JP2011093754A - Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film - Google Patents

Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film Download PDF

Info

Publication number
JP2011093754A
JP2011093754A JP2009250637A JP2009250637A JP2011093754A JP 2011093754 A JP2011093754 A JP 2011093754A JP 2009250637 A JP2009250637 A JP 2009250637A JP 2009250637 A JP2009250637 A JP 2009250637A JP 2011093754 A JP2011093754 A JP 2011093754A
Authority
JP
Japan
Prior art keywords
antimony pentoxide
fine particles
range
transparent film
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009250637A
Other languages
Japanese (ja)
Inventor
Yuko Hakojima
夕子 箱嶋
Masayuki Matsuda
政幸 松田
Takuji Miyamoto
卓兒 宮本
Makoto Muraguchi
良 村口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2009250637A priority Critical patent/JP2011093754A/en
Publication of JP2011093754A publication Critical patent/JP2011093754A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antimony pentoxide based complex oxide fine particle which can form a transparency coating film in which there is no interference fringe, which excels in transparency and an antistatic characteristic, and which excels in adhesion with a base material, scratch resistance, scratch strength, pencil hardness or the like. <P>SOLUTION: The antimony pentoxide based complex oxide fine particle includes: an antimony pentoxide fine particle whose average particle size is in the range of 5-50 nm; and a titanium oxide and/or zirconium oxide layer which has covered the surface of the fine particle. The antimony pentoxide based compound oxide fine particle includes: a chain-like antimony pentoxide fine particle in which an antimony pentoxide fine particle whose average particle size is in the range 5-50 nm connects in the shape of a chain, and an average connectivity number is in the range of 2-30; and a titanium oxide and/or zirconium oxide layer which has covered the surface of the fine particle. The antimony pentoxide fine particle contains a phosphorus oxide in the range of 0.1-15 wt.% as P<SB>2</SB>O<SB>5</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材とに関する。   The present invention relates to antimony pentoxide-based composite oxide fine particles, a coating liquid for forming a transparent film containing the fine particles, and a substrate with a transparent film.

さらに詳しくは、導電性を有し、屈折率が所望の範囲に調整された五酸化アンチモン系複合酸化物微粒子、該微粒子を用いた、干渉縞が無く、透明性に優れるとともに帯電防止性能に優れ、且つ、基材との密着性、耐擦傷性、スクラッチ強度、鉛筆硬度等に優れた透明被膜を形成することのできる透明被膜形成用塗布液および透明被膜付基材とに関する。   More specifically, antimony pentoxide composite oxide fine particles having conductivity and a refractive index adjusted to a desired range, using the fine particles, no interference fringes, excellent transparency and excellent antistatic performance. Further, the present invention relates to a coating solution for forming a transparent film and a substrate with a transparent film, which can form a transparent film excellent in adhesion to a substrate, scratch resistance, scratch strength, pencil hardness, and the like.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の耐擦傷性を向上させるため、基材表面にハードコート機能を有する透明被膜を形成することが知られており、このような透明被膜として有機樹脂膜あるいは無機膜をガラスやプラスチック等の表面に形成することが行われている。さらに、有機樹脂膜あるいは無機膜中に樹脂粒子あるいはシリカ等の無機粒子を配合してさらに耐擦傷性を向上させることが行われている。また、このようなハードコート膜付の樹脂基材を表示装置前面板等に貼り付けて使用される場合がある。   Conventionally, it has been known that a transparent film having a hard coat function is formed on the surface of the base material in order to improve the scratch resistance of the surface of the base material such as glass, plastic sheet, and plastic lens. For example, an organic resin film or an inorganic film is formed on the surface of glass or plastic. Furthermore, it is practiced to further improve the scratch resistance by blending resin particles or inorganic particles such as silica in an organic resin film or an inorganic film. Further, there are cases where such a resin base material with a hard coat film is used by being attached to a display device front plate or the like.

一方、透明被膜を表示装置等に使用する場合、ハードコート性に加えてゴミ、埃などが静電気による付着することを防止するために導電性を有する透明被膜を形成することも行われている。   On the other hand, when a transparent film is used for a display device or the like, in addition to hard coat properties, a conductive transparent film is also formed in order to prevent dust, dust, and the like from adhering due to static electricity.

このような導電性を付与するために導電性酸化物粒子を配合することが知られている。   In order to impart such conductivity, it is known to incorporate conductive oxide particles.

導電性酸化物粒子としては、酸化錫、Sb、FまたはPドープ酸化錫、酸化インジウム、SnまたはFドープ酸化インジウム、五酸化アンチモン、低次酸化チタン等が知られている。(特許文献1:特開2002−79616号公報)
このなかで、五酸化アンチモンは、導電性とともに透明性をも有しているので、このような強度と導電性を具備した透明被膜用に期待されている。
As the conductive oxide particles, tin oxide, Sb, F or P-doped tin oxide, indium oxide, Sn or F-doped indium oxide, antimony pentoxide, low-order titanium oxide, and the like are known. (Patent Document 1: JP 2002-79616 A)
Among these, antimony pentoxide has transparency as well as conductivity, and therefore is expected for a transparent film having such strength and conductivity.

本願出願人は、導電性酸化物粒子としてパイロクロア構造を有する五酸化アンチモン微粒子を含む透明帯電防止膜付基材(特許文献2:特開2001−72929号公報)を提案しており、またハードコート膜として、五酸化アンチモン微粒子含む被膜付基材を提案している。(特許文献3:特開2004−50810号公報)
しかしながら、従来の導電性酸化物粒子を用いたハードコート膜、透明帯電防止膜では、例えば、五酸化アンチモン微粒子を用いた場合、透明性には優れるものの導電性が低く帯電防止性能が不充分であった。また、Pドープ酸化錫を用いた場合は、五酸化アンチモン微粒子を用いた場合に比較して帯電防止性能は向上するものの透明性が不充分となり、Sbドープ酸化錫を用いると帯電防止性能はさらに向上するものの透明性が低下し、着色する場合があった。また、五酸化アンチモン微粒子についても、本願出願人の出願による特開2005−139026号公報(特許文献4)に、鎖状酸化アンチモン微粒子にスズ、リン等のドーピング剤が含まれていると、さらに体積抵抗値の低い鎖状酸化アンチモン微粒子が得られることが開示されている。
The applicant of the present application has proposed a substrate with a transparent antistatic film containing antimony pentoxide fine particles having a pyrochlore structure as conductive oxide particles (Patent Document 2: Japanese Patent Application Laid-Open No. 2001-72929), and a hard coat. As a film, a coated substrate containing antimony pentoxide fine particles is proposed. (Patent Document 3: Japanese Patent Application Laid-Open No. 2004-50810)
However, in conventional hard coat films and transparent antistatic films using conductive oxide particles, for example, when antimony pentoxide fine particles are used, the transparency is excellent, but the conductivity is low and the antistatic performance is insufficient. there were. Further, when P-doped tin oxide is used, the antistatic performance is improved as compared with the case of using antimony pentoxide fine particles, but the transparency becomes insufficient. When Sb-doped tin oxide is used, the antistatic performance is further improved. Although improved, the transparency was lowered and sometimes colored. In addition, regarding antimony pentoxide fine particles, when the chain antimony oxide fine particles contain a doping agent such as tin and phosphorus in JP-A-2005-139026 (Patent Document 4) filed by the present applicant, It is disclosed that chain antimony oxide fine particles having a low volume resistivity can be obtained.

特開2002−79616号公報JP 2002-79616 A 特開2001−72929号公報JP 2001-72929 A 特開2004−50810号公報JP 2004-50810 A 特開2005−139026号公報JP 2005-139026 A

従来より知られていた五酸化アンチモン微粒子、鎖状酸化アンチモン微粒子にリンをドーピングすると体積抵抗値は若干低下するものの、黄色に変色する問題があった。このため、着色あるいは変色のない導電性の向上した五酸化アンチモン微粒子およびそのための有効な製造方法は知られていなかった。   When phosphorus is doped into the conventionally known antimony pentoxide fine particles and chain antimony oxide fine particles, the volume resistance value is slightly lowered, but there is a problem that the color changes to yellow. For this reason, antimony pentoxide fine particles having improved conductivity without coloring or discoloration and an effective production method therefor have not been known.

さらに、従来の導電性酸化物粒子を用いたハードコート膜、透明帯電防止膜では、まず、基材を選定し、基材との密着性、ハードコート性等を考慮してマトリックス成分が選定され、これに、さらに基材との密着性、ハードコート性等を向上させ、帯電防止性能を付与するために導電性酸化物粒子を配合することが行われる。   Furthermore, in the conventional hard coat film and transparent antistatic film using conductive oxide particles, the base material is first selected, and the matrix components are selected in consideration of adhesion to the base material, hard coat properties, etc. In order to further improve the adhesion to the substrate, the hard coat property, and the like, and to impart antistatic performance, conductive oxide particles are blended.

しかしながら、導電性酸化物粒子の屈折率が低いために用いる基材の屈折率、マトリックスの屈折率によっては干渉縞を生じる場合があり、このため、導電性酸化物粒子の配合量を増加したり減少させて調節すると、干渉縞は抑制できるものの、本来必要とされるハードコート性、基材との密着性、膜強度等が不充分となる場合があった。   However, since the refractive index of the conductive oxide particles is low, interference fringes may occur depending on the refractive index of the substrate used and the refractive index of the matrix. For this reason, the amount of the conductive oxide particles is increased. When adjusted by decreasing, interference fringes can be suppressed, but the originally required hard coat properties, adhesion to the substrate, film strength, etc. may be insufficient.

本発明者らは、このような問題点に鑑み鋭意検討した結果、五酸化アンチモン微粒子、またはリン酸化物含有五酸化アンチモン微粒子を、高屈折率の金属酸化物で被覆することによって、得られる被膜の導電性を大きく阻害することなく、干渉縞を抑制し、屈折率を調整することができることを見出して本発明を完成するに至った。   As a result of intensive studies in view of such problems, the present inventors have obtained a coating obtained by coating antimony pentoxide fine particles or phosphorous oxide-containing antimony pentoxide fine particles with a metal oxide having a high refractive index. It has been found that interference fringes can be suppressed and the refractive index can be adjusted without significantly inhibiting the conductivity of the present invention, and the present invention has been completed.

すなわち本発明の要旨は、以下のとおりである。
[1]平均粒子径が5〜50nmの範囲にある五酸化アンチモン微粒子と、
該微粒子表面を被覆した酸化チタンおよび/または酸化ジルコニウム層とからなる五酸化アンチモン系複合酸化物微粒子。
[2]平均粒子径が5〜50nmの範囲にある五酸化アンチモン微粒子が鎖状に連結し、平
均連結数が2〜30個の範囲にある鎖状五酸化アンチモン微粒子と、
該微粒子表面を被覆した酸化チタンおよび/または酸化ジルコニウム層とからなる五酸化アンチモン系複合酸化物微粒子。
[3]前記五酸化アンチモン微粒子がリン酸化物をP25として0.1〜15重量%の範囲
で含有している[1]または[2]の五酸化アンチモン系複合酸化物微粒子。
[4]前記酸化チタンおよび/または酸化ジルコニウムの被覆量が、五酸化アンチモン微粒
子100重量部に対して、TiO2、ZrO2として、0.5〜100重量部の範囲にある[1]
〜[3]の五酸化アンチモン系複合酸化物微粒子。
[5]屈折率(NP)が1.66〜2.0の範囲にある[1]〜[4]の五酸化アンチモン系複合酸化物微粒子。
[6]前記[1]〜[5]の五酸化アンチモン系複合酸化物微粒子と有機樹脂マトリックス形成成
分と分散媒とを含んでなることを特徴とする透明被膜形成用塗布液。
[7]塗布液中の前記五酸化アンチモン系複合酸化物微粒子の濃度が、固形分として0.5
〜57重量%の範囲にあり、
前記有機樹脂マトリックス形成成分の濃度が固形分として0.5〜57重量%の範囲にあり、
全固形分の濃度が1〜60重量%の範囲にある[6]の透明被膜形成用塗布液。
[8]前記有機樹脂マトリックス形成成分が電子線硬化型樹脂である[6]または[7]の透明被
膜形成用塗布液。
[9]基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜が全奇異[1]〜[5]の五酸化アンチモン系複合酸化物微粒子とマトリックス成分とを含んでなること
を特徴とする透明被膜付基材。
[10]前記透明被膜中の五酸化アンチモン系複合酸化物微粒子の含有量が固形分として5〜95重量%の範囲にあり、マトリックス成分の含有量が5〜95重量%の範囲にある[9]
の透明被膜付基材。
[11]前記基材の屈折率(NS)が1.55〜1.75の範囲にあり、前記透明被膜の屈折
率(NH)が1.55〜1.75の範囲にあり、基材の屈折率(NS)と透明被膜の屈折率(NH)の屈折率差が0.01以下である[9]または[1]の透明被膜付基材。
[12]前記透明被膜の表面抵抗値が106〜1013Ω/□の範囲にある[9]〜[11]のいずれかに記載の透明被膜付基材。
That is, the gist of the present invention is as follows.
[1] antimony pentoxide fine particles having an average particle diameter in the range of 5 to 50 nm;
Antimony pentoxide composite oxide fine particles comprising a titanium oxide and / or zirconium oxide layer covering the surface of the fine particles.
[2] antimony pentoxide fine particles having an average particle diameter in the range of 5 to 50 nm are linked in a chain, and chain antimony pentoxide fine particles in the range of an average linkage number of 2 to 30;
Antimony pentoxide composite oxide fine particles comprising a titanium oxide and / or zirconium oxide layer covering the surface of the fine particles.
[3] The antimony pentoxide composite oxide fine particles according to [1] or [2], wherein the antimony pentoxide fine particles contain phosphorous oxide in the range of 0.1 to 15% by weight as P 2 O 5 .
[4] The coating amount of titanium oxide and / or zirconium oxide is in the range of 0.5 to 100 parts by weight as TiO 2 and ZrO 2 with respect to 100 parts by weight of antimony pentoxide fine particles [1]
Antimony pentoxide complex oxide fine particles of [3].
[5] Antimony pentoxide composite oxide fine particles of [1] to [4] having a refractive index (N P ) in the range of 1.66 to 2.0.
[6] A coating solution for forming a transparent film, comprising the antimony pentoxide composite oxide fine particles of [1] to [5], an organic resin matrix-forming component, and a dispersion medium.
[7] The concentration of the antimony pentoxide-based composite oxide fine particles in the coating solution is 0.5% as a solid content.
In the range of ~ 57% by weight,
The concentration of the organic resin matrix forming component is in the range of 0.5 to 57% by weight as a solid content,
The coating liquid for forming a transparent film according to [6], wherein the total solid content is in the range of 1 to 60% by weight.
[8] The coating solution for forming a transparent film according to [6] or [7], wherein the organic resin matrix forming component is an electron beam curable resin.
[9] A base material and a transparent film formed on one surface of the base material, and the transparent film is composed of antimony pentoxide-based composite oxide fine particles and matrix components of all strange [1] to [5] A substrate with a transparent coating, comprising:
[10] The content of the antimony pentoxide-based composite oxide fine particles in the transparent film is in the range of 5 to 95% by weight as the solid content, and the content of the matrix component is in the range of 5 to 95% by weight. ]
Base material with transparent coating.
[11] The refractive index (N S ) of the substrate is in the range of 1.55 to 1.75, the refractive index (N H ) of the transparent film is in the range of 1.55 to 1.75, and The substrate with a transparent coating according to [9] or [1], wherein the refractive index difference between the refractive index (N S ) of the material and the refractive index (N H ) of the transparent coating is 0.01 or less.
[12] The substrate with a transparent film according to any one of [9] to [11], wherein the surface resistance value of the transparent film is in the range of 10 6 to 10 13 Ω / □.

