JP2008064674A - MANUFACTURING METHOD FOR SnO2 GAS SENSOR - Google Patents

MANUFACTURING METHOD FOR SnO2 GAS SENSOR Download PDF

Info

Publication number
JP2008064674A
JP2008064674A JP2006244356A JP2006244356A JP2008064674A JP 2008064674 A JP2008064674 A JP 2008064674A JP 2006244356 A JP2006244356 A JP 2006244356A JP 2006244356 A JP2006244356 A JP 2006244356A JP 2008064674 A JP2008064674 A JP 2008064674A
Authority
JP
Japan
Prior art keywords
reverse micelle
sno
mixed
reverse
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244356A
Other languages
Japanese (ja)
Other versions
JP4794398B2 (en
Inventor
Kengo Shimanoe
憲剛 島ノ江
Noboru Yamazoe
昇 山添
Masayoshi Yuasa
雅賀 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2006244356A priority Critical patent/JP4794398B2/en
Publication of JP2008064674A publication Critical patent/JP2008064674A/en
Application granted granted Critical
Publication of JP4794398B2 publication Critical patent/JP4794398B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To uniformly carry a catalyst on SnO<SB>2</SB>. <P>SOLUTION: A nitric acid reverse micell solution is mixed with a reverse micell solution containing Sn(OH)<SB>6</SB><SP>-2</SP>, to precipitate Sn(OH)<SB>4</SB>in a reverse micell. Then a reverse micell solution containing Pd<SP>2+</SP>is mixed to precipitate Pd(OH)<SB>2</SB>on the Sn(OH)<SB>4</SB>. The Sn(OH)<SB>4</SB>with the Pd(OH)<SB>2</SB>precipitated thereon is separated, dried and burnt to form SnO<SB>2</SB>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明はSnOガスセンサの製造方法に関し、特にSnOへの触媒添加に関する。 The present invention relates to a method for manufacturing a SnO 2 gas sensor, and more particularly to addition of a catalyst to SnO 2 .

SnOガスセンサの製造では、SnOの粉体に硝酸Pd,硝酸銅等の触媒金属塩の溶液を添加し、乾燥後に焼成してPd,Pt,Rh,Ru,Re,Ir等の貴金属触媒や酸化銅、酸化亜鉛、酸化タングステン等の遷移金属触媒を担持させる。次いで触媒添加後のSnO粉体を成形し、焼成してガスセンサとする。しかしながらこの手法では、微細な触媒粒子をSnO中に均一に分散させることが困難である。
なお特許文献1は逆ミセル法により酸化ジルコニウムを調製することを開示しているが、逆ミセル法によりSnOに触媒を添加することを開示していない。
特開2005−257457
In the manufacture of the SnO 2 gas sensor, a solution of a catalytic metal salt such as Pd nitrate or copper nitrate is added to the SnO 2 powder, dried and calcined, and then a noble metal catalyst such as Pd, Pt, Rh, Ru, Re, Ir, A transition metal catalyst such as copper oxide, zinc oxide or tungsten oxide is supported. Next, the SnO 2 powder after addition of the catalyst is molded and fired to obtain a gas sensor. However, with this method, it is difficult to uniformly disperse fine catalyst particles in SnO 2 .
Patent Document 1 discloses preparing zirconium oxide by the reverse micelle method, but does not disclose adding a catalyst to SnO 2 by the reverse micelle method.
JP-A-2005-257457

この発明の課題は、均一な構造のSnO粒子中に、微細で均一な粒度の触媒を均一に分散させたSnOガスセンサの製造方法を提供することにある。 The object of the invention, the SnO 2 particles having a uniform structure is to provide a SnO 2 gas sensor production method which is uniformly dispersed a fine and uniform particle size of the catalyst.

この発明のSnOガスセンサの製造方法では、Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液と、触媒金属イオンを酸性の逆ミセル中に含有する逆ミセル溶液とを混合することにより、逆ミセル中でSn(OH)上に触媒金属の水酸化物を析出させた混合逆ミセル溶液とし、次いで触媒金属の水酸化物を析出させたSn(OH)を混合逆ミセル溶液から分離、乾燥して、触媒を担持させたSnOもしくは水酸化スズの粉体とし、該粉体を電極と接続した形状に成形・焼成してガスセンサとする。 In the manufacturing method of the SnO 2 gas sensor of the present invention, a reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle and a reverse micelle solution containing catalytic metal ions in an acidic reverse micelle by mixing, the mixed reverse micelle solution in the reverse micelles to precipitate a hydroxide of the catalytic metal on the Sn (OH) 4, followed by mixing the Sn (OH) 4 which was precipitated hydroxide of the catalytic metal The powder is separated from the reverse micelle solution and dried to obtain a powder of SnO 2 or tin hydroxide carrying a catalyst, and the powder is molded and fired into a shape connected to an electrode to obtain a gas sensor.

