JP4409169B2 - Paint containing colored pigment particles, substrate with visible light shielding film - Google Patents

Paint containing colored pigment particles, substrate with visible light shielding film Download PDF

Info

Publication number
JP4409169B2
JP4409169B2 JP2002377718A JP2002377718A JP4409169B2 JP 4409169 B2 JP4409169 B2 JP 4409169B2 JP 2002377718 A JP2002377718 A JP 2002377718A JP 2002377718 A JP2002377718 A JP 2002377718A JP 4409169 B2 JP4409169 B2 JP 4409169B2
Authority
JP
Japan
Prior art keywords
visible light
light shielding
shielding film
silica
colored pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002377718A
Other languages
Japanese (ja)
Other versions
JP2004204175A (en
Inventor
南 憲 金
田 政 幸 松
井 俊 晴 平
松 通 郎 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2002377718A priority Critical patent/JP4409169B2/en
Publication of JP2004204175A publication Critical patent/JP2004204175A/en
Application granted granted Critical
Publication of JP4409169B2 publication Critical patent/JP4409169B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の技術分野】
本発明は可視光を有効に遮蔽することができる可視光遮蔽膜形成用塗料および該塗料を用いて形成された可視光遮蔽膜付基材に関する。
【0002】
【発明の技術的背景】
従来、波長領域が約400〜800nmの可視光を遮蔽するために、ガラス、プラスチックシート、プラスチックレンズ等に可視光遮蔽剤を配合・組み込んだり、ガラス等の基材の表面に可視光遮蔽剤からなる膜を形成したり、可視光遮蔽剤を含む樹脂膜等を貼り付けることが行われていた。また、必要に応じて赤外線や紫外線を遮蔽するために、赤外線遮蔽剤や紫外線遮蔽剤を用いて同様のことが行われていた。
【0003】
このとき、可視光遮蔽剤として着色顔料粒子、特に黒色の着色粒子が用いられ、具体的には、カーボンブラック、チタンブラック、酸化鉄等が用いられていた。
しかしながら、これらの着色粒子は樹脂への分散性が不充分なためか得られる遮蔽膜はヘーズや外観ムラが発生したり、基材との密着性や膜の強度が不充分であった。このためヘーズを抑制したり、密着性を維持するためには着色顔料の使用量を減少させざるを得ないという問題点があった。このため、従来のものでは、ヘーズが低く密着性に優れ、可視光遮蔽効果の高い遮蔽膜を得ることが困難であった。
【0004】
【発明の目的】
本発明は、ヘーズが低く、基材との密着性や膜の強度に優れた可視光遮蔽膜付基材を提供することを目的としている。
【0005】
【発明の概要】
本発明に係る可視光遮蔽膜形成用塗料は、着色顔料粒子と塗料用樹脂とを含み、
着色顔料粒子がシリカで被覆されたシリカ被覆着色顔料粒子であり、
該シリカ被覆着色顔料粒子が、着色顔料粒子の分散液に、
酸性珪酸液を添加してシリカ被覆を行った後、さらに前記シリカ被覆面に下記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を析出させて得られたものであることを特徴としている。
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数〕
前記着色顔料粒子が、カーボンブラック、チタンブラック、およびFe、Mn、Cu、Coの少なくとも1種以上の元素の酸化物を含む結晶化合物または結晶性化合物から選ばれる少なくとも1種であることが好ましい。
【0006】
前記塗料用樹脂が接着性樹脂であることが好ましい。
さらに赤外線遮蔽剤および/または紫外線遮蔽剤を含んでいてもよい。
本発明に係る可視光遮蔽膜付基材は、基材と、基材上に前記光遮蔽膜形成用塗料を用いて形成された光遮蔽膜を有することを特徴としている。
【0007】
【発明の具体的な説明】
まず、本発明に係る可視光遮蔽膜形成用塗料について説明する。
可視光遮蔽膜形成用塗料
本発明に係る可視光遮蔽膜形成用塗料は、着色顔料粒子と塗料用樹脂からなる塗料であって、着色顔料粒子がシリカで被覆されたシリカ被覆着色顔料粒子であることを特徴としている。
【0008】
シリカ被覆着色顔料粒子
本発明では、着色顔料粒子がシリカで被覆されたシリカ被覆着色顔料粒子が使用される。このように着色顔料粒子がシリカで被覆されているので、塗料中への粒子の分散性が高く、粒子の含有量を高めることができ、粒子が分散した塗料を用いて得られる可視光遮蔽膜は、可視光を有効に遮蔽することができるとともに、基材への密着性、膜強度、耐擦傷性に優れている。
【0009】
着色顔料粒子としては従来公知の着色顔料粒子を用いることができる。
特に本発明では、カーボンブラック、チタンブラック、Fe、Mn、Cu、Coの少なくとも1種以上の元素の酸化物を含む結晶化合物または結晶性化合物から選ばれる少なくとも1種であることを特徴とする。結晶性化合物としては、スピネル型結晶化合物、ペロブスカイト型結晶化合物があげられ、たとえば、Fe23、CuO、CuO-Cr23、CuO-Fe23-Mn23、CoO-Fe23-Cr23等が挙げられる。
【0010】
このような着色顔料粒子は、平均粒子径が2〜100nm、さらには5〜80nmの範囲にあることが好ましい。
着色顔料粒子の平均粒子径が2nm未満の場合は、基材との接着性、密着性や耐擦傷性、膜硬度が不充分となることがあり、また粒子が凝集することがあり、このためヘーズが高くなることがある。また、粒子が凝集した場合、光の通り抜けが生じ可視光遮蔽効率が低下することがある。
【0011】
着色顔料粒子の平均粒子径が100nmを越えると、膜表面の平滑性が低下したり、また可視光の散乱により透明性が低下したりヘーズが高くなることがある。
本発明に用いるシリカ被覆着色顔料粒子はこのような着色顔料粒子がシリカで被覆されている。シリカ被覆着色顔料粒子中のシリカ被覆量は、シリカ被覆着色顔料の総重量に対して、SiO2として1〜40重量%、さらには2〜30重量%の範囲にあることが好ましい。
【0012】
このような量のシリカで被覆されていると、充分に可視光を遮蔽できるとともに、樹脂への分散性が高くなり、配合量を多くすることができるとともに、得られる可視光遮蔽膜はヘーズや外観ムラがなく、基材との密着性に優れるとともに膜強度も充分に高いという優れた特性を有している。
シリカ被覆量が前記下限未満の場合は、シリカ被覆着色顔料粒子の樹脂への分散性が不充分となり、このため配合比を多くすることができず、また得られる可視光遮蔽膜はヘーズや外観ムラが発生したり、基材との密着性や膜の強度が不充分となる。
【0013】
シリカ被覆量が前記上限を越えても、さらに樹脂への分散性が向上することもなく、着色顔料粒子の割合が少なくなるために可視光遮蔽効果が低下することがある。また充分な遮蔽効果を得るために膜厚を厚くするとかえって膜にクラックが生じたり、ヘーズが高くなったりすることがある。
このようなシリカ被覆着色顔料粒子の調製方法としては、前記したシリカ被覆着色顔料粒子が得られれば特に制限されるものではない。
【0014】
例えば、第1の方法として、着色顔料粒子の分散液に、分散液のpHを概ね10〜12の範囲に調整しながら、珪酸塩および/または酸性珪酸液を添加することによって得ることができる。
珪酸塩としては、アルカリ金属珪酸塩、アンモニウム珪酸塩および有機塩基の珪酸塩から選ばれる1種または2種以上の珪酸塩が好ましく用いられる。アルカリ金属珪酸塩としては、珪酸ナトリウム(水ガラス)や珪酸カリウムが、有機塩基としては、テトラエチルアンモニウム塩などの第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミン類を挙げることができ、アンモニウムの珪酸塩または有機塩基の珪酸塩には、珪酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物などを添加したアルカリ性溶液も含まれる。
【0015】
酸性珪酸液としては、珪酸アルカリ水溶液を陽イオン交換樹脂で処理すること等によって、アルカリを除去して得られる珪酸液を用いることができ、特に、pH2〜pH4、SiO2濃度が約7重量%以下の酸性珪酸液が好ましい。
また、第2の方法として、下記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を着色顔料粒子表面に析出させることによっても得ることができる。
【0016】
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数〕
このような式(1)で表される加水分解性有機基含有ケイ素化合物としては、具体的に、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシトリプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、トリメチルシラノ-ル、メチルトリクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、ビニルトリクロルシラン、トリメチルブロモシラン、ジエチルシラン等が挙げられる。
【0017】
また、前記式(1)において、n=1〜3の加水分解性有機ケイ素化合物を用いると、後述する塗料用樹脂への分散性が向上し、得られる可視光遮蔽膜は外観ムラ、ヘーズ、遮蔽膜表面平滑性等に優れている。
さらに第3の方法として、前記珪酸塩および/または酸性珪酸液を添加してシリカ被覆を行った後、さらに前記シリカ被覆面に前記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を析出させてもよい。
【0018】
また第4の方法として、前記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を添加してシリカ被覆を行った後、前記珪酸塩および/または酸性珪酸液を析出させてもよい。
このように、前記珪酸塩および/または酸性珪酸液と加水分解性有機ケイ素化合物との両者でシリカ被覆を行うと、樹脂への分散性が高く、しかも充分に着色顔料粒子を被覆することが可能である。
【0019】
前記珪酸塩および/または酸性珪酸液をのみでシリカ被覆を行う方法では得られるシリカ被覆着色顔料粒子の樹脂への分散性が不充分となることがあり、凝集することがある。また、前記式(1)で表される加水分解性有機ケイ素化合物の加水分解物のみを酸化物微粒子表面に析出させる方法では、加水分解物が着色顔料粒子表面に選択的に析出しない場合があり、シリカ被覆が不充分となったり、被覆効率が低下することがある。
【0020】
このとき、前記珪酸塩および/または酸性珪酸液によるシリカの量は、着色顔料粒子を被覆できる量であればよく、概ね1〜40重量%、さらには2〜30重量%の範囲にあればよい。また、式(1)で表される加水分解性有機ケイ素化合物の加水分解物による被覆量は、シリカ被覆着色顔料粒子中のシリカ被覆量が1〜40重量%、好ましくは2〜30重量%の範囲にあることが望ましい。両者を併用する場合、シリカ被覆着色顔料粒子中のシリカ被覆量が合計で1〜40重量%、好ましくは2〜30重量の範囲にあることが望ましい。(なおいずれもシリカ換算)
なお、式(1)で表される加水分解性有機ケイ素化合物の加水分解物による被覆を行う場合は、予め、前記珪酸塩および/または酸性珪酸液を添加してシリカ被覆を行う以外に、珪酸塩および/または酸性珪酸液の代わりに、酸化チタン、酸化ジルコニウム、アルミナ等の酸化物(水酸化物を含む)を被覆してもよい。さらに、両者で被覆してもよく、その被覆順序は特に制限されない。酸化チタン、酸化ジルコニウム、アルミナ等で被覆する場合、被覆量は酸化物として概ね0.5〜10重量%、さらには1〜5重量%の範囲にあればよい。
【0021】
さらに、本発明に用いるシリカ被覆着色顔料粒子は、前記シリカ被覆を行う際に、特に珪酸塩および/または酸性珪酸液によるシリカ被覆を行う際に、着色顔料粒子の分散液を強く撹拌しながら、あるいは着色顔料粒子をサンドミル、ボールミル等で粉砕しながら、必要に応じて超音波を照射することが望ましい。このような方法を採用すると着色顔料粒子表面上に均一にシリカを被覆することができる。
【0022】
このようにして得られたシリカ被覆着色顔料粒子は、通常分散液として調製される。この分散液は、必要に応じて限外濾過膜法等で有機溶媒に溶媒置換して用いることができる。有機溶媒としてはアルコール、エーテル、エステル、ケトン等が挙げられ、具体的には、メタノール、エタノール、nプロパノール、イソプロパノール、ブタノール、エチレングリコールモノメチルアセテート、メチルエチルケトン、メチルイソブチルケトン、イソホロン、トルエン、キシレン等が挙げられる。
【0023】
またこのようなシリカ被覆着色顔料粒子分散液は一旦乾燥してから後述する塗料と混合してもよく、また、分散液状態で、塗料用樹脂と混合してもよい。
塗料用樹脂
本発明に用いる塗料用樹脂としては、従来公知の熱硬化性樹脂、熱可塑性樹脂等のいずれも採用することができる。例えば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂、ウレタンアクリレート樹脂、エポキシアクリレート樹脂などの熱硬化性樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。
【0024】
これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。
本発明では、特に、熱硬化性樹脂、紫外線硬化樹脂は前記シリカ被覆着色顔料粒子を配合した場合に基材との密着性、膜強度および耐擦傷性の向上効果が得られる。
【0025】
本発明に用いる樹脂として、接着性樹脂は好適に用いることができる。
接着性樹脂としては、ポリエステル樹脂、熱可塑性アクリル樹脂、熱硬化性アクリル樹脂、フッ素樹脂、ウレタン樹脂、反応性シリコーン樹脂、エポキシ樹脂等が挙げられる。
このような接着性樹脂を用いると、基材と密着性がよく、耐候性、透明性等に優れた可視光遮蔽膜を得ることができる。
【0026】
赤外線遮蔽剤・紫外線遮蔽剤
また、本発明に係る可視光遮蔽膜形成用塗料には、赤外線遮蔽剤および/または紫外線遮蔽剤を含んでいてもよい。赤外線遮蔽剤および/または紫外線遮蔽剤を含むことで、可視光遮蔽膜に赤外線遮蔽能および/または紫外線遮蔽能を付与できるので、耐候性に優れた可視光遮蔽膜付基材を得ることができる。
【0027】
赤外線遮蔽剤としては、例えば酸化錫、Sb、FまたはPをドープした酸化錫、酸化インジウム、SnまたはFをドープした酸化インジウム、酸化アンチモン、酸化亜鉛、低次酸化チタン(着色)および、これらの混合物等の従来公知の導電性を有する酸化物微粒子が挙げられる。
さらに、LaB6、CeB6、PrB6、NdB6、SmB6、GdB6、TbB6、DyB6、SrB6、CaB6等、これらのホウ素を窒素(N)に置換した窒化物粒子、およびこれらの混合物を挙げることができる。