本発明の五酸化アンチモン系複合酸化物粒子は、導電性を有するとともに、屈折率が所望の範囲に調整されている。このためかかる五酸化アンチモン系複合酸化物微粒子を使用するので、干渉縞が無く、透明性に優れるとともに帯電防止性能に優れ、且つ、基材との密着性、耐擦傷性、スクラッチ強度、鉛筆硬度等に優れた透明被膜を形成することができる透明被膜形成用塗布液と透明被膜付基材とを提供することができる。   The antimony pentoxide-based composite oxide particles of the present invention have conductivity and a refractive index adjusted to a desired range. For this reason, since such antimony pentoxide composite oxide fine particles are used, there are no interference fringes, excellent transparency, excellent antistatic performance, and adhesion to the substrate, scratch resistance, scratch strength, pencil hardness. It is possible to provide a coating liquid for forming a transparent film and a substrate with a transparent film, which can form a transparent film excellent in the above.

[五酸化アンチモン系複合酸化物微粒子]
(i)単粒子
本発明に係る五酸化アンチモン系複合酸化物微粒子の第1の態様は、酸化チタンおよび/または酸化ジルコニウムで被覆した五酸化アンチモン微粒子からなる単粒子である。
[Antimony pentoxide complex oxide fine particles]
(i) Single Particle The first aspect of the antimony pentoxide-based composite oxide fine particles according to the present invention is a single particle comprising antimony pentoxide fine particles coated with titanium oxide and / or zirconium oxide.

このような五酸化アンチモン微粒子としては、導電性を有し、平均粒子径(被覆層を含めない大きさ)が概ね5〜50nm、好ましくは10〜40nmの範囲にある。   Such antimony pentoxide fine particles have electrical conductivity, and the average particle diameter (size not including the coating layer) is generally in the range of 5 to 50 nm, preferably 10 to 40 nm.

この粒子径の範囲にあると、五酸化アンチモン自体の結晶性が高いため導電性が高く、しかも被覆層を形成することで達成される効果も十分に発現される。   When the particle diameter is within this range, the antimony pentoxide itself has high crystallinity, so that the conductivity is high, and the effect achieved by forming the coating layer is sufficiently exhibited.

五酸化アンチモン微粒子の平均粒子径が前記範囲下限未満の場合は、結晶性が不充分なためか、充分な低体積抵抗値、導電性が得られない場合がある。また、粒子が凝集する傾向があり、透明被膜に用いた場合、充分な導電性が得られない場合がある。   When the average particle diameter of the antimony pentoxide fine particles is less than the lower limit of the above range, the crystallinity may be insufficient, or a sufficient low volume resistance value and conductivity may not be obtained. Moreover, there exists a tendency for particle | grains to aggregate and when using for a transparent film, sufficient electroconductivity may not be acquired.

五酸化アンチモン微粒子の平均粒子径が前記上限を超えると、導電性が不充分となる場合があり、さらに可視光の散乱が大きくなり、透明被膜の透明性が不充分となる場合がある。   If the average particle size of the antimony pentoxide fine particles exceeds the above upper limit, the conductivity may be insufficient, the visible light scattering may be increased, and the transparency of the transparent film may be insufficient.

本発明では、五酸化アンチモン微粒子の平均粒子径は微粒子の透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について粒子径を測定し、その平均値として測定することができる。   In the present invention, the average particle diameter of the antimony pentoxide fine particles can be measured by taking a transmission electron micrograph (TEM) of the fine particles, measuring the particle diameter of 100 particles, and measuring the average value.

また、第1の五酸化アンチモン系複合酸化物微粒子の体積抵抗値が102〜106Ω・cm、さらには102〜5×105Ω・cmの範囲にあることが好ましい。 The volume resistance of the first antimony pentoxide-based composite oxide fine particles is preferably in the range of 10 2 to 10 6 Ω · cm, more preferably 10 2 to 5 × 10 5 Ω · cm.

このような五酸化アンチモン微粒子としては、本願出願人の出願による(特開平2−180717号公報、特開2001−72929号公報、特開2004−50810号公報
に開示した五酸化アンチモン微粒子は好適に用いることができる。
(ii)鎖状粒子
本発明に係る五酸化アンチモン系複合酸化物微粒子の第2の態様は、平均粒子径が5〜50nmの範囲にある酸化アンチモン微粒子が平均連結数2〜30個の範囲で鎖状に連結した鎖状五酸化アンチモン微粒子を酸化チタンおよび/または酸化ジルコニウムで被覆した五酸化アンチモン微粒子である。
As such antimony pentoxide fine particles, the antimony pentoxide fine particles disclosed in the applicant's application (Japanese Patent Laid-Open Nos. 2-180717, 2001-72929, and 2004-50810 are preferably used. Can be used.
(ii) Chain particles According to the second aspect of the antimony pentoxide-based composite oxide fine particles according to the present invention, the antimony oxide fine particles having an average particle diameter in the range of 5 to 50 nm are in the range of an average number of linkages of 2 to 30. Antimony pentoxide fine particles in which chain-like antimony pentoxide fine particles linked in a chain are coated with titanium oxide and / or zirconium oxide.

酸化チタンおよび/または酸化ジルコニウムの被覆量は第1の五酸化アンチモン系複合酸化物微粒子と同様である。   The coating amount of titanium oxide and / or zirconium oxide is the same as that of the first antimony pentoxide-based composite oxide fine particles.

このような第2の五酸化アンチモン系複合酸化物微粒子を用いるとハードコート性(耐擦傷性、膜強度等)と、より帯電防止性能に優れた透明被膜を得ることができる。   When such second antimony pentoxide composite oxide fine particles are used, it is possible to obtain a transparent coating having hard coat properties (scratch resistance, film strength, etc.) and more excellent antistatic performance.

また、鎖状五酸化アンチモン微粒子として、本願出願人の出願による特開2005−139026号公報に開示した鎖状五酸化アンチモン微粒子を好適に用いることができる。   As the chain antimony pentoxide fine particles, the chain antimony pentoxide fine particles disclosed in JP-A-2005-139026 filed by the applicant of the present application can be suitably used.

通常、五酸化アンチモン微粒子(鎖状粒子を含む)は導電性を有しており、体積抵抗値は概ね106Ω・cm程度である。また、屈折率は概ね1.65である。
被覆層
本発明では、五酸化アンチモンの単粒子ないし鎖状粒子が酸化チタンおよび/または酸化ジルコニウムで被覆されている。
Usually, antimony pentoxide fine particles (including chain particles) have electrical conductivity, and the volume resistance is about 10 6 Ω · cm. The refractive index is approximately 1.65.
Coating Layer In the present invention, single particles or chain particles of antimony pentoxide are coated with titanium oxide and / or zirconium oxide.

酸化チタンおよび/または酸化ジルコニウムの被覆量は前記酸化チタンおよび/または酸化ジルコニウムの被覆量が、五酸化アンチモン微粒子100重量部に対して、TiO2、ZrO2として、0.5〜100重量部、さらには1〜80重量部の範囲にあることが好ましい。 The coating amount of titanium oxide and / or zirconium oxide is such that the coating amount of titanium oxide and / or zirconium oxide is 0.5 to 100 parts by weight as TiO 2 or ZrO 2 with respect to 100 parts by weight of antimony pentoxide fine particles, Furthermore, it is preferable that it exists in the range of 1-80 weight part.

この範囲の被覆量であれば、屈折率が高く、かつ導電性も高い五酸化アンチモン系複合酸化物微粒子を得ることができる。被覆量が前記範囲の下限未満の場合は、屈折率を高める効果が不充分であり、被覆量が大すぎると導電性が不充分となり、これを用いた透明被膜の帯電防止性能が不充分となることがある。
その他成分
本発明の五酸化アンチモン系複合酸化物微粒子はリン酸化物をP25として0.1〜15重量%、さらには0.5〜12重量%の範囲で含有していることが好ましい。リン酸化物は、酸化物としてのみならず、リン酸イオンないし塩として、微粒子内またはその表面に含有されたり、担持されている。このようにリン酸化物成分を含有することで、体積抵抗値が向上し、導電性をさらに高めることが可能となる。
When the coating amount is within this range, antimony pentoxide-based composite oxide fine particles having a high refractive index and high conductivity can be obtained. When the coating amount is less than the lower limit of the above range, the effect of increasing the refractive index is insufficient, and when the coating amount is too large, the conductivity is insufficient, and the antistatic performance of the transparent film using this is insufficient. May be.
Other Components The antimony pentoxide composite oxide fine particles of the present invention preferably contain 0.1 to 15% by weight, more preferably 0.5 to 12% by weight, of phosphorus oxide as P 2 O 5. . Phosphorus oxide is contained or supported not only as an oxide but also as a phosphate ion or salt in or on the surface of fine particles. By containing the phosphorus oxide component in this manner, the volume resistance value is improved, and the conductivity can be further increased.

リン酸化物含有量が少ないと、リン酸化物を含まない場合と実質的に変化がない。またリン酸化物を前記範囲を越えて含有させることは困難であり、できたとしてもさらに体積抵抗値が低下することもない。   When the phosphorus oxide content is low, there is substantially no change from the case where no phosphorus oxide is contained. Moreover, it is difficult to contain the phosphorous oxide beyond the above range, and even if it can be done, the volume resistance value will not be further lowered.

本発明に用いる五酸化アンチモン系複合酸化物微粒子は、下記式(1)で表される有機ケ
イ素化合物で表面処理されていることが望ましい。
n−SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:0〜3の正数)
このような式(1)で表される有機珪素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキ
シシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプ
ロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメ
トキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエ
トキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピル
メチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラ
ン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノール、メチルトリクロロシラン等が挙げられる。
The antimony pentoxide-based composite oxide fine particles used in the present invention are preferably surface-treated with an organosilicon compound represented by the following formula (1).
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, (Halogen, hydrogen, n: positive number from 0 to 3)
Examples of the organosilicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3- Trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxy Silane, γ-glycidoxymethyltriexisilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxy Silane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acryloxyethyltriethoxysilane, γ- (meth) acrylooxypropyltrimethoxy Silane, γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) a Acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyl Triethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriiso Propoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β ( Minoechiru) .gamma.-aminopropyltrimethoxysilane, N- phenyl--γ- aminopropyltrimethoxysilane, .gamma.-mercaptopropyltrimethoxysilane, trimethylsilanol, methyl trichlorosilane and the like.

五酸化アンチモン系複合酸化物微粒子の表面処理は、例えば、五酸化アンチモン系複合酸化物微粒子のアルコール分散液に前記有機ケイ素化合物を所定量加え、これに水を加え、必要に応じて有機ケイ素化合物の加水分解用触媒として酸またはアルカリを加え、有機ケイ素化合物を加水分解する。この時の有機ケイ素化合物の使用量は五酸化アンチモン系複合酸化物微粒子の大きさにもよるが、Rn-SiO(4-n)/2として五酸化アンチモン系複合酸化物微粒子の概ね2〜50重量%、さらには5〜20重量%の範囲にあることが好ましい。 The surface treatment of the antimony pentoxide-based composite oxide fine particles is performed, for example, by adding a predetermined amount of the organosilicon compound to the alcohol dispersion of the antimony pentoxide-based composite oxide fine particles, adding water thereto, and if necessary, the organosilicon compound An acid or alkali is added as a catalyst for hydrolysis of the compound to hydrolyze the organosilicon compound. The amount of the organosilicon compound used at this time depends on the size of the antimony pentoxide-based composite oxide fine particles, but is generally about 2 to 2 of the antimony pentoxide-based composite oxide fine particles as R n —SiO 2 (4-n) / 2. It is preferably in the range of 50% by weight, more preferably 5 to 20% by weight.

このような表面処理については、特に制限されるものではないが、より望ましくは、まず4官能アルコキシドで、表面処理してOH基を付与し、ついで3官能以下のアルコキシドで処理すると、3官能以下のアルコキシドの反応性、結合性が増すために利用率が向上し、
その結果、表面処理効果が向上して、少量でも分散性に優れた粒子を得ることができる。
Such a surface treatment is not particularly limited, but more desirably, a tetrafunctional alkoxide is first subjected to surface treatment to give an OH group, and then treated with a trifunctional or lower alkoxide to obtain a trifunctional or lower functional. The utilization rate is improved due to the increased reactivity and binding properties of
As a result, the surface treatment effect is improved, and particles having excellent dispersibility can be obtained even in a small amount.

さらに、本発明の五酸化アンチモン系複合酸化物微粒子は、前記有機ケイ素化合物に代えて、あるいは有機珪素化合物に加えて樹脂で被覆されていてもよい。   Furthermore, the antimony pentoxide-based composite oxide fine particles of the present invention may be coated with a resin instead of or in addition to the organosilicon compound.

樹脂としては、特に制限されるものではないが、たとえば塗布液に使用する場合、有機樹脂マトリックス形成成分と同様の樹脂を用いることができる。   Although it does not restrict | limit especially as resin, For example, when using for a coating liquid, resin similar to an organic resin matrix formation component can be used.

被覆方法としては、樹脂で被覆できれば特に制限はなく、従来公知の方法を採用することができる。たとえば、五酸化アンチモン系複合酸化物微粒子と樹脂との混合物をメカノケミカル処理する方法、あるいは、鎖状の五酸化アンチモン系微粒子を用いる場合は、紫外線硬化樹脂と混合し、紫外線を照射する方法などが挙げられる。   The coating method is not particularly limited as long as it can be coated with a resin, and a conventionally known method can be employed. For example, a method of mechanochemical treatment of a mixture of antimony pentoxide-based composite oxide fine particles and resin, or a method of irradiating ultraviolet rays mixed with an ultraviolet curable resin when chain antimony pentoxide-based fine particles are used. Is mentioned.

このように、有機ケイ素化合物で表面処理あるいは樹脂が被覆されていると後述する透明被膜形成用塗布液に均一に高分散するとともに安定性が向上し、基材との密着性、耐擦傷性、透明性等に優れた透明被膜を得ることができる。
微粒子特性
本発明の五酸化アンチモン系複合酸化物微粒子の屈折率(NP)は1.66〜2.0、
さらには1.70〜1.90の範囲にあることが好ましい。この範囲の屈折率にあれば、基材とマトリックス成分との屈折率差を小さくできるので、干渉縞を抑制できる。
As described above, when the surface treatment or resin is coated with the organosilicon compound, the dispersion is uniformly and highly dispersed in the coating solution for forming a transparent film described later, and the stability is improved, adhesion to the base material, scratch resistance, A transparent film excellent in transparency and the like can be obtained.
Fine particle characteristics The refractive index (N P ) of the antimony pentoxide-based composite oxide fine particles of the present invention is 1.66 to 2.0,
Furthermore, it is preferable that it exists in the range of 1.70-1.90. If it exists in the refractive index of this range, since the refractive index difference of a base material and a matrix component can be made small, an interference fringe can be suppressed.

五酸化アンチモン系複合酸化物微粒子の屈折率(NP)が低すぎると、基材の屈折率が1.62以上と高く、マトリックス成分の屈折率が1.5以下と低い場合、基材の屈折率(NS)と透明被膜の屈折率(NH)の屈折率差を0.01以下にできない場合があり、干渉縞を生じる場合がある。五酸化アンチモン系複合酸化物微粒子の屈折率(NP)が上記上
限を超えるものは、酸化チタンおよび/または酸化ジルコニウムの被覆量を前記範囲より増加させる必要があり、この場合導電性が不充分となり、得られる透明被膜の帯電防止性能が不充分となる。
If the refractive index (N P ) of the antimony pentoxide-based composite oxide fine particles is too low, the refractive index of the substrate is as high as 1.62 or higher, and the refractive index of the matrix component is as low as 1.5 or lower, The difference in refractive index between the refractive index (N S ) and the refractive index (N H ) of the transparent film may not be 0.01 or less, and may cause interference fringes. When the refractive index (N P ) of the antimony pentoxide composite oxide fine particles exceeds the above upper limit, it is necessary to increase the coating amount of titanium oxide and / or zirconium oxide from the above range, and in this case, the conductivity is insufficient. Thus, the antistatic performance of the obtained transparent coating becomes insufficient.

本発明における粒子の屈折率は、マトリックス形成成分と五酸化アンチモン系複合酸化物微粒子とを、固形分としての重量比(マトリックス成分:五酸化アンチモン系複合酸化物微粒子)がそれぞれ100:0、80:20、60:40、40:60、80:20、95:5となるように混合し、かつ全固形分濃度を30重量%に調整した塗布液を調製し、シリコーンウェハー上に塗布し、乾燥し、硬化して透明被膜を形成し、各透明被膜の屈折率をエリプソメーターで測定し、屈折率と粒子の混合割合をプロットし、外挿法によって五酸化アンチモン系複合酸化物微粒子が100重量%のときの屈折率として求めた。   The refractive index of the particles in the present invention is such that the weight ratio (matrix component: antimony pentoxide composite oxide fine particles) as a solid content of the matrix forming component and the antimony pentoxide composite oxide fine particles is 100: 0, 80, respectively. : 20, 60:40, 40:60, 80:20, 95: 5, and a coating solution prepared by adjusting the total solid content concentration to 30% by weight was applied to a silicone wafer. Dry and cure to form a transparent coating, measure the refractive index of each transparent coating with an ellipsometer, plot the refractive index and the mixing ratio of particles, and extrapolate antimony pentoxide-based composite oxide fine particles to 100 The refractive index was determined as the weight percentage.

本発明の五酸化アンチモン系複合酸化物微粒子の体積抵抗値が1〜106Ω・cm、さ
らには10〜5×105Ω・cmの範囲にあることが好ましい。
The volume resistance value of the antimony pentoxide-based composite oxide fine particles of the present invention is preferably in the range of 1 to 10 6 Ω · cm, more preferably 10 to 5 × 10 5 Ω · cm.

この範囲で、五酸化アンチモン微粒子の平均粒子径や、リン酸化物の含有量を調整することで、被膜の体積抵抗値を所望のに調整することが可能である。   By adjusting the average particle diameter of the antimony pentoxide fine particles and the content of phosphorous oxide within this range, the volume resistance value of the coating film can be adjusted as desired.

たとえば、第1の五酸化アンチモン系複合酸化物微粒子、すなわち単粒子の五酸化アンチモン微粒子を使用した場合の体積抵抗値が、通常102〜106Ω・cm、さらには102〜5×105Ω・cmの範囲にある。なお、リン酸化物を含有する場合、導電性が向上するため、五酸化アンチモン微粒子の体積抵抗値は102〜105Ω・cm、さらには102
〜5×104Ω・cmの範囲にある。
For example, when the first antimony pentoxide-based composite oxide fine particles, that is, single-particle antimony pentoxide fine particles are used, the volume resistance value is usually 10 2 to 10 6 Ω · cm, more preferably 10 2 to 5 × 10 6. It is in the range of 5 Ω · cm. In addition, since conductivity improves when it contains a phosphorous oxide, the volume resistance value of the antimony pentoxide fine particles is 10 2 to 10 5 Ω · cm, and further 10 2.
It is in the range of ˜5 × 10 4 Ω · cm.

第2の五酸化アンチモン系複合酸化物微粒子、すなわち鎖状の五酸化アンチモン微粒子を使用した場合の体積抵抗値は、1〜104Ω・cm、さらには1〜5×103Ω・cmの範囲にある。鎖状粒子にすることで、連結部によって、粒子間の抵抗が低減され、導電性が向上する。さらに、このような鎖状粒子にリン酸化物が含まれていると、さらに導電性が向上するため、第2の酸化アンチモン系複合酸化物微粒子にリン酸化物が含有される場合、体積抵抗値は1〜103Ω・cm、さらには1〜5×102Ω・cmの範囲にある。 When the second antimony pentoxide-based composite oxide fine particles, that is, chain antimony pentoxide fine particles are used, the volume resistance value is 1 to 10 4 Ω · cm, and further 1 to 5 × 10 3 Ω · cm. Is in range. By using chain-like particles, the connecting portion reduces the resistance between the particles and improves the conductivity. In addition, when such a chain particle contains a phosphorus oxide, the conductivity is further improved. Therefore, when the second antimony oxide composite oxide fine particle contains a phosphorus oxide, the volume resistance value is increased. Is in the range of 1 to 10 3 Ω · cm, more preferably 1 to 5 × 10 2 Ω · cm.

五酸化アンチモン系複合酸化物微粒子の体積抵抗値を前記範囲の下限よりも低くすることは困難である。体積抵抗値を前記範囲の上限以上にすると、従来の五酸化アンチモン微粒子の体積抵抗値と大きく変わらず、導電性を向上させる効果、帯電防止性能を向上させる効果が充分得られない場合がある。   It is difficult to make the volume resistance value of the antimony pentoxide-based composite oxide fine particles lower than the lower limit of the above range. If the volume resistance value is greater than or equal to the upper limit of the above range, the volume resistance value of the conventional antimony pentoxide fine particles is not significantly different, and the effect of improving conductivity and the effect of improving antistatic performance may not be sufficiently obtained.

本発明での体積抵抗値(Ω・cm)は、セラミックス製セル(内部に円柱状のくりぬき
(断面積:0.5cm2)を有する)を用い、まず、架台電極上にセルを置き、内部に試
料粉体を充填し、円柱状突起を有する上部電極の突起を挿入し、油圧機にて上下電極を加圧し、100kg/cm(9.80MPa)加圧時の抵抗値(Ω)と試料の高さ(cm)を測定し、抵抗値(Ω)に断面積を乗じ、これを高さで除することによって求めることができる。試料粉体は、分散液を100℃で24時間乾燥して得た粉体を用いる。
製造方法
本発明にかかる五酸化アンチモン系複合酸化物微粒子の製造方法は、屈折率を調整でき、前記導電性を有し、凝集することなく単分散した粒子が得られ、後述する透明被膜形成用塗布液に均一に高分散する粒子が得られれば特に制限はないが、以下の方法が推奨される。
The volume resistance value (Ω · cm) in the present invention is determined by using a ceramic cell (with a cylindrical hollow (cross-sectional area: 0.5 cm 2 ) inside). The sample powder is filled in, the protrusion of the upper electrode having a cylindrical protrusion is inserted, the upper and lower electrodes are pressurized with a hydraulic machine, and the resistance value (Ω) and the sample when 100 kg / cm (9.80 MPa) is applied are measured. Can be obtained by measuring the height (cm), multiplying the resistance value (Ω) by the cross-sectional area, and dividing this by the height. As the sample powder, a powder obtained by drying the dispersion at 100 ° C. for 24 hours is used.
Production method The production method of the antimony pentoxide-based composite oxide fine particles according to the present invention can adjust the refractive index, obtain the above-mentioned conductivity, and monodispersed particles without agglomeration. Although there is no particular limitation as long as particles that are uniformly highly dispersed in the coating solution are obtained, the following method is recommended.

五酸化アンチモン微粒子、鎖状五酸化アンチモン微粒子等の五酸化アンチモン系微粒子分散液に、
(1)酸化チタンゾルおよび/または酸化ジルコニウムゾルを添加し、熟成する方法、
(2)水酸化チタンゲル(酸化チタン水和物)および/または水酸化ジルコニウムゲル(酸化ジルコニウム水和物)を添加し、熟成する方法、
(3)水酸化チタンゲル(酸化チタン水和物)および/または水酸化ジルコニウムゲル(酸化ジルコニウム水和物)を過酸化水素で溶解した溶液を添加し、熟成する方法
等が挙げられる。
In antimony pentoxide-based fine particle dispersions such as antimony pentoxide fine particles and chain antimony pentoxide fine particles,
(1) A method in which a titanium oxide sol and / or a zirconium oxide sol is added and aged,
(2) A method of adding and aging titanium hydroxide gel (titanium oxide hydrate) and / or zirconium hydroxide gel (zirconium oxide hydrate),
(3) A method of adding and aging a titanium hydroxide gel (titanium oxide hydrate) and / or a solution of zirconium hydroxide gel (zirconium oxide hydrate) dissolved in hydrogen peroxide.

この場合、添加されるいずれの酸化チタン源および/または酸化ジルコニウム源も陽イオン、陰イオン、および電解質を実質的に含まないことが重要である。電解質等が含まれていると、五酸化アンチモン系複合酸化物微粒子が凝集し(鎖状とは異なる)、本発明の透明被膜形成用塗布液に用いると透明被膜の耐擦傷性、強度、透明性等が問題となる。   In this case, it is important that any titanium oxide source and / or zirconium oxide source added is substantially free of cations, anions, and electrolytes. When an electrolyte or the like is contained, the antimony pentoxide-based composite oxide fine particles aggregate (different from the chain), and when used in the coating liquid for forming a transparent film of the present invention, the scratch resistance, strength, and transparency of the transparent film Sex is a problem.

また、ゾルを用いる場合、平均粒子径は五酸化アンチモン系微粒子の粒子径より小さいことが好ましい。   Moreover, when using sol, it is preferable that an average particle diameter is smaller than the particle diameter of an antimony pentoxide type | system | group fine particle.

過酸化水素溶解溶液を用いる場合、溶解後、加熱熟成して用いることが好ましい。加熱熟成すると、溶解が促進するとともに、温度が高温になると酸化チタンあるいは酸化ジルコニウムのゾルが生成する。   In the case of using a hydrogen peroxide solution, it is preferable to use it after heating and aging. When heated and aged, dissolution is accelerated, and when the temperature becomes high, a sol of titanium oxide or zirconium oxide is generated.

上記した酸化チタン源および/または酸化ジルコニウム源を用いると、五酸化アンチモン系微粒子の導電性を大きく低下することなく、凝集することなく、屈折率の調整された五酸化アンチモン系複合酸化物微粒子を調製することができる。   When the above-described titanium oxide source and / or zirconium oxide source is used, the antimony pentoxide composite oxide fine particles whose refractive index is adjusted can be obtained without significantly reducing the conductivity of the antimony pentoxide fine particles and without agglomerating. Can be prepared.

酸化チタン源および/または酸化ジルコニウム源の添加量は、得られる五酸化アンチモン系複合酸化物微粒子中の五酸化アンチモン微粒子100重量部に対し、TiO2および/またはZrO2として0.5〜100重量部、さらには1〜80重量部の範囲となるように
添加する。
The addition amount of the titanium oxide source and / or the zirconium oxide source is 0.5 to 100 weight as TiO 2 and / or ZrO 2 with respect to 100 parts by weight of the antimony pentoxide fine particles in the obtained antimony pentoxide-based composite oxide fine particles. Part, and further, it adds so that it may become the range of 1-80 weight part.

酸化チタン源および/または酸化ジルコニウム源の添加量が少ないと、所望の屈折率に調整できない場合があり、添加量が多すぎても、体積抵抗値が大きく上昇し、導電性が不充分となる場合がある。   If the addition amount of the titanium oxide source and / or the zirconium oxide source is small, the desired refractive index may not be adjusted. Even if the addition amount is too large, the volume resistance value increases greatly and the conductivity becomes insufficient. There is a case.

酸化チタン源および/または酸化ジルコニウム源を添加後、熟成するが、温度は50〜300℃、さらには80〜250℃の範囲にあることが好ましい。   After adding the titanium oxide source and / or zirconium oxide source, aging is performed, but the temperature is preferably in the range of 50 to 300 ° C, more preferably 80 to 250 ° C.

熟成温度が低すぎると、酸化チタンおよび/または酸化ジルコニウムで五酸化アンチモン微粒子を均一に被覆することができない場合がある。また、熟成温度が高すぎても、得
られる五酸化アンチモン系複合酸化物微粒子が、単分散した粒子でもなく、鎖状の粒子でもなく、凝集した粒子が生成するとともに体積抵抗値が高くなり、本発明の透明被膜に用いた場合、導電性が不充分となるとともに、基材との密着性、透明性等が低下する。
If the aging temperature is too low, the antimony pentoxide fine particles may not be uniformly coated with titanium oxide and / or zirconium oxide. Even if the aging temperature is too high, the resulting antimony pentoxide-based composite oxide fine particles are not monodispersed particles, not chain-like particles, and aggregated particles are generated and the volume resistance value is increased. When used in the transparent film of the present invention, the conductivity becomes insufficient, and the adhesion to the substrate, transparency, and the like are lowered.

また、熟成時間は、温度によっても異なるが、1〜24時間、さらには2〜20時間の範囲にあることが好ましい。   The aging time varies depending on the temperature, but is preferably in the range of 1 to 24 hours, more preferably 2 to 20 hours.

なお、リン酸化物を含有させる場合、通常、被覆前の五酸化アンチモン微粒子、鎖状五酸化アンチモン微粒子に含有される。リン酸化物含有五酸化アンチモン微粒子、リン酸化物含有鎖状五酸化アンチモン微粒子は、前記した五酸化アンチモン微粒子分散液、鎖状五酸化アンチモン微粒子分散液にリン酸化合物を添加し、乾燥することによって調製することができる。   In addition, when phosphorus oxide is contained, it is usually contained in the antimony pentoxide fine particles and the chain antimony pentoxide fine particles before coating. Phosphorus oxide-containing antimony pentoxide fine particles and phosphorous oxide-containing chain antimony pentoxide fine particles are obtained by adding a phosphoric acid compound to the above-described antimony pentoxide fine particle dispersion and chain antimony pentoxide fine particle dispersion and drying. Can be prepared.

なお、リン酸化合物としてはリン酸(オルトリン酸)、メタリン酸、リン酸アンモニウム等のリン化合物を用いることもできるが、これらのうちリン酸(オルトリン酸)が好適に採用される。   As the phosphoric acid compound, phosphoric compounds such as phosphoric acid (orthophosphoric acid), metaphosphoric acid, and ammonium phosphate can be used. Of these, phosphoric acid (orthophosphoric acid) is preferably employed.

このときの、五酸化アンチモン微粒子分散液の濃度は特に制限はないが概ね1〜30重量%の範囲にあることが好ましい。この範囲の分散液濃度であれば、生産性高く、また、粒子の凝集といった問題点もない。また、分散液の温度は特に制限はないが、通常常温で行う。   The concentration of the antimony pentoxide fine particle dispersion at this time is not particularly limited but is preferably in the range of 1 to 30% by weight. If the dispersion concentration is within this range, the productivity is high and there is no problem of particle aggregation. The temperature of the dispersion is not particularly limited, but it is usually carried out at room temperature.

リン酸の添加量は、得られるリン酸化物含有五酸化アンチモン微粒子中のリン酸化物の含有量がP25として0.1〜15重量%となるように添加する。 The phosphoric acid is added so that the phosphorous oxide content in the obtained phosphoric acid-containing antimony pentoxide fine particles is 0.1 to 15% by weight as P 2 O 5 .

リン酸を添加した後、必要に応じて撹拌を継続することが好ましい。   After adding phosphoric acid, it is preferable to continue stirring as needed.

ついで、濾過し、分離し、乾燥または加熱処理し、リン酸化物含有五酸化アンチモン微粒子を得ることができる。   Then, filtration, separation, drying or heat treatment can be performed to obtain phosphorous oxide-containing antimony pentoxide fine particles.

乾燥、加熱処理方法は特に制限はなく、従来公知の方法で乾燥、加熱処理することができる。   There are no particular limitations on the drying and heat treatment methods, and drying and heat treatment can be performed by a conventionally known method.

乾燥条件は、リン酸化物含有五酸化アンチモン微粒子中の付着水を除去でき、導電性を発現する結晶水を保持していればよく、概ね80〜110℃で0.5〜12時間である。   The drying condition is such that adhering water in the phosphorous oxide-containing antimony pentoxide fine particles can be removed and the crystal water that exhibits conductivity is retained, and is generally at 80 to 110 ° C. for 0.5 to 12 hours.

加熱処理は概ね110〜250℃で概ね0.5〜2時間である。加熱処理温度が高温になりすぎると、リンが五酸化アンチモン微粒子の結晶にドーピングされるためか、得られるリン酸化物含有五酸化アンチモン微粒子が黄色に変色する傾向があり、場合によっては体積抵抗値が低くならず、透明導電性被膜に用いるには不向きである。   The heat treatment is approximately 110 to 250 ° C. for approximately 0.5 to 2 hours. If the heat treatment temperature becomes too high, phosphorous is doped into the antimony pentoxide fine crystals, or the resulting phosphor oxide-containing antimony pentoxide fine particles tend to turn yellow. Is not low and is not suitable for use in a transparent conductive film.

このようにして、前記した本発明に係る五酸化アンチモン系複合酸化物微粒子を製造することができる。   Thus, the antimony pentoxide-based composite oxide fine particles according to the present invention described above can be produced.

得られた五酸化アンチモン系複合酸化物微粒子分散液は、必要に応じて前記した有機珪素化合物による表面処理あるいは有機樹脂により被覆をして用いることができる。   The obtained antimony pentoxide-based composite oxide fine particle dispersion can be used after surface treatment with an organic silicon compound or coating with an organic resin as necessary.

また、後述する塗料に用いるために所望の分散媒に溶媒置換して用いることができる。溶媒置換の方法としては、通常、限外濾過膜法が採用される。   Further, it can be used after replacing the solvent with a desired dispersion medium for use in the coating material described later. As a solvent replacement method, an ultrafiltration membrane method is usually employed.

[透明被膜形成用塗布液]
本発明に係る透明被膜形成用塗布液は、前記五酸化アンチモン系複合酸化物微粒子と有機樹脂マトリックス形成成分と分散媒とを含んでなることを特徴としている。
五酸化アンチモン系複合酸化物微粒子
五酸化アンチモン系複合酸化物微粒子としては前記した五酸化アンチモン系複合酸化物微粒子が用いられる。
マトリックス形成成分
マトリックス形成成分としては、シリコーン系(ゾルゲル系)マトリックス形成成分または有機樹脂マトリックス形成成分を用いることができるが、本発明では有機樹脂マトリックス形成成分が好適に用いられる。
[Transparent coating solution]
The coating liquid for forming a transparent film according to the present invention comprises the antimony pentoxide-based composite oxide fine particles, an organic resin matrix-forming component, and a dispersion medium.
Antimony pentoxide-based composite oxide fine particles The antimony pentoxide-based composite oxide fine particles described above are used as the antimony pentoxide-based composite oxide fine particles.
As the matrix-forming component , a silicone-based (sol-gel-based) matrix-forming component or an organic resin matrix-forming component can be used. In the present invention, an organic resin matrix-forming component is preferably used.

シリコーン系マトリックス形成成分としては、前記式(1)で表される有機ケイ素化合
物およびその加水分解・重縮合物が使用される。
As the silicone-based matrix-forming component, an organosilicon compound represented by the above formula (1) and a hydrolysis / polycondensation product thereof are used.

有機樹脂マトリックス形成成分として、具体的には塗料用樹脂として公知の熱硬化性樹脂、熱可塑性樹脂等のいずれも採用することができる。たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。   As the organic resin matrix forming component, specifically, any of thermosetting resins and thermoplastic resins known as coating resins can be employed. For example, conventionally used polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, silicone rubber and other thermoplastic resins, urethane resins, melamine resins And thermosetting resins such as silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, and thermosetting acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins.

これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化型、紫外線硬化型、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。   These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Furthermore, a thermosetting type, an ultraviolet curable type, an electron beam curable type may be used, and in the case of a thermosetting resin, a curing catalyst may be included.

本発明では電子線硬化型樹脂が好適に用いられる。   In the present invention, an electron beam curable resin is preferably used.

なおマトリックス形成成分の種類に応じて、適宜、硬化触媒を含んでいても良い。   In addition, according to the kind of matrix formation component, you may contain the curing catalyst suitably.

分散媒
本発明に用いる分散媒としては前記マトリックス形成成分、必要に応じて用いる硬化触媒を溶解あるいは分散できるとともに前記した五酸化アンチモン微粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。具体的には、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステルなどのケトン類、トルエン、キシレン等が挙げられる。これらは単独で使用してもよく、また2種以上混合して使用することもできる。
Dispersion medium The dispersion medium used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component and, if necessary, the curing catalyst, and can uniformly disperse the antimony pentoxide fine particles described above. A solvent can be used. Specifically, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; methyl acetate , Esters such as ethyl acetate, butyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl Ethers such as ether and propylene glycol monoethyl ether; Acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, acetylacetone, ketones such as acetoacetate, toluene, xylene and the like. These may be used alone or in combination of two or more.

透明膜形成用塗布液の濃度は、全固形分として1〜60重量%、さらには2〜40重量
%の範囲にあることが望ましい。固形分濃度がこの範囲にあれば、所望の透明被膜を効率よく作製できる。なお、固形分濃度が低すぎると、1回の塗布で厚膜の透明導電性被膜を得ることが困難な場合があり、繰り返し塗布、乾燥を繰り返すと、膜の強度が低下したり、経済性が低下する問題がある。また、固形分濃度が高すぎても、塗布液自体の粘度が高くなり、塗布性が低下したり、得られる透明被膜のヘーズが高くなったり、耐擦傷性が不充分となる場合がある。
The concentration of the coating solution for forming a transparent film is preferably in the range of 1 to 60% by weight, more preferably 2 to 40% by weight as the total solid content. If the solid content concentration is within this range, a desired transparent film can be produced efficiently. If the solid content concentration is too low, it may be difficult to obtain a thick transparent conductive film by a single application. Repeated application and drying may reduce the strength of the film or reduce the cost. There is a problem that decreases. Further, even if the solid content concentration is too high, the viscosity of the coating solution itself may be increased, the coating property may be lowered, the haze of the obtained transparent film may be increased, and the scratch resistance may be insufficient.

透明被膜形成用塗布液中の五酸化アンチモン系複合酸化物微粒子の濃度は固形分として0.5〜57重量%、さらには1〜45重量%の範囲にあることが好ましい。この範囲にあれば、目的とする五酸化アンチモン系複合酸化物微粒子を配合する効果が十分に発現される。   The concentration of the antimony pentoxide-based composite oxide fine particles in the coating liquid for forming a transparent film is preferably in the range of 0.5 to 57% by weight, more preferably 1 to 45% by weight as the solid content. If it exists in this range, the effect of mix | blending the target antimony pentoxide type complex oxide fine particle will fully be expressed.

透明被膜形成用塗布液中の五酸化アンチモン系複合酸化物微粒子が少なすぎると、耐擦傷性、基材との密着性が不充分となる場合があり、また、屈折率を高めることができず、基材の種類(屈折率)、マトリックス成分の種類(屈折率)によっては干渉縞を生じる場合があり、さらに、導電性が不充分となり、得られる透明被膜付基材の帯電防止性能が不充分となる場合がある。五酸化アンチモン系複合酸化物微粒子が多すぎても、マトリックス成分が少なくなるために透明被膜の耐擦傷性、基材との密着性が不充分となる場合があり、五酸化アンチモン系複合酸化物微粒子の屈折率によっては干渉縞を生じる場合がある。   If there is too little antimony pentoxide-based composite oxide fine particles in the coating solution for forming a transparent film, the scratch resistance and adhesion to the substrate may be insufficient, and the refractive index cannot be increased. Depending on the type of substrate (refractive index) and the type of matrix component (refractive index), interference fringes may occur, and the conductivity becomes insufficient, resulting in poor antistatic performance of the substrate with a transparent coating. May be sufficient. Even if there are too many antimony pentoxide-based composite oxide fine particles, the matrix component is reduced, so the scratch resistance of the transparent coating and the adhesion to the substrate may be insufficient. Depending on the refractive index of the fine particles, interference fringes may occur.

透明被膜形成用塗布液中のマトリックス形成成分の濃度は固形分として0.5〜57重量%、さらには1〜45重量%の範囲にあることが好ましい。この範囲にあれば、透明被膜と基材の密着性を高くでき、しかも透明被膜の耐擦傷性が高く、しかも導電性を阻害することもない。   The concentration of the matrix-forming component in the coating solution for forming a transparent film is preferably in the range of 0.5 to 57% by weight, more preferably 1 to 45% by weight as the solid content. If it exists in this range, the adhesiveness of a transparent film and a base material can be made high, and also the abrasion resistance of a transparent film is high, and also conductivity is not inhibited.

透明被膜形成用塗布液中のマトリックス形成成分が少なすぎると、マトリックス形成成分が少なくなるために透明被膜の耐擦傷性、基材との密着性が不充分となる場合がある。またマトリックス形成成分が多すぎても五酸化アンチモン系複合酸化物微粒子が少なくなるために導電性が不充分となり、得られる透明被膜付基材の帯電防止性能が不充分となる場合があり、また、耐擦傷性、基材との密着性が不充分となる場合がある。また、基材の種類(屈折率)、マトリックス成分の種類(屈折率)によっては干渉縞を生じる場合がある。   If there are too few matrix-forming components in the coating solution for forming a transparent coating, the matrix-forming components are reduced, and the scratch resistance and adhesion to the substrate may be insufficient. In addition, even if there are too many matrix-forming components, the antimony pentoxide-based composite oxide fine particles are reduced, so that the conductivity is insufficient, and the resulting antistatic performance of the substrate with a transparent coating may be insufficient. In addition, the scratch resistance and the adhesion to the substrate may be insufficient. Further, depending on the type of substrate (refractive index) and the type of matrix component (refractive index), interference fringes may occur.

五酸化アンチモン系複合酸化物微粒子とマトリックス形成成分との重量比は、(五酸化アンチモン:マトリックス形成成分)=(1:99)〜(70:30)、好ましくは(5:95)〜(63:35)の範囲にあることが望ましい。この範囲にあれば、帯電防止性および耐擦傷性がバランスよく優れ、しかも密着性にもすぐれた透明被膜を形成できる。   The weight ratio of the antimony pentoxide-based composite oxide fine particles to the matrix-forming component is (antimony pentoxide: matrix-forming component) = (1:99) to (70:30), preferably (5:95) to (63 : It is desirable to be in the range of 35). Within this range, it is possible to form a transparent film excellent in balance between antistatic properties and scratch resistance and having excellent adhesion.

このような塗布液をディップ法、スプレー法、スピナー法、ロールコート法等の周知の方法で前記した基材に塗布し、乾燥し、加熱処理、紫外線照射等によって硬化させることによって透明被膜を形成することができる。   A transparent film is formed by applying such a coating solution to the above-mentioned substrate by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, drying, and curing by heat treatment, ultraviolet irradiation, or the like. can do.

[透明被膜付基材]
本発明に係る透明被膜付基材は、基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜が前記五酸化アンチモン系複合酸化物微粒子とマトリックス成分とを含んでなることを特徴としている。
[Base material with transparent coating]
The substrate with a transparent coating according to the present invention comprises a substrate and a transparent coating formed on one surface of the substrate, the transparent coating comprising the antimony pentoxide-based composite oxide fine particles and the matrix component. It is characterized by comprising.

基材
本発明に用いる基材としては、従来公知のガラス、ポリカーボネート、アクリル樹脂、
PP、PE、PET、TAC等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等を用いることができる。
The base material used for the substrate present invention, conventionally known glass, polycarbonate, acrylic resin,
Plastic sheets such as PP, PE, PET, and TAC, plastic films, and plastic panels can be used.

なかでもPET等などのポリエステル、ポリカーボネート、ポリオレフィン系樹脂基材、ポリビニルアルコール系樹脂基材、ポリエーテルスルフォン系樹脂基材などが好適に用いられる。   Of these, polyesters such as PET, polycarbonate, polyolefin resin base materials, polyvinyl alcohol resin base materials, polyether sulfone resin base materials and the like are preferably used.

本発明に用いる基材の屈折率(NS)は1.55〜1.75、さらには1.58〜17
0の範囲にあることが好ましい。この範囲の屈折率にある基材と、上記五酸化アンチモン系複合酸化物微粒子とを組合わせることによって、基材の屈折率(NS)との屈折率差が
小さいので透明被膜の屈折率の調整が容易となり干渉縞を抑制することができる。
The refractive index (N s ) of the substrate used in the present invention is 1.55 to 1.75, and further 1.58 to 17
It is preferably in the range of 0. By combining the base material having a refractive index in this range with the antimony pentoxide-based composite oxide fine particles, the refractive index difference between the base material and the refractive index (N S ) is small. Adjustment becomes easy and interference fringes can be suppressed.

基材の屈折率(NS)が前記範囲にない場合は、本発明の五酸化アンチモン系複合酸化
物微粒子を用いても透明被膜の屈折率の調整が困難で、基材の屈折率(NS)との屈折率
差を小さくすることができず、干渉縞を抑制することができない場合がある。
五酸化アンチモン系複合酸化物微粒子
五酸化アンチモン系複合酸化物微粒子としては前記した五酸化アンチモン系複合酸化物微粒子が用いられる。
When the refractive index (N S ) of the substrate is not within the above range, it is difficult to adjust the refractive index of the transparent coating even if the antimony pentoxide-based composite oxide fine particles of the present invention are used. In some cases, the refractive index difference from S ) cannot be reduced, and interference fringes cannot be suppressed.
Antimony pentoxide-based composite oxide fine particles The antimony pentoxide-based composite oxide fine particles described above are used as the antimony pentoxide-based composite oxide fine particles.

マトリックス成分
マトリックス成分としては、前記シリコーン系(ゾルゲル系)マトリックス形成成分の硬化物または前記有機樹脂マトリックス形成成分の硬化物が用いられる。
As the matrix component, a cured product of the silicone-based (sol-gel) matrix-forming component or a cured product of the organic resin matrix-forming component is used.

本発明では前記した有機樹脂マトリックス形成成分の硬化物が好適に用いられる。なかでも、電子線硬化型樹脂が好適に用いられる。   In the present invention, the cured product of the organic resin matrix-forming component described above is preferably used. Among these, an electron beam curable resin is preferably used.

前記透明被膜中の五酸化アンチモン系複合酸化物微粒子の含有量が固形分として5〜95重量%の範囲にあり、マトリックス成分の含有量が5〜95重量%の範囲にあることが好ましい。   The content of the antimony pentoxide composite oxide fine particles in the transparent film is preferably in the range of 5 to 95% by weight as the solid content, and the content of the matrix component is preferably in the range of 5 to 95% by weight.

透明被膜中の五酸化アンチモン系複合酸化物微粒子が少なすぎれば、前記したように、耐擦傷性、基材との密着性が不充分となる場合があり、また、屈折率を高めることができず、基材の屈折率、マトリックス成分の屈折率によっては干渉縞を生じる場合があり、さらに、導電性が不充分となり、得られる透明被膜付基材の帯電防止性能が不充分となる場合がある。透明被膜中の五酸化アンチモン系複合酸化物微粒子が多すぎても、マトリックス成分が少なくなるために透明被膜の耐擦傷性、基材との密着性が不充分となる場合があり、五酸化アンチモン系複合酸化物微粒子の屈折率によっては干渉縞を生じる場合がある。   If the amount of antimony pentoxide-based composite oxide particles in the transparent coating is too small, as described above, scratch resistance and adhesion to the substrate may be insufficient, and the refractive index can be increased. However, depending on the refractive index of the substrate and the refractive index of the matrix component, interference fringes may occur. is there. Even if there are too many antimony pentoxide-based composite oxide fine particles in the transparent coating, the matrix component is reduced, so the scratch resistance of the transparent coating and the adhesion to the substrate may be insufficient. Depending on the refractive index of the system composite oxide fine particles, interference fringes may occur.

本発明では、透明被膜の屈折率(NH)は1.55〜1.75、さらには1.58〜1
.70の範囲にあることが好ましい。透明被膜の屈折率(NH)が前記範囲にない場合は
、本発明に好適に用いる基材の屈折率(NS)との屈折率差が大きく、干渉縞を生じる問
題がある。
In the present invention, the transparent coating has a refractive index (N H ) of 1.55 to 1.75, more preferably 1.58 to 1.
. It is preferable to be in the range of 70. When the refractive index (N H ) of the transparent coating is not within the above range, there is a problem that the refractive index difference with the refractive index (N S ) of the substrate suitably used in the present invention is large, resulting in interference fringes.

また、透明被膜の屈折率(NH)と基材の屈折率(NS)と透明被膜の屈折率(NH)の
屈折率差が0.01以下とすることが好ましい。
The refractive index difference between the refractive index of the transparent film (N H) and the refractive index of the substrate (N S) and the refractive index of the transparent film (N H) is preferable to be 0.01 or less.

なお、透明被膜はマトリックス成分と五酸化アンチモン系複合酸化物微粒子とから構成されており、マトリックス成分の屈折率、五酸化アンチモン系複合酸化物微粒子の屈折率およびこれらの配合量を、基材の屈折率(NS)と透明被膜の屈折率(NH)の屈折率差が
0.01以下となるように調整する。この屈折率差が0.01以下であれば干渉縞のない透明被膜付基材を得ることができる。
The transparent film is composed of a matrix component and antimony pentoxide-based composite oxide fine particles. The refractive index of the matrix component, the refractive index of the antimony pentoxide-based composite oxide fine particles, and the blending amount thereof are determined based on the base material. The refractive index difference between the refractive index (N S ) and the refractive index (N H ) of the transparent film is adjusted to be 0.01 or less. If this refractive index difference is 0.01 or less, a substrate with a transparent coating without interference fringes can be obtained.

さらに、本発明の透明被膜は、表面抵抗値が106〜1013Ω/□、さらには106〜109Ω/□の範囲にあることが好ましい。この範囲にあれば帯電防止性能に優れた透明被
膜が得られる。
Furthermore, the transparent film of the present invention preferably has a surface resistance value in the range of 10 6 to 10 13 Ω / □, more preferably 10 6 to 10 9 Ω / □. If it exists in this range, the transparent film excellent in the antistatic performance will be obtained.

本発明によれば、五酸化アンチモン系微粒子を使用しているので、表面抵抗値を前記下限未満にすることは困難であり、得られたとしても耐擦傷性、基材との密着性が不充分となる場合がある。表面抵抗値が高すぎると、帯電防止性能が不充分となる場合がある。   According to the present invention, since antimony pentoxide fine particles are used, it is difficult to make the surface resistance value less than the lower limit, and even if obtained, the scratch resistance and the adhesion to the substrate are poor. May be sufficient. If the surface resistance value is too high, the antistatic performance may be insufficient.

本発明の透明被膜の膜厚は、特に制限されないが、通常、0.1〜20μm、さらには0.2〜15μmの範囲にあることが好ましい。   The film thickness of the transparent film of the present invention is not particularly limited, but is usually preferably in the range of 0.1 to 20 μm, more preferably 0.2 to 15 μm.

透明被膜の膜厚が薄すぎると、帯電防止性能が不充分となる場合があり、また、透明導電性被膜表面に加わる応力を充分吸収することがでないために、耐擦傷性が不充分となる。透明被膜を厚くしすぎると、膜の厚さが均一になるように塗布したり、均一に乾燥することが困難となり、さらに収縮が大きくなるので基材の種類によってはカーリング(透明被膜付基材が湾曲)が生じることがある。また、膜厚が厚すぎて透明性が不充分となることがある。   If the film thickness of the transparent coating is too thin, the antistatic performance may be insufficient, and the stress applied to the surface of the transparent conductive coating may not be sufficiently absorbed, resulting in insufficient scratch resistance. . If the transparent film is too thick, it will be difficult to apply the film so that the film thickness is uniform, and it will be difficult to uniformly dry the film, and the shrinkage will increase. May be curved). Also, the film thickness may be too thick and the transparency may be insufficient.

[実施例]
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
五酸化アンチモン系複合酸化物微粒子(1)分散液の調製
i)五酸化アンチモン微粒子の調製
純水800gに苛性カリ(旭硝子(株)製:純度85%)25gを溶解した溶液中に三酸化アンチモン(日本精鉱(株):PATOX-M、純度98.5%)50gを懸濁した。この
懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、濃度35重量%)15gを純水50gで希釈した水溶液を9時間で添加し、三酸化アンチモンを溶解し、その後、11時間熟成した。ついで、冷却後、得られた溶液から800gをとり、この溶液を純水4800gで希釈した後、陽イオン交換樹脂(三菱化学(株)製:pk−216)でpHが2.8になるまで脱イオン処理を行った。脱イオン処理して得られた溶液を温度70℃で10時間熟成してSb25として濃度1重量%の五酸化アンチモン微粒子(1)分
散液を得た。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of antimony pentoxide complex oxide fine particles (1) dispersion
i) Preparation of antimony pentoxide fine particles Antimony trioxide (Nippon Seiko Co., Ltd .: PATOX-M, purity 98.5) in a solution of 25 g of caustic potash (Asahi Glass Co., Ltd .: 85% purity) dissolved in 800 g of pure water. %) Was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 15 g of hydrogen peroxide solution (produced by Hayashi Junyaku Co., Ltd .: special grade, concentration 35% by weight) with 50 g of pure water was added in 9 hours. Antimony oxide was dissolved and then aged for 11 hours. Then, after cooling, 800 g is taken from the obtained solution, and after diluting this solution with 4800 g of pure water, the pH is 2.8 with a cation exchange resin (Mitsubishi Chemical Corporation: pk-216). Deionization treatment was performed. The solution obtained by deionization was aged at 70 ° C. for 10 hours to obtain a dispersion of antimony pentoxide fine particles (1) having a concentration of 1% by weight as Sb 2 O 5 .

五酸化アンチモン微粒子(1)の平均粒子径は20nm、粒子の屈折率は1.65、体積
抵抗値は1000Ω・cmであった。
The average particle diameter of the antimony pentoxide fine particles (1) was 20 nm, the refractive index of the particles was 1.65, and the volume resistance value was 1000 Ω · cm.

ii)酸化チタン複合化
温度40℃に調製した濃度4重量%のアンモニア水溶液537.7gを撹拌しながら、TiO2として濃度15重量%の四塩化チタン水溶液173.3gを添加して中和して、TiO2ヒドロゲルスラリーを調製した。
ii) Titanium oxide composite While stirring 537.7 g of a 4 wt% aqueous ammonia solution prepared at a temperature of 40 ° C., 173.3 g of a 15 wt% titanium tetrachloride aqueous solution as TiO 2 was added and neutralized. A TiO 2 hydrogel slurry was prepared.

ついで、45℃で1時間熟成した後、濾過し、温水を充分掛け水して洗浄した。洗浄したゲルの濃度はTiO2として10重量%であった。 Subsequently, after aging at 45 ° C. for 1 hour, the mixture was filtered and washed with sufficient warm water. The concentration of the washed gel was 10% by weight as TiO 2 .

得られたチタニアゲル100gを水でTiO2として2重量%に希釈した。ついで、過酸化水素水(林純薬(株)製:特級、濃度35重量%)14gを添加し、室温で1時間攪拌し
てチタニアゲルを溶解し、70℃で5時間熟成して、濃度2重量%のペルオキソチタン酸水溶液を調製した。
100 g of the obtained titania gel was diluted with water as TiO 2 to 2% by weight. Next, 14 g of hydrogen peroxide (manufactured by Hayashi Junyaku Co., Ltd .: special grade, concentration 35% by weight) was added and stirred at room temperature for 1 hour to dissolve the titania gel and aged at 70 ° C. for 5 hours to obtain a concentration of 2 A weight percent aqueous peroxotitanate solution was prepared.

ついで、上記で調製した濃度1重量%の五酸化アンチモン微粒子(1)分散液1000g
に濃度2重量%のペルオキソチタン酸水溶液150gを添加し、155℃で10時間加熱処理して固形分濃度1.15重量%の五酸化アンチモン系複合酸化物微粒子(1)水分散液
を調製した。五酸化アンチモン系複合酸化物微粒子(1)の平均粒子径は22nm、粒子の
屈折率は1.772、体積抵抗値は3000Ω・cmであった。ついで、限外濾過膜で固形分として濃度14重量%まで濃縮した。
Subsequently, 1000 g of antimony pentoxide fine particles (1) having a concentration of 1% by weight prepared as described above was used.
150 g of an aqueous solution of peroxotitanic acid having a concentration of 2% by weight was added, followed by heat treatment at 155 ° C. for 10 hours to prepare an antimony pentoxide-based composite oxide fine particle (1) aqueous dispersion having a solid concentration of 1.15% by weight. . The antimony pentoxide-based composite oxide fine particles (1) had an average particle diameter of 22 nm, a particle refractive index of 1.772, and a volume resistance of 3000 Ω · cm. Subsequently, it concentrated to 14 weight% of density | concentration as solid content with the ultrafiltration membrane.

iii)表面処理
次に、濃縮した五酸化アンチモン系複合酸化物微粒子(1)水分散液1000gにメタノ
ール1000gを添加して7%に希釈し、テトラエトキシシランを31.1g添加し、50℃で4時間攪拌した。ついで、限外濾過膜でメタノールに置換し、その後固形分濃度30.5重量%まで濃縮した。
iii) Surface treatment Next, 1000 g of concentrated antimony pentoxide-based composite oxide fine particles (1) 1000 g of methanol was added to dilute to 7%, 31.1 g of tetraethoxysilane was added, and the mixture was heated at 50 ° C. Stir for 4 hours. Subsequently, the membrane was replaced with methanol by an ultrafiltration membrane, and then concentrated to a solid content concentration of 30.5% by weight.

得られた固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(1)メタノ
ール分散液100gにγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(
株)製:KBM−503、SiO2成分81.9重量%)1.1gを混合し、50℃で19時間攪拌する。その後、イソプロピルアルコールに溶剤置換して、固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(1)分散液を得た。
The obtained antimony pentoxide-based composite oxide fine particles having a solid concentration of 30.5% by weight (1) To 100 g of methanol dispersion, γ-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical (
Co., Ltd .: KBM-503, SiO 2 component 81.9% by weight) 1.1 g are mixed and stirred at 50 ° C. for 19 hours. Thereafter, the solvent was replaced with isopropyl alcohol to obtain a dispersion of antimony pentoxide composite oxide fine particles (1) having a solid concentration of 30.5% by weight.

五酸化アンチモン系複合酸化物微粒子(1)の平均粒子径は22nm、粒子の屈折率は1
.772、体積抵抗値は3000Ω・cmであった。
透明被膜形成用塗布液(1)の調製
五酸化アンチモン系複合酸化物微粒子(1)分散液4.92gに紫外線硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重量%)1.90gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、プロピレングリコールモノメチル
エーテル(PGME)で固形分濃度10%に溶解)0.90g及びPGME2.28gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(1)を調製した。
透明被膜付基材(1)の製造
透明被膜形成用塗布液(1)をポリカーボネート(PC)フィルム(レキサンフィルム8010、旭硝子(株)製:屈折率1.580)にバーコーター法(♯12)で塗布し、80℃で
1分間乾燥した後、高圧水銀灯(600mJ/cm2)を照射して硬化させ、透明被膜付
基材(1)を調製した。このときの透明被膜の厚さは3μmであった。
Antimony pentoxide composite oxide fine particles (1) have an average particle size of 22 nm and a refractive index of 1
. 772 and the volume resistance value was 3000 Ω · cm.
Preparation of coating liquid for forming transparent film (1) Antimony pentoxide-based composite oxide fine particle (1) 4.92 g of dispersion liquid with UV curable resin (DIC Corporation: Unidec 17-824-9, solid content concentration 79 weight %) 1.90 g and photopolymerization initiator (manufactured by BASF Japan KK: Lucyrin TPO, dissolved in propylene glycol monomethyl ether (PGME) to a solid content concentration of 10%) 0.90 g and 2.28 g of PGME were mixed thoroughly. Thus, a coating solution (1) for forming a transparent film having a solid content concentration of 30% by weight was prepared.
Production of substrate with transparent film (1) Coating liquid for forming transparent film (1) was applied to a polycarbonate (PC) film (Lexan film 8010, manufactured by Asahi Glass Co., Ltd .: refractive index 1.580) by the bar coater method (# 12). After coating at 80 ° C. for 1 minute, it was cured by irradiation with a high-pressure mercury lamp (600 mJ / cm 2 ) to prepare a substrate (1) with a transparent coating. The thickness of the transparent coating at this time was 3 μm.

この透明被膜付基材(1)の全光線透過率、ヘーズ、表面抵抗、反射率、密着性、鉛筆硬
度、耐擦傷性を表1に示す。全光線透過率およびヘーズは、ヘーズメーター(日本電色工業(株)製)により、表面抵抗は表面抵抗計(三菱化学(株)製:HIRESTA)により
、反射率は反射率計(オリンパス(株)製:ORIMPAS USPM−RU)で測定し、結果を表1に示した。透明被膜の屈折率は以下のように測定し、結果を表1に示す。
屈折率
透明被膜形成用塗布液(1)をシリコーンウェハー上に塗布し、乾燥し、硬化して透明被
膜を形成し、透明被膜の屈折率をエリプソメーターで測定した。
Table 1 shows the total light transmittance, haze, surface resistance, reflectance, adhesion, pencil hardness, and scratch resistance of this substrate with transparent coating (1). The total light transmittance and haze are measured with a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd.), the surface resistance is measured with a surface resistance meter (manufactured by Mitsubishi Chemical Corporation: HIRESTA), and the reflectance is measured with a reflectometer (Olympus Corporation). ): ORIMPAS USPM-RU), and the results are shown in Table 1. The refractive index of the transparent film was measured as follows, and the results are shown in Table 1.
The refractive index transparent film-forming coating solution (1) was applied onto a silicone wafer, dried and cured to form a transparent film, and the refractive index of the transparent film was measured with an ellipsometer.

また、干渉縞、鉛筆硬度、密着性及び耐擦傷性を以下のように評価した。
鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明導電性被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
耐擦傷性の測定
#0000スチールウールを用い、荷重1000g/cm2で20回摺動し、膜の表面
を目視観察し、以下の基準で評価し、結果を表1に示した。
Moreover, interference fringes, pencil hardness, adhesion, and scratch resistance were evaluated as follows.
Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the transparent conductive coating, and a predetermined load was applied and pulled at a constant speed to observe the presence or absence of scratches.
Measurement of Scratch Resistance Using # 0000 steel wool, sliding 20 times at a load of 1000 g / cm 2 , visually observing the surface of the film and evaluating according to the following criteria, the results are shown in Table 1.

評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる :○
筋条に傷が多数認められる :△
面が全体的に削られている :×
密着性
透明被膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け1
00個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表1に示す。
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
11 parallel scratches were made on the surface of the substrate (1) with an adhesive transparent coating at intervals of 1 mm in length and width with a knife.
Make 00 cells, adhere cellophane tape to this, and then remove the cellophane tape, and the number of cells remaining without peeling off the film is classified into the following three stages to improve adhesion evaluated. The results are shown in Table 1.

残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
干渉縞
透明被膜付基材(1)の干渉縞の有無を観察し、以下の基準で評価した。結果を表1に示
す。
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △
The substrate with interference fringe transparent coating (1) was observed for the presence or absence of interference fringes and evaluated according to the following criteria. The results are shown in Table 1.

干渉縞は認められない : ◎
干渉縞は殆ど認められない : ○
干渉縞が僅かに認められる : △
干渉縞が明らかに認められる: ×
[実施例2]
五酸化アンチモン系複合酸化物微粒子(2)分散液の調製
i)水酸化ジルコニウム過酸化水素溶解溶液の調製
純水1,300gにオキシ塩化ジルコニウム8水和物(ZrOCl2・8H2O)35gを溶解し、これに濃度10重量%のKOH水溶液123gを添加してジルコニウム水酸化物ヒドロゲルスラリー(ZrO2濃度1重量%)を調製した。ついで、限外濾過膜法で電導度が0.5
μS/cm以下になるまで洗浄した。
Interference fringes are not recognized: ◎
Interference fringes are hardly recognized: ○
Slight interference fringes are observed: △
Interference fringes are clearly visible: ×
[Example 2]
Preparation of antimony pentoxide complex oxide fine particle (2) dispersion
i) Preparation of zirconium hydroxide hydrogen peroxide solution 35 g of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O) was dissolved in 1,300 g of pure water, and 123 g of a 10 wt% KOH aqueous solution was added thereto. Thus, a zirconium hydroxide hydrogel slurry (ZrO 2 concentration 1 wt%) was prepared. Next, the conductivity is 0.5 by the ultrafiltration membrane method.
Washing was performed until it became μS / cm or less.

ii)酸化ジルコニウム複合化
得られたジルコニアゲルスラリー10gを水でZrO2濃度2重量%に希釈した。つい
で、過酸化水素水(林純薬(株)製:特級、濃度35重量%)1.4gを添加し、室温で1時間攪拌してジルコニアゲルを溶解し、70℃で5時間熟成して、ZrO2濃度2重量%
の水酸化ジルコニウム過酸化水素溶解溶液を調製した。
ii) Zirconium oxide composite 10 g of the obtained zirconia gel slurry was diluted with water to a ZrO 2 concentration of 2% by weight. Next, 1.4 g of hydrogen peroxide solution (manufactured by Hayashi Junyaku Co., Ltd .: special grade, concentration 35% by weight) was added and stirred at room temperature for 1 hour to dissolve the zirconia gel and aged at 70 ° C. for 5 hours. , ZrO 2 concentration 2% by weight
A solution of zirconium hydroxide in hydrogen peroxide was prepared.

ついで、実施例1と同様にして調製した濃度1重量%の五酸化アンチモン微粒子(1)分
散液1000gに濃度2重量%の水酸化ジルコニウム過酸化水素溶解溶液150gを添加し、155℃で10時間加熱処理して固形分濃度1.15重量%の五酸化アンチモン系複合酸化物微粒子(2)水分散液を調製した。五酸化アンチモン系複合酸化物微粒子(2)の平均粒子径は22nm、粒子屈折率は1.737、体積抵抗値は3000Ω・cmであった。
Next, 150 g of a 2 wt% zirconium hydroxide hydrogen peroxide solution was added to 1000 g of 1 wt% antimony pentoxide fine particles (1) dispersion prepared in the same manner as in Example 1, and the mixture was added at 155 ° C. for 10 hours. An antimony pentoxide-based composite oxide fine particle (2) aqueous dispersion having a solid content concentration of 1.15% by weight was prepared by heat treatment. The antimony pentoxide-based composite oxide fine particles (2) had an average particle size of 22 nm, a particle refractive index of 1.737, and a volume resistance of 3000 Ω · cm.

iii)表面処理
ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(2)分散液を得た。
iii) Surface treatment Next, the surface treatment was carried out in the same manner as in Example 1 with tetraethoxysilane and then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of 30.5% by weight. An antimony pentoxide-based composite oxide fine particle (2) dispersion was obtained.

五酸化アンチモン系複合酸化物微粒子(2)の平均粒子径は22nm、粒子の屈折率は1
.737、体積抵抗値は3000Ω・cmであった。
透明被膜形成用塗布液(2)の調製
実施例1において、五酸化アンチモン系複合酸化物微粒子(2)分散液4.92gを用い
た以外は同様にして固形分濃度30重量%透明被膜形成用塗布液(2)を調製した。
透明被膜付基材(2)の製造
実施例1において、透明被膜形成用塗布液(2)を用いた以外は同様にして透明被膜付基
材(2)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(2)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例3]
五酸化アンチモン系複合酸化物微粒子(3)分散液の調製
i)リン酸化物含有五酸化アンチモン微粒子の調製
実施例1と同様にして固形分濃度1重量%の五酸化アンチモン微粒子(1)分散液を調製
した。ついで、限外濾過膜で濃縮した固形分濃度14重量%の五酸化アンチモン微粒子(1)分散液2100gにリン酸水溶液(関東化学(株)製:濃度85重量%)を、常温で7
分かけて25g添加し、13分攪拌した。その後、バットへ取り出し90℃で18時間乾燥した。
Antimony pentoxide complex oxide fine particles (2) have an average particle size of 22 nm and a refractive index of 1
. 737, and the volume resistance value was 3000 Ω · cm.
Preparation of coating liquid for forming transparent film (2) In Example 1, except for using 4.92 g of antimony pentoxide-based composite oxide fine particle (2) dispersion, a solid content concentration of 30% by weight for forming a transparent film A coating solution (2) was prepared.
Production of substrate with transparent film (2) A substrate with transparent film (2) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (2) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (2) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and Table 1 shows the results.
[Example 3]
Preparation of antimony pentoxide complex oxide fine particle (3) dispersion
i) Preparation of phosphorus oxide-containing antimony pentoxide fine particles In the same manner as in Example 1, a dispersion of antimony pentoxide fine particles (1) having a solid concentration of 1% by weight was prepared. Next, an aqueous solution of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: 85% by weight) was added to 2100 g of the antimony pentoxide fine particles (1) dispersion having a solid content of 14% by weight concentrated by the ultrafiltration membrane at room temperature.
25 g was added over a minute and stirred for 13 minutes. Thereafter, it was taken out into a vat and dried at 90 ° C. for 18 hours.

乾燥した粉末をメノウで解砕し、さらに110℃で12時間乾燥してリン酸化物含有五酸化アンチモン微粒子(3)を得た。リン酸化物含有五酸化アンチモン微粒子(1)のリン酸の含有量はP25として5重量%、平均粒子径は20nm、粒子の屈折率は1.65、体積抵抗値は500Ω・cmであった。 The dried powder was crushed with agate and further dried at 110 ° C. for 12 hours to obtain phosphoric oxide-containing antimony pentoxide fine particles (3). The phosphoric acid-containing antimony pentoxide fine particles (1) have a phosphoric acid content of 5% by weight as P 2 O 5 , an average particle diameter of 20 nm, a particle refractive index of 1.65, and a volume resistance of 500 Ω · cm. there were.

得られたリン酸化物含有五酸化アンチモン微粒子(3)を純水に分散させ、ガラスビーズ
628gを入れたビーズミルに充填し、分散処理をして固形分濃度30重量%のリン酸化物酸化物含有五酸化アンチモン微粒子(3)分散液を調製した。
The obtained phosphorous oxide-containing antimony pentoxide fine particles (3) are dispersed in pure water, filled into a bead mill containing 628 g of glass beads, and dispersed to contain a phosphorous oxide oxide having a solid content concentration of 30% by weight. Antimony pentoxide fine particles (3) dispersion was prepared.

ii)酸化チタン複合化
ついで、リン酸化物含有五酸化アンチモン微粒子(3)分散液を10gを水で1%に希釈
して1000gにし、実施例1と同様にして調製した濃度2重量%のペルオキソチタン酸水溶液150gを添加し、155℃で10時間加熱処理して固形分濃度1.15重量%の五酸化アンチモン系複合酸化物微粒子(3)分散液を調製した。五酸化アンチモン系複合酸
化物微粒子(3)の平均粒子径は22nm、屈折率は1.772、体積抵抗値は1000Ω
・cmであった。
ii) Titanium oxide composite Next, 10 g of the phosphorous oxide-containing antimony pentoxide fine particle (3) dispersion was diluted to 1% with water to 1000 g, and the peroxo having a concentration of 2% by weight prepared in the same manner as in Example 1 was used. 150 g of an aqueous titanic acid solution was added, and heat treatment was performed at 155 ° C. for 10 hours to prepare a dispersion of antimony pentoxide-based composite oxide fine particles (3) having a solid content concentration of 1.15 wt%. Antimony pentoxide composite oxide fine particles (3) have an average particle size of 22 nm, a refractive index of 1.772, and a volume resistance of 1000Ω.
-It was cm.

iii)表面処理
ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(3)分散液を得た。
五酸化アンチモン系複合酸化物微粒子(3)の平均粒子径は22nm、粒子の屈折率は1.
772、体積抵抗値は1000Ω・cmであった。
透明被膜形成用塗布液(3)の調製
実施例1において、五酸化アンチモン系複合酸化物微粒子(3)分散液4.92gを用い
た以外は同様にして固形分濃度30重量%の透明被膜形成用塗布液(3)を調製した。
透明被膜付基材(3)の製造
実施例1において、透明被膜形成用塗布液(3)を用いた以外は同様にして透明被膜付基
材(3)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(3)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、
耐擦傷性を評価し、結果を表1に示す。
[実施例4]
五酸化アンチモン系複合酸化物微粒子(4)分散液の調製
実施例3と同様にして固形分濃度1重量%のリン含有五酸化アンチモン微粒子(3)分散
液を調製した。ついで、リン酸化物含有五酸化アンチモン微粒子(3)分散液1000gに
、実施例2と同様にして調製した濃度2重量%の水酸化ジルコニウム過酸化水素溶解溶液150gを添加した以外は同様にして固形分濃度1.15重量%の五酸化アンチモン系複合酸化物微粒子(4)分散液を調製した。
iii) Surface treatment Next, the surface treatment was carried out in the same manner as in Example 1 with tetraethoxysilane and then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of 30.5% by weight. An antimony pentoxide composite oxide fine particle (3) dispersion was obtained.
The average particle diameter of the antimony pentoxide-based composite oxide fine particles (3) is 22 nm, and the refractive index of the particles is 1.
772 and the volume resistance value was 1000 Ω · cm.
Preparation of coating liquid for forming transparent film (3) In Example 1, a transparent film having a solid content of 30% by weight was prepared in the same manner as in Example 1, except that 4.92 g of the antimony pentoxide composite oxide fine particle (3) dispersion was used. A coating solution (3) was prepared.
Production of substrate with transparent film (3) A substrate with transparent film (3) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (3) was used. The thickness of the transparent coating at this time was 3 μm. For the substrate with transparent coating (3), total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness,
The scratch resistance was evaluated, and the results are shown in Table 1.
[Example 4]
Preparation of antimony pentoxide-based composite oxide fine particle (4) dispersion A phosphorus-containing antimony pentoxide fine particle (3) dispersion having a solid concentration of 1% by weight was prepared in the same manner as in Example 3. Next, solids were similarly obtained except that 150 g of a 2 wt% zirconium hydroxide hydrogen peroxide solution prepared in the same manner as in Example 2 was added to 1000 g of the phosphorous oxide-containing antimony pentoxide fine particles (3) dispersion. An antimony pentoxide-based composite oxide fine particle (4) dispersion having a partial concentration of 1.15% by weight was prepared.

得られた五酸化アンチモン系複合酸化物微粒子(4)の平均粒子径は22nm、屈折率は
1.737、体積抵抗値は1000Ω・cmであった。
The obtained antimony pentoxide-based composite oxide fine particles (4) had an average particle size of 22 nm, a refractive index of 1.737, and a volume resistance of 1000 Ω · cm.

ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(4)分散液を得た。
五酸化アンチモン系複合酸化物微粒子(4)の平均粒子径は22nm、粒子の屈折率は1.
737、体積抵抗値は1000Ω・cmであった。
透明被膜形成用塗布液(4)の調製
実施例1において、五酸化アンチモン系複合酸化物微粒子(4)分散液4.92gを用い
た以外は同様にして固形分濃度30重量%の透明被膜形成用塗布液(4)を調製した。
透明被膜付基材(4)の製造
実施例1において、透明被膜形成用塗布液(4)を用いた以外は同様にして透明被膜付基
材(4)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(4)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例5]
五酸化アンチモン系複合酸化物微粒子(5)分散液の調製
i)鎖状リン酸化物含有五酸化アンチモン微粒子の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85%)57gを溶解した溶液中に三酸化アンチモン(日本精鉱(株):PATOX-M、純度98.5%)111gを懸濁した
。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、濃度35重量%)32.8gを純水111gで希釈した水溶液を9時間で添加し、三酸化アンチモンを溶解し、その後、11時間熟成した。ついで、冷却後、得られた溶液から1000gを採り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂槽(三菱化学(株)製:pk−216)に通して脱イオン処理を行った。このときのpHは2.1、伝導度は2.4mS/cmであった。
Then, in the same manner as in Example 1, the surface treatment was carried out with tetraethoxysilane, then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of antimony pentoxide of 30.5% by weight. A composite oxide fine particle (4) dispersion was obtained.
The average particle diameter of the antimony pentoxide-based composite oxide fine particles (4) is 22 nm, and the refractive index of the particles is 1.
737 and the volume resistance value was 1000 Ω · cm.
Preparation of coating liquid for forming transparent film (4) In Example 1, except that 4.92 g of antimony pentoxide-based composite oxide fine particle (4) dispersion was used, forming a transparent film with a solid content of 30% by weight Coating solution (4) was prepared.
Production of substrate with transparent film (4) A substrate with transparent film (4) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (4) was used. The thickness of the transparent coating at this time was 3 μm. For the substrate with transparent film (4), the total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance were evaluated, and the results are shown in Table 1.
[Example 5]
Preparation of antimony pentoxide complex oxide fine particle (5) dispersion
i) Preparation of antimony pentoxide fine particles containing chain phosphorous oxide Antimony trioxide (Nippon Seimitsu Co., Ltd .: PATOX-) in a solution of 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85%) dissolved in 1800 g of pure water M, purity 98.5%) 111 g was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 32.8 g of hydrogen peroxide solution (produced by Hayashi Junyaku Co., Ltd .: special grade, concentration 35% by weight) with 111 g of pure water was added in 9 hours. Antimony trioxide was dissolved and then aged for 11 hours. Next, after cooling, 1000 g was taken from the obtained solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin tank (Mitsubishi Chemical Co., Ltd .: pk-216) for deionization treatment. It was. At this time, the pH was 2.1 and the conductivity was 2.4 mS / cm.

ついで、陰イオン交換樹脂槽(三菱化学(株)製:SA−20A)に通してpHが2.5、伝導度が1.0mS/cmになるまで脱イオン処理を行った。   Subsequently, it was passed through an anion exchange resin tank (manufactured by Mitsubishi Chemical Co., Ltd .: SA-20A), and deionization treatment was performed until the pH was 2.5 and the conductivity was 1.0 mS / cm.

脱イオン処理して得られた溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%の鎖状の五酸化アンチモン微粒子(5)分散液を調製した。この五酸
化アンチモン微粒子(5)分散液のpHは3.0、伝導度が0.1mS/cmであった。
The solution obtained by deionization was aged at a temperature of 70 ° C. for 10 hours, and then concentrated with an ultra-membrane to prepare a dispersion of chain antimony pentoxide fine particles (5) having a solid concentration of 14% by weight. The antimony pentoxide fine particle (5) dispersion had a pH of 3.0 and a conductivity of 0.1 mS / cm.

鎖状五酸化アンチモン微粒子(5)の平均粒子径は15nm、連結数は5であった。   The average particle diameter of the chain antimony pentoxide fine particles (5) was 15 nm, and the number of connections was 5.

ついで、固形分濃度14重量%の鎖状五酸化アンチモン微粒子(5)分散液2100gに
リン酸水溶液(関東化学(株)製:濃度85重量%)を、常温で7分かけて25g添加し、13分攪拌した。その後、バットへ取り出し90℃で18時間乾燥した。乾燥粉末をメノウで解砕し、さらに110℃で12時間乾燥して鎖状リン酸化物含有五酸化アンチモン
微粒子(5)を得た。鎖状リン酸化物含有五酸化アンチモン微粒子(5)のリン酸化物の含有量はP25として5重量%、体積抵抗値は10Ω・cmであった。得られた鎖状リン酸化物含有五酸化アンチモン微粒子(5)を純水に分散させ、ガラスビーズ628gを入れたビー
ズミルに充填し、分散処理をして固形分濃度30重量%の鎖状リン含有五酸化アンチモン微粒子(5)分散液を調製した。
Next, 25 g of phosphoric acid aqueous solution (manufactured by Kanto Chemical Co., Ltd .: concentration 85 wt%) was added to 2100 g of the chain antimony pentoxide fine particles (5) dispersion having a solid content concentration of 14 wt% at room temperature over 7 minutes, Stir for 13 minutes. Thereafter, it was taken out into a vat and dried at 90 ° C. for 18 hours. The dried powder was pulverized with agate and further dried at 110 ° C. for 12 hours to obtain chain phosphorous oxide-containing antimony pentoxide fine particles (5). The phosphorous content of the chain phosphorous oxide-containing antimony pentoxide fine particles (5) was 5% by weight as P 2 O 5 , and the volume resistance value was 10 Ω · cm. The obtained chain phosphorous oxide-containing antimony pentoxide fine particles (5) are dispersed in pure water, filled into a bead mill containing 628 g of glass beads, and dispersed to contain chain phosphorus having a solid content concentration of 30% by weight. Antimony pentoxide fine particles (5) dispersion was prepared.

ii)酸化チタン複合化
ついで、鎖状リン酸化物含有五酸化アンチモン微粒子(5)分散液1000gに、実施例
1と同様にして調製した濃度2重量%のペルオキソチタン酸水溶液150gを添加し、155℃で10時間加熱処理して固形分濃度1.15重量%の五酸化アンチモン系複合酸化物微粒子(5)分散液を調製した。
ii) Titanium oxide complex Next, 150 g of a peroxotitanic acid aqueous solution having a concentration of 2 wt% prepared in the same manner as in Example 1 was added to 1000 g of the dispersion of chain phosphorous oxide-containing antimony pentoxide (5), and 155 An antimony pentoxide-based composite oxide fine particle (5) dispersion having a solid content of 1.15% by weight was prepared by heat treatment at 10 ° C. for 10 hours.

五酸化アンチモン系複合酸化物微粒子(5)の平均粒子径は17nm、連結数は5であっ
た。
The antimony pentoxide-based composite oxide fine particles (5) had an average particle size of 17 nm and a connection number of 5.

また、粒子の屈折率は1.772で、体積抵抗値は500Ω・cmであった。   In addition, the refractive index of the particles was 1.772, and the volume resistance value was 500 Ω · cm.

ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(5)分散液を得た。
Then, in the same manner as in Example 1, the surface treatment was carried out with tetraethoxysilane, then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of antimony pentoxide of 30.5% by weight. A composite oxide fine particle (5) dispersion was obtained.

五酸化アンチモン系複合酸化物微粒子(5)の平均粒子径は17nm、連結数は5であっ
た。
The antimony pentoxide-based composite oxide fine particles (5) had an average particle size of 17 nm and a connection number of 5.

また、屈折率は1.772で、体積抵抗値は500Ω・cmであった。
透明被膜形成用塗布液(5)の調製
実施例1において、五酸化アンチモン系複合酸化物微粒子(5)分散液4.92gを用い
た以外は同様にして固形分濃度30重量%の透明被膜形成用塗布液(5)を調製した。
透明被膜付基材(5)の製造
実施例1において、透明被膜形成用塗布液(5)を用いた以外は同様にして透明被膜付基
材(5)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(5)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
Further, the refractive index was 1.772 and the volume resistance value was 500 Ω · cm.
Preparation of coating liquid for forming transparent film (5) In Example 1, a transparent film having a solid content of 30% by weight was prepared in the same manner except that 4.92 g of the antimony pentoxide composite oxide fine particle (5) dispersion was used. A coating solution (5) was prepared.
Production of substrate with transparent film (5) A substrate with transparent film (5) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (5) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (5) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.

[実施例6]
五酸化アンチモン系複合酸化物微粒子(6)分散液の調製
実施例1と同様にして調製した濃度1重量%の五酸化アンチモン微粒子(1)分散液10
00gに濃度2重量%のペルオキソチタン酸水溶液50gを添加し、155℃で10時間加熱処理して濃度1重量%の五酸化アンチモン系複合酸化物微粒子(6)分散液を調製した
[Example 6]
Preparation of antimony pentoxide-based composite oxide fine particles (6) dispersion Antimony pentoxide fine particles (1) dispersion 10 having a concentration of 1% by weight prepared in the same manner as in Example 1.
00 g of an aqueous solution of peroxotitanic acid having a concentration of 2% by weight was added and heat-treated at 155 ° C. for 10 hours to prepare a dispersion of antimony pentoxide complex oxide fine particles (6) having a concentration of 1% by weight.

五酸化アンチモン系複合酸化物微粒子(6)の平均粒子径は21nm、屈折率は1.69
7、体積抵抗値は2000Ω・cmであった。
The antimony pentoxide-based composite oxide fine particles (6) have an average particle diameter of 21 nm and a refractive index of 1.69.
7. The volume resistance value was 2000 Ω · cm.

ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(6)分散液を得た。
五酸化アンチモン系複合酸化物微粒子(6)の平均粒子径は21nm、屈折率は1.697
、体積抵抗値は2000Ω・cmであった。
透明被膜形成用塗布液(6)の調製
五酸化アンチモン系複合酸化物微粒子(1)分散液5.90gに紫外線硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重量%)1.52gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、プロピレングリコールモノメチル
エーテル(PGME)で固形分濃度10%に溶解)0.72g及びPGME1.86gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(6)を調製した。
透明被膜付基材(6)の製造
実施例1において、透明被膜形成用塗布液(6)を用いた以外は同様にして透明被膜付基
材(6)を調製した。このときの透明被膜の厚さは3μmであった。
Then, in the same manner as in Example 1, the surface treatment was carried out with tetraethoxysilane, then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of antimony pentoxide of 30.5% by weight. A composite oxide fine particle (6) dispersion was obtained.
The antimony pentoxide-based composite oxide fine particles (6) have an average particle diameter of 21 nm and a refractive index of 1.697.
The volume resistance value was 2000 Ω · cm.
Preparation of coating liquid for forming transparent film (6) Antimony pentoxide-based composite oxide fine particles (1) Dispersed in 5.90 g of ultraviolet curable resin (DIC Corporation: Unidec 17-824-9, solid content concentration 79 wt. %) 1.52 g and photopolymerization initiator (manufactured by BSF Japan Ltd .: Lucyrin TPO, dissolved in propylene glycol monomethyl ether (PGME) to a solid content concentration of 10%) 0.72 g and PGME 1.86 g are sufficiently mixed. Thus, a coating solution (6) for forming a transparent film having a solid content concentration of 30% by weight was prepared.
Production of transparent film-coated substrate (6) In Example 1, a transparent film-coated substrate (6) was prepared in the same manner except that the transparent film-forming coating solution (6) was used. The thickness of the transparent coating at this time was 3 μm.

透明被膜付基材(6)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干
渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例7]
五酸化アンチモン系複合酸化物微粒子(7)分散液の調製
実施例1と同様にして調製した濃度1重量%の五酸化アンチモン微粒子(1)分散液10
00gに濃度2重量%のペルオキソチタン酸水溶液250gを添加し、155℃で10時間加熱処理して濃度1.7重量%の五酸化アンチモン系複合酸化物微粒子(7)分散液を調
製した。
For the substrate with transparent film (6), the total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance were evaluated, and the results are shown in Table 1.
[Example 7]
Preparation of antimony pentoxide-based composite oxide fine particles (7) dispersion Antimony pentoxide fine particles (1) dispersion 10 having a concentration of 1% by weight prepared in the same manner as in Example 1.
00 g of an aqueous peroxotitanic acid solution having a concentration of 2% by weight was added and heat-treated at 155 ° C. for 10 hours to prepare a dispersion of antimony pentoxide-based composite oxide fine particles (7) having a concentration of 1.7% by weight.

五酸化アンチモン系複合酸化物微粒子(7)の平均粒子径は24nm、屈折率は1.87
8、体積抵抗値は5000Ω・cmであった。
The antimony pentoxide-based composite oxide fine particles (7) have an average particle size of 24 nm and a refractive index of 1.87.
8. The volume resistance value was 5000 Ω · cm.

ついで、実施例1と同様にしてテトラエトキシシラン、ついでγ-メタアクリロオキシ
プロピルトリメトキシシラにより表面処理をし、イソプロピルアルコールに溶剤置換等して固形分濃度30.5重量%の五酸化アンチモン系複合酸化物微粒子(7)分散液を得た。
Then, in the same manner as in Example 1, the surface treatment was carried out with tetraethoxysilane, then with γ-methacrylooxypropyltrimethoxysila, and the solvent was replaced with isopropyl alcohol to obtain a solid content concentration of antimony pentoxide of 30.5% by weight. A composite oxide fine particle (7) dispersion was obtained.

五酸化アンチモン系複合酸化物微粒子(7)の平均粒子径は24nm、屈折率は1.87
8、体積抵抗値は5000Ω・cmであった。
透明被膜形成用塗布液(7)の調製
五酸化アンチモン系複合酸化物微粒子(7)分散液6.39gに紫外線硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重量%)1.33gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、プロピレングリコールモノメチル
エーテル(PGME)で固形分濃度10%に溶解)0.63g及びPGME1.65gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(7)を調製した。
透明被膜付基材(7)の製造
実施例1において、透明被膜形成用塗布液(7)を、易接着層付PETフィルム(東洋紡績(株)製:コスモシャインA4300)上に塗布した以外は同様にして透明被膜付基材(7)を調製した。このときの透明被膜の厚さは3μmであった。
The antimony pentoxide-based composite oxide fine particles (7) have an average particle size of 24 nm and a refractive index of 1.87.
8. The volume resistance value was 5000 Ω · cm.
Preparation of coating liquid for forming transparent film (7) Antimony pentoxide-based composite oxide fine particle (7) Dispersion 6.39 g of ultraviolet curable resin (DIC Corporation: Unidec 17-824-9, solid content concentration 79 weight %) 1.33 g and photopolymerization initiator (manufactured by BASF Japan KK: Lucillin TPO, dissolved in propylene glycol monomethyl ether (PGME) to a solid content concentration of 10%) 0.63 g and PGME 1.65 g are mixed thoroughly. Thus, a coating liquid (7) for forming a transparent film having a solid content concentration of 30% by weight was prepared.
Production Example 1 of Substrate with Transparent Film (7) In Example 1 except that the coating liquid for forming a transparent film (7) was applied onto a PET film with an easy-adhesion layer (Toyobo Co., Ltd .: Cosmo Shine A4300). Similarly, a substrate (7) with a transparent coating was prepared. The thickness of the transparent coating at this time was 3 μm.

透明被膜付基材(7)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干
渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例8]
透明被膜形成用塗布液(8)の調製
実施例1と同様にして調製した五酸化アンチモン系複合酸化物微粒子(1)分散液3.9
3gに紫外線硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重
量%)2.28gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、
プロピレングリコールモノプロピルエーテル(PGME)で固形分濃度10%に溶解)1.08g及びPGME2.71gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(8)を調製した。
透明被膜付基材(8)の製造
実施例1において、透明被膜形成用塗布液(8)を用いた以外は同様にして透明被膜付基
材(8)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(8)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例9]
透明被膜形成用塗布液(9)の調製
実施例1と同様にして調製した五酸化アンチモン系複合酸化物微粒子(1)分散液3.6
0gに紫外線硬化樹脂(新中村化学(株)製:NKエステルATM−4E、固形分濃度10
0重量%)0.53gと(新中村化学(株)製:NKエステルA−GLY−9E、固形分濃
度100重量%)0.32gと(新中村化学(株)製:NKエステルA−200、固形分濃
度100重量%)0.21gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリ
ンTPO、プロピレングリコールモノメチルエーテル(PGME)で固形分濃度10%に溶解)1.26g及びPGME1.30gとを充分に混合して固形分濃度30.1重量%の透明被膜形成用塗布液(9)を調製した。
透明被膜付基材(9)の製造
実施例1において、透明被膜形成用塗布液(9)を用いた以外は同様にして透明被膜付基
材(9)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(9)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[実施例10]
五酸化アンチモン系複合酸化物微粒子(10)分散液の調製
実施例1において、iii)の表面処理をしなかった以外は同様にして五酸化アンチモン系
複合酸化物微粒子(10)分散液を得た。
透明被膜形成用塗布液(10)の調製
実施例1において、五酸化アンチモン系複合酸化物微粒子(10)分散液4.92gを用いた以外は同様にして固形分濃度30重量%の透明被膜形成用塗布液(10)を調製した。
透明被膜付基材(10)の製造
実施例1において、透明被膜形成用塗布液(10)を用いた以外は同様にして透明被膜付材(10)を調製した。このときの透明被膜の厚さは3μmであった。
The substrate with a transparent coating (7) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.
[Example 8]
Preparation of coating liquid for forming transparent film (8) Antimony pentoxide composite oxide fine particles (1) dispersion 3.9 prepared in the same manner as in Example 3.9
3 g of UV curable resin (DIC Co., Ltd .: Unidec 17-824-9, solid content concentration 79% by weight) 2.28 g and photopolymerization initiator (BASF Japan Co., Ltd .: Lucillin TPO,
1.08 g of solid component concentration dissolved in 10% solid content with propylene glycol monopropyl ether (PGME) and 2.71 g of PGME were sufficiently mixed to prepare a coating solution (8) for forming a transparent film having a solid content concentration of 30% by weight. .
Production of substrate with transparent film (8) A substrate with transparent film (8) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (8) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (8) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.
[Example 9]
Preparation of coating liquid (9) for forming transparent film Antimony pentoxide composite oxide fine particles (1) dispersion 3.6 prepared in the same manner as in Example 1.
0 g UV curable resin (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK ester ATM-4E, solid content 10
0.53 g (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester A-GLY-9E, solid concentration 100 wt%) and 0.32 g (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester A-200) , 0.21 g of a solid content concentration of 100% by weight) and a photopolymerization initiator (manufactured by BASF Japan KK: Lucyrin TPO, dissolved in a solid content concentration of 10% with propylene glycol monomethyl ether (PGME)) 1.26 g and PGME1. 30 g of the mixture was thoroughly mixed to prepare a coating solution (9) for forming a transparent film having a solid content concentration of 30.1% by weight.
Production of substrate with transparent film (9) A substrate with transparent film (9) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (9) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (9) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and Table 1 shows the results.
[Example 10]
Preparation of antimony pentoxide-based composite oxide fine particle (10) dispersion In Example 1, an antimony pentoxide-based composite oxide fine particle (10) dispersion was obtained in the same manner except that the surface treatment of iii) was not performed. .
Preparation of transparent film forming coating solution (10) In Example 1, for the formation of a transparent film having a solid content concentration of 30% by weight, except that 4.92 g of the antimony pentoxide composite oxide fine particle (10) dispersion was used. A coating solution (10) was prepared.
Production of transparent film-coated substrate (10) A transparent film-coated material (10) was prepared in the same manner as in Production Example 1 except that the transparent film-forming coating solution (10) was used. At this time, the thickness of the transparent film was 3 μm.

透明被膜付基材(10)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[比較例1]
五酸化アンチモン微粒子(1)分散液の調製
実施例1と同様にして調製した五酸化アンチモン微粒子(1)分散液を限外濾過膜で固形
分として濃度14重量%まで濃縮した。
The substrate with a transparent coating (10) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.
[Comparative Example 1]
Preparation of antimony pentoxide fine particle (1) dispersion The antimony pentoxide fine particle (1) dispersion prepared in the same manner as in Example 1 was concentrated to a concentration of 14% by weight as a solid using an ultrafiltration membrane.

次に、濃縮した五酸化アンチモン微粒子(1)水分散液1000gにメタノール1000
gを添加して7%に希釈し、テトラエトキシシランを31.1g添加し、50℃で4時間攪拌した。ついで、限外濾過膜でメタノールに置換し、その後固形分濃度30.5重量%まで濃縮した。
Next, 1,000 g of methanol was added to 1000 g of the concentrated antimony pentoxide fine particles (1) aqueous dispersion.
g was diluted to 7%, 31.1 g of tetraethoxysilane was added, and the mixture was stirred at 50 ° C. for 4 hours. Subsequently, the membrane was replaced with methanol by an ultrafiltration membrane, and then concentrated to a solid content concentration of 30.5% by weight.

ついで、固形分濃度30.5重量%の五酸化アンチモン微粒子(1)メタノール分散液1
00gにγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KB
M−503、SiO2成分81.9重量%)1.1gを混合し、50℃で19時間攪拌する。その後、イソプロピルアルコールに溶剤置換して、固形分濃度30.5重量%の五酸化アンチモン微粒子(1)分散液を得た。五酸化アンチモン微粒子(1)の平均粒子径は20nm、粒子の屈折率は1.65、体積抵抗値は1000Ω・cmであった。
透明被膜形成用塗布液(R1)の調製
実施例1において、五酸化アンチモン微粒子(1)分散液4.92gを用いた以外は同様
にして固形分濃度30重量%の透明被膜形成用塗布液(R1)を調製した。
透明被膜付基材(R1)の製造
実施例1において、透明被膜形成用塗布液(R1)を用いた以外は同様にして透明被膜付基材(R1)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(R1)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[比較例2]
鎖状五酸化アンチモン微粒子(5)分散液の調製
実施例5と同様にして固形分濃度14重量%の鎖状の五酸化アンチモン微粒子(5)分散
液を調製した。
Next, antimony pentoxide fine particles (1) methanol dispersion 1 having a solid content concentration of 30.5% by weight
To 00 g, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KB)
M-503, SiO 2 component (81.9% by weight) (1.1 g) is mixed and stirred at 50 ° C. for 19 hours. Thereafter, the solvent was replaced with isopropyl alcohol to obtain a dispersion of antimony pentoxide fine particles (1) having a solid concentration of 30.5% by weight. The average particle diameter of the antimony pentoxide fine particles (1) was 20 nm, the refractive index of the particles was 1.65, and the volume resistance value was 1000 Ω · cm.
Preparation of coating liquid for forming transparent film (R1) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 30% by weight was used except that 4.92 g of the antimony pentoxide fine particle (1) dispersion was used. R1) was prepared.
Production of substrate with transparent coating (R1) A substrate with transparent coating (R1) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R1) was used. The thickness of the transparent coating at this time was 3 μm. For the substrate with transparent coating (R1), the total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance were evaluated, and the results are shown in Table 1.
[Comparative Example 2]
Preparation of dispersion of chain antimony pentoxide fine particles (5) In the same manner as in Example 5, a dispersion of chain antimony pentoxide fine particles (5) having a solid concentration of 14% by weight was prepared.

次に、濃縮した鎖状五酸化アンチモン微粒子(5)水分散液1000gにメタノール10
00gを添加して7%に希釈し、テトラエトキシシランを31.1g添加し、50℃で4時間攪拌した。ついで、限外濾過膜でメタノールに置換し、その後固形分濃度30.5重量%まで濃縮した。
Next, 1000 g of concentrated chain antimony pentoxide fine particles (5) aqueous dispersion was added to 10 g of methanol.
00 g was added to dilute to 7%, 31.1 g of tetraethoxysilane was added, and the mixture was stirred at 50 ° C. for 4 hours. Subsequently, the membrane was replaced with methanol by an ultrafiltration membrane, and then concentrated to a solid content concentration of 30.5% by weight.

ついで、固形分濃度30.5重量%の鎖状五酸化アンチモン微粒子(5)メタノール分散
液100gにγ-メタアクリロオキシプロピルトリメトキシシラン(信越化学(株)製:
KBM−503、SiO2成分81.9重量%)1.1gを混合し、50℃で19時間攪拌する。
Subsequently, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to 100 g of chain antimony pentoxide fine particles (5) methanol dispersion having a solid content concentration of 30.5% by weight.
1.1 g of KBM-503 and SiO 2 component (81.9% by weight) are mixed and stirred at 50 ° C. for 19 hours.

その後、イソプロピルアルコールに溶剤置換して、固形分濃度30.5重量%の鎖状五酸化アンチモン微粒子(5)分散液を得た。   Thereafter, the solvent was replaced with isopropyl alcohol to obtain a chain antimony pentoxide fine particle (5) dispersion having a solid content concentration of 30.5% by weight.

鎖状五酸化アンチモン微粒子(5)の平均粒子径は15nm、連結数は5、粒子の屈折率
は1.65、体積抵抗値は10Ω・cmであった。
透明被膜形成用塗布液(R2)の調製
実施例1において、鎖状の五酸化アンチモン微粒子(5)分散液4.92gを用いた以外
は同様にして固形分濃度30重量%の透明被膜形成用塗布液(R2)を調製した。
透明被膜付基材(R2)の製造
実施例1において、透明被膜形成用塗布液(R2)を用いた以外は同様にして透明被膜付基材(R2)を調製した。このときの透明被膜の厚さは3μmであった。
The average particle diameter of the chain antimony pentoxide fine particles (5) was 15 nm, the number of connections was 5, the refractive index of the particles was 1.65, and the volume resistance value was 10 Ω · cm.
Preparation of coating liquid for forming transparent film (R2) In Example 1, for the formation of transparent film having a solid content concentration of 30% by weight, except that 4.92 g of the chain antimony pentoxide fine particle (5) dispersion was used. A coating solution (R2) was prepared.
Production of substrate with transparent coating (R2) A substrate with transparent coating (R2) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R2) was used. The thickness of the transparent coating at this time was 3 μm.

透明被膜付基材(R2)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[比較例3]
透明被膜形成用塗布液(R3)の調製
比較例1と同様にして調製した五酸化アンチモン微粒子(1)分散液6.89gに紫外線
硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重量%)1.1
4gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、プロピレング
リコールモノメチルエーテル(PGME)で固形分濃度10%に溶解)0.54g及びPGME1.44gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(R3)を調製した。
透明被膜付基材(R3)の製造
実施例1において、透明被膜形成用塗布液(R3)を用いた以外は同様にして透明被膜付基材(R3)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(R3)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
[比較例4]
透明被膜形成用塗布液(R4)の調製
比較例2と同様にして調製した鎖状五酸化アンチモン微粒子(5)分散液6.89gに紫
外線硬化樹脂(DIC(株)製:ユニデック17−824−9、固形分濃度79重量%)1
.14gと光重合開始剤(ビーエーエスエフジャパン(株)製:ルシリンTPO、プロピレ
ングリコールモノメチルエーテル(PGME)で固形分濃度10%に溶解)0.54g及びPGME1.44gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(R4)を調製した。
透明被膜付基材(R4)の製造
実施例1において、透明被膜形成用塗布液(R4)を用いた以外は同様にして透明被膜付基材(R4)を調製した。このときの透明被膜の厚さは3μmであった。透明被膜付基材(R4)について、全光線透過率、ヘーズ、表面抵抗、反射率、屈折率、干渉縞、密着性、鉛筆硬度、耐擦傷性を評価し、結果を表1に示す。
The substrate with a transparent coating (R2) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.
[Comparative Example 3]
Preparation of coating liquid for forming transparent film (R3) 6.89 g of antimony pentoxide fine particle (1) dispersion prepared in the same manner as in Comparative Example 1 was added to an ultraviolet curable resin (manufactured by DIC Corporation: Unidec 17-824-9, (Solid content concentration 79% by weight) 1.1
4 g and a photopolymerization initiator (manufactured by BSF Japan Ltd .: Lucyrin TPO, dissolved in propylene glycol monomethyl ether (PGME) to a solid content concentration of 10%) 0.54 g and PGME 1.44 g were mixed thoroughly to obtain a solid content. A coating solution (R3) for forming a transparent film having a concentration of 30% by weight was prepared.
Production of substrate with transparent coating (R3) A substrate with transparent coating (R3) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R3) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (R3) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.
[Comparative Example 4]
Preparation of coating liquid for forming transparent film (R4) 6.89 g of the chain antimony pentoxide fine particle (5) dispersion prepared in the same manner as in Comparative Example 2 was added to an ultraviolet curable resin (manufactured by DIC Corporation: Unidec 17-824). 9, solid content concentration 79% by weight) 1
. 14 g and a photopolymerization initiator (manufactured by BASF Japan KK: Lucillin TPO, dissolved in propylene glycol monomethyl ether (PGME) at a solid content concentration of 10%) 0.54 g and PGME 1.44 g were mixed thoroughly to obtain a solid content. A coating solution (R4) for forming a transparent film having a concentration of 30% by weight was prepared.
Production of substrate with transparent film (R4) A substrate with transparent film (R4) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (R4) was used. The thickness of the transparent coating at this time was 3 μm. The substrate with a transparent coating (R4) was evaluated for total light transmittance, haze, surface resistance, reflectance, refractive index, interference fringe, adhesion, pencil hardness, and scratch resistance, and the results are shown in Table 1.

Figure 2011093754
Figure 2011093754

Claims (12)

平均粒子径が5〜50nmの範囲にある五酸化アンチモン微粒子と、
該微粒子表面を被覆した酸化チタンおよび/または酸化ジルコニウム層とからなることを特徴とする五酸化アンチモン系複合酸化物微粒子。
Antimony pentoxide fine particles having an average particle diameter in the range of 5 to 50 nm;
An antimony pentoxide-based composite oxide fine particle comprising a titanium oxide and / or zirconium oxide layer covering the surface of the fine particle.
平均粒子径が5〜50nmの範囲にある五酸化アンチモン微粒子が鎖状に連結し、平均連結数が2〜30個の範囲にある鎖状五酸化アンチモン微粒子と、
該微粒子表面を被覆した酸化チタンおよび/または酸化ジルコニウム層とからなることを特徴とする五酸化アンチモン系複合酸化物微粒子。
Antimony pentoxide fine particles having an average particle diameter in the range of 5 to 50 nm are linked in a chain, and chain antimony pentoxide fine particles in which the average number of connections is in the range of 2 to 30;
An antimony pentoxide-based composite oxide fine particle comprising a titanium oxide and / or zirconium oxide layer covering the surface of the fine particle.
前記五酸化アンチモン微粒子がリン酸化物をP25として0.1〜15重量%の範囲で含有していることを特徴とする請求項1または2に記載の五酸化アンチモン系複合酸化物微粒子。 Antimony pentoxide-based composite oxide particles according to claim 1 or 2, characterized in that the antimony pentoxide particles are contained in a range of phosphorus oxide of 0.1 to 15 wt% as P 2 O 5 . 前記酸化チタンおよび/または酸化ジルコニウムの被覆量が、五酸化アンチモン微粒子100重量部に対して、TiO2、ZrO2として、0.5〜100重量部の範囲にあることを特徴とする請求項1〜3のいずれかに記載の五酸化アンチモン系複合酸化物微粒子。 2. The coating amount of titanium oxide and / or zirconium oxide is in the range of 0.5 to 100 parts by weight as TiO 2 or ZrO 2 with respect to 100 parts by weight of antimony pentoxide fine particles. Antimony pentoxide composite oxide fine particles according to any one of -3. 屈折率(NP)が1.66〜2.0の範囲にあることを特徴とする請求項1〜4のいず
れかに記載の五酸化アンチモン系複合酸化物微粒子。
Refractive index (N P) is antimony pentoxide-based composite oxide particles according to any one of claims 1 to 4, characterized in that in the range of 1.66 to 2.0.
請求項1〜5のいずれかに記載の五酸化アンチモン系複合酸化物微粒子と有機樹脂マトリックス形成成分と分散媒とを含んでなることを特徴とする透明被膜形成用塗布液。   A coating liquid for forming a transparent film, comprising the antimony pentoxide-based composite oxide fine particles according to any one of claims 1 to 5, an organic resin matrix-forming component, and a dispersion medium. 塗布液中の前記五酸化アンチモン系複合酸化物微粒子の濃度が、固形分として0.5〜57重量%の範囲にあり、
前記有機樹脂マトリックス形成成分の濃度が固形分として0.5〜57重量%の範囲にあり、
全固形分の濃度が1〜60重量%の範囲にあることを特徴とする請求項6に記載の透明被膜形成用塗布液。
The concentration of the antimony pentoxide-based composite oxide fine particles in the coating solution is in the range of 0.5 to 57% by weight as a solid content,
The concentration of the organic resin matrix forming component is in the range of 0.5 to 57% by weight as a solid content,
The coating liquid for forming a transparent film according to claim 6, wherein the concentration of the total solid content is in the range of 1 to 60% by weight.
前記有機樹脂マトリックス形成成分が電子線硬化型樹脂であることを特徴とする請求項6または7に記載の透明被膜形成用塗布液。   The coating liquid for forming a transparent film according to claim 6 or 7, wherein the organic resin matrix forming component is an electron beam curable resin. 基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜が請求項1〜5のいずれかに記載の五酸化アンチモン系複合酸化物微粒子とマトリックス成分とを含んでなることを特徴とする透明被膜付基材。   It consists of a base material and the transparent film formed on one surface of a base material, and this transparent film contains the antimony pentoxide type complex oxide microparticles | fine-particles and matrix component in any one of Claims 1-5. A substrate with a transparent coating, characterized by comprising: 前記透明被膜中の五酸化アンチモン系複合酸化物微粒子の含有量が固形分として5〜95重量%の範囲にあり、マトリックス成分の含有量が5〜95重量%の範囲にあることを特徴とする請求項9に記載の透明被膜付基材。   The content of the antimony pentoxide-based composite oxide fine particles in the transparent film is in the range of 5 to 95% by weight as the solid content, and the content of the matrix component is in the range of 5 to 95% by weight. The substrate with a transparent film according to claim 9. 前記基材の屈折率(NS)が1.55〜1.75の範囲にあり、前記透明被膜の屈折率
(NH)が1.55〜1.75の範囲にあり、基材の屈折率(NS)と透明被膜の屈折率(NH)の屈折率差が0.01以下であることを特徴とする請求項9または10に記載の透
明被膜付基材。
The refractive index (N S ) of the substrate is in the range of 1.55 to 1.75, the refractive index (N H ) of the transparent coating is in the range of 1.55 to 1.75, and the refractive index of the substrate is The base material with a transparent film according to claim 9 or 10, wherein a difference in refractive index between the refractive index (N S ) and the refractive index (N H ) of the transparent film is 0.01 or less.
前記透明被膜の表面抵抗値が106〜1013Ω/□の範囲にあることを特徴とする請求
項9〜11のいずれかに記載の透明被膜付基材。
The substrate with a transparent coating according to any one of claims 9 to 11, wherein the surface resistance of the transparent coating is in the range of 10 6 to 10 13 Ω / □.
JP2009250637A 2009-10-30 2009-10-30 Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film Pending JP2011093754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009250637A JP2011093754A (en) 2009-10-30 2009-10-30 Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009250637A JP2011093754A (en) 2009-10-30 2009-10-30 Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film

Publications (1)

Publication Number Publication Date
JP2011093754A true JP2011093754A (en) 2011-05-12

Family

ID=44111119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009250637A Pending JP2011093754A (en) 2009-10-30 2009-10-30 Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film

Country Status (1)

Country Link
JP (1) JP2011093754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105646A1 (en) * 2012-01-11 2013-07-18 三菱マテリアル株式会社 Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105646A1 (en) * 2012-01-11 2013-07-18 三菱マテリアル株式会社 Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
JP2013163634A (en) * 2012-01-11 2013-08-22 Mitsubishi Materials Corp Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
CN103298902A (en) * 2012-01-11 2013-09-11 三菱综合材料株式会社 Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
CN103298902B (en) * 2012-01-11 2014-12-10 三菱综合材料株式会社 Infrared cut material, infrared cut material dispersion liquid, composition for forming infrared cut film, and infrared cut film
US8927067B2 (en) 2012-01-11 2015-01-06 Mitsubishi Materials Corporation Infrared ray cut-off material, dispersion of infrared ray cut-off material, infrared ray cut-off film-forming composition, and infrared ray cut-off film
WO2014104312A1 (en) * 2012-12-28 2014-07-03 日揮触媒化成株式会社 Water and/or organic solvent dispersion fluid that include linked crystalline inorganic oxide particle groups, production method therefor, optical base coating fluid including said linked crystalline inorganic oxide particle groups
JPWO2014104312A1 (en) * 2012-12-28 2017-01-19 日揮触媒化成株式会社 Water and / or organic solvent dispersion containing linked crystalline inorganic oxide fine particle group, method for producing the same, and coating solution for optical substrate containing linked crystalline inorganic oxide fine particle group

Similar Documents

Publication Publication Date Title
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP5555082B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5757673B2 (en) Substrate with transparent film and paint for forming transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP4592274B2 (en) Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles
KR20080083249A (en) Substrate for hard coating film and coating solution for hard coating film
JP6112753B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles
JP4994187B2 (en) Method for producing modified zirconia fine particles
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP5534758B2 (en) Phosphorus-containing antimony pentoxide fine particles, a transparent conductive film-forming coating solution containing the fine particles, and a substrate with a transparent conductive film
JP5554904B2 (en) Paint for forming transparent film and substrate with transparent film
JP5680372B2 (en) Substrate with transparent film and coating liquid for forming transparent film
KR20040099228A (en) Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film
JP5026172B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP6530644B2 (en) Composition for forming ITO conductive film and ITO conductive film
JP6530673B2 (en) Composition for forming phosphorus-doped tin oxide conductive film and phosphorus-doped tin oxide conductive film