この発明のSnO2ガスセンサの製造方法では、Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液と、酸性逆ミセルの逆ミセル溶液とを混合して、Sn(OH)を逆ミセル中に析出させた混合逆ミセル溶液とし、該混合逆ミセル溶液と、触媒金属イオンを酸性の逆ミセル中に含有する逆ミセル溶液とを混合することにより、逆ミセル中でSn(OH)上に触媒金属の水酸化物を析出させた第2の混合逆ミセル溶液とし、次いで触媒金属の水酸化物を析出させたSn(OH)を第2の混合逆ミセル溶液から分離、乾燥して、触媒を担持させたSnOもしくは水酸化スズの粉体とし、該粉体を電極と接続した形状に成形・焼成してガスセンサとする。 In the manufacturing method of the SnO2 gas sensor according to the present invention, a reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle and a reverse micelle solution of an acidic reverse micelle are mixed, and Sn (OH) 4 The mixed reverse micelle solution precipitated in the reverse micelle, and the mixed reverse micelle solution and the reverse micelle solution containing the catalytic metal ion in the acidic reverse micelle are mixed to form Sn (OH ) 4 is used as a second mixed reverse micelle solution in which a catalyst metal hydroxide is deposited, and then Sn (OH) 4 in which a catalyst metal hydroxide is deposited is separated from the second mixed reverse micelle solution. It is dried to form a powder of SnO 2 or tin hydroxide carrying a catalyst, and the powder is molded and fired into a shape connected to an electrode to obtain a gas sensor.

好ましくは、Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液を、4価のSnの有機酸塩を水酸化テトラアルキルアンモニウムもしくはトリアルキルアンモニウムで水に溶解して、Sn(OH) 2−イオンを含む水溶液とし、該水溶液を界面活性剤と疎水性の有機溶媒との混合物中に分散させることにより調製する。
触媒中の金属成分(触媒金属)の種類は貴金属に限らず、遷移金属やランタニド、3価あるいは4価の典型金属とし、Snは含めない。
Preferably, a reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle is prepared by dissolving a tetravalent Sn organic acid salt in water with tetraalkylammonium hydroxide or trialkylammonium hydroxide, An aqueous solution containing Sn (OH) 6 2- ion is prepared, and the aqueous solution is dispersed in a mixture of a surfactant and a hydrophobic organic solvent.
The kind of the metal component (catalyst metal) in the catalyst is not limited to a noble metal, but a transition metal, a lanthanide, a trivalent or tetravalent typical metal, and Sn is not included.

この発明では、微細な逆ミセル中でSn(OH)に触媒金属の水酸化物を担持させる。このためSnO粉体に担持させる場合と異なり、均一な粒度の触媒を高度に分散させて担持できる。またSn(OH)を逆ミセル中で調製するので、その粒度や高次構造を均一にできる。このため高活性な触媒を担持し、所望の粒度と高次構造を持つSnOガスセンサを製造できる。 In the present invention, a hydroxide of a catalytic metal is supported on Sn (OH) 4 in fine reverse micelles. For this reason, unlike the case where it is supported on SnO 2 powder, a catalyst having a uniform particle size can be highly dispersed and supported. Further, since Sn (OH) 4 is prepared in reverse micelles, its particle size and higher order structure can be made uniform. Therefore, it is possible to manufacture a SnO 2 gas sensor that supports a highly active catalyst and has a desired particle size and higher order structure.

Sn(OH) 2−イオンは水中ではアルカリ性で安定で、弱アルカリ性〜酸性でSn(OH)として析出するので、アルカリ性の逆ミセル中にSn(OH) 2−イオンを含有させ、酸性の逆ミセルと反応させてPHを中性に近づけると、Sn(OH)が析出する。また触媒金属イオンは水中では強酸性で安定で、弱酸性〜アルカリ性で水酸化物として析出する。そこでSn(OH)を析出させた後に触媒金属の水酸化物を析出させても良く、あるいはSn(OH)の逆ミセル溶液と触媒金属イオンを含有する逆ミセル溶液とを混合して、Sn(OH)と触媒金属の水酸化物とを同時に析出を担持させても良い。実験によると、Sn(OH)を析出させた後に触媒金属の水酸化物を析出させた方が、微細な触媒をSnOに高分散させることができる。 Sn (OH) 6 2- ion is alkaline and stable in water, and weakly alkaline to acidic and precipitates as Sn (OH) 4. Therefore, Sn (OH) 6 2- ion is contained in an alkaline reverse micelle, and is acidic. Sn (OH) 4 precipitates when the pH is brought close to neutrality by reacting with the reverse micelle. Further, catalytic metal ions are strongly acidic and stable in water, and weakly acidic to alkaline and precipitate as hydroxides. Therefore, after depositing Sn (OH) 4 , the catalyst metal hydroxide may be deposited, or the reverse micelle solution of Sn (OH) 4 and the reverse micelle solution containing the catalyst metal ions are mixed, Sn (OH) 4 and catalyst metal hydroxide may be supported simultaneously. According to experiments, fine catalyst can be highly dispersed in SnO 2 by depositing the hydroxide of the catalyst metal after depositing Sn (OH) 4 .