【0028】
また、紫外線遮蔽剤としてはTi、Ceの酸化物、これらの複合酸化物粒子等の従来公知の紫外線遮蔽剤を用いることができ、具体的にはTiO2、CeO2、TiO2・CeO2 等の微粒子およびこれらの混合物が挙げられる。
赤外線遮蔽剤および紫外線遮蔽剤として前記した粒子を用いる場合、その平均粒子径は、シリカ被覆着色顔料粒子と同程度あればよく、具体的には2〜100nm、さらには5〜80nmの範囲にあることが好ましい。このような範囲にあれば、基材との接着性、密着性、耐擦傷性、硬度に優れた膜を形成できる。
【0029】
平均粒子径が前記範囲下限未満の場合は、基材との接着性、密着性や耐擦傷性、膜硬度が不充分となることがあり、また粒子が凝集することがあり、このためヘーズが高くなることがある。また、粒子が凝集した場合、光の通り抜けが生じ可視光遮蔽効率が低下することがある。平均粒子径が前記範囲上限を越えると、得られる膜のヘーズが高くなったり、膜表面の平滑性が低下することがある。
【0030】
また、赤外線遮蔽剤および紫外線遮蔽剤として前記した粒子を用いる場合、その粒子表面は、シリカ被覆着色顔料粒子と同様の方法によりシリカで被覆されていてもよい。このときのシリカ被覆量は、シリカ被覆粒子中のSiO2として1〜40重量%、さらには2〜30重量%の範囲にあることが好適である。シリカ被覆量が前記範囲内にあれば、樹脂への分散性が高くなり、また、得られる可視光遮蔽膜はヘーズが低くまた外観ムラが発生することもなく、さらには基材との密着性や膜の強度が充分に優れたものとなる。
【0031】
分散媒
本発明に係る可視光遮蔽膜形成用塗料には、必要に応じて分散媒を含んでいてもよい。分散媒は、前記塗料用樹脂を溶解するものであっても、溶解せずとも単に懸濁させるものであってもよい。
具体的には、塗料用樹脂の種類によっても異なるものの、水、アルコール、エーテル、エステル、ケトン等が挙げられ、具体的には、メタノール、エタノール、nプロパノール、イソプロパノール、ブタノール、エチレングリコールモノメチルアセテート、メチルエチルケトン、メチルイソブチルケトン、イソホロン、トルエン、キシレン等がある。
【0032】
このような分散媒を用いることによって、塗工性がよく、得られる膜は白化がなく、表面平滑性等に優れた可視光遮蔽膜を形成できる。
可視光遮蔽膜形成用塗料
本発明に係る可視光遮蔽膜形成用塗料は、上記成分からなり、塗料中のシリカ被覆着色含量粒子の含有量は可視光遮蔽膜中の含有量が固形分として10〜85重量%、さらには15〜60重量%の範囲となるように含まれていることが好ましい。このような範囲でシリカ被覆着色含量粒子が含まれていると、可視光遮蔽効果に優れるとともに、表面平滑性も高く、硬度や基材との密着性も高い可視光遮蔽膜を形成できる。
【0033】
可視光遮蔽膜中のシリカ被覆着色含量粒子の含有量が固形分として前記下限未満の場合は、可視光(波長域400〜800nm)の充分な遮蔽性能が得られず、可視光遮蔽膜中のシリカ被覆着色顔料粒子の含有量が固形分として前記上限を越えると、膜の表面平滑性が低下するとともに膜内部に微小空隙が生じてヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下する。
【0034】
このような可視光遮蔽膜形成用塗料を用いて得られる可視光遮蔽膜の可視光透過率は概ね3〜50%の範囲にある。
赤外線遮蔽剤用の粒子を配合する場合、所望の赤外線遮蔽率が得られるように配合すればよいが、より好適には、得られる光遮蔽膜中の赤外線遮蔽剤用粒子の含有量が0.2〜20重量%、さらには0.5〜5重量%となるように配合することが望ましい。また、紫外線遮蔽剤用の粒子を配合する場合、所望の紫外線遮蔽率が得られるように配合すればよいが、より好適には得られる可視光遮蔽膜中の紫外線遮蔽剤用粒子の含有量が0.2〜10重量%、さらには0.5〜5重量%となるように配合することが望ましい。
【0035】
このような範囲の紫外線遮蔽剤用および赤外線遮蔽剤用の粒子の含有量であれば、優れた紫外線遮蔽効果、赤外線遮蔽効果が発現される。なお、上記範囲を過量に含んでいると、膜自体が着色することがある。
赤外線遮蔽用粒子および/または紫外線遮蔽用粒子をシリカ被覆着色顔料粒子と混合して用いる場合、可視光遮蔽膜中の合計含有量が固形分として85重量%以下となるように用いることが望ましい。
【0036】
可視光遮蔽膜中の合計含有量が固形分として85重量%を越えると、膜の表面平滑性が低下するとともにヘーズが高くなることがあり、さらに膜の硬度や基材との密着性が低下することがある。
また、本発明に係る可視光遮蔽膜形成用塗料中の塗料用樹脂の含有量は、得られる可視光遮蔽膜中の塗料用樹脂の含有量が15〜90重量%、さらには40〜85重量%の範囲にあることが好ましい。(但し、前記シリカ被覆着色顔料粒子含有量(赤外線遮蔽用粒子および/または紫外線遮蔽用粒子を含む場合は合計量)との合計が100重量%を越えることはない)
可視光遮蔽膜中の塗料用樹脂の含有量が15重量%未満の場合は、可視光遮蔽膜の基材との密着性が低下したり、膜自体硬度が低下したり、さらに可視光遮蔽膜表面の平滑性が不充分となったりする。
【0037】
可視光遮蔽膜中の塗料用樹脂の含有量が90重量%を越えると、充分な可視光遮蔽性能と赤外線遮蔽能および/または紫外線遮蔽能が得られない。
可視光遮蔽膜形成用塗料には必要に応じて前記した分散媒を含んでいてもよい。塗料中の分散媒の使用割合は、塗料に流動性を付与できる程度の量であれば特に制限されるものではなく、塗料中に90重量%以下、さらには50重量%以下の範囲にあることが望ましい。
【0038】
可視光遮蔽膜形成用塗料中の分散媒の使用割合が90重量%を越えると、1回の塗布で必要な膜厚が得られないことがあり、また分散媒の乾燥による除去量が増加するために膜の緻密性が低下し、経済性が低下する。
可視光遮蔽膜付基材
本発明に係る可視光遮蔽膜付基材は、前記可視光遮蔽膜形成用塗料を用いて形成されたことを特徴としている。
【0039】
基材
本発明に用いる基材としては、車両、ビル、事務所、一般住宅等の窓、ショーウィンドー等に用いられる、ガラス板、ポリカーボネート、アクリル樹脂、PET、TAC(三酢酸セルロース)等から形成された、プラスチックシート、フィルム、パネル等が挙げられる。
【0040】
上記した可視光遮蔽膜付基材は、前記塗布液をディップ法、スプレー法、スピナー法、ロールコート法等の周知の方法で基材に塗布し、乾燥し、熱硬化性樹脂の場合は硬化させた後、熱可塑性樹脂の場合は、さらに必要に応じて基材の軟化点未満の温度で加熱処理することによって可視光遮蔽膜を形成することで得ることができる。
【0041】
可視光遮蔽膜の厚さは0.5〜20μm、さらには2〜10μmの範囲にあることが好ましい。
可視光遮蔽膜の厚さが0.5μm未満の場合は、可視光遮蔽能が充分得られず、可視光遮蔽膜の厚さが20μmを越えると、膜の厚さが均一になるように塗布したり、均一に乾燥することが困難となり、このためクラックやボイドの発生により得られる膜の強度や透明性が不充分となることがある。
【0042】
本発明では、可視光遮蔽膜中にシリカで被覆された可視光遮蔽用着色顔料粒子が含まれている。係る被覆粒子は、可視光遮蔽効果に優れるとともに、塗料用樹脂への分散性に非常に優れている。このため、長期分散安定性に優れた可視光遮蔽膜形成用塗料を得ることができる。
また、塗料中の含有量を高めることができるので、可視光遮蔽率の高い遮蔽膜を得ることができ、さらに、可視光遮蔽用着色顔料粒子の含有量の高い場合であっても、ヘーズ、基材との密着性、膜強度、耐久性等に優れた可視光遮蔽膜を形成することができる。
【0043】
【発明の効果】
本発明によれば、可視光遮蔽効果に優れるとともに、ヘーズ、基材との密着性、膜強度、耐久性等に優れた可視光遮蔽膜を形成することができる可視光遮蔽膜形成用塗料および該可視光遮蔽膜形成用塗料を用いて形成された可視光遮蔽膜付基材を提供することができる。
【0044】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
【0045】
【実施例1】
可視光線遮蔽膜形成用微粒子分散液 (VP-1) の調製
純水1100gにカ-ボンブラック粉末(三菱化学(株)製:MA-7、平均粒子径24nm)52gを入れ、1時間攪拌混合を行った。その後、濃度10重量%の水酸化カリウム水溶液を3g添加した。この時のpHは11.5であった。サンドミルで混合液を30℃に保ちながら3時間粉砕して、固形分濃度3.5重量%のカーボンブラック微粒子水分散液を得た。このときのpHは9.7であった。
【0046】
このカーボンブラック微粒子水分散液を両イオン交換樹脂で処理して脱酸、脱アルカリし、固形分濃度2.5重量%のカーボンブラック微粒子水分散液(A-1)を得た。このときのpHは3.5、平均粒子径は90nmであった。
このカ-ボンブラック微粒子分散液(A-1)1000gとエタノール1000gとの混合液に水硝子を脱アルカリして得たSiO2濃度4重量%の酸性珪酸液125gを入れ1時間攪拌混合後、90℃に昇温し、1時間加熱処理を行った。次いでこのカ-ボンブラック微粒子分散液を50℃まで降温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)17.2gを6時間で添加した。その後、この分散液を12時間加熱処理した後、限外濾過膜に通して分散媒の水、エタノールをエタノールに置換し、16.7重量%のシリカで被覆された固形分濃度5重量%のカーボンブラック微粒子エタノール分散液(B-1)を得た。このとき、水分濃度は0.5%、平均粒子径は90nmであった。
【0047】
次いで、2Lのナス型フラスコにカーボンブラック微粒子エタノール分散液(B-1)500gとジプロピレングリコールモノメチルエーテル500gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度5重量%のシリカ被覆カーボンブラック微粒子のジプロピレングリコールモノメチルエーテル分散液(VP-1)を得た。このとき、水分濃度は0.4重量%、平均粒子径は90nmであった。
【0048】
可視光線遮蔽膜形成用塗料 (VF-1) の調製
上記分散液(VP-1)22gと、紫外線硬化樹脂(大日本インキ(株)製:ユニディックV-5500)4.2gと、イソプロパノール4.9g、ブチルセロソルブ4.9gとを混合して可視光線遮蔽膜形成用塗料(VF-1)を調製した。
可視光線遮蔽膜付基材 (VS-1) の製造
可視光線遮蔽膜形成用塗料(VF-1)をガラス板(厚さ2.0mm、屈折率1.47)にバーコーターで塗布し、80℃で1分間乾燥した後、高圧水銀灯(80W/cm)を1分間照射して硬化させた。
【0049】
このときの膜厚は3μmであった。得られた可視光線遮蔽膜付基材(VS-1)の可視光線遮蔽性(波長:550nm)、赤外線遮蔽性(波長:800nm)、紫外線遮蔽性(波長:380nm)を分光光度計(日本分光(株)製:U-570)、透明性ヘーズメーター(日本電色(株)製:NDH2000)で測定した。また、密着性、硬度および耐擦傷性を下記の方法で評価した。結果を表1に示す。
【0050】
密着性
可視光線遮蔽膜付基材(VS-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これに粘着テープ(セロハンテープ、登録商標)を接着し、次いで、該テープを剥離したときに被膜が剥離せず残存している升目の数を、以下の4段階に分類することにより密着性を評価した。結果を表に示す。
【0051】
残存升目の数95個以上 :◎
残存升目の数90〜94個 :○
残存升目の数85〜89個 :△
残存升目の数84個以下 :×
鉛筆硬度
JIS−K−5400に準じて鉛筆硬度試験器により測定した。
【0052】
耐擦傷性
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を目視観察し、以下の基準で評価した。結果を表1に示す。
筋条の傷が認められない :◎
筋条に傷が僅かに認められる :○
筋条に傷が多数認められる :△
面全体的に削られている :×
【0053】
【実施例2】
可視光線遮蔽膜形成用微粒子分散液 (VP-2) の調製
純水2130gにチタンブラック粉末(赤穂化成(株)製:Tilack D、平均粒子径660nm)918gを入れ、1時間攪拌混合を行った。その後、濃度10重量%の水酸化カリウム水溶液を13g添加した。この時のpHは12.8であった。次いで、サンドミルで混合液を30℃に保ちながら3時間粉砕して、固形分濃度15%のチタンブラック微粒子水分散液(A-2)を得た。このときのpHは9.5、平均粒子径は100nmであった。
【0054】
このチタンブラック微粒子水分散液(A-2)1000gにSiO2濃度4重量%の酸性珪酸液375gを入れ1時間攪拌混合後、濃度10重量%の水酸化カリウム水溶液を加えpHを10.5まで上げた後、90℃に昇温し、1時間加熱処理を行った。
次いで、25℃まで冷却した後、このチタンブラック微粒子水分散液を両イオン交換樹脂で処理して脱酸、脱アルカリし、固形分濃度12重量%のチタンブラック微粒子水分散液(B-2-1)を得た。このときのpHは3.5、平均粒子径は100nmであった。
【0055】
このチタンブラック微粒子水分散液(B-2-1)1000gにSiO2濃度4%の酸性珪酸液300gを入れ1時間攪拌混合後、90℃に昇温し、1時間加熱処理を行った。
次いで、25℃まで冷却した後、このチタンブラック微粒子水分散液をイオン交換樹脂で処理して脱酸、脱アルカリし、固形分濃度10重量%のチタンブラック微粒子水分散液(B-2-2)を得た。このときのpHは3.5、平均粒子径は100nmであった。
【0056】
このチタンブラック微粒子分散液(B-2-2)1000gとエタノール1000gとの混合液に、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)69.44gを1時間で添加した。その後この液を50℃で17時間加熱処理した後、限外濾過膜に通し分散媒の水、エタノールをエタノールに置換し、固形分濃度7重量%のシリカ被覆チタンブラック微粒子エタノール分散液(B-2-3)を得た。シリカ被覆量は15.3重量%であった。また、水分濃度は0.5%、平均粒子径は100nmであった。
【0057】
次いで2Lのナス型フラスコに、チタンブラック微粒子エタノール分散液(B-2-3)500gとジプロピレングリコールモノメチルエーテル200gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度15重量%のシリカ被覆チタンブラック微粒子のジプロピレングリコールモノメチルエーテル分散液(VP-2)を得た。このとき、水分濃度は0.4%、平均粒子径は100nmであった。
【0058】
可視光線遮蔽膜形成用塗料 (VF-2) の調製
上記分散液(VP-2)22gを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-2)を調製した。
可視光線遮蔽膜付基材 (VS-2) の製造
可視光線遮蔽膜形成用塗料(VF-2)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-2)を調製した。
【0059】
可視光線遮蔽膜付基材(VS-2)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0060】
参考例3】
可視光線遮蔽膜形成用微粒子分散液(VP-3)の調製
エタノール425gにCuO-Fe23-Mn23粉末(大日精化工業(株)製:ダイピロキサイドブラック#9550、平均粒子径500nm)75gを入れ、1時間攪拌混合を行った。その後、アミノエチルアミノプロピルメチルジメトキシシラン(信越化学(株)製:KBM-602)14g添加した。サンドミルで混合液を30℃に保ちながら3時間粉砕して、固形分濃度15重量%のCuO-Fe23-Mn23微粒子エタノール分散液(A-3)を得た。
【0061】
この分散液(A-3)500gとエタノール1000gとの混合液を50℃に昇温し、18時間加熱処理し、次いでこのCuO-Fe23-Mn23微粒子エタノール分散液を25℃まで降温した後、この混合液にテトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8%)156.3gを1時間で添加した。 その後この液を50℃で17時間加熱処理し、固形分濃度5重量%のシリカで被覆されたCuO-Fe23-Mn23微粒子エタノール分散液(B-3)を得た。このとき、水分濃度は0.3%、平均粒子径は60nmであった。
【0062】
次いで2Lのナス型フラスコの中にCuO-Fe23-Mn23微粒子エタノール分散液(B-3)500gにジプロピレングリコールモノメチルエーテル500gを入れロータリーエバポレーターで減圧蒸留を行い、固形分濃度15重量%のシリカで被覆されたCuO-Fe23-Mn23微粒子ジプロピレングリコールモノメチルエーテル分散液(VP-3)を得た。このとき、水分濃度は0.4%、平均粒子径は60nmであった。
【0063】
可視光線遮蔽膜形成用塗料 (VF-3) の調製
上記分散液(分散液(VP-3)22gを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-3)を調製した。
可視光線遮蔽膜付基材 (VS-3) の製造
可視光線遮蔽膜形成用塗料(VF-3)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-3)を調製した。
【0064】
可視光線遮蔽膜付基材(VS-3)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0065】
【実施例4】
可視光線遮蔽膜形成用塗料 (VF-4) の調製
実施例1と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-1)16.5gと、実施例2と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-2)5.5gとを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-4)を調製した。
【0066】
可視光線遮蔽膜付基材 (VS-4) の製造
可視光線遮蔽膜形成用塗料(VF-4)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-4)を調製した。
可視光線遮蔽膜付基材(VS-4)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0067】
【実施例5】
赤外線遮蔽微粒子分散液 (IR-1) の調製
塩化錫57.7gと塩化アンチモン7.0gとをメタノール100gに溶解して溶液を調製し、この溶液を4時間かけて90℃攪拌下の純水1,000gに添加して加水分解を行い、生成した沈殿物を濾別洗浄した後、純水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調整した。
【0068】
この分散液を温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調整した。上記粉体を窒素ガス雰囲気下550℃で2時間加熱処理して金属酸化物(ATO:アンチモンドープ酸化錫)を得た。
この粉末300gを濃度3重量%の水酸化カリウム水溶液70gに加え、30℃に保持しながらサンドミルで3時間粉砕してアンチモンドープ酸化錫ゾルを調製した。
【0069】
次に、このゾルをイオン交換樹脂で処理して脱アルカリし、純水を加えて固形分濃度20重量%のアンチモンドープ酸化錫水分散液(A-4)を調製した。アンチモンドープ酸化錫の平均粒子径は30nmであった。
次いでこの分散液(A-4)100gとエタノール100gとの混合液を50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)13.9gを1時間で添加し、その後17時間加熱処理した後、限外濾過膜に通し分散媒の水、エタノールをエタノールに置換し、固形分濃度30重量%のシリカで被覆されたアンチモンドープ酸化錫微粒子分散液(B-4)を得た。シリカで被覆されたアンチモンドープ酸化錫微粒子の平均粒子径は33nmであった。
【0070】
次いで、2Lのナス型フラスコに分散液(B-4)500gとジプロピレングリコールモノメチルエーテル500gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度30重量%のシリカで被覆されたアンチモンドープ酸化錫微粒子ジプロピレングリコールモノメチルエーテル分散液(IR-1)を得た。このとき、水分濃度は0.3%、平均粒子径は33nmであった。
【0071】
可視光線遮蔽膜形成用塗料 (VF-5) の調製
実施例1と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-1)16.5gと、実施例2と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-2)5.5gと、上記で得た分散液(IR-1)14gとを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-5)を調製した。
【0072】
可視光線遮蔽膜付基材 (VS-5) の製造
可視光線遮蔽膜形成用塗料(VF-5)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-5)を調製した。
可視光線遮蔽膜付基材(VS-5)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価し、結果を表1に示した。
【0073】
【実施例6】
赤外線遮蔽微粒子分散液 (IR-2) の調製
硝酸インジウム79.9gを純水686.0gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液20gとを調製し、これらの溶液を、50℃に保持された1,000gの純水に2時間かけて添加して加水分解を行った。この間、系内のpHを11に保持した。得られた金属酸化物前駆体水酸化物分散液から金属酸化物前駆体水酸化物を濾別、洗浄した後、乾燥し、次いで空気中、350℃で3時間加熱処理し、さらに空気中600℃で2時間加熱処理して金属酸化物(ITO:錫ドープ酸化インジウム)を得た。
【0074】
これを濃度が30重量%となるように純水に分散させ、さらに硝酸水溶液でpHを3.5に調製した後、分散液を30℃に保持しながらサンドミルで、3時間粉砕して錫ドープ酸化インジウムゾルを調製した。次に、このゾルをイオン交換樹脂で処理して硝酸イオンを除去し、純水を加えて固形分濃度20重量%の金属酸化物(ITO)微粒子分散液(A-5)を調製した。錫ドープ酸化インジウムの平均粒子径は50nmであった。
【0075】
次いでこの分散液(A-5)100gとエタノール100gとの混合液を50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)13.9gを6時間で添加し、その後12時間過熱処理した後、限外濾過膜に通し分散媒の水、エタノールをエタノールに置換し、固形分濃度30重量%のシリカで被覆された錫ドープ酸化インジウム微粒子ジプロピレングリコールモノメチルエーテル分散液(IR-2)を得た。このとき、水分濃度は0.3%、平均粒子径は55nmであった。
【0076】
可視光線遮蔽膜形成用塗料 (VF-6) の調製
実施例1と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-1)16.5gと、実施例2と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-2)5.5gと、上記で得た分散液(IR-2)14gとを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-6)を調製した。
【0077】
可視光線遮蔽膜付基材 (VS-6) の製造
可視光線遮蔽膜形成用塗料(VF-6)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-6)を調製した。
可視光線遮蔽膜付基材(VS-6)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0078】
【実施例7】
紫外線遮蔽微粒子分散液 (UV-1) の調製
酸化チタンコロイド(触媒化成工業(株)製:オプトレイク1130Z、平均粒子径20nm、固形分濃度20重量%)250gに濃度15重量%のアンモニア水を添加しpH10.5に調製し、これにエタノール250gを加え、次いで混合液を50℃に加温した後、テトラエトキシシラン(多摩化学(株)製:正珪酸エチル、SiO2濃度28.8重量%)15gを1時間で添加し、その後17時間加熱処理した後、限外濾過膜に通し分散媒の水、エタノールをエタノールに置換し、固形分濃度20重量%のシリカで被覆された酸化チタン微粒子分散液(B-6)を得た。酸化チタン微粒子の平均粒子径は25nmであった。
【0079】
次いで、2Lのナス型フラスコの中に、上記分散液(B-6)400gとジプロピレングリコールモノメチルエーテル400gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度20重量%のシリカで被覆された酸化チタン微粒子ジプロピレングリコールモノメチルエーテル分散液(UV-1)を得た。このとき、水分濃度は0.3%、平均粒子径は25nmであった。
【0080】
可視光線遮蔽膜形成用塗料 (VF-7) の調製
実施例1と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-1)16.5gと、実施例2と同様にして得た可視光線遮蔽膜形成用微粒子分散液(VP-2)5.5gと、上記で得た分散液(UV-1)8.2gとを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(VF-7)を調製した。
【0081】
可視光線遮蔽膜付基材 (VS-7) の製造
可視光線遮蔽膜形成用塗料(VF-7)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(VS-7)を調製した。
可視光線遮蔽膜付基材(VS-7)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価し、結果を表1に示す。
【0082】
【比較例1】
可視光線遮蔽膜形成用微粒子分散液 (RVP-1) の調製
実施例1と同様にして、固形分濃度2.5%のカーボンブラック微粒子水分散液(A-1)を得た。このときのpHは3.5、平均粒子径は90nmであった。
この分散液(A-1)1000gを、限外濾過膜に通して分散媒の水をエタノールに置換し、次いで、2Lのナス型フラスコにカーボンブラック微粒子エタノール分散液(A-1)500gとジプロピレングリコールモノメチルエーテル500gと分散剤としてポリオキシアルキレンアルキルフェニルエーテル燐酸エステル(第1工業製薬(株):プライサーフ A-217E)1.56gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度5重量%のカーボンブラック微粒子ジプロピレングリコールモノメチルエーテル分散液(RVP-1)を得た。このとき、水分濃度は0.4重量%、平均粒子径は100nmであった。
【0083】
可視光線遮蔽膜形成用塗料 (RVF-1) の調製
上記分散液(VP-1)22gを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(RVF-1)を調製した。
可視光線遮蔽膜付基材 (RVS-1) の製造
可視光線遮蔽膜形成用塗料(RVF-1)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(RVS-1)を調製した。
【0084】
可視光線遮蔽膜付基材(RVS-1)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0085】
【比較例2】
可視光線遮蔽膜形成用微粒子分散液 (RVP-2) の調製
実施例2と同様にして、固形分濃度15%のチタンブラック微粒子水分散液(A-2)を得た。このときのpHは9.5、平均粒子径は100nmであった。次いで、このチタンブラック微粒子水分散液を両イオン交換樹脂で処理して脱酸、脱アルカリし、固形分濃度12重量%のチタンブラック微粒子水分散液(B-2-1)を得た。次いで、このチタンブラック微粒子水分散液を両イオン交換樹脂で処理して脱酸、脱アルカリし、固形分濃度10重量%のチタンブラック微粒子水分散液(B-2-1)を得た。このときのpHは3.5、平均粒子径は100nmであった。
【0086】
次いで2Lのナス型フラスコに、チタンブラック微粒子エタノール分散液(B-2-1)500gとジプロピレングリコールモノメチルエーテル500gと分散剤としてポリオキシアルキレンアルキルフェニルエーテル燐酸エステル(第1工業製薬(株):プライサーフ A-217E)1.56gとを入れ、ロータリーエバポレーターで減圧蒸留を行い、固形分濃度5重量%のチタンブラック微粒子ジプロピレングリコールモノメチルエーテル分散液(RVP-2)を得た。このとき、水分濃度は0.4%、平均粒子径は110nmであった。
【0087】
可視光線遮蔽膜形成用塗料 (RVF-2) の調製
上記分散液(RVP-2)22gを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(RVF-2)を調製した。
可視光線遮蔽膜付基材 (RVS-2) の製造
可視光線遮蔽膜形成用塗料(RVF-2)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(RVS-2)を調製した。
【0088】
可視光線遮蔽膜付基材(RVS-2)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
【0089】
【比較例3】
可視光線遮蔽膜形成用微粒子分散液(RVP-3)の調製
参考例3と同様にして、固形分濃度15重量%のCuO-Fe23-Mn23微粒子エタノール分散液(A-3)を得た。
次いで、2Lのナス型フラスコの中にCuO-Fe23-Mn23微粒子エタノール分散液(A-3)500gにジプロピレングリコールモノメチルエーテル500gと分散剤としてポリオキシアルキレンアルキルフェニルエーテル燐酸エステル(第1工業製薬(株):プライサーフ A-217E)1.56gとを入れロータリーエバポレーターで減圧蒸留を行い、固形分濃度15重量%のCuO-Fe23-Mn23微粒子ジプロピレングリコールモノメチルエーテル分散液(RVP-3)を得た。このとき、水分濃度は0.4%、平均粒子径は80nmであった。
【0090】
可視光線遮蔽膜形成用塗料 (RVF-3) の調製
上記分散液(RVP-3)22gを用いた以外は実施例1と同様にして可視光線遮蔽膜形成用塗料(RVF-3)を調製した。
可視光線遮蔽膜付基材 (RVS-3) の製造
可視光線遮蔽膜形成用塗料(RVF-3)を用いた以外は実施例1と同様にして可視光線遮蔽膜付基材(RVS-3)を調製した。
【0091】
可視光線遮蔽膜付基材(RVS-3)について可視光線遮蔽性、透明性、密着性、硬度および耐擦傷性を評価した。結果を表1に示す。
※比較例1〜3ではシリカ被覆層を形成してない。
【0092】
【表1】

Figure 0004409169
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coating material for forming a visible light shielding film capable of effectively shielding visible light, and a substrate with a visible light shielding film formed using the coating material.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Conventionally, in order to shield visible light having a wavelength range of about 400 to 800 nm, a visible light shielding agent is incorporated into glass, plastic sheet, plastic lens, etc., or a visible light shielding agent is applied to the surface of a substrate such as glass. Forming a film or a resin film containing a visible light shielding agent. Moreover, in order to shield infrared rays and ultraviolet rays as necessary, the same has been performed using infrared shielding agents and ultraviolet shielding agents.
[0003]
At this time, colored pigment particles, particularly black colored particles, were used as the visible light shielding agent, and specifically, carbon black, titanium black, iron oxide, and the like were used.
However, these colored particles have insufficient dispersibility in the resin, so that the resulting shielding film has haze and appearance unevenness, and has insufficient adhesion to the substrate and film strength. For this reason, in order to suppress haze or maintain adhesion, there has been a problem that the amount of color pigment used must be reduced. For this reason, it has been difficult to obtain a shielding film having a low haze, excellent adhesion, and a high visible light shielding effect.
[0004]
OBJECT OF THE INVENTION
An object of the present invention is to provide a substrate with a visible light shielding film having a low haze and excellent adhesion to the substrate and strength of the film.
[0005]
Summary of the Invention
  The visible light shielding film-forming paint according to the present invention includes colored pigment particles and a paint resin,
  Silica-coated colored pigment particles in which colored pigment particles are coated with silica,
  The silica-coated colored pigment particles are dispersed in a colored pigment particle dispersion.
This is obtained by adding an acidic silicic acid solution to coat silica and then depositing a hydrolyzate of a hydrolyzable organosilicon compound represented by the following formula (1) on the silica-coated surface.It is characterized by that.
               RnSiX4-n             (1)
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: integer of 0-3]
  The colored pigment particles are preferably at least one selected from a crystalline compound or a crystalline compound containing carbon black, titanium black, and an oxide of at least one element of Fe, Mn, Cu, and Co.
[0006]
The coating resin is preferably an adhesive resin.
Furthermore, an infrared shielding agent and / or an ultraviolet shielding agent may be included.
The base material with a visible light shielding film according to the present invention is characterized by having a base material and a light shielding film formed on the base material using the coating material for forming a light shielding film.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, the visible light shielding film-forming paint according to the present invention will be described.
Paint for forming visible light shielding film
The paint for forming a visible light shielding film according to the present invention is a paint composed of colored pigment particles and a coating resin, and is characterized in that the colored pigment particles are silica-coated colored pigment particles coated with silica.
[0008]
Silica coated colored pigment particles
In the present invention, silica-coated colored pigment particles in which colored pigment particles are coated with silica are used. Since the colored pigment particles are thus coated with silica, the dispersibility of the particles in the paint is high, the content of the particles can be increased, and the visible light shielding film obtained by using the paint in which the particles are dispersed Can effectively shield visible light and is excellent in adhesion to a substrate, film strength, and scratch resistance.
[0009]
Conventionally known colored pigment particles can be used as the colored pigment particles.
In particular, the present invention is characterized in that it is at least one selected from a crystalline compound or a crystalline compound containing an oxide of at least one element of carbon black, titanium black, Fe, Mn, Cu, and Co. Examples of crystalline compounds include spinel crystal compounds and perovskite crystal compounds. For example, Fe2OThree, CuO, CuO-Cr2OThree, CuO-Fe2OThree-Mn2OThree, CoO-Fe2OThree-Cr2OThreeEtc.
[0010]
Such colored pigment particles preferably have an average particle diameter in the range of 2 to 100 nm, more preferably 5 to 80 nm.
When the average particle diameter of the colored pigment particles is less than 2 nm, adhesion to the substrate, adhesion, scratch resistance, film hardness may be insufficient, and the particles may agglomerate. Haze may be high. In addition, when the particles aggregate, light may pass through and the visible light shielding efficiency may decrease.
[0011]
When the average particle diameter of the colored pigment particles exceeds 100 nm, the smoothness of the film surface may be lowered, transparency may be lowered or haze may be increased due to scattering of visible light.
In the silica-coated colored pigment particles used in the present invention, such colored pigment particles are coated with silica. The silica coating amount in the silica-coated colored pigment particles is adjusted with respect to the total weight of the silica-coated colored pigment.21 to 40% by weight, more preferably 2 to 30% by weight.
[0012]
When coated with such an amount of silica, the visible light can be sufficiently shielded, the dispersibility in the resin is increased, the amount of the compound can be increased, and the obtained visible light shielding film is haze and There is no uneven appearance, excellent adhesion to the substrate, and excellent film strength.
When the silica coating amount is less than the lower limit, the dispersibility of the silica-coated colored pigment particles in the resin becomes insufficient, and therefore the blending ratio cannot be increased, and the obtained visible light shielding film has a haze and an appearance. Unevenness occurs, adhesion to the substrate and film strength are insufficient.
[0013]
Even if the silica coating amount exceeds the above upper limit, the dispersibility in the resin is not further improved, and the ratio of the colored pigment particles is reduced, so that the visible light shielding effect may be lowered. Moreover, if the film thickness is increased in order to obtain a sufficient shielding effect, the film may be cracked or haze may be increased.
The method for preparing such silica-coated colored pigment particles is not particularly limited as long as the silica-coated colored pigment particles described above are obtained.
[0014]
For example, as a first method, it can be obtained by adding a silicate and / or an acidic silicic acid solution to a dispersion of colored pigment particles while adjusting the pH of the dispersion to a range of approximately 10 to 12.
As the silicate, one or more silicates selected from alkali metal silicates, ammonium silicates and organic base silicates are preferably used. Examples of the alkali metal silicate include sodium silicate (water glass) and potassium silicate, and examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or organic base silicate includes an alkaline solution in which ammonia, quaternary ammonium hydroxide, an amine compound, or the like is added to the silicic acid solution.
[0015]
As the acidic silicic acid solution, a silicic acid solution obtained by removing alkali by treating an alkali silicate aqueous solution with a cation exchange resin or the like can be used.2An acidic silicic acid solution having a concentration of about 7% by weight or less is preferred.
Moreover, as a 2nd method, it can obtain also by depositing the hydrolyzate of the hydrolysable organosilicon compound represented by following formula (1) on the surface of a color pigment particle.
[0016]
RnSiX4-n             (1)
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: integer of 0-3]
Specific examples of the hydrolyzable organic group-containing silicon compound represented by the formula (1) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, and phenyltrimethoxy. Silane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3 , 3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxy Tripropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyl Methyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) ) Γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, trimethylsilanol, Methyltri Examples include chlorosilane, methyldichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, diphenyldichlorosilane, vinyltrichlorosilane, trimethylbromosilane, and diethylsilane.
[0017]
Further, in the formula (1), when a hydrolyzable organosilicon compound of n = 1 to 3 is used, dispersibility in a coating resin described later is improved, and the obtained visible light shielding film has uneven appearance, haze, Excellent shielding film surface smoothness and the like.
Further, as a third method, after adding the silicate and / or acidic silicate liquid to perform silica coating, the silica-coated surface is further hydrolyzed with the hydrolyzable organosilicon compound represented by the formula (1). A decomposition product may be deposited.
[0018]
Further, as a fourth method, after adding a hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1) to perform silica coating, the silicate and / or acidic silicate solution is precipitated. Also good.
As described above, when silica coating is performed with both the silicate and / or acidic silicic acid solution and the hydrolyzable organosilicon compound, the dispersibility in the resin is high and the colored pigment particles can be sufficiently coated. It is.
[0019]
Dispersibility of the silica-coated colored pigment particles obtained in the silica coating only with the silicate and / or acidic silicic acid solution may be insufficient and may aggregate. In the method of depositing only the hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1) on the surface of the oxide fine particles, the hydrolyzate may not be selectively deposited on the surface of the colored pigment particles. The silica coating may be insufficient or the coating efficiency may be reduced.
[0020]
At this time, the amount of silica by the silicate and / or acidic silicic acid solution may be an amount that can coat the color pigment particles, and may be in the range of approximately 1 to 40% by weight, and further 2 to 30% by weight. . Moreover, the coating amount by the hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1) is such that the silica coating amount in the silica-coated colored pigment particles is 1 to 40% by weight, preferably 2 to 30% by weight. It is desirable to be in range. When both are used together, it is desirable that the silica coating amount in the silica-coated colored pigment particles is in the range of 1 to 40% by weight, preferably 2 to 30% by weight. (All are converted to silica)
In addition, when performing the coating with the hydrolyzate of the hydrolyzable organosilicon compound represented by the formula (1), in addition to performing silica coating by adding the silicate and / or acidic silicate liquid in advance, silicic acid In place of the salt and / or acidic silicic acid solution, oxides (including hydroxides) such as titanium oxide, zirconium oxide, and alumina may be coated. Furthermore, you may coat | cover with both and the coating order in particular is not restrict | limited. When coating with titanium oxide, zirconium oxide, alumina or the like, the coating amount may be in the range of about 0.5 to 10% by weight, more preferably 1 to 5% by weight as an oxide.
[0021]
Furthermore, when the silica-coated colored pigment particles used in the present invention are subjected to the silica coating, particularly when silica coating is performed with a silicate and / or an acidic silicic acid solution, while the dispersion of the colored pigment particles is vigorously stirred, Alternatively, it is desirable to irradiate ultrasonic waves as necessary while pulverizing the colored pigment particles with a sand mill, a ball mill or the like. When such a method is employed, the surface of the colored pigment particles can be uniformly coated with silica.
[0022]
The silica-coated colored pigment particles thus obtained are usually prepared as a dispersion. This dispersion can be used by replacing the solvent with an organic solvent by an ultrafiltration membrane method or the like, if necessary. Examples of the organic solvent include alcohol, ether, ester, ketone, and the like, specifically, methanol, ethanol, npropanol, isopropanol, butanol, ethylene glycol monomethyl acetate, methyl ethyl ketone, methyl isobutyl ketone, isophorone, toluene, xylene, and the like. Can be mentioned.
[0023]
Further, such a silica-coated colored pigment particle dispersion may be once dried and then mixed with a coating material to be described later, or may be mixed with a coating resin in a dispersion state.
Resin for paint
As the coating resin used in the present invention, any of conventionally known thermosetting resins, thermoplastic resins and the like can be employed. For example, conventionally used polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, silicone rubber and other thermoplastic resins, urethane resins, melamine resins And thermosetting resins such as silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, urethane acrylate resin, and epoxy acrylate resin. Further, it may be a copolymer or modified body of two or more of these resins.
[0024]
These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.
In the present invention, in particular, the thermosetting resin and the ultraviolet curable resin can improve the adhesion to the substrate, the film strength, and the scratch resistance when the silica-coated colored pigment particles are blended.
[0025]
As the resin used in the present invention, an adhesive resin can be suitably used.
Examples of the adhesive resin include polyester resin, thermoplastic acrylic resin, thermosetting acrylic resin, fluorine resin, urethane resin, reactive silicone resin, and epoxy resin.
When such an adhesive resin is used, a visible light shielding film having good adhesion to the substrate and excellent weather resistance, transparency and the like can be obtained.
[0026]
Infrared shielding agent / ultraviolet shielding agent
Moreover, the visible light shielding film-forming coating material according to the present invention may contain an infrared shielding agent and / or an ultraviolet shielding agent. By including an infrared shielding agent and / or an ultraviolet shielding agent, an infrared shielding ability and / or an ultraviolet shielding ability can be imparted to the visible light shielding film, so that a substrate with a visible light shielding film having excellent weather resistance can be obtained. .
[0027]
Examples of the infrared shielding agent include tin oxide, tin oxide doped with Sb, F or P, indium oxide, indium oxide doped with Sn or F, antimony oxide, zinc oxide, low-order titanium oxide (colored), and these Examples thereof include conventionally known oxide fine particles having conductivity, such as a mixture.
In addition, LaB6, CeB6, PrB6, NdB6, SmB6, GdB6, TbB6, DyB6, SrB6, CaB6And the like, and nitride particles obtained by replacing these boron atoms with nitrogen (N), and mixtures thereof.
[0028]
Further, as the ultraviolet shielding agent, conventionally known ultraviolet shielding agents such as Ti and Ce oxides and composite oxide particles thereof can be used.2, CeO2, TiO2・ CeO2 And a mixture of these.
When using the above-mentioned particles as the infrared shielding agent and the ultraviolet shielding agent, the average particle diameter may be the same as that of the silica-coated colored pigment particles, and specifically ranges from 2 to 100 nm, more preferably from 5 to 80 nm. It is preferable. If it exists in such a range, the film | membrane excellent in the adhesiveness with a base material, adhesiveness, abrasion resistance, and hardness can be formed.
[0029]
When the average particle diameter is less than the lower limit of the above range, the adhesion to the substrate, adhesion and scratch resistance, film hardness may be insufficient, and the particles may agglomerate. May be high. In addition, when the particles aggregate, light may pass through and the visible light shielding efficiency may decrease. When the average particle diameter exceeds the upper limit of the above range, the haze of the obtained film may increase or the smoothness of the film surface may be reduced.
[0030]
Moreover, when using the above-mentioned particle | grains as an infrared shielding agent and an ultraviolet shielding agent, the particle | grain surface may be coat | covered with the silica by the method similar to a silica coating color pigment particle. The silica coating amount at this time is the SiO in the silica-coated particles.21 to 40% by weight, more preferably 2 to 30% by weight. If the silica coating amount is within the above range, the dispersibility to the resin will be high, and the visible light shielding film obtained will have low haze and no appearance irregularity, and will also adhere to the substrate. And the strength of the film is sufficiently excellent.
[0031]
Dispersion medium
The coating material for forming a visible light shielding film according to the present invention may contain a dispersion medium as necessary. The dispersion medium may be one that dissolves the coating resin, or one that is simply suspended without being dissolved.
Specific examples include water, alcohol, ether, ester, ketone, and the like, although specifically depending on the type of coating resin, specifically, methanol, ethanol, npropanol, isopropanol, butanol, ethylene glycol monomethyl acetate, Examples include methyl ethyl ketone, methyl isobutyl ketone, isophorone, toluene, and xylene.
[0032]
By using such a dispersion medium, it is possible to form a visible light shielding film having good coating properties, no whitening in the resulting film, and excellent surface smoothness.
Paint for forming visible light shielding film
The visible light shielding film forming paint according to the present invention comprises the above components, and the content of the silica-coated colored content particles in the paint is 10 to 85% by weight as the solid content in the visible light shielding film, It is preferably included so as to be in the range of 15 to 60% by weight. When the silica-coated colored content particles are contained in such a range, a visible light shielding film having excellent visible light shielding effect, high surface smoothness, and high hardness and adhesion to a substrate can be formed.
[0033]
When the content of the silica-coated colored content particles in the visible light shielding film is less than the lower limit as a solid content, sufficient shielding performance of visible light (wavelength range 400 to 800 nm) cannot be obtained, and the visible light shielding film contains If the content of the silica-coated colored pigment particles exceeds the above upper limit as a solid content, the surface smoothness of the film may be lowered and micro voids may be generated inside the film, resulting in an increase in haze. Adhesiveness with is reduced.
[0034]
The visible light transmittance of the visible light shielding film obtained using such a coating material for forming a visible light shielding film is generally in the range of 3 to 50%.
When blending the particles for infrared shielding agent, it may be blended so as to obtain a desired infrared shielding rate, but more preferably, the content of the particles for infrared shielding agent in the obtained light shielding film is 0. It is desirable to add 2 to 20% by weight, and more preferably 0.5 to 5% by weight. In addition, when blending the particles for the ultraviolet shielding agent, it may be blended so as to obtain a desired ultraviolet shielding rate, but more preferably the content of the particles for the ultraviolet shielding agent in the obtained visible light shielding film is It is desirable to blend so as to be 0.2 to 10% by weight, more preferably 0.5 to 5% by weight.
[0035]
When the content of the particles for the ultraviolet shielding agent and the infrared shielding agent is in such a range, an excellent ultraviolet shielding effect and infrared shielding effect are exhibited. If the above range is included excessively, the film itself may be colored.
When infrared shielding particles and / or ultraviolet shielding particles are used in combination with silica-coated colored pigment particles, it is desirable that the total content in the visible light shielding film is 85% by weight or less as a solid content.
[0036]
If the total content in the visible light shielding film exceeds 85% by weight as the solid content, the surface smoothness of the film may decrease and haze may increase, and the film hardness and adhesion to the substrate may decrease. There are things to do.
In addition, the content of the coating resin in the visible light shielding film forming coating according to the present invention is such that the content of the coating resin in the obtained visible light shielding film is 15 to 90% by weight, and further 40 to 85% by weight. % Is preferable. (However, the total of the content of the silica-coated colored pigment particles (the total amount when containing infrared shielding particles and / or ultraviolet shielding particles) does not exceed 100% by weight)
When the content of the resin for coating in the visible light shielding film is less than 15% by weight, the adhesion of the visible light shielding film to the substrate is lowered, the film itself is reduced in hardness, and the visible light shielding film is further reduced. The smoothness of the surface may be insufficient.
[0037]
When the content of the coating resin in the visible light shielding film exceeds 90% by weight, sufficient visible light shielding performance and infrared shielding ability and / or ultraviolet shielding ability cannot be obtained.
The coating material for forming a visible light shielding film may contain the above-described dispersion medium as necessary. The ratio of the dispersion medium used in the paint is not particularly limited as long as it is an amount that can impart fluidity to the paint, and is in the range of 90% by weight or less, further 50% by weight or less in the paint. Is desirable.
[0038]
If the use ratio of the dispersion medium in the coating material for forming a visible light shielding film exceeds 90% by weight, the required film thickness may not be obtained by one application, and the amount removed by drying the dispersion medium increases. For this reason, the denseness of the film is lowered and the economic efficiency is lowered.
Base material with visible light shielding film
The substrate with a visible light shielding film according to the present invention is characterized by being formed using the visible light shielding film-forming coating material.
[0039]
Base material
As a base material used for this invention, it is formed from a glass plate, a polycarbonate, an acrylic resin, PET, TAC (cellulose triacetate) etc. which are used for a window, a show window, etc. of a vehicle, a building, an office, a general house, etc. Moreover, a plastic sheet, a film, a panel, etc. are mentioned.
[0040]
The above-mentioned base material with a visible light shielding film is applied to the base material by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, dried, and cured in the case of a thermosetting resin. Then, in the case of a thermoplastic resin, it can be obtained by forming a visible light shielding film by further performing a heat treatment at a temperature lower than the softening point of the base material as necessary.
[0041]
The thickness of the visible light shielding film is preferably in the range of 0.5 to 20 μm, more preferably 2 to 10 μm.
When the thickness of the visible light shielding film is less than 0.5 μm, sufficient visible light shielding ability cannot be obtained, and when the thickness of the visible light shielding film exceeds 20 μm, the coating thickness is uniform. Or it becomes difficult to dry uniformly, and the strength and transparency of the film obtained by the generation of cracks and voids may be insufficient.
[0042]
In the present invention, the visible light shielding film includes visible light shielding colored pigment particles coated with silica. Such coated particles are excellent in the visible light shielding effect and are very excellent in dispersibility in the coating resin. For this reason, the coating material for visible light shielding film formation excellent in long-term dispersion stability can be obtained.
In addition, since the content in the paint can be increased, it is possible to obtain a shielding film having a high visible light shielding rate, and even if the content of the colored pigment particles for shielding visible light is high, haze, A visible light shielding film excellent in adhesion to a substrate, film strength, durability, and the like can be formed.
[0043]
【The invention's effect】
According to the present invention, a visible light shielding film-forming coating material capable of forming a visible light shielding film having excellent visible light shielding effect and excellent haze, adhesion to a substrate, film strength, durability, and the like, and A substrate with a visible light shielding film formed using the coating material for forming a visible light shielding film can be provided.
[0044]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.
[0045]
[Example 1]
Fine particle dispersion for forming visible light shielding film (VP-1) Preparation of
52 g of carbon black powder (manufactured by Mitsubishi Chemical Corporation: MA-7, average particle size: 24 nm) was added to 1100 g of pure water, followed by stirring and mixing for 1 hour. Thereafter, 3 g of an aqueous potassium hydroxide solution having a concentration of 10% by weight was added. The pH at this time was 11.5. The mixed liquid was pulverized for 3 hours with a sand mill at 30 ° C. to obtain a carbon black fine particle aqueous dispersion having a solid content concentration of 3.5% by weight. The pH at this time was 9.7.
[0046]
The carbon black fine particle aqueous dispersion was treated with both ion exchange resins to deacidify and dealkalize to obtain a carbon black fine particle aqueous dispersion (A-1) having a solid content concentration of 2.5% by weight. At this time, the pH was 3.5, and the average particle size was 90 nm.
SiO obtained by dealkalizing water glass into a mixture of 1000 g of this carbon black fine particle dispersion (A-1) and 1000 g of ethanol.2125 g of acidic silicic acid solution having a concentration of 4% by weight was added and stirred and mixed for 1 hour, and then heated to 90 ° C. and heat-treated for 1 hour. Next, the carbon black fine particle dispersion was cooled to 50 ° C., and then tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO 2217.2 g) (concentration 28.8 wt%) was added in 6 hours. Thereafter, the dispersion was heated for 12 hours, passed through an ultrafiltration membrane, the water of the dispersion medium, ethanol was replaced with ethanol, and the solid content concentration 5 wt% coated with 16.7 wt% silica was added. Carbon black fine particle ethanol dispersion (B-1) was obtained. At this time, the water concentration was 0.5% and the average particle size was 90 nm.
[0047]
Next, 500 g of carbon black fine particle ethanol dispersion (B-1) and 500 g of dipropylene glycol monomethyl ether are placed in a 2 L eggplant-shaped flask and subjected to vacuum distillation with a rotary evaporator to obtain a silica-coated carbon black having a solid content concentration of 5% by weight. A fine dipropylene glycol monomethyl ether dispersion (VP-1) was obtained. At this time, the water concentration was 0.4% by weight and the average particle size was 90 nm.
[0048]
Paint for forming visible light shielding film (VF-1) Preparation of
Visible light by mixing 22 g of the above dispersion (VP-1), 4.2 g of UV curable resin (Dainippon Ink Co., Ltd .: Unidic V-5500), 4.9 g of isopropanol, and 4.9 g of butyl cellosolve. A coating film for forming a shielding film (VF-1) was prepared.
Base material with visible light shielding film (VS-1) Manufacturing of
A visible light shielding film-forming coating (VF-1) was applied to a glass plate (thickness 2.0 mm, refractive index 1.47) with a bar coater, dried at 80 ° C. for 1 minute, and then a high-pressure mercury lamp (80 W / cm ) For 1 minute to cure.
[0049]
The film thickness at this time was 3 μm. The visible light shielding film (VS-1) obtained has a visible light shielding property (wavelength: 550 nm), an infrared shielding property (wavelength: 800 nm), and an ultraviolet shielding property (wavelength: 380 nm). It was measured with a transparent haze meter (manufactured by Nippon Denshoku Co., Ltd .: NDH2000). Further, adhesion, hardness and scratch resistance were evaluated by the following methods. The results are shown in Table 1.
[0050]
Adhesion
Adhesive tape (cellophane tape, registered trademark) is bonded to this by making 11 parallel scratches on the surface of the substrate with visible light shielding film (VS-1) with a knife at an interval of 1 mm in length and breadth. Then, the adhesiveness was evaluated by classifying the number of squares remaining without peeling off the film when the tape was peeled into the following four stages. The results are shown in the table.
[0051]
Number of remaining cells: 95 or more: ◎
Number of remaining squares 90-94: ○
Number of remaining squares: 85 to 89: Δ
Number of remaining squares: 84 or less: ×
Pencil hardness
It measured with the pencil hardness tester according to JIS-K-5400.
[0052]
Scratch resistance
Using # 0000 steel wool, load 500g / cm2The film surface was visually observed and evaluated according to the following criteria. The results are shown in Table 1.
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The entire surface is cut: x
[0053]
[Example 2]
Fine particle dispersion for forming visible light shielding film (VP-2) Preparation of
918 g of titanium black powder (manufactured by Ako Kasei Co., Ltd .: Tilack D, average particle size 660 nm) was added to 2130 g of pure water, and the mixture was stirred and mixed for 1 hour. Thereafter, 13 g of a 10 wt% aqueous potassium hydroxide solution was added. The pH at this time was 12.8. Next, the mixture was pulverized for 3 hours with a sand mill at 30 ° C. to obtain a titanium black fine particle aqueous dispersion (A-2) having a solid concentration of 15%. At this time, the pH was 9.5 and the average particle size was 100 nm.
[0054]
This titanium black fine particle aqueous dispersion (A-2) 1000 g2Add 375 g of 4% by weight acidic silicic acid solution and stir and mix for 1 hour, add 10% by weight aqueous potassium hydroxide solution to raise the pH to 10.5, raise the temperature to 90 ° C, and heat treatment for 1 hour. went.
Next, after cooling to 25 ° C., this titanium black fine particle aqueous dispersion was treated with both ion exchange resins to deoxidize and dealkalize, and a titanium black fine particle aqueous dispersion having a solid content concentration of 12 wt% (B-2- 1) was obtained. At this time, the pH was 3.5 and the average particle size was 100 nm.
[0055]
To 1000 g of this titanium black fine particle aqueous dispersion (B-2-1), SiO2After adding 300 g of acidic silicic acid solution having a concentration of 4% and stirring and mixing for 1 hour, the temperature was raised to 90 ° C. and heat treatment was performed for 1 hour.
Next, after cooling to 25 ° C., this titanium black fine particle aqueous dispersionBothIt was deacidified and dealkalized by treatment with an ion exchange resin to obtain a titanium black fine particle aqueous dispersion (B-2-2) having a solid concentration of 10% by weight. At this time, the pH was 3.5 and the average particle size was 100 nm.
[0056]
To a mixed liquid of 1000 g of this titanium black fine particle dispersion (B-2-2) and 1000 g of ethanol, tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO 2269.44 g (concentration 28.8 wt%) was added in 1 hour. The solution was then heat-treated at 50 ° C. for 17 hours, passed through an ultrafiltration membrane, and the water and ethanol as a dispersion medium were replaced with ethanol. A silica-coated titanium black fine particle ethanol dispersion (B- 2-3) was obtained. The silica coating amount was 15.3% by weight. The water concentration was 0.5%, and the average particle size was 100 nm.
[0057]
Next, 500 g of titanium black fine particle ethanol dispersion (B-2-3) and 200 g of dipropylene glycol monomethyl ether are placed in a 2 L eggplant-shaped flask, and vacuum distillation is performed using a rotary evaporator to coat silica with a solid content concentration of 15% by weight. Dipropylene glycol monomethyl ether dispersion (VP-2) of titanium black fine particles was obtained. At this time, the water concentration was 0.4% and the average particle size was 100 nm.
[0058]
Paint for forming visible light shielding film (VF-2) Preparation of
A visible light shielding film-forming coating material (VF-2) was prepared in the same manner as in Example 1 except that 22 g of the dispersion liquid (VP-2) was used.
Base material with visible light shielding film (VS-2) Manufacturing of
A substrate with a visible light shielding film (VS-2) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-2) was used.
[0059]
The substrate with a visible light shielding film (VS-2) was evaluated for visible light shielding properties, transparency, adhesion, hardness and scratch resistance. The results are shown in Table 1.
[0060]
[referenceExample 3]
Preparation of fine particle dispersion (VP-3) for visible light shielding film formation
  CuO-Fe in 425 g of ethanol2OThree-Mn2OThree75 g of powder (manufactured by Dainichi Seika Kogyo Co., Ltd .: Dipyroxide Black # 95550, average particle size 500 nm) was added and mixed with stirring for 1 hour. Thereafter, 14 g of aminoethylaminopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-602) was added. The mixed solution was pulverized for 3 hours with a sand mill at 30 ° C. to obtain a solid content of 15% by weight of CuO—Fe.2OThree-Mn2OThreeA fine particle ethanol dispersion (A-3) was obtained.
[0061]
A mixture of 500 g of this dispersion (A-3) and 1000 g of ethanol was heated to 50 ° C. and heat-treated for 18 hours, and then this CuO—Fe was used.2OThree-Mn2OThreeAfter the temperature of the fine particle ethanol dispersion was lowered to 25 ° C., tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO 22156.3 g) (concentration 28.8%) was added in 1 hour. The solution was then heat-treated at 50 ° C. for 17 hours, and CuO—Fe coated with silica having a solid concentration of 5% by weight.2OThree-Mn2OThreeA fine particle ethanol dispersion (B-3) was obtained. At this time, the water concentration was 0.3% and the average particle size was 60 nm.
[0062]
Next, in a 2 L eggplant-shaped flask, CuO-Fe2OThree-Mn2OThreeCuO-Fe coated with silica having a solid content of 15% by weight, 500 g of dipropylene glycol monomethyl ether was added to 500 g of fine particle ethanol dispersion (B-3), and distilled under reduced pressure using a rotary evaporator.2OThree-Mn2OThreeA fine particle dipropylene glycol monomethyl ether dispersion (VP-3) was obtained. At this time, the water concentration was 0.4% and the average particle size was 60 nm.
[0063]
Paint for forming visible light shielding film (VF-3) Preparation of
A visible light shielding film-forming coating material (VF-3) was prepared in the same manner as in Example 1 except that 22 g of the above dispersion (dispersion (VP-3)) was used.
Base material with visible light shielding film (VS-3) Manufacturing of
A substrate with a visible light shielding film (VS-3) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-3) was used.
[0064]
The substrate with a visible light shielding film (VS-3) was evaluated for visible light shielding properties, transparency, adhesion, hardness and scratch resistance. The results are shown in Table 1.
[0065]
[Example 4]
Paint for forming visible light shielding film (VF-4) Preparation of
16.5 g of a visible light shielding film forming fine particle dispersion (VP-1) obtained in the same manner as in Example 1, and a visible light shielding film forming fine particle dispersion (VP-2) obtained in the same manner as in Example 2. ) A visible light shielding film-forming coating material (VF-4) was prepared in the same manner as in Example 1 except that 5.5 g was used.
[0066]
Base material with visible light shielding film (VS-4) Manufacturing of
A substrate with a visible light shielding film (VS-4) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-4) was used.
The substrate with a visible light shielding film (VS-4) was evaluated for visible light shielding properties, transparency, adhesion, hardness, and scratch resistance. The results are shown in Table 1.
[0067]
[Example 5]
Infrared shielding fine particle dispersion (IR-1) Preparation of
A solution was prepared by dissolving 57.7 g of tin chloride and 7.0 g of antimony chloride in 100 g of methanol, and this solution was added to 1,000 g of pure water with stirring at 90 ° C. over 4 hours to perform hydrolysis. The produced precipitate was washed by filtration and then dispersed in pure water to prepare a metal oxide precursor hydroxide dispersion having a solid content concentration of 10% by weight.
[0068]
This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere to obtain a metal oxide (ATO: antimony-doped tin oxide).
300 g of this powder was added to 70 g of an aqueous potassium hydroxide solution having a concentration of 3% by weight, and pulverized with a sand mill for 3 hours while maintaining at 30 ° C. to prepare an antimony-doped tin oxide sol.
[0069]
Next, this sol was treated with an ion exchange resin for dealkalization, and pure water was added to prepare an antimony-doped tin oxide aqueous dispersion (A-4) having a solid concentration of 20% by weight. The average particle diameter of the antimony-doped tin oxide was 30 nm.
Next, after heating a mixed liquid of 100 g of this dispersion (A-4) and 100 g of ethanol to 50 ° C., tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO2After adding 13.9 g in 1 hour and then heat-treating for 17 hours, the dispersion medium water and ethanol were replaced with ethanol through an ultrafiltration membrane, and the solid content concentration was 30% by weight. An antimony-doped tin oxide fine particle dispersion (B-4) coated with silica was obtained. The average particle diameter of the antimony-doped tin oxide fine particles coated with silica was 33 nm.
[0070]
Next, 500 g of the dispersion (B-4) and 500 g of dipropylene glycol monomethyl ether were placed in a 2 L eggplant-shaped flask, distilled under reduced pressure using a rotary evaporator, and antimony-doped oxidation coated with silica having a solid content concentration of 30% by weight. Tin fine particle dipropylene glycol monomethyl ether dispersion (IR-1) was obtained. At this time, the water concentration was 0.3% and the average particle size was 33 nm.
[0071]
Paint for forming visible light shielding film (VF-5) Preparation of
16.5 g of a visible light shielding film forming fine particle dispersion (VP-1) obtained in the same manner as in Example 1, and a visible light shielding film forming fine particle dispersion (VP-2) obtained in the same manner as in Example 2. ) A visible light shielding film-forming coating material (VF-5) was prepared in the same manner as in Example 1 except that 5.5 g and 14 g of the dispersion liquid (IR-1) obtained above were used.
[0072]
Base material with visible light shielding film (VS-5) Manufacturing of
A substrate with a visible light shielding film (VS-5) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-5) was used.
The visible light shielding property, transparency, adhesion, hardness and scratch resistance of the substrate with a visible light shielding film (VS-5) were evaluated, and the results are shown in Table 1.
[0073]
[Example 6]
Infrared shielding fine particle dispersion (IR-2) Preparation of
A solution obtained by dissolving 79.9 g of indium nitrate in 686.0 g of pure water and 20 g of a solution obtained by dissolving 12.7 g of potassium stannate in a 10 wt% potassium hydroxide solution were prepared. These solutions were added to 1,000 g of pure water kept at 50 ° C. over 2 hours for hydrolysis. During this time, the pH in the system was maintained at 11. The metal oxide precursor hydroxide is filtered off from the obtained metal oxide precursor hydroxide dispersion, washed, dried, then heat-treated in air at 350 ° C. for 3 hours, and further in air 600 A metal oxide (ITO: tin-doped indium oxide) was obtained by heat treatment at 2 ° C. for 2 hours.
[0074]
This was dispersed in pure water so as to have a concentration of 30% by weight, further adjusted to pH 3.5 with an aqueous nitric acid solution, and then pulverized with a sand mill for 3 hours while maintaining the dispersion at 30 ° C. An indium oxide sol was prepared. Next, this sol was treated with an ion exchange resin to remove nitrate ions, and pure water was added to prepare a metal oxide (ITO) fine particle dispersion (A-5) having a solid concentration of 20% by weight. The average particle diameter of tin-doped indium oxide was 50 nm.
[0075]
Next, after heating a mixture of 100 g of this dispersion (A-5) and 100 g of ethanol to 50 ° C., tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO213.9 g (concentration 28.8 wt%) was added in 6 hours, followed by overheat treatment for 12 hours, and then passed through an ultrafiltration membrane to replace the dispersion medium water and ethanol with ethanol, so that the solid content concentration was 30 wt%. A tin-doped indium oxide fine particle dipropylene glycol monomethyl ether dispersion (IR-2) coated with silica was obtained. At this time, the water concentration was 0.3% and the average particle size was 55 nm.
[0076]
Paint for forming visible light shielding film (VF-6) Preparation of
16.5 g of a visible light shielding film forming fine particle dispersion (VP-1) obtained in the same manner as in Example 1, and a visible light shielding film forming fine particle dispersion (VP-2) obtained in the same manner as in Example 2. ) A visible light shielding film-forming paint (VF-6) was prepared in the same manner as in Example 1 except that 5.5 g and 14 g of the dispersion liquid (IR-2) obtained above were used.
[0077]
Base material with visible light shielding film (VS-6) Manufacturing of
A substrate with a visible light shielding film (VS-6) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-6) was used.
The substrate with a visible light shielding film (VS-6) was evaluated for visible light shielding properties, transparency, adhesion, hardness, and scratch resistance. The results are shown in Table 1.
[0078]
[Example 7]
Ultraviolet shielding fine particle dispersion (UV-1) Preparation of
Ammonia water having a concentration of 15% by weight was added to 250 g of titanium oxide colloid (manufactured by Catalyst Kasei Kogyo Co., Ltd .: Optolake 1130Z, average particle size 20 nm, solid content concentration 20% by weight) to adjust the pH to 10.5, and ethanol was added thereto. After adding 250 g and then heating the mixture to 50 ° C., tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: normal ethyl silicate, SiO215g) (concentration 28.8% by weight) was added in 1 hour, followed by heat treatment for 17 hours, then passed through an ultrafiltration membrane, and the water and ethanol in the dispersion medium were replaced with ethanol. A coated titanium oxide fine particle dispersion (B-6) was obtained. The average particle diameter of the titanium oxide fine particles was 25 nm.
[0079]
Next, 400 g of the above dispersion (B-6) and 400 g of dipropylene glycol monomethyl ether are placed in a 2 L eggplant-shaped flask, and subjected to vacuum distillation with a rotary evaporator, which is coated with silica having a solid content concentration of 20% by weight. Titanium oxide fine particle dipropylene glycol monomethyl ether dispersion (UV-1) was obtained. At this time, the water concentration was 0.3% and the average particle size was 25 nm.
[0080]
Paint for forming visible light shielding film (VF-7) Preparation of
16.5 g of a visible light shielding film forming fine particle dispersion (VP-1) obtained in the same manner as in Example 1, and a visible light shielding film forming fine particle dispersion (VP-2) obtained in the same manner as in Example 2. ) A visible light shielding film-forming coating material (VF-7) was prepared in the same manner as in Example 1 except that 5.5 g and 8.2 g of the dispersion liquid (UV-1) obtained above were used.
[0081]
Base material with visible light shielding film (VS-7) Manufacturing of
A substrate with a visible light shielding film (VS-7) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (VF-7) was used.
With respect to the substrate with a visible light shielding film (VS-7), the visible light shielding properties, transparency, adhesion, hardness and scratch resistance were evaluated, and the results are shown in Table 1.
[0082]
[Comparative Example 1]
Fine particle dispersion for forming visible light shielding film (RVP-1) Preparation of
In the same manner as in Example 1, a carbon black fine particle aqueous dispersion (A-1) having a solid content concentration of 2.5% was obtained. At this time, the pH was 3.5, and the average particle size was 90 nm.
1000 g of this dispersion (A-1) was passed through an ultrafiltration membrane to replace the water of the dispersion medium with ethanol, and then 2 g eggplant type flask was charged with 500 g of carbon black fine particle ethanol dispersion (A-1) and dihydrate. 500 g of propylene glycol monomethyl ether and 1.56 g of polyoxyalkylene alkylphenyl ether phosphate ester (Daiichi Kogyo Seiyaku Co., Ltd .: Prisurf A-217E) as a dispersing agent are added and subjected to vacuum distillation with a rotary evaporator to obtain a solid content concentration A 5% by weight carbon black fine particle dipropylene glycol monomethyl ether dispersion (RVP-1) was obtained. At this time, the water concentration was 0.4% by weight and the average particle size was 100 nm.
[0083]
Paint for forming visible light shielding film (RVF-1) Preparation of
A visible light shielding film-forming coating material (RVF-1) was prepared in the same manner as in Example 1 except that 22 g of the dispersion (VP-1) was used.
Base material with visible light shielding film (RVS-1) Manufacturing of
A substrate with a visible light shielding film (RVS-1) was prepared in the same manner as in Example 1 except that the coating for forming a visible light shielding film (RVF-1) was used.
[0084]
The substrate with visible light shielding film (RVS-1) was evaluated for visible light shielding properties, transparency, adhesion, hardness, and scratch resistance. The results are shown in Table 1.
[0085]
[Comparative Example 2]
Fine particle dispersion for forming visible light shielding film (RVP-2) Preparation of
In the same manner as in Example 2, a titanium black fine particle aqueous dispersion (A-2) having a solid concentration of 15% was obtained. At this time, the pH was 9.5 and the average particle size was 100 nm. Next, this titanium black fine particle aqueous dispersion was treated with both ion exchange resins, deoxidized and dealkalized to obtain a titanium black fine particle aqueous dispersion (B-2-1) having a solid content concentration of 12% by weight. Next, this titanium black fine particle aqueous dispersion was treated with both ion exchange resins, deoxidized and dealkalized to obtain a titanium black fine particle aqueous dispersion (B-2-1) having a solid content concentration of 10% by weight. At this time, the pH was 3.5 and the average particle size was 100 nm.
[0086]
Next, in a 2 L eggplant-shaped flask, 500 g of titanium black fine particle ethanol dispersion (B-2-1), 500 g of dipropylene glycol monomethyl ether, and polyoxyalkylene alkylphenyl ether phosphate as a dispersant (Daiichi Kogyo Seiyaku Co., Ltd .: Plysurf A-217E) (1.56 g) was added and distilled under reduced pressure using a rotary evaporator to obtain a titanium black fine particle dipropylene glycol monomethyl ether dispersion (RVP-2) having a solid content concentration of 5% by weight. At this time, the water concentration was 0.4% and the average particle size was 110 nm.
[0087]
Paint for forming visible light shielding film (RVF-2) Preparation of
A visible light shielding film-forming coating material (RVF-2) was prepared in the same manner as in Example 1 except that 22 g of the above dispersion (RVP-2) was used.
Base material with visible light shielding film (RVS-2) Manufacturing of
A substrate with a visible light shielding film (RVS-2) was prepared in the same manner as in Example 1 except that the paint for forming a visible light shielding film (RVF-2) was used.
[0088]
The substrate with visible light shielding film (RVS-2) was evaluated for visible light shielding properties, transparency, adhesion, hardness and scratch resistance. The results are shown in Table 1.
[0089]
[Comparative Example 3]
Preparation of fine particle dispersion (RVP-3) for visible light shielding film formation
  referenceIn the same manner as in Example 3, the CuO-Fe having a solid concentration of 15% by weight was used.2OThree-Mn2OThreeA fine particle ethanol dispersion (A-3) was obtained.
  Then, CuO-Fe in a 2 L eggplant-shaped flask2OThree-Mn2OThree500 g of fine particle ethanol dispersion (A-3) is charged with 500 g of dipropylene glycol monomethyl ether and 1.56 g of polyoxyalkylene alkylphenyl ether phosphate ester (Daiichi Kogyo Seiyaku Co., Ltd .: Prisurf A-217E) as a dispersant. Distilled under reduced pressure using a rotary evaporator, CuO-Fe with a solid content of 15% by weight2OThree-Mn2OThreeA fine particle dipropylene glycol monomethyl ether dispersion (RVP-3) was obtained. At this time, the water concentration was 0.4% and the average particle size was 80 nm.
[0090]
Paint for forming visible light shielding film (RVF-3) Preparation of
A visible light shielding film-forming coating material (RVF-3) was prepared in the same manner as in Example 1 except that 22 g of the above dispersion (RVP-3) was used.
Base material with visible light shielding film (RVS-3) Manufacturing of
A substrate with a visible light shielding film (RVS-3) was prepared in the same manner as in Example 1 except that the visible light shielding film forming paint (RVF-3) was used.
[0091]
The substrate with visible light shielding film (RVS-3) was evaluated for visible light shielding properties, transparency, adhesion, hardness and scratch resistance. The results are shown in Table 1.
* In Comparative Examples 1-3, the silica coating layer is not formed.
[0092]
[Table 1]
Figure 0004409169

Claims (5)

着色顔料粒子と塗料用樹脂とを含み、
着色顔料粒子がシリカで被覆されたシリカ被覆着色顔料粒子であり、
該シリカ被覆着色顔料粒子が、着色顔料粒子の分散液に、
酸性珪酸液を添加してシリカ被覆を行った後、さらに前記シリカ被覆面に下記式(1)で表される加水分解性有機ケイ素化合物の加水分解物を析出させて得られたものであることを特徴とする可視光遮蔽膜形成用塗料。
nSiX4-n (1)
〔ただし、R:炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、シラノール基、ハロゲン、水素、n:0〜3の整数〕
Including colored pigment particles and a resin for coating,
Silica-coated colored pigment particles in which colored pigment particles are coated with silica,
The silica-coated colored pigment particles are dispersed in a colored pigment particle dispersion.
After adding an acidic silicic acid solution and carrying out silica coating, the hydrolyzate of a hydrolyzable organosilicon compound represented by the following formula (1) is further deposited on the silica-coated surface. A paint for forming a visible light shielding film characterized by
R n SiX 4-n (1 )
[However, R: an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, which may be the same or different. X: C1-C4 alkoxy group, silanol group, halogen, hydrogen, n: integer of 0-3]
前記着色顔料粒子が、
カーボンブラック、
チタンブラック、および
Fe、Mn、Cu、Coの少なくとも1種以上の元素の酸化物を含む結晶化合物または結晶性化合物から選ばれる少なくとも1種であることを特徴とする請求項1に記載の可視光遮蔽膜形成用塗料。
The colored pigment particles are
Carbon black,
2. The visible light according to claim 1, wherein the visible light is at least one selected from titanium black and a crystalline compound or crystalline compound containing an oxide of at least one element of Fe, Mn, Cu, and Co. Paint for forming a shielding film.
前記塗料用樹脂が接着性樹脂であることを特徴とする請求項1または2に記載の可視光遮蔽膜形成用塗料。  3. The visible light shielding film forming paint according to claim 1, wherein the paint resin is an adhesive resin. さらに赤外線遮蔽剤および/または紫外線遮蔽剤を含む請求項1〜3のいずれかに記載の可視光遮蔽膜形成用塗料。  Furthermore, the coating material for visible light shielding film formation in any one of Claims 1-3 containing an infrared rays shielding agent and / or an ultraviolet shielding agent. 基材と、基材上に請求項1〜4のいずれかに記載の可視光遮蔽膜形成用塗料を用いて形成された可視光遮蔽膜を有する可視光遮蔽膜付基材。  The base material with a visible light shielding film which has a base material and the visible light shielding film formed using the coating material for visible light shielding film formation in any one of Claims 1-4 on a base material.
JP2002377718A 2002-12-26 2002-12-26 Paint containing colored pigment particles, substrate with visible light shielding film Expired - Lifetime JP4409169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377718A JP4409169B2 (en) 2002-12-26 2002-12-26 Paint containing colored pigment particles, substrate with visible light shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377718A JP4409169B2 (en) 2002-12-26 2002-12-26 Paint containing colored pigment particles, substrate with visible light shielding film

Publications (2)

Publication Number Publication Date
JP2004204175A JP2004204175A (en) 2004-07-22
JP4409169B2 true JP4409169B2 (en) 2010-02-03

Family

ID=32814811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377718A Expired - Lifetime JP4409169B2 (en) 2002-12-26 2002-12-26 Paint containing colored pigment particles, substrate with visible light shielding film

Country Status (1)

Country Link
JP (1) JP4409169B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653402B1 (en) 2005-01-18 2006-12-01 T. Y. 라이팅(주) coloring agent for an infrared lamp, process for producing the same and coloring method using the same
EP1889810A1 (en) * 2006-08-10 2008-02-20 HeiQ Materials AG Method for producing nanoparticle loaded powders using flame spray pyrolysis and applications thereof
CN102264851B (en) * 2008-12-27 2013-10-16 日挥触媒化成株式会社 Coating composition containing high-refractive-index metal oxide fine particles, and curable coating film obtained by applying coating composition onto base
FR2947261B1 (en) * 2009-06-30 2012-05-04 Saint Gobain Ct Recherches COLORED FRITTED ZIRCONIA.
JP2011195803A (en) * 2010-02-25 2011-10-06 Mitsubishi Pencil Co Ltd Liquid ink composition for writing utensil
JP5927857B2 (en) * 2010-11-17 2016-06-01 新日鐵住金株式会社 Chromate-free colored painted metal plate
KR101867851B1 (en) * 2010-12-28 2018-06-15 후지필름 가부시키가이샤 Titanium black dispersion composition, black radiation-sensitive composition containing the same, black cured film, solid state imaging element and method for producing a black cured film
KR101830206B1 (en) * 2010-12-28 2018-02-20 후지필름 가부시키가이샤 Titanium black dispersion composition for forming light blocking film and method of producing the same, black radiation-sensitive composition, black cured film, solid-state imaging element, and method of producing black cured film
JP5697477B2 (en) * 2011-02-17 2015-04-08 キヤノン株式会社 Light-shielding coating film and optical element
WO2013150983A1 (en) * 2012-04-02 2013-10-10 大日精化工業株式会社 Composite oxide black pigment and method for producing same
JP6574324B2 (en) * 2013-12-18 2019-09-11 三菱マテリアル電子化成株式会社 Resin composition for semiconductor encapsulation
JP6204818B2 (en) * 2013-12-18 2017-09-27 国立大学法人茨城大学 Black titanium core-shell particles, production method thereof, and electrophoretic element using black titanium core-shell particles
WO2015111570A1 (en) * 2014-01-21 2015-07-30 積水化学工業株式会社 Light/moisture-curable resin composition, adhesive for electronic components, and adhesive for display elements
JP6543453B2 (en) * 2014-10-14 2019-07-10 サカタインクス株式会社 Pigment dispersion composition for black matrix
CN116333584A (en) * 2022-10-12 2023-06-27 珠海市三绿实业有限公司 Coating photosensitive resin for 3D printing model post-treatment and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172069A (en) * 1984-09-17 1986-04-14 Nippon Chem Ind Co Ltd:The Modified silica-coated lead chromate pigment composition and its preparation
JPS6183258A (en) * 1984-09-28 1986-04-26 Daiichi Kasei Kogyo Kk Surface-treated ultramarine
JPS63113080A (en) * 1986-06-20 1988-05-18 Mitsubishi Metal Corp Production of coated pigment
JPH0730269B2 (en) * 1986-09-04 1995-04-05 大日精化工業株式会社 Surface treatment method for carbon black for powder coating
DE3643247A1 (en) * 1986-12-18 1988-06-30 Basf Ag TEMPERATURE-STABLE BISMUT VANADAT / MOLYBDAT PIGMENTS
JPH0647273A (en) * 1992-07-27 1994-02-22 Suzuki Yushi Kogyo Kk Colored spherical particulate and its production
DE4321005A1 (en) * 1993-06-24 1995-01-05 Merck Patent Gmbh Pearlescent pigment for water-based paint systems
JP3048126B2 (en) * 1995-04-24 2000-06-05 大日精化工業株式会社 Composition for black matrix, method for forming black matrix, and liquid crystal display provided with black matrix
JP3472982B2 (en) * 1996-01-26 2003-12-02 触媒化成工業株式会社 Method for producing silica / carbon black composite particles and method for producing coating solution containing the composite particles
JP3347934B2 (en) * 1996-02-28 2002-11-20 大日精化工業株式会社 Coloring composition for black matrix, method for producing black matrix, and light-emitting flat panel display panel provided with light-shielding black matrix
JP2001181512A (en) * 1999-12-22 2001-07-03 Nippon Shokubai Co Ltd Coloring material dispersion and manufacturing method
JP2002105354A (en) * 2000-09-29 2002-04-10 Catalysts & Chem Ind Co Ltd Ultramarine composition and method for producing the same
JP3857035B2 (en) * 2000-10-13 2006-12-13 三井金属鉱業株式会社 Iron oxide particles and method for producing the same
JP2002188021A (en) * 2000-12-19 2002-07-05 Toda Kogyo Corp Black composite iron oxide pigment, coating material and resin composition given by using the black composite iron oxide pigment
JP4119230B2 (en) * 2002-11-26 2008-07-16 株式会社 日立ディスプレイズ Display device

Also Published As

Publication number Publication date
JP2004204175A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP5328101B2 (en) Method for producing silica-based fine particles
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
JP4872549B2 (en) Manufacturing method of heat ray shielding film forming substrate
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP2003202406A (en) Antireflection film and display device
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
WO2007097284A1 (en) Uniformly dispersed photocatalyst coating liquid, method for producing same, and photocatalytically active composite material obtained by using same
JP6480658B2 (en) Substrate with water-repellent coating and method for producing the same
JP5096666B2 (en) Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP6112753B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles
JPWO2010071010A1 (en) Chain silica-based hollow fine particles and production method thereof, coating liquid for forming transparent film containing the fine particles, and substrate with transparent film
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5084122B2 (en) Film-coated substrate and coating solution for film formation
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5554904B2 (en) Paint for forming transparent film and substrate with transparent film
EP3689987A1 (en) Liquid composition for forming infrared-shielding film, method for producing infrared-shielding film therefrom, and infrared-shielding film
JP4820152B2 (en) Composite coating structure and painted exterior materials
JP2004204173A (en) Coating for forming infrared light-shading film and substrate having infrared light-shading film
JP3955971B2 (en) Base material with antireflection film
JP2003202960A (en) Touch panel
JP5041695B2 (en) Antistatic film-forming composition
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4409169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term