JP2011112359A - METHOD OF MANUFACTURING SnO2 GAS SENSOR - Google Patents

METHOD OF MANUFACTURING SnO2 GAS SENSOR Download PDF

Info

Publication number
JP2011112359A
JP2011112359A JP2009265909A JP2009265909A JP2011112359A JP 2011112359 A JP2011112359 A JP 2011112359A JP 2009265909 A JP2009265909 A JP 2009265909A JP 2009265909 A JP2009265909 A JP 2009265909A JP 2011112359 A JP2011112359 A JP 2011112359A
Authority
JP
Japan
Prior art keywords
sno
gas sensor
nanocrystals
tin
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265909A
Other languages
Japanese (ja)
Other versions
JP5234664B2 (en
Inventor
Kengo Shimanoe
憲剛 島ノ江
Tetsuya Kida
徹也 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2009265909A priority Critical patent/JP5234664B2/en
Publication of JP2011112359A publication Critical patent/JP2011112359A/en
Application granted granted Critical
Publication of JP5234664B2 publication Critical patent/JP5234664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gas sensor highly sensitive to VOC and capable of providing SnO<SB>2</SB>nano crystal whose crystallite diameter is small even after film formation as the gas sensor and whose crystal growth is gradual. <P>SOLUTION: An organic compound of tin is dissolved together with a surfactant in an organic solvent, and heated to thermally decompose the organic compound of tin. This causes the surfactant to be adsorbed or coordinated to the surface of the SnO<SB>2</SB>nano crystal to disperse the SnO<SB>2</SB>nano crystal in the organic solvent while preventing its crystal growth in firing, thereby providing the gas sensor highly sensitive to VOC. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、VOCに高感度なSnOガスセンサの製造方法に関する。 The present invention relates to a method of manufacturing a SnO 2 gas sensor having high sensitivity to VOC.

発明者らは、Sn(OH) 2−を内包する逆ミセル溶液に硝酸の逆ミセル溶液を混合し、Sn(OH)を析出させ、焼成してSnOとすることを提案した(特許文献1:特開2004-64674)。発明者はさらに、微細なSnO粒子を調製することにより、VOC(揮発性有機化合物)への感度を増し、かつガスセンサでのSnO膜の成膜を容易にすることを検討した。即ち、SnOの粒径がnmオーダーになると、酸素イオンの吸着による電子欠乏層がSnO粒子の全体に及び、周囲の有機物ガスへの感度が増すと考えられる。また有機溶媒中に懸濁した状態で安定なSnOナノクリスタルが得られると、この溶液を基板に塗布し焼成することにより、簡単にSnO膜を成膜できる。 The inventors have proposed that a reverse micelle solution of nitric acid is mixed with a reverse micelle solution containing Sn (OH) 6 2− to precipitate Sn (OH) 4 and calcined to form SnO 2 (patent) Literature 1: JP 2004-64674). The inventor further studied to increase the sensitivity to VOC (volatile organic compound) by preparing fine SnO 2 particles and to facilitate the formation of the SnO 2 film with a gas sensor. That is, when the particle diameter of SnO 2 is on the order of nm, the electron-deficient layer due to adsorption of oxygen ions extends to the entire SnO 2 particles, and the sensitivity to surrounding organic gas is considered to increase. Further, when stable SnO 2 nanocrystals can be obtained in a state suspended in an organic solvent, by applying firing the solution to the substrate, it can be easily deposited SnO 2 film.

特開2004-64674JP2004-64674

この発明の課題は,VOCに高感度でかつ成膜が容易なSnOガスセンサの製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing a SnO 2 gas sensor that is highly sensitive to VOC and easy to form.

この発明のSnOガスセンサの製造方法では、スズの有機化合物を、水に不溶な有機溶媒中に界面活性剤と共に溶解した溶液を調製し、次いで前記溶液を加熱することによりスズの有機化合物を熱分解して、SnO微粒子の懸濁液を調製すると共に、前記懸濁液から得られたSnOによりガスセンサを製造する。 In the manufacturing method of the SnO 2 gas sensor of this invention, a solution in which an organic compound of tin is dissolved together with a surfactant in an organic solvent insoluble in water is prepared, and then the organic compound of tin is heated by heating the solution. By decomposing, a suspension of SnO 2 fine particles is prepared, and a gas sensor is manufactured from SnO 2 obtained from the suspension.

この発明では、ガスセンサとして成膜後も結晶子径が小さく、結晶成長が緩やかなSnOナノクリスタルが得られる。そしてこのSnOナノクリスタルを用いたガスセンサは、結晶子径が小さいため、VOCに高感度である。これは、有機溶媒中でスズの有機化合物を熱分解してSnOナノクリスタルとし、その表面に界面活性剤を吸着ないしは配位させるためで、界面活性剤はSnOナノクリスタルを有機溶媒中に分散させると共に、焼成時の結晶成長を妨げる。 In the present invention, a SnO 2 nanocrystal having a small crystallite diameter and a slow crystal growth can be obtained as a gas sensor after film formation. And the gas sensor using this SnO 2 nanocrystal has high sensitivity to VOC because the crystallite diameter is small. This is because the organic compound of tin is thermally decomposed into an SnO 2 nanocrystal in an organic solvent, and the surfactant is adsorbed or coordinated on the surface thereof. The surfactant is used to put the SnO 2 nanocrystal in the organic solvent. Disperse and hinder crystal growth during firing.

好ましくは、熱分解前の前記溶液が、スズの有機化合物と、水に不溶な有機溶媒と、界面活性剤と、酸素供与性の有機化合物とからなる。酸素供与性の有機化合物はスズの有機化合物の熱分解時に酸素を供与し、SnOナノクリスタルの生成を容易にする。 Preferably, the solution before thermal decomposition comprises a tin organic compound, an organic solvent insoluble in water, a surfactant, and an oxygen-donating organic compound. The oxygen-donating organic compound donates oxygen during the thermal decomposition of the tin organic compound and facilitates the formation of SnO 2 nanocrystals.