Sn(OH) 2−イオンを調製するため、4価のSnの有機酸塩と、水酸化テトラアルキルアンモニウムもしくはトリアルキルアンモニウムを用いると、ClイオンやNaやKイオンなどの不純物が生成しないので、好ましい。 In order to prepare Sn (OH) 6 2- ion, when tetravalent Sn organic acid salt and tetraalkylammonium hydroxide or trialkylammonium hydroxide are used, impurities such as Cl ion, Na + , K + ion, etc. Since it does not produce | generate, it is preferable.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図6に、実施例のSnOガスセンサの製造方法を示す。実施例では触媒をPdとするが、PtやRh,Re,Ru,Irなどとしても良く、Cu,Zn,Mo,W,Ce,La,Ga,Pb等でもよい。図1に基本的な実施例を示す。Sn(CHCOO) を10wt%のテトラメチルアンモニウムハイドロキサイトに溶解させた0.1Mの水溶液を調製した。これをポリオキシエチレン(6)ノニルフェニルエーテル(NP−6)とシクロヘキサンの混合溶液(質量比4:6)と10℃で混合・撹拌し、[Sn(OH)]2−を逆ミセル中に内包した逆ミセル溶液とした。ここで水重量と界面活性剤のNP−6の重量比Rwを9としたが、Rwは例えば2〜50程度とする。 In FIGS. 1 to 6 show a method of manufacturing SnO 2 gas sensor of Example. In the embodiment, the catalyst is Pd, but may be Pt, Rh, Re, Ru, Ir or the like, or Cu, Zn, Mo, W, Ce, La, Ga, Pb or the like. FIG. 1 shows a basic embodiment. A 0.1 M aqueous solution in which Sn (CH 3 COO) 4 was dissolved in 10 wt% tetramethylammonium hydroxide was prepared. This was mixed and stirred at 10 ° C. with a mixed solution of polyoxyethylene (6) nonylphenyl ether (NP-6) and cyclohexane (mass ratio 4: 6), and [Sn (OH) 6 ] 2- was mixed in reverse micelles. A reverse micelle solution encapsulated in Here, the weight ratio Rw of the weight of water and the surfactant NP-6 was set to 9, but the Rw is, for example, about 2 to 50.

逆ミセル溶液は、微細な水粒子(逆ミセル)が界面活性剤で疎水性の溶媒内に分散しているコロイド溶液である。なお界面活性剤中のポリエキシエチレンは(−CH−CH−)nの構造をし、シクロヘキサンは疎水性有機溶媒の例で、他の疎水性有機溶媒でも良い。またSn酸イオンの調製に4価のSnの酢酸塩やプロピオン酸塩等の有機酸塩を用いると、SnCl等と異なり、アニオン不純物の除去が容易である。4価のSnイオンは水酸化テトラメチルアンモニウムやトリメチルアンモニウム等の強アルカリ水溶液中で、Sn(OH) 2−(Sn酸イオン)に変化する。強アルカリとして、水酸化テトラメチルアンモニウム等を用いると、NaOHやKOHなどを用いる場合と異なり、カチオン不純物の除去が容易である。 The reverse micelle solution is a colloidal solution in which fine water particles (reverse micelles) are dispersed in a hydrophobic solvent with a surfactant. Polyethylene in the surfactant has a (—CH 2 —CH 2 —) n structure, and cyclohexane is an example of a hydrophobic organic solvent, and may be another hydrophobic organic solvent. In addition, when an organic acid salt such as tetravalent Sn acetate or propionate is used for the preparation of Sn acid ions, anion impurities can be easily removed unlike SnCl 4 or the like. The tetravalent Sn ion changes to Sn (OH) 6 2− (Sn acid ion) in a strong alkaline aqueous solution such as tetramethylammonium hydroxide or trimethylammonium. When tetramethylammonium hydroxide or the like is used as a strong alkali, cationic impurities can be easily removed, unlike the case of using NaOH or KOH.

6wt%のHNO水溶液を、同様にNP−6とシクロヘキサンで逆ミセル化し、これをSn酸イオンを含む逆ミセル溶液と混合・撹拌して、逆ミセル溶液中の水溶液のPHを弱アルカリ性〜弱酸性(PH:10〜5で、特にPH6〜8相当)とし、Sn(OH)を析出させた。Sn(OH)粒子は逆ミセル中で生成するので、Sn(OH)の一次粒子が高次構造を作らずそのまま析出し、かつ粒度分布が狭い。実施例では析出したSn(OH)を熟成せずに、Pd(OH)を担持させるが、Sn(OH)を熟成させた後にPd(OH)を担持させても良い。なおPH9〜10相当付近でSn(OH)を析出させ、かつRwが大き区逆ミセルが大きい場合、Sn(OH)の一次粒子が凝集した2次粒子として析出することがある。 A 6 wt% HNO 3 aqueous solution is similarly reverse micelle with NP-6 and cyclohexane, and this is mixed and stirred with a reverse micelle solution containing Sn acid ions, so that the pH of the aqueous solution in the reverse micelle solution is weakly alkaline to weak. It was acidified (PH: 10 to 5, particularly equivalent to PH 6 to 8), and Sn (OH) 4 was precipitated. Since Sn (OH) 4 particles are produced in reverse micelles, the primary particles of Sn (OH) 4 precipitate as they are without forming a higher order structure, and the particle size distribution is narrow. Without aging Sn (OH) 4 precipitated in the embodiment, although supporting the Pd (OH) 2, may be supported on Pd (OH) 2 after being aged the Sn (OH) 4. When Sn (OH) 4 is precipitated in the vicinity of PH 9 to 10 and Rw is large and the reverse micelle is large, the primary particles of Sn (OH) 4 may be precipitated as aggregated secondary particles.

Pd(NO)を希硝酸に溶解させたPd濃度1mMの水溶液を、同様にNP−6とシクロヘキサンとで逆ミセル溶液とした。Rwは例えば3としたが、2〜50程度としても良い。Sn(OH)の逆ミセル溶液と、Pd2+を内包する逆ミセル溶液とを、SnO対Pdのモル比が100:1となるように混合した。Pd2+イオンは中性〜アルカリ性で析出するので、逆ミセル内にPd(OH)を担持したSn(OH)粒子が析出する。なお逆ミセルの粒径分布をレーザー粒子径分布測定装置(LPA)により測定した。 An aqueous solution having a Pd concentration of 1 mM in which Pd (NO 3 ) 2 was dissolved in dilute nitric acid was similarly made into a reverse micelle solution with NP-6 and cyclohexane. Rw is set to 3, for example, but may be about 2 to 50. A reverse micelle solution of Sn (OH) 4 and a reverse micelle solution containing Pd 2+ were mixed so that the molar ratio of SnO 2 to Pd was 100: 1. Since Pd 2+ ions are deposited in a neutral to alkaline state, Sn (OH) 4 particles carrying Pd (OH) 2 are deposited in reverse micelles. The particle size distribution of the reverse micelle was measured with a laser particle size distribution measuring device (LPA).

逆ミセル溶液を遠心分離してSn(OH)を分離し、例えば1回水洗し、120℃で乾燥してPd−SnO(A)粉体とした。遠心分離に代えて、メタノールなどの共通溶媒を加えて逆ミセル構造を破壊した後にろ過しても良い。乾燥後の粉体では、SnO〜水酸化Sn上にPd粒子が担持されている。得られた粉体をペースト化し、例えば櫛形の金電極付きのアルミナ基板上にスクリーン印刷して厚膜とし、空気中600℃で3時間焼結してガスセンサとし、メタンやCO、水素等へのガス感度を測定した。なお焼結前に400〜600℃程度での焼成を行っても良い。分析のため、洗浄・乾燥後の粉体を空気中600℃で3時間焼結し、X線回折や透過電子顕微鏡による観察を行った。 The reverse micelle solution was centrifuged to separate Sn (OH) 4 , for example, washed once with water and dried at 120 ° C. to obtain Pd—SnO 2 (A) powder. Instead of centrifugation, filtration may be performed after adding a common solvent such as methanol to destroy the reverse micelle structure. In the powder after drying, Pd particles are supported on SnO 2 to Sn hydroxide. The obtained powder is pasted, for example, screen-printed on an alumina substrate with a comb-shaped gold electrode to form a thick film, sintered in air at 600 ° C. for 3 hours to form a gas sensor, and applied to methane, CO, hydrogen, etc. Gas sensitivity was measured. In addition, you may perform baking at about 400-600 degreeC before sintering. For analysis, the washed and dried powder was sintered in air at 600 ° C. for 3 hours and observed by X-ray diffraction or a transmission electron microscope.

図2に、変形例でのPd担持のSnOの製造方法を示す。図1と同様にしてSn酸水溶液を調製し、逆ミセル化する。Pd(NO)の水溶液と6wt%のHNOの水溶液とを混合して、Pd2+の酸性水溶液を調製する。これを図1の実施例と同様に逆ミセル化し、2つの逆ミセル溶液を混合・撹拌する。Sn酸イオンは弱アルカリ性〜酸性で析出し、Pd2+イオンは弱酸性〜アルカリ性で析出するので、逆ミセル溶液の混合により、Sn(OH)とPd(OH)とが同時に析出する。そしてここで存在量が少ないPd(OH)はSn(OH)上に析出する。次いで逆ミセル溶液からPd担持のSn(OH)を分離し、図1と同様にして洗浄・乾燥し、成膜・焼結してPd−SnO(A)粉体とし、ガスセンサとする。 Figure 2 shows a Pd SnO 2 of the method for manufacturing the bearing of a modification. An aqueous Sn acid solution is prepared in the same manner as in FIG. An acidic aqueous solution of Pd 2+ is prepared by mixing an aqueous solution of Pd (NO 3 ) 2 and an aqueous solution of 6 wt% HNO 3 . This is reverse micelle as in the embodiment of FIG. 1, and the two reverse micelle solutions are mixed and stirred. Since Sn acid ions are precipitated with weak alkalinity to acidity, and Pd 2+ ions are precipitated with weak acidity to alkalinity, Sn (OH) 4 and Pd (OH) 2 are simultaneously precipitated by mixing the reverse micelle solution. Here, Pd (OH) 2 having a small abundance is deposited on Sn (OH) 4 . Next, Pd-supported Sn (OH) 4 is separated from the reverse micelle solution, washed and dried in the same manner as in FIG. 1, and formed into a film and sintered to form Pd—SnO 2 (A) powder, which is used as a gas sensor.

図3にレーザー粒子径分布測定装置で測定した逆ミセルの粒子径分布を示し、試料は図1の実施例によるもので、図3(A)ではPd2+イオンの逆ミセルをRw=9で調製し、(B)ではRw=3で調製した。図3(A)では、混合後の逆ミセルの平均粒子径は混合前の平均粒子径と基本的に変わらず、(B)では、混合後の平均粒子径は混合前の平均粒子径の中間の値となっている。 Shows the particle size distribution of the reverse micelles measured by a laser particle size distribution measuring device in FIG. 3, the sample is due to the embodiment of FIG. 1, prepared reversed micelle shown in FIG. 3 (A) the Pd 2+ ions at Rw = 9 In (B), it was prepared with Rw = 3. In FIG. 3 (A), the average particle size of the reverse micelle after mixing is basically the same as the average particle size before mixing. In (B), the average particle size after mixing is the middle of the average particle size before mixing. It is the value of.

600℃焼成後のSnO中でのPd含有量を蛍光X線で分析し、洗浄回数が1回程度であれば、Pdの仕込量のほぼ全量がSnO中に担持される(Pd濃度1モル%)ことが判明した。図4に、600℃焼成後のPd−SnO(A)及びPd−SnO(B)、並びにSnClの水溶液をアンモニア水で中和し、得られたSn酸ゾルを洗浄・乾燥後に600℃で焼成した試料の、X線回折パターンを示す。図中にシェラーの式から求めた平均結晶子径を示す。いずれの試料でも、SnO単一相のX線回折像が得られている。 When the Pd content in SnO 2 after firing at 600 ° C. is analyzed by fluorescent X-rays, if the number of washings is about once, almost the entire amount of Pd charged is supported in SnO 2 (Pd concentration 1 Mol%). In FIG. 4, an aqueous solution of Pd—SnO 2 (A), Pd—SnO 2 (B), and SnCl 4 after baking at 600 ° C. is neutralized with aqueous ammonia, and the resulting Sn acid sol is cleaned and dried after being dried. The X-ray diffraction pattern of the sample baked at ° C is shown. The average crystallite diameter determined from the Scherrer equation is shown in the figure. In any sample, an X-ray diffraction image of SnO 2 single phase is obtained.

図5に、Pd−SnO(A)及びPd−SnO(B)の高分解能透過電子顕微鏡写真を示す。Pd−SnO(A)では、SnO結晶子以外にPdOと考えられる8〜10nm程度の粒子が見られた。これに対してPd−SnO(B)では、SnO粒子以外には数nm以下のPdO粒子が見られた。このことはPd−SnO(B)でより微細なPdOがSnO上に担持されていることを示し、Sn(OH)とPd(OH)を同時に析出させるよりも、予めSn(OH)を析出させた後に、Pd(OH)を析出させることが好ましいことを示している。 FIG. 5 shows high-resolution transmission electron micrographs of Pd—SnO 2 (A) and Pd—SnO 2 (B). In Pd—SnO 2 (A), particles of about 8 to 10 nm, which are considered to be PdO, were seen in addition to the SnO 2 crystallites. On the other hand, in Pd—SnO 2 (B), PdO particles of several nm or less were seen in addition to SnO 2 particles. This indicates that a finer PdO in Pd-SnO 2 (B) are supported on SnO 2, than to precipitate Sn (OH) 4 and Pd (OH) 2 at the same time, pre-Sn (OH This shows that it is preferable to deposit Pd (OH) 2 after 4 is deposited.

図6に、従来法のSnOと、Pd−SnO(A)、並びにPd−SnO(B)の抵抗値の温度依存性を示す。図の縦軸はログスケールで、SnO厚膜の抵抗値を示し、測定雰囲気は空気中である。Pd−SnO(B)はPd−SnO(A)よりも高抵抗で、このことはPdO粒子がナノ粒子として高分散しているため、吸着酸素イオン量が増加していることを示している。 Figure 6 illustrates a SnO 2 of the prior art, Pd-SnO 2 (A), as well as the temperature dependence of the resistance value of Pd-SnO 2 (B). The vertical axis in the figure is a log scale, showing the resistance value of the SnO 2 thick film, and the measurement atmosphere is in the air. Pd—SnO 2 (B) has a higher resistance than Pd—SnO 2 (A), which indicates that the amount of adsorbed oxygen ions is increased because the PdO particles are highly dispersed as nanoparticles. Yes.

図7に、従来法のSnOとPd−SnO(B)のCO感度(CO 1000ppm)を示す。いずれの試料でもSnOに対しPdを1モル%添加し、従来法では、SnClの水溶液をアンモニア水で中和し、得られたSn酸ゾルを洗浄・乾燥後に600℃で焼成して、SnOとした。このSnOにPdNOの水溶液を含浸させ、乾燥後に空気中550℃で焼成して、PdをSnOに担持させた。Pd−SnO(B)では微細なPd粒子がSnOに均一に分散しているため、高感度である。なおPd−SnO(A)では、Pd−SnO(B)と従来法のSnOの中間の感度を示した。 FIG. 7 shows the CO sensitivity (CO 1000 ppm) of SnO 2 and Pd—SnO 2 (B) of the conventional method. In any sample, 1 mol% of Pd was added to SnO 2 , and in the conventional method, an aqueous solution of SnCl 4 was neutralized with ammonia water, and the obtained Sn acid sol was baked at 600 ° C. after washing and drying, SnO 2 was used. This SnO 2 was impregnated with an aqueous solution of PdNO 3 , dried and fired at 550 ° C. in the air to support Pd on SnO 2 . Pd—SnO 2 (B) has high sensitivity because fine Pd particles are uniformly dispersed in SnO 2 . In Pd—SnO 2 (A), an intermediate sensitivity between Pd—SnO 2 (B) and conventional SnO 2 was shown.

実施例ではPd触媒の添加を示したが、Pdに代えてPt,Rh等の他の貴金属触媒の添加でも同様である。また逆ミセルと触媒金属の水酸化物を経由した担持法は、貴金属触媒に限らず、遷移金属触媒や、ランタニド触媒、Ga,In等の3価の典型金属触媒やGe,Pb等の4価の典型金属触媒にも用いることができる。これらの何れの触媒でも、金属イオンは酸性の逆ミセル内で可溶で、弱酸性ないし弱アルカリ性、特に中性付近の逆ミセル内で不溶なので、Sn(OH)上に析出する。
In the examples, the addition of the Pd catalyst was shown, but the same applies to the addition of other noble metal catalysts such as Pt and Rh instead of Pd. The supporting method via reverse micelle and catalytic metal hydroxide is not limited to a noble metal catalyst, but a transition metal catalyst, a lanthanide catalyst, a trivalent typical metal catalyst such as Ga and In, and a tetravalent metal such as Ge and Pb. It can also be used as a typical metal catalyst. In any of these catalysts, metal ions are soluble in acidic reverse micelles and are weakly acidic or weakly alkaline, particularly insoluble in reverse micelles near neutrality, and therefore precipitate on Sn (OH) 4 .

実施例のSnO2ガスセンサの製造方法を示す工程図で、Pd−SnO(B)の製造方法を示す。Process drawings showing a manufacturing method of SnO2 gas sensor of Example illustrates a method for producing Pd-SnO 2 (B). 変形例のSnO2ガスセンサの製造方法を示す工程図で、Pd−SnO(A)の製造方法を示す。Process drawings showing a SnO2 gas sensor manufacturing method of the modification, showing a manufacturing method of Pd-SnO 2 (A). SnO・2HOを内包する逆ミセル溶液とPd2+を内包する逆ミセル溶液とを混合し、Pd(OH)を担持したSnO・2HOを調製した際の、Pd2+逆ミセル溶液のRw値の影響を示す特性図で、(A)ではRw=9での粒度分布を、(B)ではRw=3での粒度分布を示す。Mixing a reversed micelle solution containing the reverse micelle solution and Pd 2+ which encloses the SnO 2 · 2H 2 O, Pd (OH) upon the preparation of the SnO 2 · 2H 2 O 2 was supported, Pd 2+ reverse micelles It is a characteristic view which shows the influence of Rw value of a solution, (A) shows the particle size distribution in Rw = 9, (B) shows the particle size distribution in Rw = 3. 600℃焼成後の各試料のXRDパターンと、シェラーの式から求めた結晶子径のサイズを示す特性図Characteristic chart showing XRD pattern of each sample after firing at 600 ° C. and crystallite size obtained from Scherrer's equation Pd−SnO(A)及びPd−SnO(B)の高分解能TEM像を示す特性図Characteristic diagram showing high-resolution TEM images of Pd—SnO 2 (A) and Pd—SnO 2 (B) Pd−SnO(A)及びPd−SnO(B)の、空気中での抵抗値の温度依存性を、触媒無添加で従来法のSnOと比較して示す特性図Pd-SnO 2 (A) and Pd-SnO 2 (B), a characteristic diagram showing the temperature dependence of the resistance value in air, as compared with the SnO 2 in the conventional method in a catalyst without addition Pd−SnO(B)及び従来法でPd触媒を添加したSnOとのCO感度を示す特性図Characteristic diagram showing the CO sensitivity of SnO 2 added with Pd catalyst with Pd-SnO 2 (B) and the conventional method

Claims (3)

Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液と、触媒金属イオンを酸性の逆ミセル中に含有する逆ミセル溶液とを混合することにより、逆ミセル中でSn(OH)上に触媒金属の水酸化物を析出させた混合逆ミセル溶液とし、
次いで触媒金属の水酸化物を析出させたSn(OH)を混合逆ミセル溶液から分離、乾燥して、触媒を担持させたSnOもしくは水酸化スズの粉体とし、
該粉体を電極と接続した形状に成形・焼成してガスセンサとする、SnOガスセンサの製造方法。
By mixing a reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle and a reverse micelle solution containing a catalytic metal ion in an acidic reverse micelle, Sn (OH) 6 OH) 4 to form a mixed reverse micelle solution in which a catalyst metal hydroxide is precipitated,
Next, Sn (OH) 4 on which the catalyst metal hydroxide is precipitated is separated from the mixed reverse micelle solution and dried to obtain SnO 2 or tin hydroxide powder supporting the catalyst,
A method for producing a SnO 2 gas sensor, wherein the powder is molded and fired into a shape connected to an electrode to form a gas sensor.
Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液と、酸性逆ミセルの逆ミセル溶液とを混合して、Sn(OH)を逆ミセル中に析出させた混合逆ミセル溶液とし、
該混合逆ミセル溶液と、触媒金属イオンを酸性の逆ミセル中に含有する逆ミセル溶液とを混合することにより、逆ミセル中でSn(OH)上に触媒金属の水酸化物を析出させた第2の混合逆ミセル溶液とし、
次いで触媒金属の水酸化物を析出させたSn(OH)を第2の混合逆ミセル溶液から分離、乾燥して、触媒を担持させたSnOもしくは水酸化スズの粉体とし、
該粉体を電極と接続した形状に成形・焼成してガスセンサとする、SnOガスセンサの製造方法。
A reverse mixed solution in which a reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle and a reverse micelle solution of an acidic reverse micelle are mixed to precipitate Sn (OH) 4 in the reverse micelle. A micellar solution,
The mixed reverse micelle solution and a reverse micelle solution containing catalytic metal ions in acidic reverse micelles were mixed to precipitate a catalytic metal hydroxide on Sn (OH) 4 in the reverse micelles. A second mixed reverse micelle solution;
Next, Sn (OH) 4 on which the catalyst metal hydroxide is precipitated is separated from the second mixed reverse micelle solution and dried to obtain SnO 2 or tin hydroxide powder supporting the catalyst.
A method for producing a SnO 2 gas sensor, wherein the powder is molded and fired into a shape connected to an electrode to form a gas sensor.
Sn(OH) 2−イオンをアルカリ性の逆ミセル中に含有する逆ミセル溶液を、4価のSnの有機酸塩を水酸化テトラアルキルアンモニウムもしくはトリアルキルアンモニウムで水に溶解して、Sn(OH) 2−イオンを含む水溶液とし、該水溶液を界面活性剤と疎水性の有機溶媒との混合物中に分散させることにより調製することを特徴とする、請求項1または2のSnOガスセンサの製造方法。 A reverse micelle solution containing Sn (OH) 6 2- ion in an alkaline reverse micelle was dissolved in water with a tetravalent ammonium hydroxide or a trialkylammonium hydroxide, and a Sn (OH) 6 ) An SnO 2 gas sensor production according to claim 1 or 2, characterized in that it is prepared by making an aqueous solution containing 2- ion and dispersing the aqueous solution in a mixture of a surfactant and a hydrophobic organic solvent. Method.
JP2006244356A 2006-09-08 2006-09-08 Manufacturing method of SnO2 gas sensor Expired - Fee Related JP4794398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244356A JP4794398B2 (en) 2006-09-08 2006-09-08 Manufacturing method of SnO2 gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244356A JP4794398B2 (en) 2006-09-08 2006-09-08 Manufacturing method of SnO2 gas sensor

Publications (2)

Publication Number Publication Date
JP2008064674A true JP2008064674A (en) 2008-03-21
JP4794398B2 JP4794398B2 (en) 2011-10-19

Family

ID=39287506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244356A Expired - Fee Related JP4794398B2 (en) 2006-09-08 2006-09-08 Manufacturing method of SnO2 gas sensor

Country Status (1)

Country Link
JP (1) JP4794398B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032343A (en) * 2008-07-29 2010-02-12 Figaro Eng Inc MANUFACTURING METHOD OF SnO2 GAS SENSOR, AND MANUFACTURING METHOD OF SnO2 CARRYING HAVING NOBLE METAL NANOPARTICLES
WO2010024387A1 (en) * 2008-08-29 2010-03-04 北陸電気工業株式会社 Manufacturing method for metal oxide semiconductor material for gas sensor
JP2010112708A (en) * 2008-11-04 2010-05-20 Riken Keiki Co Ltd Catalytic combustion type gas sensor
JP2011112359A (en) * 2009-11-24 2011-06-09 Figaro Engineerign Inc METHOD OF MANUFACTURING SnO2 GAS SENSOR
JP2016017760A (en) * 2014-07-04 2016-02-01 国立研究開発法人産業技術総合研究所 Sensor and structure
JP2016105112A (en) * 2016-02-29 2016-06-09 フィガロ技研株式会社 Metal-oxide semiconductor gas sensor
CN112924498A (en) * 2021-01-22 2021-06-08 华中科技大学 Palladium monoatomic modified tin oxide composite material and preparation method and application thereof
JP7438030B2 (en) 2020-06-09 2024-02-26 アルプスアルパイン株式会社 Gas-sensitive material, method for producing gas-sensitive material, and gas concentration measuring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334446A (en) * 2002-05-17 2003-11-25 National Institute Of Advanced Industrial & Technology Visible light-sensitive photocatalyst, its manufacturing process and hydrogen-generation process using the catalyst
JP2005257457A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Gas sensor
JP2008020411A (en) * 2006-07-14 2008-01-31 Ritsumeikan Manufacturing method for tin oxide gas sensor and tin oxide gas sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334446A (en) * 2002-05-17 2003-11-25 National Institute Of Advanced Industrial & Technology Visible light-sensitive photocatalyst, its manufacturing process and hydrogen-generation process using the catalyst
JP2005257457A (en) * 2004-03-11 2005-09-22 Nissan Motor Co Ltd Gas sensor
JP2008020411A (en) * 2006-07-14 2008-01-31 Ritsumeikan Manufacturing method for tin oxide gas sensor and tin oxide gas sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032343A (en) * 2008-07-29 2010-02-12 Figaro Eng Inc MANUFACTURING METHOD OF SnO2 GAS SENSOR, AND MANUFACTURING METHOD OF SnO2 CARRYING HAVING NOBLE METAL NANOPARTICLES
WO2010024387A1 (en) * 2008-08-29 2010-03-04 北陸電気工業株式会社 Manufacturing method for metal oxide semiconductor material for gas sensor
JP5113908B2 (en) * 2008-08-29 2013-01-09 北陸電気工業株式会社 Method for producing metal oxide semiconductor material for gas sensor
US8529799B2 (en) 2008-08-29 2013-09-10 Hokuriku Electric Industry Co., Ltd. Manufacturing method of metal oxide semiconductor material for gas sensor
JP2010112708A (en) * 2008-11-04 2010-05-20 Riken Keiki Co Ltd Catalytic combustion type gas sensor
JP2011112359A (en) * 2009-11-24 2011-06-09 Figaro Engineerign Inc METHOD OF MANUFACTURING SnO2 GAS SENSOR
JP2016017760A (en) * 2014-07-04 2016-02-01 国立研究開発法人産業技術総合研究所 Sensor and structure
JP2016105112A (en) * 2016-02-29 2016-06-09 フィガロ技研株式会社 Metal-oxide semiconductor gas sensor
JP7438030B2 (en) 2020-06-09 2024-02-26 アルプスアルパイン株式会社 Gas-sensitive material, method for producing gas-sensitive material, and gas concentration measuring device
CN112924498A (en) * 2021-01-22 2021-06-08 华中科技大学 Palladium monoatomic modified tin oxide composite material and preparation method and application thereof
CN112924498B (en) * 2021-01-22 2022-04-01 华中科技大学 Palladium monoatomic modified tin oxide composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4794398B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4794398B2 (en) Manufacturing method of SnO2 gas sensor
KR101787190B1 (en) Gas sensor and member using porous metal oxide semiconductor composite nanofibers including nanoparticle catalyst functionalized by nano-catalyst included within metal-organic framework, and manufacturing method thereof
US7534283B2 (en) Method of producing copper powder and copper powder
CN103155249A (en) Catalyst particles, carbon-supported catalyst particles and fuel cell catalysts, and methods of manufacturing such catalyst particles and carbon-supported catalyst particles
JP6196579B2 (en) Platinum hollow nanoparticles, particle-supported catalyst body, and method for producing the catalyst body
CN108140451B (en) Silver-colored tellurium cladding glass powder and its manufacturing method and electrocondution slurry and its manufacturing method
KR101932351B1 (en) Gas sensing layers using metal oxide nanocube with p-n junction and hollow structure containing nanoparticle catalyst based on metal organic structure using galvanic substitution reaction and manufacturing method thereof
KR20100108983A (en) Thin film gas sensor with high activity by using core-shell structure metal/oxide composite nanoparticles as a sensing material and manufacturing method thereby
Sassoye et al. A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia
WO2015056485A1 (en) Carbon-supported catalyst
KR101671405B1 (en) Metal/oxide core-shell structure nanoparticle mixed sensing materials for semiconductor gas sensor
Chawla et al. Calcination temperature as a probe to tune the non-enzymatic glucose sensing activity of Cu–Ni bimetallic nanocomposites
JP3823520B2 (en) Anhydrous zinc antimonate semiconductor gas sensor and method for manufacturing the same
KR102095629B1 (en) Gas Sensor Using POROUS Metal Oxide Nanosheet and Their Manufacturing Method Thereof
Fomekong et al. Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni1− xZnxO nanoparticles and Ni1− xZnxO/ZnO nanocomposites via pyrolysis
Wu et al. Soft-templated, mesoporous Co 3 O 4 thin films for electrocatalysis of the oxygen evolution reaction
KR102046704B1 (en) Gas sensor using metal oxide hollow spheres functionalized by catalysts and manufacturing method thereof
JP4958088B2 (en) Gas sensor element using cerium oxide thick film and manufacturing method thereof
KR102215714B1 (en) Two-dimensional MULTI-BONDED metal oxide POROUS nanosheet gas sensor member AND METHOD FOR MANUFACTURING THE SAME
WO2017158865A1 (en) Silver-tellurium-coated glass powder, production method for silver-tellurium-coated glass powder, conductive paste, and production method for conductive paste
JP2013087027A (en) Tin-doped indium oxide particle
CN113984840A (en) Member for gas sensor and method for producing metal oxide nanofiber
JP2017206751A (en) Manufacturing method of nickel powder
KR101922193B1 (en) Hollow nanoreactor comprising supported metal catalysts inside the cavity and manufacturing method thereof
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees