレフタレートの製造方法及び製造装置
MXPA99002101A (en) Method and apparatus for continuous polycondensation
JPS6356254B2 (ja)
JPH0127091B2 (ja)
WO2015123144A1 (en) High intrinsic viscosity column reactor for polyethylene terephthalate
WO2013002643A2 (en) Reactor system for polyester pre-condensation