また好ましくは、界面活性剤が、脂肪酸と脂肪族アミン化合物との混合物である。脂肪族アミン化合物は脂肪酸から水素を引き抜き、脂肪酸のSnOナノクリスタルへの配位〜吸着を容易にする。 Preferably, the surfactant is a mixture of a fatty acid and an aliphatic amine compound. The aliphatic amine compound extracts hydrogen from the fatty acid and facilitates the coordination to adsorption of the fatty acid to the SnO 2 nanocrystal.

特に好ましくは、前記懸濁液に極性の有機溶媒を加えてSnO微粒子を沈殿させた後に、SnO微粒子を遠心分離し、次いで電子供与性基を備えた有機溶媒と混合する。生成したSnOナノクリスタルは有機物の残査を含んでおり、極性溶媒に不溶で、非極性溶媒に可溶である。生成したSnOナノクリスタルは、コロイド溶液として長期間保存しにくい。そこで遠心分離により不純物を除き、電子供与性基を備えた有機溶媒と混合すると極性溶媒に可溶となり、かつ長期間保存できる。
Particularly preferably, after precipitation of SnO 2 fine particles by adding a polar organic solvent to the suspension, the SnO 2 particles were centrifuged and then mixed with an organic solvent having an electron donating group. The resulting SnO 2 nanocrystals contain organic residues and are insoluble in polar solvents and soluble in nonpolar solvents. The produced SnO 2 nanocrystal is difficult to store for a long time as a colloidal solution. Therefore, if impurities are removed by centrifugation and mixed with an organic solvent having an electron donating group, it becomes soluble in a polar solvent and can be stored for a long time.

実施例でのSnOガスセンサの製造工程を示す図It shows a manufacturing process of the SnO 2 gas sensor in Example 図1に続く工程図Process diagram following FIG. 貴金属触媒の担持工程を示す工程図Process chart showing precious metal catalyst loading process 実施例で調製したSnOのX線回折図で、(a)は調製後で焼成前のパターンを、(b)は空気中600℃3時間焼成後のパターンを示す。It is an X-ray diffraction diagram of SnO 2 prepared in Examples, (a) shows a pattern after preparation and before firing, and (b) shows a pattern after firing in air at 600 ° C. for 3 hours. ピリジンで処理後のSnOの透過電子顕微鏡画像で、(a)は低倍率画像を、(b)は高倍率画像を示し、(a)のサンプル瓶はピリジンで処理したSnOナノクリスタルのTHF溶液(褐色)を示す。Transmission electron microscope images of SnO 2 after treatment with pyridine, (a) shows a low magnification image, (b) shows a high magnification image, and the sample bottle of (a) is a THF of SnO 2 nanocrystals treated with pyridine. Shows solution (brown). SnOガスセンサ(a)と、SnO膜(b)〜(d)とを示し、(b)は低分解能原子間力顕微鏡画像を示し、(c)は低分解能のSEM画像を、(d)は高分解能のSEM画像を示す。An SnO 2 gas sensor (a) and SnO 2 films (b) to (d) are shown, (b) is a low-resolution atomic force microscope image, (c) is a low-resolution SEM image, (d) Indicates a high-resolution SEM image. SnOナノクリスタルのFT−IRスペクトルを示し、(a)は調製後で焼成前の、(b)は600℃焼成後の、(c)ピリジンで処理後の、(d)は比較用の試薬のスペクトルを示す。Fig. 2 shows an FT-IR spectrum of SnO 2 nanocrystals, (a) after preparation and before firing, (b) after firing at 600 ° C, (c) after treatment with pyridine, (d) is a reagent for comparison The spectrum of is shown. 焼成前のSnOナノクリスタル(4.5mg)の、熱重量分析(TG)と示差熱分析(DTA)結果を示す図It shows before firing SnO 2 nanocrystals (4.5 mg), thermogravimetric analysis (TG) and Differential thermal analysis (DTA) results SnOナノクリスタルに対し10mol%のPdを担持させた試料の透過電子顕微鏡画像Transmission electron microscope image of a sample carrying 10 mol% of Pd with respect to SnO 2 nanocrystals 実施例のガスセンサの、350℃でのVOCへの感度を示す特性図The characteristic figure which shows the sensitivity to VOC in 350 degreeC of the gas sensor of an Example 実施例のガスセンサの、350℃でのトルエンへの応答特性を示す特性図The characteristic diagram which shows the response characteristic to the toluene at 350 degreeC of the gas sensor of an Example 実施例のガスセンサの、350℃でのH2への感度を示す特性図The characteristic figure which shows the sensitivity to H2 at 350 degreeC of the gas sensor of an Example 実施例のガスセンサの、350℃でのCOへの感度を示す特性図The characteristic figure which shows the sensitivity to CO at 350 degreeC of the gas sensor of an Example 実施例のガスセンサの、350℃でのVOCへの検出下限を示す特性図The characteristic figure which shows the detection lower limit to VOC at 350 degreeC of the gas sensor of an Example

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図14に、実施例のSnOガスセンサとその特性とを示す。図1,図2にSnOの調製を示し、図3に貴金属触媒の担持を示す。SnOの調製では、スズの有機化合物としてSn(IV)アセチルアセトナト2塩化物(Sn(C)Cl2)を用い、アセチルアセトンの沸点は約140℃である。有機スズ化合物は、上記のものに限らず、無水酢酸スズ(II),ステアリン酸スズ,オクタン酸スズ,オクチル酸スズ,ラウリル酸スズ,オレイン酸スズ,酢酸トリフェニルスズ,塩化トリフェニルスズなどでもよく、実質上任意の有機スズ化合物を用いることができる。 In FIGS. 1 to 14 show a SnO 2 gas sensor of Example and its properties. 1 and 2 show the preparation of SnO 2 and FIG. 3 shows the loading of a noble metal catalyst. In the preparation of SnO 2 , Sn (IV) acetylacetonate dichloride (Sn (C 5 H 7 O 2 ) 2 Cl 2 ) is used as an organic compound of tin, and the boiling point of acetylacetone is about 140 ° C. Organotin compounds are not limited to the above, but also with anhydrous tin acetate (II), stearate, stannous octoate, stannous octoate, stannous laurate, stannous oleate, triphenyltin acetate, triphenyltin chloride, etc. Well, virtually any organotin compound can be used.

水に不溶性の高沸点有機溶媒として、ジベンジルエーテル(C65-CH2-O-CH2-C65)を用い、沸点は約295℃である。ジベンジルエーテルに代えて、テトラフェニルエーテル(C65-O-C64-O-C64-O-C65),ペンタフェニルエーテル(C65-O-C64-O-C64-O-C64-O-C65)などでもよく、これらの沸点は300℃以上である。これらのフェニルエーテルを用いると、後述のように、スズの有機化合物を例えば280℃などで熱分解する際に、還流下で反応させることができる。沸点がスズの有機化合物の熱分解温度よりも低い場合、例えばオートクレーブ中で熱分解する。有機溶媒の沸点は200℃以上が好ましく、より好ましくは250℃以上とする。 Dibenzyl ether (C 6 H 5 —CH 2 —O—CH 2 —C 6 H 5 ) is used as a high-boiling organic solvent insoluble in water, and the boiling point is about 295 ° C. Instead of dibenzyl ether, tetraphenyl ether (C 6 H 5 —O—C 6 H 4 —O—C 6 H 4 —O—C 6 H 5 ), pentaphenyl ether (C 6 H 5 —O—C) 6 H 4 —O—C 6 H 4 —O—C 6 H 4 —O—C 6 H 5 ) or the like, and the boiling point thereof is 300 ° C. or more. When these phenyl ethers are used, when the organic compound of tin is thermally decomposed at, for example, 280 ° C. as described later, it can be reacted under reflux. When the boiling point is lower than the thermal decomposition temperature of the organic compound of tin, for example, it is thermally decomposed in an autoclave. The boiling point of the organic solvent is preferably 200 ° C. or higher, more preferably 250 ° C. or higher.

界面活性剤として、オレイン酸とオレイルアミンとの等モル混合物を用い、これらのモル比は好ましくは2:1〜1:2とする。オレイン酸とオレイルアミンの組み合わせは脂肪酸と脂肪族アミンとの混合物の例で、脂肪酸と脂肪族アミンとの間で炭素数が異なっていても良い。脂肪酸並びに脂肪族アミンの好ましい炭素数は、例えば10〜25、好ましくは12〜20、より好ましくは15〜18で、オレイン酸とオレイルアミンは炭素数がいずれも18である。また脂肪酸や脂肪族アミンは不飽和もしくは飽和を問わない。オレイン酸とオレイルアミンの混合物の役割は、オレイン酸がスズの有機化合物にカルボキシル基により配位することで、熱分解後にもSnOのナノクリスタルにオレイン酸が吸着していた。そして吸着ないし配位したオレイン酸は、焼成などの過程でSnOの結晶成長を妨げる。オレイン酸は電子供与性基として熱分解後のSnOナノクリスタルに配位ないしは吸着するものと考えられ、オレイルアミンの役割は、オレイン酸から水素を引き抜き、オレイン酸イオンを形成させて配位を容易にすることにある。 As the surfactant, an equimolar mixture of oleic acid and oleylamine is used, and the molar ratio thereof is preferably 2: 1 to 1: 2. The combination of oleic acid and oleylamine is an example of a mixture of a fatty acid and an aliphatic amine, and the number of carbon atoms may be different between the fatty acid and the aliphatic amine. The preferable carbon number of the fatty acid and the aliphatic amine is, for example, 10 to 25, preferably 12 to 20, and more preferably 15 to 18. Both oleic acid and oleylamine have 18 carbon atoms. Fatty acids and aliphatic amines may be unsaturated or saturated. The role of the mixture of oleic acid and oleylamine was that oleic acid was adsorbed on the SnO 2 nanocrystals even after thermal decomposition, because oleic acid was coordinated to a tin organic compound by a carboxyl group. The adsorbed or coordinated oleic acid prevents SnO 2 crystal growth in the course of firing or the like. Oleic acid is considered to be coordinated or adsorbed on the pyrolyzed SnO 2 nanocrystal as an electron donating group, and the role of oleylamine is to extract hydrogen from oleic acid and form oleic acid ions for easy coordination. Is to make it.

界面活性剤としては、オレイン酸,ステアリン酸、メリスチル酸などの脂肪酸あるいはこれらと脂肪族アミンとの組合せの他に、テトラエチレングリコール,ドデシルベンゼンスルホン酸ナトリウム,フェニルホスホン酸,ドデカンチオール,ドデシルアミンなどがある。実施例では、スズアセチルアセトナト2塩化物を0.4mmol,ジベンジルエーテルを7ml,オレイン酸とオレイルアミンとを共に各0.6ml用いた(ステップ1)。   Surfactants include fatty acids such as oleic acid, stearic acid and meristyl acid, or combinations of these with aliphatic amines, tetraethylene glycol, sodium dodecylbenzenesulfonate, phenylphosphonic acid, dodecanethiol, dodecylamine, etc. There is. In the examples, 0.4 mmol of tin acetylacetonate dichloride, 7 ml of dibenzyl ether, and 0.6 ml of each of oleic acid and oleylamine were used (Step 1).

上記の溶液を例えば140℃で1時間N中で加熱した。この温度はアセチルアセトンの沸点にほぼ等しく、アセチルアセトンと塩素とが一部失われて、スズ原子にオクチル酸が配位することが考えられる(ステップ2)。熱処理後の溶液を冷却し、酸素の供与剤としてトリメチルアミンオキシド(C39NO)を例えば0.15ml添加した(ステップ3)。次いで例えば還流下に280℃に30分間溶液を加熱し、スズの有機化合物を熱分解し、SnOナノクリスタルを生成させた(ステップ4)。SnOのコロイドは通常白色であるが、得られた溶液は褐色で、これは熱分解による有機物の残渣が含まれていることを示唆している。酸素供与性の有機化合物は、オクタデカノール,ペンタデカノール,ヘキサデカノール,ヘプタデカノールなどの、炭素数12〜20程度の脂肪族アルコールでもよく、これらは酸素を含む弱い酸化剤で、脂肪族のアルデヒドなどでも良い。なおアセチルアセトンあるいはオレイン酸も、酸素の供給源として作用することが考えられ、トリメチルアミンオキシドを添加しないでも、SnOナノクリスタルが生成することがあった。従って酸素供与性の有機化合物は、添加しなくても良い。 The above solution was heated, for example, at 140 ° C. for 1 hour in N 2 . This temperature is almost equal to the boiling point of acetylacetone, and it is considered that acetylacetone and chlorine are partially lost, and octylic acid is coordinated to the tin atom (step 2). The solution after the heat treatment was cooled, and 0.15 ml of trimethylamine oxide (C 3 H 9 NO) was added as an oxygen donor (step 3). The solution was then heated to 280 ° C. for 30 minutes, for example, under reflux to thermally decompose the tin organic compound to produce SnO 2 nanocrystals (step 4). The colloid of SnO 2 is usually white, but the resulting solution is brown, suggesting that it contains organic residue from pyrolysis. The oxygen-donating organic compound may be an aliphatic alcohol having about 12 to 20 carbon atoms such as octadecanol, pentadecanol, hexadecanol, heptadecanol, etc., and these are weak oxidizing agents containing oxygen, Aldehyde aldehydes may also be used. In addition, it is considered that acetylacetone or oleic acid also acts as a supply source of oxygen, and SnO 2 nanocrystals may be formed without adding trimethylamine oxide. Therefore, it is not necessary to add an oxygen-donating organic compound.

SnOナノクリスタルに貴金属触媒を添加する場合、結合子Aから図3の処理に移り、添加しない場合にはステップ5〜ステップ9を実行する。生成したSnOナノクリスタルはエタノール、テトラヒドロフラン等の極性溶媒には不溶で、n-ヘキサンあるいはベンゼンなどの非極性溶媒に可溶である。SnOナノクリスタルの懸濁液に例えばエタノールを加えて沈殿させ、遠心分離後にn-ヘキサンを加えてSnOナノクリスタルを抽出し、再度エタノールを加えて沈殿させ遠心分離した。遠心分離による洗浄を例えば3回行い、n-ヘキサンに分散させて保存した(ステップ5)。 When a noble metal catalyst is added to the SnO 2 nanocrystal, the process proceeds from the connector A to the process of FIG. 3, and when not added, Steps 5 to 9 are executed. The produced SnO 2 nanocrystals are insoluble in polar solvents such as ethanol and tetrahydrofuran, and are soluble in nonpolar solvents such as n-hexane and benzene. For example, ethanol was added to the suspension of SnO 2 nanocrystals to precipitate, and after centrifugation, n-hexane was added to extract SnO 2 nanocrystals, and ethanol was added again to precipitate and centrifuged. Washing by centrifugation, for example, was performed 3 times, and dispersed and stored in n-hexane (step 5).

ステップ4で得られたSnOナノクリスタルをn-ヘキサン等の非極性溶媒に分散させて保存すると、1〜2日で沈殿の生成が見られた。このことはSnOナノクリスタルが凝集しやすいことを示唆している。そこで電子供与性基を備えた有機溶媒、ここではピリジン10mlを加え、還流下にN2雰囲気で例えば110℃に12時間加熱した(ステップ6)。電子供与性基を備えた有機溶媒としては、ピリジンの他に、プロピルアミン,ブチルアミン,ペンチルアミン,へキシルアミンなどのアミン化合物、チオフェン,フェニレンジアミン,アニリン,トリブチルホスホン,1,6ジアミノヘキサンなどがある。これらの化合物はアミン類等の配位子ということができ、配位は非共有電子対で行われる。 When the SnO 2 nanocrystals obtained in Step 4 were dispersed and stored in a nonpolar solvent such as n-hexane, precipitation was observed in 1 to 2 days. This suggests that SnO 2 nanocrystals tend to aggregate. Therefore, an organic solvent having an electron donating group, here 10 ml of pyridine, was added, and the mixture was heated to 110 ° C., for example, for 12 hours under reflux in an N 2 atmosphere (step 6). In addition to pyridine, organic solvents with electron-donating groups include amine compounds such as propylamine, butylamine, pentylamine, and hexylamine, thiophene, phenylenediamine, aniline, tributylphosphone, and 1,6-diaminohexane. . These compounds can be referred to as ligands such as amines, and the coordination is carried out by unshared electron pairs.

ピリジンと反応させると、SnOナノクリスタルは非極性溶媒に不溶となり、例えばn-ヘキサンを加えて沈殿させ、遠心分離により洗浄し、例えばTHF(テトラヒドロフラン)によりSnOナノクリスタルを抽出し、ヘキサンで再度沈殿させて遠心分離した。遠心分離を例えば3回繰り返して、SnOナノクリスタルを洗浄した(ステップ7)。この洗浄により過剰のピリジンが除かれるが、ステップ5でSnOナノクリスタル自体は洗浄済みなので、ステップ7を省略しても良い。 Reacted with pyridine, SnO 2 nanocrystals become insoluble in non-polar solvents, for example, precipitated by addition of n- hexane, and washed by centrifugation, extract the SnO 2 nanocrystals example by THF (tetrahydrofuran), with hexane Precipitated again and centrifuged. Centrifugation was repeated, for example, three times to wash the SnO 2 nanocrystals (step 7). Excess pyridine is removed by this washing, but since the SnO 2 nanocrystal itself has been washed in step 5, step 7 may be omitted.

遠心分離により洗浄したSnOナノクリスタルを、テトラヒドロフランにより抽出しコロイド溶液として保存した(ステップ8)。このコロイド溶液は安定で、基板上に塗布し、乾燥後に焼成することにより、SnO膜が得られる(ステップ9)。実施例では、SnOナノクリスタルのTHF溶液をアルミナ基板に5回塗布・乾燥し、空気中600℃で3時間焼成して膜厚約7μmのSnO膜とした。 SnO 2 nanocrystals washed by centrifugation were extracted with tetrahydrofuran and stored as a colloidal solution (step 8). This colloidal solution is stable, and is applied onto a substrate, dried and fired to obtain a SnO 2 film (step 9). In this example, a THF solution of SnO 2 nanocrystals was applied to an alumina substrate five times, dried, and fired in air at 600 ° C. for 3 hours to form a SnO 2 film having a thickness of about 7 μm.

上記の工程を整理する。スズの有機化合物を界面活性剤と共に高沸点の水に不溶な有機溶媒中に溶解させる。次いで、好ましくは酸素の供給源の存在下に、スズの有機化合物を熱分解し、SnOナノクリスタルとする。このSnOナノクリスタルにはオレイン酸などの界面活性剤が吸着ないし配位しており、SnOナノクリスタルは褐色で非極性溶媒に可溶であるが、1〜2日程度で沈殿する。SnOナノクリスタルの調製後に直ちにガスセンサを製造する場合、例えば上記の溶液をエタノールなどの極性溶媒と遠心分離などにより洗浄し、基板上に塗布乾燥した後に焼成してSnO膜を成膜する。SnOナノクリスタルの保存性を高める場合、ピリジン等の配位子とSnOナノクリスタルとを反応させ、THF,エタノールなどの極性溶媒に可溶で、非極性溶媒に不溶にする。そして好ましくは遠心分離などにより洗浄した後、THF中などで保存し、基板上に塗布・乾燥して焼成する。 Organize the above process. An organic compound of tin is dissolved together with a surfactant in an organic solvent insoluble in high boiling water. The organic compound of tin is then pyrolyzed into SnO 2 nanocrystals, preferably in the presence of a source of oxygen. This is the SnO 2 nanocrystals are adsorbed or coordinated surfactants such as oleic acid, SnO 2 nanocrystals are soluble in non-polar solvents in brown precipitate in about 1-2 days. When a gas sensor is manufactured immediately after the SnO 2 nanocrystals are prepared, for example, the above solution is washed with a polar solvent such as ethanol and centrifugation, applied and dried on a substrate, and then fired to form a SnO 2 film. When increasing the SnO 2 nanocrystals storability, reacting the ligand with SnO 2 nanocrystals such as pyridine, THF, it is soluble in a polar solvent such as ethanol, is insoluble in non-polar solvents. Preferably, after washing by centrifugation or the like, it is stored in THF or the like, coated on a substrate, dried and baked.

SnOナノクリスタルに貴金属を担持する場合、図3のステップ10を実行する。例えばPdやAgの場合、それらのアセチルアセトナトを、ステップ4で得られた懸濁液に添加し、例えば150〜180℃で、N2気流下に10分〜1時間程度加熱すると、PdあるいはAgのアセチルアセトナト化合物が分解し、SnOナノクリスタルにPdあるいはAgを担持させることができる。 When a noble metal is supported on the SnO 2 nanocrystal, step 10 in FIG. 3 is executed. For example, in the case of Pd or Ag, when those acetylacetonates are added to the suspension obtained in Step 4 and heated at 150 to 180 ° C. for 10 minutes to 1 hour under N 2 stream, The Ag acetylacetonate compound is decomposed, and Pd or Ag can be supported on the SnO 2 nanocrystal.

Pt,Auを担持する場合、例えばヘキサクロロ白金酸,塩化金酸を例えばオレイルアミンとn-ヘキサンの混合溶媒などに溶かし、加熱してn-ヘキサンを蒸発させ、ステップ4で得られた溶液に加える。次いで例えばN2気流下に120〜180℃に10分〜1時間程度加熱する。この過程でヘキサクロロ白金酸,塩化金酸などが分解し、SnOナノクリスタルにPtあるいはAuを担持することができる。貴金属触媒の担持後、図1のステップ5に戻り、図2のステップ9までを実行してSnOガスセンサを製造する。 In the case of supporting Pt and Au, for example, hexachloroplatinic acid and chloroauric acid are dissolved in, for example, a mixed solvent of oleylamine and n-hexane, and the n-hexane is evaporated by heating and added to the solution obtained in Step 4. Next, for example, heating is performed at 120 to 180 ° C. for about 10 minutes to 1 hour under a N 2 stream. In this process, hexachloroplatinic acid, chloroauric acid and the like are decomposed and Pt or Au can be supported on the SnO 2 nanocrystal. After loading the noble metal catalyst, the process returns to step 5 in FIG. 1, and the processes up to step 9 in FIG. 2 are executed to manufacture the SnO 2 gas sensor.

得られたSnOナノクリスタル(貴金属触媒無担持)の性状を図4〜図7に示す。図4の下側の(a)は、ピリジンと接触させ、THF中に保存したSnOナノクリスタルのX線回折パターンである。また上側の(b)は600℃で焼成後のSnOのX線回折パターンである。両者とも明瞭なSnOの結晶を示し、600℃で焼成しても回折パターンのピークの半値幅が余り減少していない。このことは、得られたSnOナノクリスタルは結晶成長が遅く、高温で焼成してもガス感度を保つことができることを示している。 Properties of the obtained SnO 2 nanocrystal (no precious metal catalyst supported) are shown in FIGS. The lower (a) of FIG. 4 is an X-ray diffraction pattern of SnO 2 nanocrystals contacted with pyridine and stored in THF. Upper (b) is an X-ray diffraction pattern of SnO 2 after firing at 600 ° C. Both show clear SnO 2 crystals, and the half-value width of the peak of the diffraction pattern is not significantly reduced even when fired at 600 ° C. This indicates that the obtained SnO 2 nanocrystals have a slow crystal growth and can maintain gas sensitivity even when fired at a high temperature.

図5の(a),(b)は、ピリジンで処理後のSnOナノクリスタルの透過電子顕微鏡画像を示し、(a)は低倍率画像で、(b)は高倍率画像である。また(a)には図2のステップ8で得られた懸濁液を示し、溶液は褐色である。(b)ではSnO(110)に対応する格子が見え、結晶は単分散して凝集しておらず、平均結晶子径は3.5nmである。 5A and 5B show transmission electron microscope images of SnO 2 nanocrystals treated with pyridine. FIG. 5A shows a low-magnification image and FIG. 5B shows a high-magnification image. (A) shows the suspension obtained in Step 8 of FIG. 2, and the solution is brown. In (b), a lattice corresponding to SnO 2 (110) is seen, the crystals are monodispersed and not aggregated, and the average crystallite diameter is 3.5 nm.

図6はSnOガスセンサとSnO膜とを示し、(a)はガスセンサの構造を示し、アルミナ基板2上に櫛の歯状の金電極4を設け、電極4を覆うようにSnO膜6を成膜してある。実施例では、SnO溶液の塗布と乾燥を5回繰り返し、600℃で焼成することにより、膜厚7μmのSnO膜6を得た。(b)〜(d)は600℃で焼成後のSnO膜を示し、(b)は原子間力顕微鏡画像を示し、(c)と(d)は2次電子顕微鏡画像で、(c)は低倍率画像で、(d)は高倍率画像である。別の高倍率原子間力電子顕微鏡画像並びに2次電子顕微鏡画像から、SnOの平均結晶子径は約9nmであることが分かった。 FIG. 6 shows a SnO 2 gas sensor and a SnO 2 film. FIG. 6A shows the structure of the gas sensor. A comb-like gold electrode 4 is provided on an alumina substrate 2 and the SnO 2 film 6 is covered so as to cover the electrode 4. Is deposited. In the example, SnO 2 film 6 having a thickness of 7 μm was obtained by repeating application and drying of the SnO 2 solution five times and baking at 600 ° C. (b)-(d) shows the SnO 2 film after baking at 600 ° C., (b) shows an atomic force microscope image, (c) and (d) are secondary electron microscope images, (c) Is a low-magnification image, and (d) is a high-magnification image. From another high-magnification atomic force electron microscope image and a secondary electron microscope image, it was found that the average crystallite diameter of SnO 2 was about 9 nm.

図7はSnOナノクリスタルのFT−IRスペクトルを示し、(a)はピリジン処理前のスペクトルを、(b)は600℃焼成後(ピリジン無添加)のスペクトルを、(c)はピリジン処理後で焼成前のスペクトルを示している。(d)は市販のSnOのスペクトルである。 FIG. 7 shows an FT-IR spectrum of SnO 2 nanocrystals, (a) is a spectrum before pyridine treatment, (b) is a spectrum after baking at 600 ° C. (no pyridine added), (c) is after pyridine treatment. Shows the spectrum before firing. (d) is a spectrum of commercially available SnO 2 .

焼成前の(a)のスペクトルでは、C=O並びにC=Cの吸収が1700cm−1及び1630cm−1に見られ、アミノ基に関する吸収が見られない点から、オレイン酸がSnOナノクリスタルに吸着していることが分かる。(b)の600℃焼成後のスペクトル並びに(c)のピリジン処理後のスペクトルでも、C=Cの吸収が消えておらず、焼成後もオレイン酸がSnOナノクリスタル中に存在することが分かる。そしてこのことは、オレイン酸がSnOナノクリスタルの結晶成長を妨げ、600℃焼成でも9nm程度の結晶子径までしか成長しなかったことを説明している。 The spectrum of the before firing (a), C = the absorption of O and C = C was observed at 1700 cm -1 and 1630 cm -1, from the viewpoint of not observed absorption about amino group, the oleic acid SnO 2 nanocrystals It can be seen that it is adsorbed. In the spectrum after baking at 600 ° C. in (b) and the spectrum after pyridine treatment in (c), C = C absorption is not lost, and it can be seen that oleic acid is still present in the SnO 2 nanocrystals after firing. . This explains that oleic acid hindered the crystal growth of SnO 2 nanocrystals, and even when sintered at 600 ° C., it grew only to a crystallite diameter of about 9 nm.

図8は、ピリジン処理前のSnOナノクリスタル4.5mgを焼成した際の、重量変化(TG)並びに示差熱(DTA)分析の結果を示す。600℃焼成によりSnOナノクリスタルは約20%減量し、示差熱分析は300℃強と400℃強とに吸熱のピークを示している。このことは焼成の過程でのオレイン酸の熱分解を示しているものと考えられる。 FIG. 8 shows the results of weight change (TG) and differential heat (DTA) analysis when 4.5 mg of SnO 2 nanocrystals before pyridine treatment were fired. SnO 2 nanocrystals are reduced by about 20% by firing at 600 ° C., and differential thermal analysis shows endothermic peaks at slightly higher than 300 ° C. and slightly higher than 400 ° C. This is considered to indicate thermal decomposition of oleic acid during the firing process.

図9はPdを担持したSnOの2次電子顕微鏡画像を示し、見やすくするため白黒を反転してある。Pdの担持量はSnOに対し10mol%で、Pdのアセチルアセトナトを遠心分離前のSnOナノクリスタルの懸濁液(ジベンジルエーテル溶媒)に溶解させて、N2気流下170℃で30分加熱して担持させたものである。 FIG. 9 shows a secondary electron microscope image of SnO 2 carrying Pd, with black and white reversed for ease of viewing. The amount of Pd supported was 10 mol% with respect to SnO 2 , and Pd acetylacetonate was dissolved in a suspension of SnO 2 nanocrystals (dibenzyl ether solvent) before centrifugation and dissolved at 170 ° C. under N 2 stream at 30 ° C. It is supported by heating for a few minutes.

図10〜図14は、得られたSnOガスセンサの特性を示し、周囲の環境は室温の空気で、図10,11,14では測定温度は350℃である。図10はトルエン,ホルムアルデヒド,エタノールに対する感度を示し、図11はトルエンへの応答パターンを示している。図12は水素への感度を、図13はCOへの感度を示している。図10から明らかなように、350℃で10ppmのエタノール及びホルムアルデヒドへの感度は、200ppmの水素あるいは200ppmのCOよりも充分に高い。また図10でトルエンの感度がホルムアルデヒド及びエタノールに対して小さいのは、SnO膜中でのトルエンの拡散が遅いことに起因するものと思われる。 10 to 14 show the characteristics of the obtained SnO 2 gas sensor. The ambient environment is air at room temperature, and the measurement temperature is 350 ° C. in FIGS. FIG. 10 shows the sensitivity to toluene, formaldehyde, and ethanol, and FIG. 11 shows the response pattern to toluene. FIG. 12 shows sensitivity to hydrogen, and FIG. 13 shows sensitivity to CO. As is apparent from FIG. 10, the sensitivity to 10 ppm ethanol and formaldehyde at 350 ° C. is sufficiently higher than 200 ppm hydrogen or 200 ppm CO. In addition, in FIG. 10, the sensitivity of toluene is lower than that of formaldehyde and ethanol. This is probably due to the slow diffusion of toluene in the SnO 2 film.

図14は図10の特性を低濃度側へ外挿したもので、図での値が1となる濃度が理論的な検出下限である。この図から、実施例のSnOガスセンサはVOCを例えば1ppb程度の検出下限で検出できることが分かる。 FIG. 14 extrapolates the characteristics of FIG. 10 to the low concentration side, and the concentration at which the value in the figure is 1 is the theoretical lower limit of detection. From this figure, it can be seen that the SnO 2 gas sensor of the embodiment can detect VOC with a detection lower limit of about 1 ppb, for example.

実施例での好ましい配合比を以下に示し、単位はSnの有機化合物1mmol当たりの量である。
高沸点有機溶媒 5〜500mL 特に10〜100mL
オレイン酸等の配位化合物 0.1〜10mL 特に1〜5mL
トリメチルアミンオキシド等の酸素源 0〜10mL 特に0.1〜5mL
ピリジン等の配位子 5〜500mL 特に10〜100mL
Preferred blending ratios in the examples are shown below, and the unit is the amount of Sn per 1 mmol of the organic compound.
High boiling point organic solvent 5 to 500 mL, especially 10 to 100 mL
Coordination compounds such as oleic acid 0.1 to 10 mL, especially 1 to 5 mL
Oxygen source such as trimethylamine oxide 0-10mL Especially 0.1-5mL
Ligands such as pyridine 5 to 500 mL, especially 10 to 100 mL

2 アルミナ基板
4 櫛の歯金電極
6 SnO
2 Alumina substrate 4 Comb tooth electrode 6 SnO 2 film

Claims (4)

スズの有機化合物を、水に不溶な有機溶媒中に界面活性剤と共に溶解した溶液を調製し、
次いで前記溶液を加熱することによりスズの有機化合物を熱分解して、SnO微粒子の懸濁液を調製すると共に、
前記懸濁液から得られたSnOによりガスセンサを製造する、SnOガスセンサの製造方法。
Prepare a solution in which the organic compound of tin is dissolved together with the surfactant in an organic solvent insoluble in water,
Then, the organic solution of tin is thermally decomposed by heating the solution to prepare a suspension of SnO 2 fine particles,
Producing the gas sensor by SnO 2 obtained from the suspension, SnO 2 gas sensor manufacturing method.
熱分解前の前記溶液が、スズの有機化合物と、水に不溶な有機溶媒と、界面活性剤と、酸素供与性の有機化合物とからなることを特徴とする、請求項1に記載のSnOガスセンサの製造方法。 2. The SnO 2 according to claim 1, wherein the solution before thermal decomposition is composed of an organic compound of tin, an organic solvent insoluble in water, a surfactant, and an oxygen-donating organic compound. A method for manufacturing a gas sensor. 前記界面活性剤が、脂肪酸と脂肪族アミン化合物との混合物であることを特徴とする、請求項1または2に記載のSnOガスセンサの製造方法。 The method for producing a SnO 2 gas sensor according to claim 1 or 2, wherein the surfactant is a mixture of a fatty acid and an aliphatic amine compound. 前記懸濁液に極性の有機溶媒を加えてSnO微粒子を沈殿させた後に、SnO微粒子を遠心分離し、次いで電子供与性基を備えた有機溶媒と混合することを特徴とする、請求項1〜3のいずれかに記載のSnOガスセンサの製造方法。 After precipitation of SnO 2 fine particles by adding a polar organic solvent to the suspension, the SnO 2 particles are centrifuged, then characterized by mixing an organic solvent having an electron donating group, claims SnO 2 gas sensor manufacturing method according to any one of 1 to 3.
JP2009265909A 2009-11-24 2009-11-24 Manufacturing method of SnO2 gas sensor Expired - Fee Related JP5234664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265909A JP5234664B2 (en) 2009-11-24 2009-11-24 Manufacturing method of SnO2 gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265909A JP5234664B2 (en) 2009-11-24 2009-11-24 Manufacturing method of SnO2 gas sensor

Publications (2)

Publication Number Publication Date
JP2011112359A true JP2011112359A (en) 2011-06-09
JP5234664B2 JP5234664B2 (en) 2013-07-10

Family

ID=44234825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265909A Expired - Fee Related JP5234664B2 (en) 2009-11-24 2009-11-24 Manufacturing method of SnO2 gas sensor

Country Status (1)

Country Link
JP (1) JP5234664B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037501A (en) * 2012-08-20 2014-02-27 Tosoh Corp Metal oxide particulate dispersion and transparent conductive film using the same
CN104310306A (en) * 2014-09-26 2015-01-28 西安工业大学 High-sensitivity alcohol-sensitive gas sensor, preparation method thereof, and preparation method of mesoporous SnO2 material
JP2016160531A (en) * 2015-03-02 2016-09-05 小林 博 Production of assembly of fine particles dispersed in organic compound and production method thereof
WO2017104813A1 (en) * 2015-12-17 2017-06-22 国立研究開発法人産業技術総合研究所 Composite particles and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108107083B (en) * 2017-12-05 2020-06-05 广东美的制冷设备有限公司 SnO2 gas-sensitive material with hierarchical structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622145A (en) * 1985-06-27 1987-01-08 Toshiba Corp Gas detection element
JPH01293501A (en) * 1988-05-20 1989-11-27 Kanegafuchi Chem Ind Co Ltd Porous tin oxide moisture-sensitive thin film and manufacture thereof
JP2005331268A (en) * 2004-05-18 2005-12-02 Canon Inc Sensor and its manufacturing method
JP2008064674A (en) * 2006-09-08 2008-03-21 Figaro Eng Inc MANUFACTURING METHOD FOR SnO2 GAS SENSOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622145A (en) * 1985-06-27 1987-01-08 Toshiba Corp Gas detection element
JPH01293501A (en) * 1988-05-20 1989-11-27 Kanegafuchi Chem Ind Co Ltd Porous tin oxide moisture-sensitive thin film and manufacture thereof
JP2005331268A (en) * 2004-05-18 2005-12-02 Canon Inc Sensor and its manufacturing method
JP2008064674A (en) * 2006-09-08 2008-03-21 Figaro Eng Inc MANUFACTURING METHOD FOR SnO2 GAS SENSOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037501A (en) * 2012-08-20 2014-02-27 Tosoh Corp Metal oxide particulate dispersion and transparent conductive film using the same
CN104310306A (en) * 2014-09-26 2015-01-28 西安工业大学 High-sensitivity alcohol-sensitive gas sensor, preparation method thereof, and preparation method of mesoporous SnO2 material
CN104310306B (en) * 2014-09-26 2016-07-13 西安工业大学 High sensitivity wine sensitive gas sensor and preparation method thereof, mesoporous SnO2The preparation method of material
JP2016160531A (en) * 2015-03-02 2016-09-05 小林 博 Production of assembly of fine particles dispersed in organic compound and production method thereof
WO2017104813A1 (en) * 2015-12-17 2017-06-22 国立研究開発法人産業技術総合研究所 Composite particles and method for manufacturing same

Also Published As

Publication number Publication date
JP5234664B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5234664B2 (en) Manufacturing method of SnO2 gas sensor
US8034152B2 (en) Composite materials and method of its manufacture
TWI242478B (en) Metal nanoparticle and process for producing the same
Chernomordik et al. Rapid facile synthesis of Cu 2 ZnSnS 4 nanocrystals
Boudiba et al. Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd–WO3)
Pike et al. Reversible redox cycling of well-defined, ultrasmall Cu/Cu2O nanoparticles
Chikhale et al. Structural, morphological and gas sensing properties of undoped and Lanthanum doped nanocrystalline SnO2
KR101490023B1 (en) Hydrogen sensor based on paladium-graphene nanocomposite and method of fabricating the same
Kumari et al. Sol–gel synthesis of Pd@ PdO core–shell nanoparticles and effect of precursor chemistry on their structural and optical properties
Jose et al. Synthesis and characterization of Pd (0), PdS, and Pd@ PdO core–shell nanoparticles by solventless thermolysis of a Pd–thiolate cluster
CN103402920B (en) Noble metal-oxide engages nanoparticle and high-purity manufacture method thereof
Ghule et al. Simultaneous thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles
JP2005531668A (en) Organometallic oxide / organic polymer composite and method for producing the same
Kashyout et al. Fabrication of ZnO and ZnO: Sb nanoparticles for gas sensor applications
Figueiredo et al. New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles
CN110057783B (en) Preparation method of HCl gas sensor based on two-dimensional Au @ MOFs nanoparticle ordered array
Singh et al. Unusual formation of nano-particles of CdO and Cd (OH) 2 from the reaction of dimethyl cadmium with DMF
Mereu et al. Synthesis, characterization and thermal decomposition study of zinc propionate as a precursor for ZnO nano-powders and thin films
Houck et al. Facile Exchange of Tightly Bonded L-Type Oleylamine and Diphenylphosphine Ligands on Copper Indium Diselenide Nanocrystals Mediated by Molecular Iodine
US9212267B2 (en) Method of producing metal complex-supporting mesoporous material
Rishikeshi et al. Cu–ZnO nanocrystallites by aqueous thermolysis method: thermal and vibrational study
Jha et al. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier
TW201011063A (en) Composite nanoparticles and method for the production thereof
JP2010032343A (en) MANUFACTURING METHOD OF SnO2 GAS SENSOR, AND MANUFACTURING METHOD OF SnO2 CARRYING HAVING NOBLE METAL NANOPARTICLES
JP2017095303A (en) Layering silicon composite material, manufacturing method therefor and precipitation method of metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

R150 Certificate of patent or registration of utility model

Ref document number: 5234664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees