JP5754884B2 - Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating - Google Patents

Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating Download PDF

Info

Publication number
JP5754884B2
JP5754884B2 JP2009298217A JP2009298217A JP5754884B2 JP 5754884 B2 JP5754884 B2 JP 5754884B2 JP 2009298217 A JP2009298217 A JP 2009298217A JP 2009298217 A JP2009298217 A JP 2009298217A JP 5754884 B2 JP5754884 B2 JP 5754884B2
Authority
JP
Japan
Prior art keywords
fine particles
phosphoric acid
oxide fine
metal oxide
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009298217A
Other languages
Japanese (ja)
Other versions
JP2011136871A (en
Inventor
渉 二神
渉 二神
政幸 松田
政幸 松田
良 村口
良 村口
平井 俊晴
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2009298217A priority Critical patent/JP5754884B2/en
Publication of JP2011136871A publication Critical patent/JP2011136871A/en
Application granted granted Critical
Publication of JP5754884B2 publication Critical patent/JP5754884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐光性、耐候性に優れ、高濃度で安定性に優れた高屈折率のリン含有金属酸化物微粒子、その製造方法およびこれら粒子を用いた透明被膜付基材ならびに透明被膜形成用塗布液とに関する。   The present invention relates to phosphorous-containing metal oxide fine particles with high refractive index that are excellent in light resistance, weather resistance, high concentration and stability, a method for producing the same, a substrate with a transparent coating using these particles, and a transparent coating forming It relates to a coating solution.

ガラス、プラスチックシート、プラスチックレンズ、樹脂フィルム、表示装置前面板等の基材表面の耐擦傷性を向上させるため、基材表面にハードコート膜を形成することが知られており、このようなハードコート膜として有機樹脂膜あるいは無機膜をガラスやプラスチック等の表面に形成することが行われている。さらに、有機樹脂膜あるいは無機膜中に樹脂粒子あるいはシリカ等の無機粒子を配合してさらに耐擦傷性を向上させることが行われている。   It is known that a hard coat film is formed on the surface of the base material in order to improve the scratch resistance of the surface of the base material such as glass, plastic sheet, plastic lens, resin film, and display device front plate. An organic resin film or an inorganic film is formed as a coat film on the surface of glass, plastic or the like. Furthermore, it is practiced to further improve the scratch resistance by blending resin particles or inorganic particles such as silica in an organic resin film or an inorganic film.

また、ハードコート膜にシリカ粒子以外の五酸化アンチモン、ジルコニア、ITO、ATO等の無機酸化物粒子を用いる場合、粒子の屈折率が高く、このためハードコート膜の屈折率も高くなるため、TACなどの屈折率の低い基材を用いる場合は干渉縞を生じる場合があった。   Further, when inorganic oxide particles other than silica particles such as antimony pentoxide, zirconia, ITO, and ATO are used for the hard coat film, the refractive index of the particles is high, and thus the refractive index of the hard coat film is also high. When using a substrate having a low refractive index, such as a substrate, interference fringes may occur.

一方、PETなどの屈折率の高い基材の場合は、マトリックス成分の屈折率が低いために、高屈折率の粒子を配合しても、基材とハードコート膜の屈折率差が小さくならず干渉縞が生じる場合があった。   On the other hand, in the case of a substrate having a high refractive index, such as PET, the refractive index difference between the substrate and the hard coat film is not reduced even if high refractive index particles are blended because the refractive index of the matrix component is low. Interference fringes may occur.

また、樹脂製レンズのハードコート膜に屈折率差を小さくするために酸化チタン微粒子を用いることが知られているが、酸化チタン微粒子は光触媒活性を有しているために耐光性の問題があり、そこで、本願出願人は、光触媒活性を抑制するととともに分散安定性を向上させた酸化チタンを主成分とし、シリカ、アルミナ、ジルコニア等を含む複合酸化物微粒子を用いることを提案している。(特許文献1:特開平8−48940号公報)
しかしながら、マトリックス成分が有機シリコーン系マトリックス成分の場合は耐光性は大きく改善されるが、有機樹脂系マトリックス成分の場合、改良はされるものの耐光性の問題が依然として残りさらに改善が求められている。
In addition, it is known to use fine titanium oxide particles in the hard coat film of a resin lens in order to reduce the difference in refractive index. However, the fine titanium oxide particles have photocatalytic activity and thus have a problem of light resistance. Therefore, the applicant of the present application proposes to use composite oxide fine particles mainly containing titanium oxide that suppresses the photocatalytic activity and has improved dispersion stability and contains silica, alumina, zirconia and the like. (Patent Document 1: JP-A-8-48940)
However, when the matrix component is an organic silicone matrix component, the light resistance is greatly improved. However, in the case of an organic resin matrix component, although the improvement is made, the problem of the light resistance still remains and further improvement is required.

酸化チタン粒子の耐光性の改良に関して、特許文献2:特表2001−527597号公報には、気相法で調製したP25を含むルチル型酸化チタンと無定型アルミナと分散剤とからなる耐光性酸化チタン顔料水性スラリーの製法が提案されており、この時、無定型アルミナにより耐光性が改良できることを開示している。また、このとき、P25は酸化チタン顔料粒子の解凝集剤として使用されている。 Regarding the improvement of light resistance of titanium oxide particles, Patent Document 2: JP 2001-527597 A includes rutile titanium oxide containing P 2 O 5 prepared by a vapor phase method, amorphous alumina, and a dispersant. A method for producing a light-resistant titanium oxide pigment aqueous slurry has been proposed. At this time, it is disclosed that light resistance can be improved by amorphous alumina. At this time, P 2 O 5 is used as a deflocculating agent for the titanium oxide pigment particles.

また特許文献3:特表2006−528249号公報には、酸化チタン懸濁液にアルミニウム成分とリン成分とを供給し、pHを10以上に維持した後、酸性分を添加する二酸化チタン顔料を表面処理する方法が開示されている。このとき、粒子表面にアルミニウムオキシドフォスフェート層が形成され、製紙中保持率が高く、不透明性、耐光堅牢度が得られることが記載されている。さらに、特許文献4:特開2005−220008号公報には、二酸化チタンナノ粒子スラリーに、緻密化剤(クエン酸、リン酸塩源、硫酸イオン等)を添加し、ついで、アルミナ源、シリカ源と接触させ、緻密なアルミナ層、シリカ層を形成した不活性化された二酸化チタンナノ粒子が記載されている。   Patent Document 3: Japanese Patent Publication No. 2006-528249 discloses a titanium dioxide pigment to which an aluminum component and a phosphorus component are supplied to a titanium oxide suspension, and the pH is maintained at 10 or more, and then an acidic component is added. A method of processing is disclosed. At this time, it is described that an aluminum oxide phosphate layer is formed on the particle surface, the retention rate in papermaking is high, and opacity and light fastness are obtained. Furthermore, Patent Document 4: Japanese Patent Laid-Open No. 2005-220008 discloses that a densifying agent (citric acid, phosphate source, sulfate ion, etc.) is added to titanium dioxide nanoparticle slurry, and then an alumina source, a silica source, Deactivated titanium dioxide nanoparticles that have been contacted to form dense alumina and silica layers are described.

特開平8−48940号公報JP-A-8-48940 特表2001−527597号公報JP-T-2001-527597 特表2006−528249号公報JP 2006-528249 A 特開2005−220008号JP 2005-220008

しかしながら、特許文献2のような耐光性酸化チタン顔料水性スラリーでは、アルミナの含有量によっては屈折率が低下する他、分散剤を必要とし、分散剤がない場合は安定性に問題があり用途に制限があった。また、特許文献3および4の場合も、アルミナ、シリカの被覆量によっては屈折率が不充分となり、被覆量が少なすぎると不活性化が不充分となる問題があった。   However, in the light-resistant titanium oxide pigment aqueous slurry as in Patent Document 2, the refractive index is lowered depending on the content of alumina, and a dispersant is necessary. There were restrictions. In the case of Patent Documents 3 and 4, there is a problem that the refractive index is insufficient depending on the coating amount of alumina and silica, and that the deactivation is insufficient if the coating amount is too small.

一方、高屈折率粒子としては、酸化ジルコニウムが知られており、酸化チタンのような耐光性の問題はないが、分散性、安定性が低く、特に高濃度でも安定で、塗工性に優れた透明被膜形成用塗布液が得られなかった。   On the other hand, zirconium oxide is known as a high-refractive index particle, and there is no problem of light resistance like titanium oxide, but dispersibility and stability are low, especially stable even at a high concentration, and excellent coatability. A coating solution for forming a transparent film could not be obtained.

また、透明被膜が薄膜の場合はハードコート性(耐擦傷性、膜強度、可撓性等)が低く、ある程度の厚膜が求められている。しかしながら、従来の塗料は高濃度化できず、できたとしても不安定で、塗工性に問題があり、得られる透明被膜のハードコート性が不充分であった。   Further, when the transparent film is a thin film, the hard coat properties (scratch resistance, film strength, flexibility, etc.) are low, and a certain degree of thick film is required. However, conventional paints cannot be made high in concentration, are unstable even if possible, have problems in coating properties, and the resulting hard coating has insufficient hard coat properties.

本発明者等は、このような問題点に鑑み鋭意検討した結果、酸化チタン微粒子にリン酸化物を含有させると従来より高濃度で安定性に優れた酸化チタン微粒子分散液得られるとともに耐候性が著しく低減し、また、酸化ジルコニウム微粒子にリン酸化物を含有させると極めて高濃度で安定な酸化ジルコニウム微粒子分散液が得られることを見出して本発明を完成するに至った。   As a result of intensive investigations in view of such problems, the present inventors have obtained a titanium oxide fine particle dispersion liquid having a higher concentration and superior stability than the conventional one when a fine oxide oxide is contained in the titanium oxide fine particles. The present invention has been completed by remarkably reducing it and finding that a zirconium oxide fine particle containing a phosphorus oxide can provide a very high concentration and stable zirconium oxide fine particle dispersion.

本発明の構成は以下の通りである。
[1]リン含有金属酸化物微粒子であって、リン含有量が金属酸化物微粒子に対してP25
として0.1〜15重量%の範囲にあり、平均粒子径が5〜50nmの範囲にあリ、金属酸化物が酸化チタンおよび/または酸化ジルコニウムであることを特徴とするリン含有金属酸化物微粒子。
[2]下記式(1)で表される有機珪素化合物で、有機珪素化合物の含有量がRn-SiO(4-n)/2としてリン含有金属酸化物微粒子の1〜50重量%の範囲となるように表面処理され
ている[1]のリン含有金属酸化物微粒子。
n-SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
[3]表面が、有機樹脂で被覆されてなり、被覆有機樹脂の被覆量が固形分としてリン含有
金属酸化物微粒子の1〜300重量%の範囲にある[1]のリン含有金属酸化物微粒子。
[4]前記被覆有機樹脂がアクリル系樹脂および/またはメタクリル系樹脂である[3]のリン含有金属酸化物微粒子。
[5]屈折率が1.80〜2.20の範囲にある[1]〜[4]のリン含有金属酸化物微粒子。
[6]下記の工程(a)〜(c)からなることを特徴とするリン含有金属酸化物微粒子の製造方法。
(a)平均粒子径が5〜50nmの範囲にある酸化チタンおよび/または酸化ジルコニウムからなる金属酸化物微粒子の水分散液に、リン酸水溶液を、得られるリン含有金属酸化物微粒子中のリンの含有量が金属酸化物微粒子に対してP25として0.1〜15重量%の範囲となるように添加する工程
(b)リン酸を吸着させる工程
(c)微粒子を分離し、乾燥したのち、150〜480℃で加熱処理する工程
[7]前記工程(c)についで、下記の工程(d)を実施する[6]のリン物含有金属酸化物微
粒子の製造方法。
(d)リン含有金属酸化物微粒子をアルコールに分散させたリン含有金属酸化物微粒子ア
ルコール分散液に、下記式(1)で表される有機珪素化合物を、有機珪素化合物の含有量がRn−SiO(4-n)/2としてリン含有金属酸化物微粒子の1〜50重量%の範囲となるよ
うに添加し、水および有機珪素化合物加水分解用触媒を添加して有機珪素化合物の加水分解物で表面処理程
n−SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
[8]前記工程(c)についで、下記の工程(e)を実施する[6]のリン物含有金属酸化物微粒子の製造方法。
(e)リン含有金属酸化物微粒子と分散媒と有機樹脂とを、有機樹脂の含有量が固形分と
してリン含有金属酸化物微粒子の1〜300重量%の範囲となるように混合し、メカノケミカル処理する工程
[9]前記有機樹脂がアクリル系樹脂および/またはメタクリル系樹脂である[8]のリン含有金属酸化物微粒子の製造方法。
[10]前記分散媒が、エーテル類、エステル類、ケトン類、アルコール類から選ばれる1種または2種以上である[8]または[9]のリン含有金属酸化物微粒子の製造方法。
[11]基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜がマトリックス成分と[1]〜[5]のリン含有金属酸化物微粒子とを含んでなることを特徴とする透明被膜付基材。
[12]透明被膜中のリン含有金属酸化物微粒子の含有量が固形分として10〜80重量%の範囲にあり、マトリックス成分の含有量が固形分として20〜90重量%の範囲にある[11]の透明被膜付基材。
[13]前記透明被膜の膜厚が0.5〜20μmの範囲にある[11]または[12]の透明被膜付基材。
[14]マトリックス形成成分と請求項1〜5のいずれかに記載のリン含有金属酸化物微粒子と分散媒とを含んでなり、全固形分濃度が1〜60重量%の範囲にあり、リン含有金属酸化物微粒子の濃度が固形分として0.1〜48重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.2〜54重量%の範囲にあることを特徴とする透明被膜形成用塗布液。
The configuration of the present invention is as follows.
[1] Phosphorus-containing metal oxide fine particles having a phosphorus content of P 2 O 5 with respect to the metal oxide fine particles
Phosphorus-containing metal oxide fine particles, wherein the metal oxide is titanium oxide and / or zirconium oxide, and the average particle diameter is in the range of 0.1 to 15 wt% .
[2] An organosilicon compound represented by the following formula (1), wherein the content of the organosilicon compound is in the range of 1 to 50% by weight of the phosphorus-containing metal oxide fine particles as R n —SiO 2 (4-n) / 2 The phosphorus-containing metal oxide fine particles according to [1], which are surface-treated so that
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
[3] Phosphorus-containing metal oxide particles according to [1], wherein the surface is coated with an organic resin, and the coating amount of the coating organic resin is in the range of 1 to 300% by weight of the phosphorus-containing metal oxide particles as a solid content .
[4] The phosphorus-containing metal oxide fine particles according to [3], wherein the covering organic resin is an acrylic resin and / or a methacrylic resin.
[5] Phosphorus-containing metal oxide fine particles of [1] to [4] having a refractive index in the range of 1.80 to 2.20.
[6] A method for producing phosphorus-containing metal oxide fine particles comprising the following steps (a) to (c):
(A) An aqueous phosphoric acid solution is added to an aqueous dispersion of metal oxide fine particles comprising titanium oxide and / or zirconium oxide having an average particle diameter in the range of 5 to 50 nm, and the phosphorous in the resulting phosphorus-containing metal oxide fine particles (B) step of adsorbing phosphoric acid (c) step of adding phosphoric acid to the range of 0.1 to 15% by weight as P 2 O 5 with respect to metal oxide fine particles Then, heat treatment at 150 to 480 ° C
[7] The method for producing phosphorus-containing metal oxide fine particles according to [6], wherein the following step (d) is performed after the step (c).
(D) An organosilicon compound represented by the following formula (1) is added to a phosphorus-containing metal oxide fine particle alcohol dispersion in which phosphorus-containing metal oxide fine particles are dispersed in alcohol, and the content of the organosilicon compound is R n −. Addition of SiO 2 (4-n) / 2 in the range of 1 to 50% by weight of the phosphorus-containing metal oxide fine particles, and addition of water and an organosilicon compound hydrolysis catalyst to hydrolyze the organosilicon compound Surface treatment R n -SiX 4-n (1)
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
[8] The method for producing phosphorus-containing metal oxide fine particles according to [6], wherein the following step (e) is performed after the step (c).
(E) The phosphorus-containing metal oxide fine particles, the dispersion medium, and the organic resin are mixed so that the content of the organic resin is in the range of 1 to 300% by weight of the phosphorus-containing metal oxide fine particles as a solid content. Process to process
[9] The method for producing phosphorus-containing metal oxide fine particles according to [8], wherein the organic resin is an acrylic resin and / or a methacrylic resin.
[10] The method for producing phosphorus-containing metal oxide fine particles according to [8] or [9], wherein the dispersion medium is one or more selected from ethers, esters, ketones, and alcohols.
[11] A substrate and a transparent film formed on one surface of the substrate, the transparent film comprising a matrix component and phosphorus-containing metal oxide fine particles of [1] to [5] A substrate with a transparent coating, characterized in that.
[12] The content of the phosphorus-containing metal oxide fine particles in the transparent film is in the range of 10 to 80% by weight as the solid content, and the content of the matrix component is in the range of 20 to 90% by weight as the solid content. ] A substrate with a transparent coating.
[13] The substrate with a transparent coating according to [11] or [12], wherein the thickness of the transparent coating is in the range of 0.5 to 20 μm.
[14] A matrix-forming component, the phosphorus-containing metal oxide fine particles according to any one of claims 1 to 5 and a dispersion medium, wherein the total solid concentration is in the range of 1 to 60% by weight, and contains phosphorus. Transparent film formation characterized in that the concentration of the metal oxide fine particles is in the range of 0.1 to 48% by weight as the solid content and the concentration of the matrix forming component is in the range of 0.2 to 54% by weight as the solid content Coating liquid.

本発明によれば、耐光性、耐候性に優れ、所望の屈折率に調整され、高濃度でも安定性に優れたリン含有金属酸化物微粒子、その製造方法およびこれら微粒子を含む干渉縞のないハードコート性に優れた透明被膜付基材ならびに透明被膜形成用塗布液とを提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, phosphorus-containing metal oxide fine particles having excellent light resistance and weather resistance, adjusted to a desired refractive index and excellent in stability even at high concentrations, a method for producing the same, and a hard without interference fringes containing these fine particles A substrate with a transparent coating excellent in coatability and a coating solution for forming a transparent coating can be provided.

以下、まず、本発明に係るリン含有金属酸化物微粒子について説明する。
[リン含有金属酸化物微粒子]
本発明に係るリン含有金属酸化物微粒子は、リン成分を含有し、リン酸化物換算でその
含有量が金属酸化物微粒子に対してP25として0.1〜15重量%の範囲にあり、平均粒子径が5〜50nmの範囲にあることを特徴としている。
Hereinafter, the phosphorus-containing metal oxide fine particles according to the present invention will be described first.
[Phosphorus-containing metal oxide fine particles]
The phosphorus-containing metal oxide fine particles according to the present invention contain a phosphorus component, and the content is in the range of 0.1 to 15% by weight as P 2 O 5 with respect to the metal oxide fine particles in terms of phosphorus oxide. The average particle size is in the range of 5 to 50 nm.

金属酸化物粒子
本発明で使用される金属酸化物粒子としては、酸化チタン微粒子および酸化ジルコニウム微粒子が用いられる。
Metal Oxide Particles As the metal oxide particles used in the present invention, titanium oxide fine particles and zirconium oxide fine particles are used.

酸化チタン微粒子は屈折率が高く、酸化ジルコニウム微粒子は比較的屈折率が高く且つ耐光性の問題が無いので好適に採用することができる。   Titanium oxide fine particles have a high refractive index, and zirconium oxide fine particles have a relatively high refractive index and have no problem of light resistance, so that they can be suitably employed.

酸化チタン微粒子および酸化ジルコニウム微粒子の平均粒子径は、最終的に得ようとするリン含有金属酸化物微粒子の平均粒子径と同程度であり、概ね5〜50nm、さらには8〜30nmの範囲にあることが好ましい。   The average particle size of the titanium oxide fine particles and the zirconium oxide fine particles is approximately the same as the average particle size of the phosphorus-containing metal oxide fine particles to be finally obtained, and is generally in the range of 5 to 50 nm, more preferably 8 to 30 nm. It is preferable.

リン含有金属酸化物微粒子のリン成分の含有量は各金属酸化物微粒子に対してP25として0.1〜15重量%、さらには0.2〜10重量%の範囲にあることが好ましい。 The phosphorus component content of the phosphorus-containing metal oxide fine particles is preferably 0.1 to 15% by weight, more preferably 0.2 to 10% by weight as P 2 O 5 with respect to each metal oxide fine particle. .

酸化チタンの場合、リン含有量が少ないと、耐光性、耐候性が不充分となり、透明被膜に用いた場合、透明性が低下したり変色する場合がある。リン含有量が多すぎても、さらに耐光性、耐候性が向上することもなく、屈折率が低下する上、安定性も低下する場合がある。   In the case of titanium oxide, when the phosphorus content is low, light resistance and weather resistance are insufficient, and when used in a transparent coating, the transparency may be lowered or discolored. Even if there is too much phosphorus content, light resistance and a weather resistance will not improve further, a refractive index may fall, and stability may also fall.

また、酸化ジルコニウムの場合、リン含有量が少なすぎると、分散安定性が不充分となり、透明被膜に用いた場合、耐擦傷性、密着性、強度、透明性等が不充分となる場合がある。リン含有量が多すぎても、さらに分散性、分散安定性が向上することもなく、却って屈折率が低下することがある。   In addition, in the case of zirconium oxide, if the phosphorus content is too small, the dispersion stability is insufficient, and when used for a transparent film, the scratch resistance, adhesion, strength, transparency, etc. may be insufficient. . Even if the phosphorus content is too large, the dispersibility and dispersion stability are not further improved, and the refractive index may be lowered.

含有されるリンの形態は特に明確ではないが、酸化物状態で微粒子に含有される。具体的には、五酸化二リン(P25)であっても、二酸化リンや三酸化二リンであってもよく、リン酸、亜リン酸、過リン酸、ホスホン酸などのオキソ酸あってもよい。本発明では、リン酸化物は、ドーピングのように結晶内に取り込まれているのではなく、微粒子表面または細孔に担持されている。 The form of phosphorus contained is not particularly clear, but is contained in fine particles in an oxide state. Specifically, it may be diphosphorus pentoxide (P 2 O 5 ), phosphorus dioxide or diphosphorus trioxide, and oxoacids such as phosphoric acid, phosphorous acid, superphosphoric acid, and phosphonic acid. It may be. In the present invention, the phosphorus oxide is not incorporated in the crystal as in doping, but is supported on the surface of fine particles or pores.

単にドーピングした場合、分散性・安定性が向上し、これに伴う透明被膜の性能(透明性、基材との密着性、耐擦傷性)が向上し、特に酸化チタンの場合、耐侯性の向上効果が大きい。   Simply doping improves dispersibility and stability, and improves the performance of the transparent film (transparency, adhesion to the substrate, and scratch resistance), especially in the case of titanium oxide. Great effect.

i)表面処理
本発明のリン含有金属酸化物微粒子は下記式(1)で表される有機珪素化合物で、有機珪素化合物の含有量がRn−SiO(4-n)/2としてリン含有金属酸化物微粒子の1〜50重
量%の範囲となるように表面処理されていることが好ましい。
i) Surface Treatment The phosphorus-containing metal oxide fine particles of the present invention are an organosilicon compound represented by the following formula (1), and the phosphorous-containing metal having an organosilicon compound content of R n -SiO (4-n) / 2 The surface treatment is preferably performed so as to be in the range of 1 to 50% by weight of the oxide fine particles.

n−SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
Rとしては、反応性のものが好ましく、エポキシ基、グリシドキシ基や(メタ)アクリロキシ基などを含むものが望ましい。
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
R is preferably reactive, and preferably contains an epoxy group, a glycidoxy group, a (meth) acryloxy group, or the like.

有機珪素化合物としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフルオロプロピルトリメトキシシラン、メチル-3,3,3−
トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラ
ン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン
、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-
アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ-アミノプロピルト
リメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、ビストリメトキシシリルヘキサン、メチルトリクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-(メタ)アクリロオキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ-アミノプロピルメ
チルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ジメチルジク
ロロシラン、シクロヘキシルメチルジメトキシシラン、ヘキサメチルジシラザン、トリメチルシラノール、トリフェニルシラノール、トリメチルメトキシシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン等、およびこれらの混合物が挙げられる。
Examples of the organosilicon compound include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3 , 3,3-Trifluoropropyltrimethoxysilane, methyl-3,3,3-
Trifluoropropyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltriexylsilane, γ-glycidoxyethyltrimethoxysilane , Γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane , Γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxy Ethyltrimethoxysilane, γ- (meth) acrylooxyethyltriet Xysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyl Triethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltri Ethoxysilane, 3-ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltrii Propoxysilane, trifluoropropyl trimethoxy silane, N-beta (aminoethyl) .gamma.
Aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, bistrimethoxysilylhexane, methyltrichlorosilane, Dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, diisobutyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- (meth) acrylooxypropylmethyldiethoxysilane N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, dimethyldichlorosilane, cyclohexylmethyldimeth Shishiran, hexamethyldisilazane, trimethyl silanol, triphenyl silanol, trimethyl silane, trimethyl chloro silane, n- octyl dimethyl chlorosilane and the like, and mixtures thereof.

このような有機珪素化合物で表面処理されていると、後述する透明被膜形成用塗布液において、マトリックス形成成分として有機樹脂を用いた場合に分散性が高く、高濃度でも安定な透明被膜形成用塗布液を得ることができ、耐擦傷性、密着性、強度、透明性等に優れた透明被膜を得ることができる。   When the surface treatment is performed with such an organosilicon compound, the transparent film forming coating liquid described later has a high dispersibility when an organic resin is used as a matrix forming component, and is stable even at a high concentration. A liquid can be obtained, and a transparent film excellent in scratch resistance, adhesion, strength, transparency and the like can be obtained.

なお、本発明では、前記式(1)でn=0の有機珪素化合物を併用することもできる。具体的には、予め前記式(1)でn=0の有機珪素化合物でシリカ被覆層を形成した後、前記式(1)の有機珪素化合物で表面処理すると、未反応の有機珪素化合物が殆どなくなり、効果的に分散性、安定性に優れたリン酸化物含有金属酸化物粒子を得ることができる。   In the present invention, an organosilicon compound of n = 0 in the above formula (1) can be used in combination. Specifically, when a silica coating layer is formed in advance with the organic silicon compound of n = 0 in the formula (1) and then surface-treated with the organosilicon compound of the formula (1), almost no unreacted organosilicon compound is present. Thus, phosphorus oxide-containing metal oxide particles having excellent dispersibility and stability can be obtained effectively.

有機珪素化合物の含有量は、リン含有金属酸化物微粒子に対し、固形分(Rn−SiO(4-n)/2)として1〜50重量%、さらには2〜40重量%の範囲にあることが好ましい。 The content of the organosilicon compound is in the range of 1 to 50% by weight, more preferably 2 to 40% by weight as the solid content (R n —SiO (4-n) / 2 ) with respect to the phosphorus-containing metal oxide fine particles. It is preferable.

有機珪素化合物の含有量が少ない場合は、透明被膜形成用塗布液の高濃度での安定性が不充分となる場合がある。有機珪素化合物の含有量が多すぎても分散性がさらに分散性が
向上することもなく、屈折率が低下し所望の屈折率を有するリン含有金属酸化物粒子を得ることが困難な場合がある。
When the content of the organosilicon compound is small, the stability of the coating solution for forming a transparent film at a high concentration may be insufficient. Even if the content of the organosilicon compound is too large, the dispersibility is not further improved, and it may be difficult to obtain phosphorus-containing metal oxide particles having a desired refractive index with a reduced refractive index. .

ii)樹脂被覆
本発明のリン含有金属酸化物微粒子は、有機樹脂で被覆され、有機樹脂の含有量が固形分としてリン含有金属酸化物微粒子に対して1〜300重量%、さらには2〜200重量%の範囲となるように樹脂で被覆されていてもよい。
ii) Resin coating The phosphorus-containing metal oxide fine particles of the present invention are coated with an organic resin, and the content of the organic resin is 1 to 300% by weight, more preferably 2 to 200%, based on the phosphorus-containing metal oxide fine particles as a solid content. You may coat | cover with resin so that it may become the range of weight%.

被覆有機樹脂の含有量が少なすぎてもマトリックス成分、溶剤への充分な分散性が得られない場合があり、高濃度で凝集する場合がある。被覆有機樹脂の含有量が多すぎても分散性がさらに向上することも無く、屈折率が低下し所望の屈折率を有するリン含有金属酸化物粒子を得ることが困難な場合がある。   Even if the content of the coating organic resin is too small, sufficient dispersibility in the matrix component and the solvent may not be obtained, and aggregation may occur at a high concentration. If the content of the coating organic resin is too large, the dispersibility will not be further improved, and it may be difficult to obtain phosphorus-containing metal oxide particles having a desired refractive index with a reduced refractive index.

前記被覆用の有機樹脂としてはアクリル系樹脂および/またはメタクリル系樹脂であることが好ましい。   The coating organic resin is preferably an acrylic resin and / or a methacrylic resin.

なかでも、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、2−エチルヘキシルメテクリレート、イソデシルメテクリレート、n-ラウリルアクリレート、n−ステアリルアクリレート、1,6−ヘ、サンジオールジメタクリレート、パーフルオロオクチルエチルメタクリレート、トリフロロエチルメテクリレート、ウレタンアクリレート、フェノールノボラック型エポキシアクリレート、ビスフェノール型エポキシアクリレート等およびこれらの混合物は好適に採用することができる。   Among them, pentaerythritol triacrylate, pentaerythritol tetraacrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate , Isobutyl methacrylate, 2-ethylhexyl methacrylate, n-lauryl acrylate, n-stearyl acrylate, 1,6-he, sundiol dimethacrylate, perfluorooctylethyl methacrylate, trifluoroethyl methacrylate , Urethane acrylate, phenol novolac epoxy acrylate, bisphenol Le-type epoxy acrylate and the like and mixtures thereof can be suitably used.

本発明のリン含有金属酸化物微粒子の屈折率は1.75〜2.20、さらには1.80〜2.10の範囲にあることが好ましい。リン含有金属酸化物微粒子の屈折率が前記範囲にあれば、用いる基材の屈折率が高い場合(概ね基材の屈折率が1.60以上)においても透明被膜の屈折率とを同じにすることができるために干渉縞がない透明被膜を得ることができる。   The refractive index of the phosphorus-containing metal oxide fine particles of the present invention is preferably in the range of 1.75 to 2.20, more preferably 1.80 to 2.10. If the refractive index of the phosphorus-containing metal oxide fine particles is in the above range, the refractive index of the transparent film is made the same even when the refractive index of the substrate used is high (generally the refractive index of the substrate is 1.60 or more). Therefore, a transparent film having no interference fringes can be obtained.

本発明のリン含有金属酸化物微粒子の屈折率は、金属酸化物粒子の種類、リン酸化物の含有量、表面処理材、樹脂被覆材の種類、量によって異なる。但し、リン酸化物の屈折率は2.3程度で、酸化チタン、酸化ジルコニウムに対して大きな差が無く、このため、リン酸化物による変化は小さい。   The refractive index of the phosphorus-containing metal oxide fine particles of the present invention varies depending on the type of metal oxide particles, the content of phosphorus oxide, the type of surface treatment material, and the type and amount of resin coating material. However, the refractive index of phosphorus oxide is about 2.3, which is not significantly different from that of titanium oxide and zirconium oxide. Therefore, the change due to phosphorus oxide is small.

つぎに、本発明に係るリン含有金属酸化物微粒子の製造方法について説明する。
[リン含有金属酸化物微粒子の製造方法]
本発明に係るリン含有金属酸化物微粒子の製造方法は、下記の工程(a)〜(d)からなることを特徴としている。
(a)平均粒子径が5〜50nmの範囲にある金属酸化物微粒子の水分散液に、リン酸水溶液を、得られるリン含有金属酸化物微粒子中のリンの含有量がP25として0.1〜15重量%の範囲となるように添加する工程
(b)リン酸を吸着させる工程
(c)微粒子を分離し、乾燥したのち、150〜480℃で加熱処理する工程
工程(a)
平均粒子径が5〜50nmの範囲にある金属酸化物微粒子の水分散液に、リン酸水溶液を、得られるリン含有金属酸化物微粒子中のリンの含有量がP25として0.1〜15重
量%の範囲となるように添加する。
Next, a method for producing phosphorus-containing metal oxide fine particles according to the present invention will be described.
[Method for producing phosphorus-containing metal oxide fine particles]
The method for producing phosphorus-containing metal oxide fine particles according to the present invention is characterized by comprising the following steps (a) to (d).
(A) A phosphoric acid aqueous solution is added to an aqueous dispersion of metal oxide fine particles having an average particle diameter in the range of 5 to 50 nm, and the phosphorus content in the obtained phosphorus-containing metal oxide fine particles is 0 as P 2 O 5. (B) Step of adding phosphoric acid in the range of 1 to 15% by weight (b) Step of adsorbing phosphoric acid (c) Step of separating and drying the fine particles, followed by heat treatment at 150 to 480 ° C.
Step (a)
An aqueous phosphoric acid solution is added to an aqueous dispersion of metal oxide fine particles having an average particle diameter in the range of 5 to 50 nm, and the phosphorus content in the obtained phosphorus-containing metal oxide fine particles is 0.1 to 2 as P 2 O 5. It is added so as to be in the range of 15% by weight.

金属酸化物微粒子としては前記した酸化チタン微粒子および/または酸化ジルコニウム微粒子が用いられる。   As the metal oxide fine particles, the aforementioned titanium oxide fine particles and / or zirconium oxide fine particles are used.

酸化チタン微粒子または酸化ジルコニウム微粒子水分散液を調整するが分散液の濃度は特に制限はないが概ね1〜30重量%の範囲にあることが好ましい。   The aqueous dispersion of titanium oxide fine particles or zirconium oxide fine particles is prepared, but the concentration of the dispersion is not particularly limited but is preferably in the range of 1 to 30% by weight.

金属酸化物微粒子水分散液の濃度が少ないと、生産性が低下し、経済性が不利になり、多すぎても、強く凝集した五酸化アンチモン微粒子となる場合がある。   If the concentration of the metal oxide fine particle aqueous dispersion is low, productivity is lowered and economical efficiency is disadvantageous, and if it is too much, it may become strongly agglomerated antimony pentoxide fine particles.

金属酸化物微粒子水分散液にリン酸を添加する。なお、リン酸以外にリン酸アンモニウム等のリン化合物を用いることもできるが、定量的に含有しない場合があり、経済性の点からも不利である。また、分散液の温度は特に制限はないが、通常常温で行う。   Phosphoric acid is added to the metal oxide fine particle aqueous dispersion. In addition, although phosphorus compounds, such as ammonium phosphate, can also be used besides phosphoric acid, it may not contain quantitatively and is disadvantageous also from an economical point of view. The temperature of the dispersion is not particularly limited, but it is usually carried out at room temperature.

リン酸の添加量は、得られるリン含有金属酸化物微粒子中のリンの含有量がP25として0.1〜15重量%となるように添加する。 The addition amount of phosphoric acid is added so that the phosphorus content in the obtained phosphorus-containing metal oxide fine particles is 0.1 to 15% by weight as P 2 O 5 .

リン酸の添加速度は、一時に添加しても良いが、連続的にあるいは断続的にすることが好ましく、製造装置、製造規模等によって異なるが、例えば、含有量基準で1重量%を概ね0.5分〜30分の速度で添加することが好ましい。
工程(b)
次に添加したリン酸を金属酸化物微粒子表面に吸着させる。リン酸を添加した後、必要に応じて撹拌を継続してもよい。
The addition rate of phosphoric acid may be added at a time, but is preferably continuous or intermittent, and varies depending on the production equipment, production scale, etc. It is preferable to add at a rate of 5 minutes to 30 minutes.
Step (b)
Next, the added phosphoric acid is adsorbed on the surface of the metal oxide fine particles. After adding phosphoric acid, stirring may be continued as necessary.

吸着は加温下で行っても良い。この時、温度は40〜120℃、さらには50〜95℃の範囲にあることが好ましい。   Adsorption may be performed under heating. At this time, the temperature is preferably in the range of 40 to 120 ° C, more preferably 50 to 95 ° C.

このような吸着工程を経ることによって、リン含有酸化チタン微粒子ではより耐候性に優れた微粒子となり、リン含有酸化ジルコニウム微粒子ではより分散性、安定性に優れた微粒子となる。
工程(c)
ついで、微粒子を分散液より分離し、乾燥する。分離する方法としては、濾過分離法、遠心分離法等が採用できる。
By passing through such an adsorption process, the phosphorous titanium oxide fine particles become finer particles with better weather resistance, and the phosphorous-containing zirconium oxide fine particles become finer particles with better dispersibility and stability.
Step (c)
The fine particles are then separated from the dispersion and dried. As a separation method, a filtration separation method, a centrifugal separation method, or the like can be employed.

乾燥方法としては、乾燥できれば特に制限はなく、従来公知の方法が採用できる。   The drying method is not particularly limited as long as it can be dried, and a conventionally known method can be adopted.

得られた微粒子を、150〜480℃で加熱処理する。   The obtained fine particles are heat-treated at 150 to 480 ° C.

加熱処理は、より好ましくは200〜400℃で概ね0.5〜5時間である。加熱処理温度が低すぎると、充分にリン酸が吸着・複合化することができない場合がある。加熱処理温度が高すぎても、リンが粒子内部に拡散し、固溶化あるいはドーピングするためか分散安定性が不充分となる場合があり、温度によっては金属酸化物粒子が強く凝集し、塊砕が困難となることから透明被膜に用いた場合、透明性、基材との密着性、耐擦傷性等が不充分となる場合がある。加熱処理したリン含有金属酸化物微粒子は、そのまま分散媒に分散させて用いることもできるが、必要に応じて塊砕して用いることもできる。   The heat treatment is more preferably at 200 to 400 ° C. for about 0.5 to 5 hours. If the heat treatment temperature is too low, phosphoric acid may not be sufficiently adsorbed and combined. Even if the heat treatment temperature is too high, phosphorus may diffuse into the particles, resulting in solid solution or doping, resulting in insufficient dispersion stability. Depending on the temperature, the metal oxide particles may strongly aggregate and agglomerate. When it is used for a transparent film, transparency, adhesion to a substrate, scratch resistance, etc. may be insufficient. The heat-treated phosphorus-containing metal oxide fine particles can be used by being dispersed in a dispersion medium as they are, but can also be used after being crushed as necessary.

塊砕することによって、非凝集で、分散性に優れたリン含有金属酸化物微粒子を得ることができ、高濃度でも安定性に優れたリン含有金属酸化物微粒子分散液となる。また、後述する工程(d)での有機珪素化合物での表面処理、工程(e)での樹脂被覆が均一になる
ためか、さらに分散性に優れたリン含有金属酸化物微粒子を得ることができる。
By crushing, phosphorus-containing metal oxide fine particles that are non-aggregated and excellent in dispersibility can be obtained, and a phosphorus-containing metal oxide fine particle dispersion excellent in stability even at a high concentration is obtained. Moreover, the surface treatment with the organosilicon compound in the step (d) to be described later and the resin coating in the step (e) may be uniform, so that phosphorus-containing metal oxide fine particles having further excellent dispersibility can be obtained. .

また、リン含有金属酸化物微粒子は屈折率が1.75〜2.20、さらには1.80〜2.10の範囲にあることが好ましい。   The phosphorus-containing metal oxide fine particles preferably have a refractive index in the range of 1.75 to 2.20, more preferably 1.80 to 2.10.

本発明では、前記工程(c)についで、下記の第1態様、第2態様を実施することが好ましい。
(i)第1態様
工程(d)
加熱処理(c)の後、必要に応じて塊砕し、得られたリン含有金属酸化物微粒子をアルコールと混合して、アルコール分散液を調製する。リン含有金属酸化物微粒子アルコール分散液の濃度は1〜30重量%、さらには2〜20重量%の範囲にあることが好ましい。アルコールとしては、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコールなどが挙げられる。
In this invention, it is preferable to implement the following 1st aspect and 2nd aspect following the said process (c).
(i) First aspect
Step (d)
After the heat treatment (c), the mixture is crushed as necessary, and the obtained phosphorus-containing metal oxide fine particles are mixed with alcohol to prepare an alcohol dispersion. The concentration of the phosphorus-containing metal oxide fine particle alcohol dispersion is preferably 1 to 30% by weight, more preferably 2 to 20% by weight. Examples of the alcohol include methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol and the like.

ついで、リン含有金属酸化物微粒子アルコール分散液に、下記式(1)で表される有機珪素化合物を、有機珪素化合物の含有量が固形分(Rn−SiO(4-n)/2)としてリン含有
金属酸化物微粒子に対して1〜50重量%の範囲となるように添加し、水および有機珪素化合物加水分解用触媒を添加して有機珪素化合物の加水分解物で表面処理する。
n−SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
このような有機珪素化合物として、具体的には、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン、3,3,3−トリフ
ルオロプロピルトリメトキシシラン、メチル-3,3,3−トリフルオロプロピルジメトキシシラン、β−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキ
シメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン
、γ−(β−グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリ
ロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラ
ン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、
γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、
ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3-ウレイドイソプロピルプロピルトリエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルエチルトリイソプロポキシシラン、トリフルオロプロピルトリメトキシシラン、N−β(アミノエチル)γ-アミノプロピルメチルジメトキ
シシラン、N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、
トリメチルシラノール、メチルトリクロロシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソブチルジメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、γ-グリシドキシプロピル
メチルジエトキシシラン、γ-(メタ)アクリロオキシプロピルメチルジエトキシシラン
、N−β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ジメチルジクロロシラン、シクロヘキシルメチルジメトキシシラン、ヘキサメチルジシラザン、トリメチルシラノール、トリフェニルシラノール、トリメチルメトキシシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシ
ラン等が挙げられる。
Then, the phosphorus-containing metal oxide fine particles alcohol dispersion, an organic silicon compound represented by the following formula (1), as solids content of the organic silicon compound (R n -SiO (4-n ) / 2) It adds so that it may become the range of 1 to 50 weight% with respect to phosphorus containing metal oxide microparticles | fine-particles, water and the catalyst for hydrolysis of an organosilicon compound are added, and it surface-treats with the hydrolyzate of an organosilicon compound.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
Specific examples of such organosilicon compounds include methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and diphenyldiethoxysilane. , Isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (βmethoxyethoxy) silane, 3,3,3-trifluoropropyltrimethoxysilane, methyl-3,3,3-trifluoropropyldimethoxysilane , Β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, γ-glycidoxymethyltrioxysilane, γ-glycidoxyethyltrimethoxysilane, γ-glycidoxy Cyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropyltriethoxysilane, γ- (β -Glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltriethoxysilane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (meth) acrylooxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane,
γ- (meth) acrylooxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltriethoxysilane,
Butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3 -Ureidoisopropylpropyltriethoxysilane, perfluorooctylethyltrimethoxysilane, perfluorooctylethyltriethoxysilane, perfluorooctylethyltriisopropoxysilane, trifluoropropyltrimethoxysilane, N-β (aminoethyl) γ-amino Propylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane Emissions, .gamma.-mercaptopropyltrimethoxysilane,
Trimethylsilanol, methyltrichlorosilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, diisobutyldimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ- (meth) acryl Rooxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, dimethyldichlorosilane, cyclohexylmethyldimethoxysilane, hexamethyldisilazane, trimethylsilanol, triphenyl Examples include silanol, trimethylmethoxysilane, trimethylchlorosilane, and n-octyldimethylchlorosilane.

有機珪素化合物の添加量は、固形分(Rn−SiO(4-n)/2)としてリン含有金属酸化物
微粒子の1〜50重量%、さらには2〜40重量%の範囲となるように添加することが好ましい。
The addition amount of the organosilicon compound is in the range of 1 to 50% by weight, more preferably 2 to 40% by weight of the phosphorus-containing metal oxide fine particles as solid content (R n —SiO 2 (4-n) / 2 ). It is preferable to add.

有機珪素化合物の添加量が、少ないと、得られるリン含有金属酸化物微粒子の高濃度安定性、マトリックス成分への分散性が不充分となる場合があり、加えて屈折率が高すぎて基材、マトリックス成分の屈折率によっては基材と透明被膜の屈折率を同一に調整できない場合がある。有機珪素化合物の添加量が、多すぎても、さらに分散性が向上することも無く、屈折率が低下し所望の屈折率を有するリン含有金属酸化物粒子を得ることが困難な場合がある。   If the amount of the organosilicon compound added is small, the resulting phosphorus-containing metal oxide fine particles may have high concentration stability and dispersibility in the matrix component, and the refractive index may be too high. Depending on the refractive index of the matrix component, the refractive index of the substrate and the transparent film may not be adjusted to be the same. If the amount of the organosilicon compound added is too large, the dispersibility will not be further improved, and it may be difficult to obtain phosphorus-containing metal oxide particles having a desired refractive index with a reduced refractive index.

水および加水分解用触媒を添加して有機珪素化合物を加水分解する。このとき、添加する水のモル数(MH2O)と有機珪素化合物のモル数(MOC)とのモル比(MH2O)/(MOC)が1〜300、さらには5〜200の範囲にあることが好ましい。 Water and a catalyst for hydrolysis are added to hydrolyze the organosilicon compound. At this time, it added to the number of moles of water (M H2 O) and the number of moles of the organic silicon compound (M OC) and the molar ratio of (M H2O) / (M OC ) is 1-300, more in the range of 5 to 200 Preferably there is.

モル比(MH2O)/(MOC)が小さいと、加水分解が不充分となり、未加水分解有機珪
素化合物を除去する必要があり、除去したとしても得られるリン含有金属酸化物微粒子の高濃度での安定性が不充分となる場合がある。モル比(MH2O)/(MOC)が高すぎても
、後に水を除去する必要があるがその除去が困難であり、後述する有機溶媒を用いる透明被膜形成用塗布液に用いた場合、安定性が不充分となり、高濃度で安定な塗布液が得られない場合がある。
When the molar ratio (M H2O ) / (M OC ) is small, the hydrolysis becomes insufficient, and it is necessary to remove the unhydrolyzed organosilicon compound. Even if it is removed, the high concentration of the phosphorus-containing metal oxide fine particles obtained The stability at the time may be insufficient. Even if the molar ratio (M H2O ) / (M OC ) is too high, it is necessary to remove water later, but it is difficult to remove it. When used in a coating solution for forming a transparent film using an organic solvent described later, In some cases, the stability becomes insufficient, and a stable coating solution cannot be obtained at a high concentration.

また、加水分解用触媒としてはアンモニアが好ましい。アンモニアを用いると、塗布液に残存しても除去することが容易であり、残存量が少量であれば塗布液の安定性を大きく損なうことはなく、この塗布液を用いて形成した透明被膜の性能を損なうこともない。
添加するアンモニアのモル数(MNH3)と有機珪素化合物のモル数(MOC)とのモル比(
NH3)/(MOC)は0.1〜12、さらには0.2〜10の範囲にあることが好ましい
Further, ammonia is preferable as the hydrolysis catalyst. When ammonia is used, it can be easily removed even if it remains in the coating solution. If the amount remaining is small, the stability of the coating solution is not significantly impaired. There is no loss of performance.
Molar ratio of the number of moles of ammonia to be added (M NH3 ) and the number of moles of organosilicon compound (M OC ) (
M NH3 ) / (M OC ) is preferably in the range of 0.1 to 12, more preferably 0.2 to 10.

モル比(MNH3)/(MOC)が小さいと、加水分解が不充分となり、未加水分解有機珪
素化合物を除去する必要があり、除去したとしても高濃度安定性に優れたリン含有金属酸化物微粒子を得ることが困難である。
If the molar ratio (M NH3 ) / (M OC ) is small, the hydrolysis becomes insufficient, and it is necessary to remove the unhydrolyzed organosilicon compound. Even if it is removed, the phosphorus-containing metal oxide is excellent in high concentration stability. It is difficult to obtain physical particles.

モル比(MNH3)/(MOC)が12を超えると、未加水分解物が残留することはなくな
るものの、アンモニアが多く残留するようになり、塗布液の安定性、透明被膜の性能(耐擦傷性、透明性、外観等)が不充分となり、このため、残存するアンモニアを除去する必要が生じる。
When the molar ratio (M NH3 ) / (M OC ) exceeds 12, unhydrolyzed product does not remain, but a large amount of ammonia remains, and the stability of the coating solution and the performance of the transparent film (resistance to resistance) Scratch resistance, transparency, appearance, etc.) become insufficient, and thus it is necessary to remove the remaining ammonia.

水およびアンモニアの添加方法は、各々個別に添加することもできるが、アンモニア水として添加することが好ましい。   Water and ammonia can be added individually, but it is preferably added as ammonia water.

得られた有機珪素化合物(その加水分解物)で表面処理したリン含有金属酸化物微粒子分散液はそのまま用いることもできるが、必要に応じて塗布液に用いる分散媒に限外濾過膜法、蒸留法等により溶媒置換することが好ましい。   The obtained phosphorous-containing metal oxide fine particle dispersion surface-treated with the organosilicon compound (hydrolyzate thereof) can be used as it is, but if necessary, an ultrafiltration membrane method or distillation can be used for the dispersion medium used in the coating solution. It is preferable to substitute the solvent by a method or the like.

分散媒としてはエーテル類、エステル類、ケトン類、アルコール類から選ばれる1種または2種以上が挙げられる。
(ii)第2態様
本発明では、前記工程(c)についで、下記の工程(e)を実施してもよい。
工程(e)
リン含有酸化チタン微粒子またはリン含有酸化ジルコニウム微粒子と分散媒と有機樹脂とを、有機樹脂の含有量が固形分としてリン含有金属酸化物微粒子に対して1〜300重量%の範囲となるように混合し、メカノケミカル処理する。これによって、有機樹脂被覆層が形成される。
Examples of the dispersion medium include one or more selected from ethers, esters, ketones, and alcohols.
(ii) Second Embodiment In the present invention, following the step (c), the following step (e) may be performed.
Process (e)
Phosphorus-containing titanium oxide fine particles or phosphorus-containing zirconium oxide fine particles, a dispersion medium, and an organic resin are mixed so that the content of the organic resin is in the range of 1 to 300% by weight with respect to the phosphorus-containing metal oxide fine particles as a solid content. And mechanochemical treatment. Thereby, an organic resin coating layer is formed.

有機樹脂としては前記したアクリル系樹脂および/またはメタクリル系樹脂であることが好ましい。   The organic resin is preferably the acrylic resin and / or methacrylic resin described above.

また、分散媒としては、エーテル類、エステル類、ケトン類、アルコール類から選ばれる1種または2種以上であることが好ましい。   The dispersion medium is preferably one or more selected from ethers, esters, ketones, and alcohols.

有機樹脂の添加量が固形分としてリン含有金属酸化物微粒子に対して1重量%未満の場合は、マトリックス成分、溶剤への充分な分散性が得られない場合があり、高濃度で凝集する場合がある。   When the amount of the organic resin added is less than 1% by weight with respect to the phosphorus-containing metal oxide fine particles as a solid content, sufficient dispersibility in the matrix component and the solvent may not be obtained, and aggregation occurs at a high concentration There is.

被覆有機樹脂の含有量が固形分としてリン含有金属酸化物微粒子に対して300重量%を超えても分散性がさらに向上することも無く、屈折率が低下し所望の屈折率を有するリン含有金属酸化物粒子を得ることが困難な場合がある。   Even if the content of the coating organic resin exceeds 300% by weight as a solid content with respect to the phosphorus-containing metal oxide fine particles, the dispersibility is not further improved, and the phosphorus-containing metal having a desired refractive index with a lower refractive index. It may be difficult to obtain oxide particles.

有機樹脂の添加量が固形分としてリン含有金属酸化物微粒子に対して300重量%を超えても分散性がさらに向上することも無く、屈折率が低下し所望の屈折率を有するリン含有金属酸化物粒子を得ることが困難な場合がある。   Even if the addition amount of the organic resin exceeds 300% by weight with respect to the phosphorus-containing metal oxide fine particles as a solid content, the dispersibility is not further improved, and the refractive index decreases and the phosphorus-containing metal oxide having a desired refractive index. It may be difficult to obtain physical particles.

有機樹脂の添加量のさらに好ましい範囲は固形分としてリン含有金属酸化物微粒子に対して2〜200重量%である。   A more preferable range of the addition amount of the organic resin is 2 to 200% by weight as the solid content with respect to the phosphorus-containing metal oxide fine particles.

メカノケミカル処理する方法としては前記金属酸化物粒子、被覆用樹脂、配合比率および濃度を採用する以外は従来公知の方法を採用することができる。   As a method for the mechanochemical treatment, a conventionally known method can be adopted except that the metal oxide particles, coating resin, blending ratio and concentration are adopted.

例えば、ヘンシェルミキサー、ホモミキサー、ホモジナイザー、ビーズミル等に有機溶媒、金属酸化物粒子および樹脂被覆材を所定量計量し、高速で撹拌する。撹拌速度は使用する装置、方式等によって異なるが、あまりに低速であると均一に樹脂を被覆できない場合、粒子と樹脂との結合が不充分となる場合等があり、樹脂被覆金属酸化物粒子分散ゾルの安定性が不充分となることがあり、このような樹脂被覆金属酸化物粒子分散ゾルを用いた透明被膜形成用塗料の安定性が低下し、最終的に得られる透明被膜の透明性、ヘイズ、膜強度、耐擦傷性、基材との密着性等が不充分となることがある。   For example, a predetermined amount of organic solvent, metal oxide particles, and resin coating material are weighed in a Henschel mixer, homomixer, homogenizer, bead mill, etc., and stirred at high speed. The stirring speed varies depending on the apparatus and method used, but if it is too low, the resin cannot be uniformly coated, the bond between the particles and the resin may be insufficient, and the resin-coated metal oxide particle dispersed sol The stability of the coating for forming a transparent film using such a resin-coated metal oxide particle-dispersed sol is reduced, and the transparency and haze of the finally obtained transparent film are reduced. In addition, film strength, scratch resistance, adhesion to a substrate and the like may be insufficient.

このようにして得られる有機珪素化合物で表面処理した、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子分散液の濃度は固形分として5〜60重量%、さらには20〜60重量%の範囲にあることが好ましい。   The concentration of the phosphorus-containing metal oxide fine particle dispersion surface-treated with the organosilicon compound thus obtained or coated with an organic resin is in the range of 5 to 60% by weight, more preferably 20 to 60% by weight as the solid content. Preferably there is.

本発明の有機珪素化合物で表面処理した、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子分散液は、特に30〜60重量%の高濃度でも長期にわたって安定である。   The phosphorus-containing metal oxide fine particle dispersion surface-treated with the organosilicon compound of the present invention or coated with an organic resin is stable over a long period of time even at a high concentration of 30 to 60% by weight.

また、有機珪素化合物で表面処理、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子は屈折率が1.75〜2.20、さらには1.80〜2.10の範囲にあることが好ましい。   The phosphorus-containing metal oxide fine particles surface-treated with an organosilicon compound or coated with an organic resin preferably have a refractive index in the range of 1.75 to 2.20, more preferably 1.80 to 2.10.

つぎに、本発明に係る透明被膜付基材について説明する。
[透明被膜付基材]
本発明に係る透明被膜付基材は、基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜がマトリックス成分と前記したリン含有金属酸化物微粒子とを含んでなることを特徴としている。
基材
本発明に用いる基材としては、従来公知のガラス、ポリカーボネート、アクリル樹脂、トリアセチルセルロース基材、ポリオレフィン系樹脂基材、ポリビニルアルコール系樹脂基材、ポリエーテルスルフォン系樹脂基材、PET、プラスチックフィルム等、プラスチックパネル等を用いることができる。
Below, the base material with a transparent film which concerns on this invention is demonstrated.
[Base material with transparent coating]
The substrate with a transparent coating according to the present invention comprises a substrate and a transparent coating formed on one surface of the substrate, and the transparent coating contains a matrix component and the above-described phosphorus-containing metal oxide fine particles. It is characterized by
The base material used for the substrate present invention, conventionally known glass, polycarbonate, acrylic resin, triacetyl cellulose substrate, polyolefin resin substrate, polyvinyl alcohol resin substrate, polyether sulfone resin substrate, PET, A plastic film, a plastic panel, or the like can be used.

なかでも、PETは透明性高く、機械的強度に優れ、且つ、温度、湿度等の変化に対する寸法安定性がよく汎用性の高い基材であるので好ましい。   Of these, PET is preferable because it is highly transparent, excellent in mechanical strength, has good dimensional stability against changes in temperature, humidity, and the like and is highly versatile.

このような基材は、屈折率が1.50〜1.70さらには1.60〜1.70の範囲にあることが好ましい。
リン含有金属酸化物微粒子
リン含有金属酸化物微粒子としては、前記したリン含有金属酸化物微粒子、前記した有機珪素化合物で表面処理した、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子が用いられる。
Such a substrate preferably has a refractive index in the range of 1.50 to 1.70, more preferably 1.60 to 1.70.
Phosphorus-containing metal oxide fine particles As the phosphorus-containing metal oxide fine particles, the above-described phosphorus-containing metal oxide fine particles, phosphorus-containing metal oxide fine particles that have been surface-treated with the above-described organosilicon compound, or coated with an organic resin are used.

透明被膜中のリン含有金属酸化物微粒子の含有量は、固形分として10〜80重量%、さらには20〜70重量%の範囲にあることが好ましい。   The content of the phosphorus-containing metal oxide fine particles in the transparent film is preferably in the range of 10 to 80% by weight, more preferably 20 to 70% by weight as the solid content.

透明被膜中のリン含有金属酸化物微粒子の含有量が、固形分として10重量%未満の場合は所望の屈折率1.60を有し、基材との密着性、耐擦傷性、強度等に優れた透明被膜を得ることが困難となる。   When the content of the phosphorus-containing metal oxide fine particles in the transparent film is less than 10% by weight as the solid content, it has a desired refractive index of 1.60, and the adhesion to the substrate, scratch resistance, strength, etc. It becomes difficult to obtain an excellent transparent film.

透明被膜中のリン含有金属酸化物微粒子の含有量が、固形分として80重量%を超えると、基材との密着性が低下し、さらに耐擦傷性、強度が低下する場合がある。
マトリックス成分
マトリックス成分として、前記式(1)で表される有機珪素化合物の加水分解物であるゾルゲル法マトリックス形成成分の硬化したゾルゲル法マトリックス成分、有機樹脂マトリックス形成成分が硬化した有機樹脂マトリックス成分を用いることができる。このうち、本発明では、有機樹脂マトリックス成分を好適に用いることができる。(通常、有機樹脂マトリックス成分で、酸化チタン系粒子を用いると耐候性の問題となることがあるが、本発明ではかかる問題は解消される)
有機樹脂マトリックス形成成分として、たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アク
リル樹脂、紫外線硬化型アクリル樹脂などの熱硬化性樹脂、紫外線硬化型アクリル樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。
If the content of the phosphorus-containing metal oxide fine particles in the transparent coating exceeds 80% by weight as the solid content, the adhesion to the substrate may be reduced, and the scratch resistance and strength may be further reduced.
As the matrix component, a cured sol-gel method matrix component of the sol-gel method matrix-forming component that is a hydrolyzate of the organosilicon compound represented by the above formula (1), an organic resin matrix component in which the organic resin matrix-forming component is cured Can be used. Among these, in this invention, an organic resin matrix component can be used suitably. (Usually, the use of titanium oxide-based particles in the organic resin matrix component may cause a problem of weather resistance, but the present invention solves this problem)
For example, conventionally used polyester resin, polycarbonate resin, polyamide resin, polyphenylene oxide resin, thermoplastic acrylic resin, vinyl chloride resin, fluororesin, vinyl acetate resin, silicone rubber, etc. as organic resin matrix forming components Thermosetting resins such as resin, urethane resin, melamine resin, silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, thermosetting acrylic resin, UV curable acrylic resin, UV curing Type acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins.

これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂の場合、紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。   These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, in the case of a thermosetting resin, it may be an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.

本発明では、前記工程(d)で得られたリン含有金属酸化物微粒子を用いる場合は、親水性有機樹脂マトリックス形成成分が用いられる。   In the present invention, when the phosphorus-containing metal oxide fine particles obtained in the step (d) are used, a hydrophilic organic resin matrix forming component is used.

親水性有機樹脂マトリックス形成成分としては、具体的には、水酸基(OH基)、アミノ基、カルボキシル基、スルホ基等の親水性官能基を有する(メタ)アクリル酸エステル樹脂が挙げられ、例えば、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート等の他、ジエチルアミノメチルメタクリレート、ジメチルアミノメチルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、2−ヒドロキシエチルメタクレート、2−ヒドロキシプロピルメタクレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、2−ヒドロキシブチルメタクレート、2−ヒドロキシ3フェノキシプロピルアクリレート、2−ヒドロキシ−3−アクリロイロキシプロピルアクリレート、メトキシトリエチレングリコールジメタクリレート、ブトキシジエチレングリコールメタクリレート、トリエチレングリコールジアクリレート、1.6−ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジグリシジルエ
ーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、ジエチレングリコールジグリシジルエーテルジアクリレート、ジプロピレングリコールジグリシジルエーテルジアクリレート、2−メタクリロイロキシエチルコハク酸、2−アクロイロキシエチルコハク酸、2−アクロイロキシエチルフタル酸、2−メタクリロイロキシエチルヘキサヒドロフタル酸、2−アクロイロキシエチル−2−ヒドロキシエチルフタル酸、2−メタクリロイロキシエチルアシッドホスフェート、2−メタクリロイロキシエチルアシッドホスフェート、2−アクロイロキシエチルアシッドフォスフェート、2ヒドロキシ−3フェノキシプロピルアクリレート、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ビスフェノールAジグリシジルエーテルアクリル酸付加物、およびこれらの混合物あるいはこれら樹脂の2種以上の共重合体や変性体であってもよい。
Specific examples of the hydrophilic organic resin matrix forming component include (meth) acrylic acid ester resins having a hydrophilic functional group such as a hydroxyl group (OH group), an amino group, a carboxyl group, and a sulfo group. In addition to pentaerythritol triacrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, etc., diethylaminomethyl methacrylate, dimethylaminomethyl methacrylate, dimethylaminoethyl methacrylate Diethylaminoethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxy Propyl acrylate, 2-hydroxybutyl methacrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-hydroxy-3-acryloyloxypropyl acrylate, methoxytriethylene glycol dimethacrylate, butoxydiethylene glycol methacrylate, triethylene glycol diacrylate, 1.6 -Hexanediol diacrylate, 1,6-hexanediol diglycidyl ether acrylate, neopentyl glycol diglycidyl ether acrylate, diethylene glycol diglycidyl ether diacrylate, dipropylene glycol diglycidyl ether diacrylate, 2-methacryloyloxyethyl succinic acid, 2-acryloylethyl succinic acid, 2-acryloylethyl phthalic acid, -Methacryloyloxyethyl hexahydrophthalic acid, 2-acryloyloxyethyl-2-hydroxyethylphthalic acid, 2-methacryloyloxyethyl acid phosphate, 2-methacryloyloxyethyl acid phosphate, 2-acryloyloxyethyl acid phosphate Fate, 2-hydroxy-3-phenoxypropyl acrylate, bisphenol A diglycidyl ether methacrylic acid adduct, bisphenol A diglycidyl ether acrylic acid adduct, a mixture thereof, or two or more copolymers or modified products of these resins. May be.

また、有機珪素化合物で表面処理した、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子を用いる場合は、疎水性有機樹脂マトリックス形成成分が用いられる。   In addition, when using phosphorus-containing metal oxide fine particles that have been surface-treated with an organosilicon compound or coated with an organic resin, a hydrophobic organic resin matrix-forming component is used.

疎水性有機樹脂マトリックス形成成分としては、ビニル基、ウレタン基、エポキシ基、(メタ)アクリロイル基、CF2基等の疎水性官能基を有する多官能(メタ)アクリル酸エ
ステル樹脂が挙げられ、具体的にはペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサアクリレート、メチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、2−エチルヘキシルメテクリレート、イソデシルメテクリレート、n-ラウリルアクリレート、n−ステアリルアクリレート、1,6−ヘ、サンジオールジメタクリレート、パーフルオロオクチルエチルメタクリレート、トリフロロエチルメテクリレート、ウレタンアクリレート等およびこれらの混合物が挙げられる。
Examples of the hydrophobic organic resin matrix forming component include polyfunctional (meth) acrylic acid ester resins having a hydrophobic functional group such as vinyl group, urethane group, epoxy group, (meth) acryloyl group, CF 2 group, etc. In particular, pentaerythritol triacrylate, pentaerythritol tetraacrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetraacrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexaacrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate , Isobutyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, n-lauryl acrylate, n-stearyl acrylate, 1,6-he, sa Diol dimethacrylate, perfluorooctyl methacrylate, trifluoroethyl Mete chestnut rate, urethane acrylate and the like and mixtures thereof.

透明被膜中のマトリックス成分の含有量は、固形分として20〜90重量%、さらには
30〜80重量%の範囲にあることが好ましい。
The content of the matrix component in the transparent film is preferably in the range of 20 to 90% by weight, more preferably 30 to 80% by weight as the solid content.

透明被膜中のマトリックス成分が少ないと、基材との密着性が低下し、さらに耐擦傷性、強度が低下する場合がある。透明被膜中のマトリックス成分が多すぎても、所望の屈折率1.60を有し、基材との密着性、耐擦傷性、強度等に優れた透明被膜を得ることが困難となる。   When there are few matrix components in a transparent film, adhesiveness with a base material will fall, and also scratch resistance and intensity | strength may fall. Even if there are too many matrix components in the transparent film, it becomes difficult to obtain a transparent film having a desired refractive index of 1.60 and excellent in adhesion to the substrate, scratch resistance, strength, and the like.

透明被膜の膜厚は0.5〜20μm、さらには2〜10μmの範囲にあることが好ましい。透明被膜が薄いと、透明被膜が薄く透明被膜表面に加わる応力を充分吸収することがでないために、耐擦傷性等ハードコート機能が不充分となる。透明被膜が厚すぎても、膜の厚さが均一になるように塗布したり、均一に乾燥することが困難となり、さらに収縮が大きくなるのでカーリング(ハードコート膜付基材が湾曲)が生じることがある。また、膜厚が厚すぎて透明性が不充分となることがある。   The film thickness of the transparent coating is preferably in the range of 0.5 to 20 μm, more preferably 2 to 10 μm. If the transparent coating is thin, the transparent coating is thin and does not sufficiently absorb the stress applied to the surface of the transparent coating, so that the hard coat function such as scratch resistance becomes insufficient. Even if the transparent film is too thick, it becomes difficult to apply and uniformly dry the film, and further shrinkage increases, causing curling (curved substrate with hard coat film). Sometimes. Also, the film thickness may be too thick and the transparency may be insufficient.

このような透明被膜の屈折率は基材の屈折率との差が0.02以下であることが好ましい。透明被膜の屈折率と基材の屈折率との差が大きくなると干渉縞を生じる問題がある。   The refractive index of such a transparent film preferably has a difference of 0.02 or less from the refractive index of the substrate. If the difference between the refractive index of the transparent coating and the refractive index of the substrate becomes large, there is a problem that interference fringes are generated.

このような透明被膜は、後述する本発明に係る透明被膜形成用塗布液を塗布、乾燥、硬化することによって形成することができる。   Such a transparent coating can be formed by applying, drying and curing a coating solution for forming a transparent coating according to the present invention described later.

つぎに、本発明に係る透明被膜形成用塗布液について説明する。
透明被膜形成用塗布液
本発明に係る透明被膜形成用塗布液は、マトリックス形成成分と請求項1〜5のいずれかに記載のリン含有金属酸化物微粒子と分散媒とを含んでなり、全固形分濃度が1〜60重量%の範囲にあり、リン含有金属酸化物微粒子の濃度が固形分として0.1〜48重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.2〜54重量%の範囲にあることを特徴としている。
マトリックス形成成分
マトリックス形成成分としては、前記マトリックス形成成分が用いられる。なお硬化性樹脂の場合硬化前(反応前)モノマーと重合開始剤とからなり、熱可塑性樹脂の場合、重合体からなる。
リン含有金属酸化物微粒子
リン含有金属酸化物微粒子としては、前記リン含有金属酸化物微粒子、有機珪素化合物で表面処理した、あるいは有機樹脂で被覆したリン含有金属酸化物微粒子が用いられる。
Next, the coating liquid for forming a transparent film according to the present invention will be described.
Transparent film-forming coating liquid The transparent film-forming coating liquid according to the present invention comprises a matrix-forming component, the phosphorus-containing metal oxide fine particles according to any one of claims 1 to 5, and a dispersion medium. The total solid content concentration is in the range of 1 to 60% by weight, the concentration of the phosphorus-containing metal oxide fine particles is in the range of 0.1 to 48% by weight as the solid content, and the concentration of the matrix forming component is in the solid content It is characterized by being in the range of 0.2 to 54% by weight.
Matrix-forming component The matrix-forming component is used as the matrix-forming component. In the case of a curable resin, it consists of a monomer and a polymerization initiator before curing (before the reaction).
Phosphorus-containing metal oxide fine particles As the phosphorus-containing metal oxide fine particles, the phosphorus-containing metal oxide fine particles, phosphorus-containing metal oxide fine particles that have been surface-treated with an organic silicon compound, or coated with an organic resin are used.

分散媒
分散媒としては、水分散媒であってもアルコールなどの有機溶媒であってもよく、適宜選択して用いることができる。本発明に用いる分散媒としては前記有機樹脂マトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともにリン含有金属酸化物微粒子を均一に分散することができる、従来公知の分散媒を用いることができる。
The dispersion medium dispersion medium may be an aqueous dispersion medium or an organic solvent such as alcohol, and can be appropriately selected and used. As the dispersion medium used in the present invention, a conventionally known dispersion medium that can dissolve or disperse the organic resin matrix-forming component and, if necessary, the polymerization initiator and uniformly disperse the phosphorus-containing metal oxide fine particles can be used. Can be used.

リン含有金属酸化物微粒子をそのまま用いる場合は親水性分散媒が用いられ、例えば、水;メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコールなどのアルコール類;エチレングリコール、ヘキシレングリコールなどのグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノエチルエ
ーテル等のエーテル類を含む親水性分散媒等が挙げられる。
When phosphorus-containing metal oxide fine particles are used as they are, a hydrophilic dispersion medium is used, for example, water; methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol. Alcohols such as ethylene glycol and hexylene glycol; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether , Including ethers such as propylene glycol monomethyl ether and propylene glycol monoethyl ether Sex dispersion medium and the like.

また、有機珪素化合物で表面処理した、あるいは有機樹脂被覆したリン含有金属酸化物微粒子を用いる場合は疎水性分散媒が用いられ、例えば、酢酸メチル、酢酸エチル、酢酸プルピル、酢酸イソプルピル酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセタート等のエステル類、アセトン、メチルエチルケトンメチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン等のケトン類、トルエン等の疎水性分散媒が挙げられる。   In addition, when using phosphorus-containing metal oxide fine particles that are surface-treated with an organic silicon compound or coated with an organic resin, a hydrophobic dispersion medium is used. Esters such as butyl, isopentyl acetate, pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate, acetone, methyl ethyl ketone methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methylcyclohexanone, dipropyl Examples include ketones such as ketone, methylpentyl ketone and diisobutyl ketone, and hydrophobic dispersion media such as toluene.

透明被膜形成用塗布液の全固形分濃度は1〜60重量%、さらには20〜60重量%の範囲にあることが好ましい。本発明では、特に、40〜60重量%の範囲という高濃度にあることも好ましい。   The total solid concentration of the coating solution for forming a transparent film is preferably 1 to 60% by weight, more preferably 20 to 60% by weight. In the present invention, it is particularly preferable that the concentration is as high as 40 to 60% by weight.

透明被膜形成用塗布液の全固形分濃度が前記範囲にあれば、高屈折率の基材を用いた場合に、干渉縞が無く、ハードコート性に優れた透明被膜を得ることができる。   If the total solid concentration of the coating liquid for forming a transparent film is within the above range, a transparent film having no interference fringes and excellent hard coat properties can be obtained when a high refractive index substrate is used.

本発明では、前記有機珪素化合物で表面処理した、あるいは有機樹脂被覆したリン含有金属酸化物微粒子を用いると、高固形分濃度、たとえば40〜60重量%でも安定な塗布液が得られ、少ない回数で厚膜の透明被膜を形成することができ、且つ、外観欠点がなく、クラック等のない透明被膜を得ることができる。   In the present invention, when phosphorus-containing metal oxide fine particles surface-treated with the above-mentioned organosilicon compound or coated with an organic resin are used, a stable coating solution can be obtained even at a high solid content concentration, for example, 40 to 60% by weight. Thus, a thick transparent film can be formed, and there can be obtained a transparent film free from cracks or the like without appearance defects.

透明被膜形成用塗布液中のリン含有金属酸化物微粒子の濃度は固形分として0.1〜48重量%、さらには2〜42重量%の範囲にあることが好ましい。   The concentration of the phosphorus-containing metal oxide fine particles in the coating liquid for forming a transparent film is preferably in the range of 0.1 to 48% by weight, more preferably 2 to 42% by weight as the solid content.

透明被膜形成用塗布液中のリン含有金属酸化物微粒子の濃度が固形分として0.1重量%未満の場合は所望の屈折率を有した透明被膜を得ることができない場合がある。   When the concentration of the phosphorus-containing metal oxide fine particles in the coating liquid for forming a transparent film is less than 0.1% by weight as a solid content, a transparent film having a desired refractive index may not be obtained.

透明被膜形成用塗布液中のリン含有金属酸化物微粒子の濃度が固形分として48重量%を超えると、得られる透明被膜の基材との密着性、耐擦傷性、強度、透明性等が不充分となる場合がある。   If the concentration of the phosphorus-containing metal oxide fine particles in the coating solution for forming the transparent film exceeds 48% by weight as the solid content, the adhesion of the resulting transparent film to the substrate, scratch resistance, strength, transparency, etc. are poor. May be sufficient.

透明被膜形成用塗布液中のマトリックス形成成分の濃度は、固形分として0.2〜54重量%、さらには4〜48重量%の範囲にあることが好ましい。マトリックス形成成分が少ないと、基材との密着性が低下し、さらに耐擦傷性、強度が低下する場合がある。マトリックス形成成分が多すぎても、所望の屈折率を有し、かつ基材との密着性、耐擦傷性、強度等に優れた透明被膜を得ることが困難となる。   The concentration of the matrix-forming component in the coating solution for forming a transparent film is preferably in the range of 0.2 to 54% by weight, more preferably 4 to 48% by weight as the solid content. When there are few matrix formation components, adhesiveness with a base material will fall, and also scratch resistance and intensity | strength may fall. Even if there are too many matrix forming components, it becomes difficult to obtain a transparent film having a desired refractive index and excellent adhesion to the substrate, scratch resistance, strength, and the like.

本発明では(耐候性、安定性に優れた)高屈折率の粒子を使用し、高屈折率の透明被膜が得られ、高屈折率の基材を用いても、屈折率差の小さい(干渉縞の無い)透明被膜が得られる。また、従来公知の低屈折率粒子では使用が困難であった、1.60の屈折率を達成できる。   In the present invention, high refractive index particles (excellent in weather resistance and stability) are used to obtain a transparent film having a high refractive index, and even if a high refractive index substrate is used, the refractive index difference is small (interference A transparent coating without stripes is obtained. In addition, a refractive index of 1.60, which is difficult to use with conventionally known low refractive index particles, can be achieved.

以上の塗布液をディップ法、スプレー法、スピナー法、ロールコート法等の周知の方法で前記した基材に塗布し、乾燥し、加熱処理、紫外線照射等によって硬化させることによって透明被膜を形成することができる。
[実施例]
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
樹脂被覆リン含有ジルコニウム微粒子(1)の調製
純水1,300gにオキシ塩化ジルコニウム8水和物(ZrOCl2・8H2O)35gを溶解し、これに濃度10重量%のKOH水溶液123gを添加してジルコニウム水酸化物ヒドロゲル(ZrO2濃度1重量%)を調製した。ついで、限外濾過膜法で電導度が0.5mS/c
m以下になるまで洗浄した。
The above coating solution is applied to the above-mentioned substrate by a known method such as a dipping method, a spray method, a spinner method, or a roll coating method, dried, and cured by heat treatment, ultraviolet irradiation, or the like to form a transparent film. be able to.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of resin-coated phosphorus-containing zirconium fine particles (1) 35 g of zirconium oxychloride octahydrate (ZrOCl 2 .8H 2 O) was dissolved in 1,300 g of pure water, and 123 g of a 10 wt% KOH aqueous solution was added thereto. Zirconium hydroxide hydrogel (ZrO 2 concentration 1% by weight) was prepared. Next, the conductivity is 0.5 mS / c by the ultrafiltration membrane method.
Wash until m or less.

得られたZrO2として濃度1重量%のジルコニウム水酸化物ヒドロゲル2,000gに濃度10重量%のKOH水溶液400gを加えて十分攪拌した後、濃度35重量%の過酸化水素水溶液200gを加えた。このとき、激しく発泡して溶液は透明になり、pHは11.5であった。 400 g of a 10 wt% KOH aqueous solution was added to 2,000 g of 1 wt% zirconium hydroxide hydrogel as the obtained ZrO 2 , and after sufficient stirring, 200 g of a 35 wt% hydrogen peroxide aqueous solution was added. At this time, the solution foamed vigorously and the solution became transparent, and the pH was 11.5.

この溶液をオートクレーブに充填し、150℃で11時間水熱処理を行った後、遠心沈降法により分離し、充分に洗浄して固形分濃度10重量%のジルコニア微粒子(1)水分散
液を調製した。
This solution was filled in an autoclave, hydrothermally treated at 150 ° C. for 11 hours, separated by centrifugal sedimentation, and washed thoroughly to prepare a zirconia fine particle (1) aqueous dispersion having a solid content concentration of 10% by weight. .

ついで、固形分濃度10重量%のジルコニア微粒子(1)水分散液1000gに対してリ
ン酸(関東化学(株)製:純度85%)8.1gを10分かけて添加し、10分攪拌した。その後、バットに取り出し180℃で17時間加熱し、リン含有ジルコニウム微粒子(1)を得た。得られた微粒子のリンのP25としての含有量、屈折率を表に示した。
Next, 8.1 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85%) was added to 1000 g of zirconia fine particles having a solid content concentration of 10% by weight (1) and the mixture was stirred for 10 minutes. . Thereafter, it was taken out into a bat and heated at 180 ° C. for 17 hours to obtain phosphorus-containing zirconium fine particles (1). The content and refractive index of phosphorus of the obtained fine particles as P 2 O 5 are shown in the table.

次に、リン含有ジルコニウム微粒子(1)120g、有機溶媒としてプロピレングリコー
ルモノメチルエーテル(PGME)224g、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NKエステル EA-6320)120gを、石英ビーズ62
8gを入れたビーズミルに充填し、メカノケミカル処理した後、石英ビーズを分離して固形分濃度25重量%の有機樹脂被覆リン含有ジルコニウム微粒子(1)分散液を調製した。
有機樹脂被覆リン含有ジルコニウム微粒子(1)の平均粒子径および屈折率を測定し、結果
を表に示す。
Next, 120 g of phosphorus-containing zirconium fine particles (1), 224 g of propylene glycol monomethyl ether (PGME) as an organic solvent, 120 g of phenol novolac type epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6320), quartz beads 62
After filling a bead mill containing 8 g and carrying out a mechanochemical treatment, the quartz beads were separated to prepare a dispersion of organic resin-coated phosphorus-containing zirconium fine particles (1) having a solid concentration of 25% by weight.
The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (1) were measured, and the results are shown in the table.

粒子の屈折率の測定方法
(1)分散液をエバポレーターに採り、分散媒を蒸発させる。
(2)これを120℃で乾燥し、粉末とする。
(3)屈折率が既知の標準屈折液を2、3滴ガラス板上に滴下し、これに上記粉末を混合する。
(4)上記(3)の操作を種々の標準屈折液で行い、混合液が透明になったときの標準屈折液の屈折率を微粒子の屈折率とする。
透明被膜形成用塗布液(1)の調製
有機樹脂被覆リン含有ジルコニウム微粒子分散液(1)3.56gに紫外線硬化樹脂(大
日本インキ(株)製:ユニデック17−824−9、固形分濃度79重量%)0.89gと
光重合開始剤1−ヒドロキシシクロヘキシルフェニルケトン(チバジャパン(株)製:イルガキュア184、PGMEで固形分濃度10%に溶解)0.53gとを充分に混合して固形分濃度36重量%の透明導電性被膜形成用塗布液(1)を調製した。得られた塗布液の安定性を評価し、結果を表に示す。
Method for Measuring Refractive Index of Particle (1) The dispersion is taken on an evaporator and the dispersion medium is evaporated.
(2) This is dried at 120 ° C. to obtain a powder.
(3) A standard refraction liquid having a known refractive index is dropped on a glass plate of a few drops, and the above powder is mixed therewith.
(4) The operation of (3) is performed with various standard refractive liquids, and the refractive index of the standard refractive liquid when the mixed liquid becomes transparent is used as the refractive index of the fine particles.
Preparation of coating liquid for transparent film formation (1) 3.56 g of organic resin-coated phosphorus-containing zirconium fine particle dispersion (1) was added to UV curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid content concentration 79 (Weight%) 0.89 g and photopolymerization initiator 1-hydroxycyclohexyl phenyl ketone (Ciba Japan Co., Ltd .: Irgacure 184, dissolved in PGME to a solid content concentration of 10%) 0.53 g were mixed thoroughly to obtain a solid content. A coating liquid (1) for forming a transparent conductive film having a concentration of 36% by weight was prepared. The stability of the obtained coating solution was evaluated, and the results are shown in the table.

なお、分散液の安定性は以下の加速試験法によった。   The stability of the dispersion was determined by the following accelerated test method.

塗布液を70℃で静置しながら、粘度計(東機産業(株)製:BL型)により粘度が1,000cpを超えるまでの日数を測定した。
透明被膜付基材(1)の製造
透明導電性被膜形成用塗布液(1)を易接着層付PETフィルム(東洋紡績(株)製:コス
モシャインA4300)にバーコーター法(#20)で塗布し、80℃で1分間乾燥した
後、高圧水銀灯(600mJ/cm2)を照射して硬化させ、透明導電性被膜付基材(1)を調製した。このときの透明導電性被膜の厚さは3μmであった。
While the coating solution was allowed to stand at 70 ° C., the number of days until the viscosity exceeded 1,000 cp was measured with a viscometer (manufactured by Toki Sangyo Co., Ltd .: BL type).
Production of substrate with transparent coating (1) Coating liquid for forming transparent conductive coating (1) is applied to PET film with easy-adhesion layer (Toyobo Co., Ltd .: Cosmo Shine A4300) by the bar coater method (# 20). After drying at 80 ° C. for 1 minute, the substrate was cured by irradiation with a high-pressure mercury lamp (600 mJ / cm 2 ) to prepare a transparent conductive film-coated substrate (1). The thickness of the transparent conductive film at this time was 3 μm.

この透明導電性被膜付基材(1)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、
耐擦傷性および耐候性を表に示す。全光線透過率およびヘーズは、ヘーズメーター(スガ試験機(株)製)により、表面抵抗は表面抵抗計(三菱油化(株)製:LORESTA)で
測定し、結果を表に示した。
屈折率
被膜の屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。鉛筆硬度
鉛筆硬度は、JIS K 5400に準じて、鉛筆硬度試験器で測定した。即ち、透明導電性被膜表面に対して45度の角度に鉛筆をセットし、所定の加重を負荷して一定速度で引っ張り、傷の有無を観察した。
耐擦傷性の測定
#0000スチールウールを用い、荷重1000g/cm2で20回摺動し、膜の表面
を目視観察し、以下の基準で評価し、結果を表に示した。
The refractive index, total light transmittance, haze, adhesion, pencil hardness of the substrate with the transparent conductive film (1),
The scratch resistance and weather resistance are shown in the table. The total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.) and the surface resistance was measured with a surface resistance meter (manufactured by Mitsubishi Oil Chemical Co., Ltd .: LORESTA), and the results are shown in the table.
The refractive index of the refractive index film was measured with an ellipsometer (manufactured by ULVAC, EMS-1). Pencil hardness Pencil hardness was measured with a pencil hardness tester in accordance with JIS K 5400. That is, a pencil was set at an angle of 45 degrees with respect to the surface of the transparent conductive coating, and a predetermined load was applied and pulled at a constant speed to observe the presence or absence of scratches.
Measurement of scratch resistance Using # 0000 steel wool, sliding 20 times at a load of 1000 g / cm 2, visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in the table.

評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
密着性
透明導電性被膜付基材(1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け100個の升目を作り、これにセロファンテープを接着し、次いで、セロファンテープを剥離したときに被膜が剥離せず残存している升目の数を、以下の3段階に分類することによって密着性を評価した。結果を表に示す。
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
Adhesion The surface of the transparent conductive film-coated substrate (1) is made of 11 parallel scratches with a knife at intervals of 1 mm in length and width to make 100 squares, and cellophane tape is adhered to this, The adhesion was evaluated by classifying the number of cells remaining after the cellophane tape was peeled off without the film being peeled into the following three stages. The results are shown in the table.

残存升目の数90個以上 :◎
残存升目の数85〜89個:○
残存升目の数84個以下 :△
耐候性
透明被膜付基材(1)を退色試験用水銀ランプ(東芝(株)製H400−E)により透明
被膜表面に紫外線を24時間照射し、色の目視確認を行い、以下の基準で評価する。なお、ランプと透明被膜表面との照射距離は、70mmとし、ランプの出力は、透明被膜表面温度が45±5℃となるように調整する。
Number of remaining squares more than 90: ◎
Number of remaining squares: 85 to 89: ○
Number of remaining squares: 84 or less: △
The substrate with weather-resistant transparent coating (1) was irradiated with ultraviolet rays for 24 hours using a mercury lamp for color fading test (H400-E manufactured by Toshiba Corporation), and the color was visually confirmed, and evaluated according to the following criteria. To do. The irradiation distance between the lamp and the transparent coating surface is 70 mm, and the output of the lamp is adjusted so that the transparent coating surface temperature is 45 ± 5 ° C.

あまり変色が認められない:◎
若干の変色が認められる :○
明らかな変色が認められる:×
干渉縞
透明被膜付基材(1)の干渉縞の有無を目視によって確認する。
Not very discolored: ◎
Some discoloration is recognized: ○
Obvious discoloration: x
The presence or absence of interference fringes on the substrate (1) with the interference fringe transparent film is confirmed visually.

干渉縞が認められない :◎
若干の干渉縞が認められる :○
明らかに干渉縞が認められる:×
[実施例2]
樹脂被覆リン含有酸化ジルコニウム微粒子(2)の調製
実施例1において、リン酸(関東化学(株)製:純度85重量%)を1.6g用いた以
外は同様にしてリン含有酸化ジルコニウム微粒子(2)を得た。リン含有酸化ジルコニウム
微粒子(2)のリンのP25としての含有量、屈折率を表に示した。
Interference fringes are not recognized: ◎
Some interference fringes are observed: ○
Obviously interference fringes are observed: ×
[Example 2]
Preparation of resin-coated phosphorus-containing zirconium oxide fine particles (2) Phosphorus-containing zirconium oxide fine particles (2) were prepared in the same manner as in Example 1 except that 1.6 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. ) The phosphorus content and refractive index of phosphorus-containing zirconium oxide fine particles (2) as P 2 O 5 are shown in the table.

ついで、リン含有酸化ジルコニウム微粒子(2)を用いた以外は実施例1と同様にして、
固形分濃度25重量%の樹脂被覆リン含有酸化ジルコニウム微粒子(2)分散液を調製した
。有機樹脂被覆リン含有ジルコニウム微粒子(2)の平均粒子径および屈折率を測定し、結
果を表に示す。
透明被膜形成用塗布液(2)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(2)分散液を用いた以外
は同様にして固形分濃度36重量%の透明被膜形成用塗布液(2)を調製した。透明被膜形
成用塗布液(2)の安定性を評価し、結果を表に示す。
透明被膜付基材(2)の製造
実施例1において、透明被膜形成用塗布液(2)を用いた以外は同様にして透明被膜付基
材(2)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基
材(2)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表
に示す。
[実施例3]
樹脂被覆リン含有酸化ジルコニウム微粒子(3)の調製
実施例1において、リン酸(関東化学(株)製:純度85重量%)を16.2g用いた以外は同様にしてリン含有酸化ジルコニウム微粒子(3)を得た。リン含有酸化ジルコニウ
ム微粒子(3)のリンのP25としての含有量、屈折率を表に示した。ついで、リン含有酸
化ジルコニウム微粒子(3)を用いた以外は実施例1と同様にして、固形分濃度25重量%
の樹脂被覆リン含有酸化ジルコニウム微粒子(3)分散液を調製した。有機樹脂被覆リン含
有ジルコニウム微粒子(3)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(3)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(3)分散液を用いた以外
は同様にして固形分濃度36重量%の透明被膜形成用塗布液(3)を調製した。透明被膜形
成用塗布液(3)の安定性を評価し、結果を表に示す。
透明被膜付基材(3)の製造
実施例1において、透明被膜形成用塗布液(3)を用いた以外は同様にして透明被膜付基
材(3)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(3)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦
傷性および耐候性を表に示す。
[実施例4]
樹脂被覆リン含有酸化チタン微粒子(4)分散液の調製
18.3gの4塩化チタンを純水で希釈してTiO2として1.0重量%含有する水溶
液を得た。これを撹拌しながら、濃度15重量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO2として濃度10.2重量%の
水和酸化チタンゲルのケーキを得た。このケーキと濃度5重量%過酸化水素水400gを混合し、ついで80℃で2時間加熱して溶解し、TiO2として濃度1.0重量%のペル
オキソチタン酸水溶液を得た。
Subsequently, the same procedure as in Example 1 was performed except that the phosphorus-containing zirconium oxide fine particles (2) were used.
A resin-coated phosphorus-containing zirconium oxide fine particle (2) dispersion having a solid content concentration of 25% by weight was prepared. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (2) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (2) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except that the resin-coated phosphorus-containing zirconium oxide fine particles (2) dispersion liquid was used) 2) was prepared. The stability of the coating liquid for forming a transparent film (2) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (2) A substrate with transparent film (2) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (2) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (2) are shown in the table.
[Example 3]
Preparation of resin-coated phosphorus-containing zirconium oxide fine particles (3) Phosphorus-containing zirconium oxide fine particles (3) were prepared in the same manner as in Example 1 except that 16.2 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. ) The phosphorus content and refractive index of phosphorus-containing zirconium oxide fine particles (3) as P 2 O 5 are shown in the table. Subsequently, the solid content concentration was 25% by weight in the same manner as in Example 1 except that phosphorus-containing zirconium oxide fine particles (3) were used.
A resin-coated phosphorus-containing zirconium oxide fine particle (3) dispersion was prepared. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (3) were measured, and the results are shown in the table.
Preparation of Transparent Coating Forming Coating Liquid (3) In Example 1, except that the resin-coated phosphorus-containing zirconium oxide fine particle (3) dispersion was used, a coating liquid for forming a transparent coating having a solid concentration of 36% by weight ( 3) was prepared. The stability of the coating liquid for forming a transparent film (3) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (3) A substrate with transparent film (3) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (3) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (3) with a transparent coating are shown in the table.
[Example 4]
Preparation of resin-coated phosphorus-containing titanium oxide fine particle (4) dispersion 18.3 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by weight as TiO 2 . While stirring this, ammonia water having a concentration of 15% by weight was added to obtain a white slurry having a pH of 9.5. This slurry was washed by filtration to obtain a hydrated titanium oxide gel cake having a concentration of 10.2% by weight as TiO 2 . This cake was mixed with 400 g of a 5 wt% hydrogen peroxide solution and then dissolved by heating at 80 ° C. for 2 hours to obtain a 1.0 wt% aqueous peroxotitanic acid solution as TiO 2 .

ついで、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行って酸化チタン微粒子(1)分散液を調製した。酸化チタン微粒子(1)分散液を純水を用い、限外濾過膜法で洗浄して、固形分(TiO2)濃度20重量%の酸化チタン微粒子(4)水分散液を得た。 Subsequently, it was placed in an autoclave and hydrothermally treated at 250 ° C. for 5 hours under saturated vapor pressure to prepare a titanium oxide fine particle (1) dispersion. The titanium oxide fine particle (1) dispersion was washed with pure water using an ultrafiltration membrane method to obtain a titanium oxide fine particle (4) aqueous dispersion having a solid content (TiO 2 ) concentration of 20% by weight.

ついで、濃度20重量%酸化チタン微粒子(4)分散液500gに対してリン酸(関東化
学(株)製:純度85%)を8.1gを10分かけて添加し、10分間攪拌した。その後、
バットに取り出し180℃で17時間加熱して乾燥し、リン含有酸化チタン微粒子(4)を
得た。得られたリン含有酸化チタン微粒子(4)のリンのP25としての含有量、屈折率を
表に示した。
Next, 8.1 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85%) was added to 500 g of the 20 wt% titanium oxide fine particle (4) dispersion over 10 minutes, and the mixture was stirred for 10 minutes. after that,
It was taken out into a bat and heated at 180 ° C. for 17 hours and dried to obtain phosphorus-containing titanium oxide fine particles (4). The phosphorus content and refractive index of the obtained phosphorus-containing titanium oxide fine particles (4) as P 2 O 5 are shown in the table.

次に、リン含有酸化チタン微粒子(4)120g、有機溶媒としてプロピレングリコール
モノメチルエーテル(PGME)224g、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NKエステル EA-6320)120gを、石英ビーズ628
gを入れたビーズミルに充填し、メカノケミカル処理した後、石英ビーズを分離して固形分濃度25重量%の有機樹脂被覆リン含有酸化チタン微粒子(4)分散液を調製した。有機
樹脂被覆リン含有ジルコニウム微粒子(4)の平均粒子径および屈折率を測定し、結果を表
に示す。
Next, 120 g of phosphorus-containing titanium oxide fine particles (4), 224 g of propylene glycol monomethyl ether (PGME) as an organic solvent, 120 g of phenol novolac type epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6320), quartz beads 628
After being filled in a bead mill containing g and subjected to mechanochemical treatment, quartz beads were separated to prepare an organic resin-coated phosphorus-containing titanium oxide fine particle (4) dispersion having a solid concentration of 25% by weight. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (4) were measured, and the results are shown in the table.

透明被膜形成用塗布液(4)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(4)分散液を用いた以外
は同様にして固形分濃度36重量%の透明被膜形成用塗布液(4)を調製した。透明被膜形
成用塗布液(4)の安定性を評価し、結果を表に示す。
透明被膜付基材(4)の製造
実施例1において、透明被膜形成用塗布液(4)を用いた以外は同様にして透明被膜付基
材(4)を調製した。このときの透明被膜の厚さは3μmであった。
Preparation of coating liquid for forming transparent film (4) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except for using the resin-coated phosphorus-containing zirconium oxide fine particle (4) dispersion) 4) was prepared. The stability of the coating liquid for forming a transparent film (4) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (4) A substrate with transparent film (4) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (4) was used. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(4)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐
擦傷性および耐候性を表に示す。
[実施例5]
樹脂被覆リン含有酸化チタン微粒子(5)の調製
実施例4において、リン酸(関東化学(株)製:純度85重量%)を1.6gを用いた以外は同様にしてリン含有酸化酸化チタン微粒子(5)を得た。リン含有酸化チタン微粒子(5)のリンのP25としての含有量、屈折率を表に示した。ついで、リン含有酸化チタン微粒子(5)を用いた以外は実施例1と同様にして、固形分濃度25重量%の樹脂被覆リン含
有酸化チタン微粒子(5)分散液を調製した。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (4) with a transparent coating are shown in the table.
[Example 5]
Preparation of Resin-Coated Phosphorus-containing Titanium Oxide Fine Particles (5) Phosphorus-containing titanium oxide fine particles in the same manner as in Example 4, except that 1.6 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. (5) was obtained. The phosphorus content and refractive index of phosphorus-containing titanium oxide fine particles (5) as P 2 O 5 are shown in the table. Subsequently, a resin-coated phosphorus-containing titanium oxide fine particle (5) dispersion having a solid concentration of 25% by weight was prepared in the same manner as in Example 1 except that the phosphorus-containing titanium oxide fine particles (5) were used.

有機樹脂被覆リン含有チタン微粒子(5)の平均粒子径および屈折率を測定し、結果を表
に示す。
透明被膜形成用塗布液(5)の調製
実施例1において、樹脂被覆リン含有酸化チタン微粒子(5)分散液を用いた以外は同様
にして固形分濃度36重量%の透明被膜形成用塗布液(5)を調製した。透明被膜形成用塗
布液(5)の安定性を評価し、結果を表に示す。
透明被膜付基材(5)の製造
実施例1において、透明被膜形成用塗布液(5)を用いた以外は同様にして透明被膜付基
材(5)を調製した。このときの透明被膜の厚さは3μmであった。
The average particle diameter and refractive index of the organic resin-coated phosphorus-containing titanium fine particles (5) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (5) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except for the dispersion of resin-coated phosphorus-containing titanium oxide fine particles (5)) 5) was prepared. The stability of the coating liquid for forming a transparent film (5) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (5) A substrate with transparent film (5) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (5) was used. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(5)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐
擦傷性および耐候性を表に示す。
[実施例6]
樹脂被覆リン含有酸化チタン微粒子(6)の調製
実施例4において、リン酸(関東化学(株)製:純度85重量%)を16.2gを用いた以外は同様にしてリン含有酸化酸化チタン微粒子(5)を得た。リン含有酸化チタン微粒
子(6)のリンのP25としての含有量、屈折率を表に示した。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (5) with a transparent coating are shown in the table.
[Example 6]
Preparation of Resin-Coated Phosphorus-containing Titanium Oxide Fine Particles (6) Phosphorus-containing titanium oxide fine particles were prepared in the same manner as in Example 4 except that 16.2 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. (5) was obtained. The phosphorus content and refractive index of phosphorus-containing titanium oxide fine particles (6) as P 2 O 5 are shown in the table.

ついで、リン含有酸化チタン微粒子(6)を用いた以外は実施例1と同様にして、固形分
濃度25重量%の樹脂被覆リン含有酸化チタン微粒子(6)分散液を調製した。
Subsequently, a resin-coated phosphorus-containing titanium oxide fine particle (6) dispersion having a solid concentration of 25% by weight was prepared in the same manner as in Example 1 except that the phosphorus-containing titanium oxide fine particles (6) were used.

有機樹脂被覆リン含有チタン微粒子(6)の平均粒子径および屈折率を測定し、結果を表
に示す。
透明被膜形成用塗布液(6)の調製
実施例1において、樹脂被覆リン含有酸化チタン微粒子(6)分散液を用いた以外は同様
にして固形分濃度36重量%の透明被膜形成用塗布液(6)を調製した。透明被膜形成用塗
布液(6)の安定性を評価し、結果を表に示す。
透明被膜付基材(6)の製造
実施例1において、透明被膜形成用塗布液(6)を用いた以外は同様にして透明被膜付基
材(6)を調製した。このときの透明被膜の厚さは3μmであった。
The average particle diameter and refractive index of the organic resin-coated phosphorus-containing titanium fine particles (6) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (6) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except that the resin-coated phosphorus-containing titanium oxide fine particle (6) dispersion) was used. 6) was prepared. The stability of the coating liquid for forming a transparent film (6) was evaluated, and the results are shown in the table.
Production of transparent film-coated substrate (6) In Example 1, a transparent film-coated substrate (6) was prepared in the same manner except that the transparent film-forming coating solution (6) was used. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(6)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐
擦傷性および耐候性を表に示す。
[実施例7]
樹脂被覆リン含有酸化ジルコニウム微粒子(7)の調製
実施例1において、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NK エステル EA-6320)180gを用いた以外は同様にして固形分濃度25
重量%の有機樹脂被覆リン含有ジルコニウム微粒子(7)分散液を調製した。有機樹脂被覆
リン含有ジルコニウム微粒子(7)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(7)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(7)分散液を用いた以外
は同様にして固形分濃度36重量%の透明被膜形成用塗布液(6)を調製した。透明被膜形
成用塗布液(7)の安定性を評価し、結果を表に示す。
透明被膜付基材(7)の製造
実施例1において、透明被膜形成用塗布液(7)を用いた以外は同様にして透明被膜付基
材(7)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基
材(7)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表
に示す。
[実施例8]
有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(8)の調製
実施例1と同様にして調製したリン含有ジルコニウム微粒子(1)56gを純水282g
に分散させ、これに、酒石酸7g、濃度10重量%のKOH水溶液22gを加えて充分攪拌した。ついで、石英メジアを1000gを加え、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理してジルコニアゾルとした。ついで、限外濾過膜を用いて洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)40gを加えて脱イオン処理をして、固形分としての濃度1.5重量%のリン含有ジルコニア微粒子(8)分散液を調製し
た。リン含有酸化ジルコニウム微粒子(8)の平均粒子径は38nmであった。また、屈折
率は2.1であった。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (6) with a transparent coating are shown in the table.
[Example 7]
Preparation of Resin-Coated Phosphorus-Containing Zirconium Oxide Fine Particles (7) In Example 1, the solid content concentration was 25 except that 180 g of phenol novolac type epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6320) was used.
A dispersion containing 7% by weight of organic resin-coated phosphorus-containing zirconium fine particles (7) was prepared. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (7) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (7) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except for using the resin-coated phosphorus-containing zirconium oxide fine particle (7) dispersion) ( 6) was prepared. The stability of the coating liquid for forming a transparent film (7) was evaluated, and the results are shown in the table.
Production of transparent film-coated substrate (7) A transparent film-coated substrate (7) was prepared in the same manner as in Production Example 1 except that the transparent film-forming coating solution (7) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (7) with a transparent coating are shown in the table.
[Example 8]
Preparation of organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (8 ) 56 g of phosphorus-containing zirconium fine particles (1) prepared in the same manner as in Example 1 were added to 282 g of pure water.
Then, 7 g of tartaric acid and 22 g of an aqueous KOH solution having a concentration of 10% by weight were added and sufficiently stirred. Next, 1000 g of quartz media was added, and this was dispersed with a disperser (manufactured by Campe Co., Ltd .: BATCH SAND) to obtain a zirconia sol. Next, after washing with an ultrafiltration membrane, 40 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to perform deionization treatment, and phosphorous having a concentration of 1.5% by weight as a solid content was obtained. A dispersion liquid containing zirconia fine particles (8) was prepared. The average particle size of the phosphorus-containing zirconium oxide fine particles (8) was 38 nm. The refractive index was 2.1.

ついで、リン含有酸化ジルコニウム微粒子(8)分散液277gにテトラエトキシシラン
(多摩化学工業株式会社製:エチルシリケート-A、SiO2濃度28.8重量%)を4.33g加え、ついでメタノール277gを加えた後、50℃で15時間熟成を行った。ついで、限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度10重量%のリン含有酸化ジルコニウム微粒子アルコール分散液を調製した。
Next, 4.33 g of tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: ethyl silicate-A, SiO 2 concentration 28.8 wt%) was added to 277 g of the phosphorus-containing zirconium oxide fine particle (8) dispersion, and then 277 g of methanol was added. Thereafter, aging was performed at 50 ° C. for 15 hours. Subsequently, a phosphorus-containing zirconium oxide fine particle alcohol dispersion having a solid content concentration of 10% by weight was prepared by replacing the solvent with methanol using an ultrafiltration membrane.

この分散液119gに3-メタクリロキシプロピルトリメトキシシラン(信越化学(株)
製:KBM−503)2.38gを加え、50℃で16時間熟成を行った後、蒸留法でプロピレングリコールモノメチルエーテル(PGME)に溶媒置換するとともに濃縮し、有機珪素化合物で表面処理した固形分濃度20重量%のリン含有酸化ジルコニウム微粒子(8)分散液を得た。
To 119 g of this dispersion, 3-methacryloxypropyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd.)
(Product: KBM-503) 2.38 g was added, and after aging at 50 ° C. for 16 hours, the solvent was replaced with propylene glycol monomethyl ether (PGME) by a distillation method and concentrated, and the solid was surface-treated with an organosilicon compound. A phosphorus-containing zirconium oxide fine particle (8) dispersion having a concentration of 20% by weight was obtained.

有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(8)の平均粒子径および屈折
率を測定し、結果を表に示す。
The average particle diameter and refractive index of the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (8) were measured, and the results are shown in the table.

リン含有酸化ジルコニウム微粒子(8)分散液4.45gに紫外線硬化樹脂(大日本イン
キ(株)製:ユニデック17−824−9、固形分濃度79重量%)0.89gと光重合開
始剤1−ヒドロキシシクロヘキシルフェニルケトン(チバジャパン(株)製:イルガキュア184、PGMEで固形分濃度10%に溶解)0.53gとを充分に混合して固形分濃度30重量%の透明被膜形成用塗布液(8)を調製した。得られた塗布液の安定性を評価し
、結果を表に示す。
透明被膜付基材(8)の製造
透明被膜形成用塗布液(8)を易接着層付PETフィルム(東洋紡績(株)製:コスモシャインA4300)にバーコーター法(#22)で塗布し、80℃で1分間乾燥した後、高
圧水銀灯(600mJ/cm2)を照射して硬化させ、透明被膜付基材(1)を調製した。このときの透明被膜の厚さは3μmであった。
Phosphorus-containing zirconium oxide fine particle (8) dispersion (4.45 g) with UV curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid content concentration 79 wt%) 0.89 g and photopolymerization initiator 1- Hydroxycyclohexyl phenyl ketone (manufactured by Ciba Japan Co., Ltd .: Irgacure 184, dissolved in 10% solid content with PGME) was thoroughly mixed with 0.53 g of a coating solution for forming a transparent film having a solid content concentration of 30% by weight (8 ) Was prepared. The stability of the obtained coating solution was evaluated, and the results are shown in the table.
Production of substrate with transparent film (8) Coating liquid for forming transparent film (8) was applied to a PET film with an easily adhesive layer (Toyobo Co., Ltd .: Cosmo Shine A4300) by the bar coater method (# 22). After drying at 80 ° C. for 1 minute, it was cured by irradiation with a high-pressure mercury lamp (600 mJ / cm 2 ) to prepare a substrate (1) with a transparent coating. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(8)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐
擦傷性および耐候性を表に示す。
[実施例9]
有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(9)の調製
実施例8において、3-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製
:KBM−503)0.60gを加えた以外は同様にして、固形分濃度20重量%の有機珪素化合物で表面処理したリン含有酸化ジルコニウム微粒子(9)分散液を得た。有機珪素
化合物表面処理リン含有酸化ジルコニウム微粒子(9)の平均粒子径および屈折率を測定し
、結果を表に示す。
透明被膜形成用塗布液(9)の調製
実施例8において、有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(9)分散
液を用いた以外は同様にして、透明被膜形成用塗布液(9)を得た。透明被膜形成用塗布液(9)の安定性を評価し、結果を表に示す。
透明被膜付基材(9)の製造
実施例8において、透明被膜形成用塗布液(9)を用いた以外は同様にして、透明被膜付
基材(9)を調製した。このときの透明被膜の厚さは3μmであった。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (8) with a transparent coating are shown in the table.
[Example 9]
Preparation of organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (9) In Example 8, except that 0.60 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added As a result, a dispersion containing phosphorus-containing zirconium oxide fine particles (9) having been surface-treated with an organic silicon compound having a solid content of 20% by weight was obtained. The average particle diameter and refractive index of the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (9) were measured, and the results are shown in the table.
Preparation of Transparent Film Forming Coating Liquid (9) In Example 8, except that the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particle (9) dispersion was used, the transparent film forming coating liquid (9) was prepared. Obtained. The stability of the coating liquid for forming a transparent film (9) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (9) A substrate with transparent film (9) was prepared in the same manner as in Production Example 8 except that the coating liquid for forming a transparent film (9) was used. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(9)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐
擦傷性および耐候性を表に示す。
[実施例10]
有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(10)の調製
実施例8において、3-メタクリロキシプロピルトリメトキシシラン(信越化学(株)製
:KBM−503)4.76gを加えた以外は同様にして、固形分濃度20重量%の有機珪素化合物で表面処理したリン含有酸化ジルコニウム微粒子(10)分散液を得た。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (9) with a transparent coating are shown in the table.
[Example 10]
Preparation of organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (10) The same procedure as in Example 8 was conducted except that 4.76 g of 3-methacryloxypropyltrimethoxysilane (KBE-503, manufactured by Shin-Etsu Chemical Co., Ltd.) was added. Thus, a phosphorus-containing zirconium oxide fine particle (10) dispersion surface-treated with an organosilicon compound having a solid concentration of 20% by weight was obtained.

有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(10)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(10)の調製
実施例8において、有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(10)分散液を用いた以外は同様にして、透明被膜形成用塗布液(10)を得た。透明被膜形成用塗布液(10)の安定性を評価し、結果を表に示す。
透明被膜付基材(10)の製造
実施例8において、透明被膜形成用塗布液(10)を用いた以外は同様にして、透明被膜付基材(10)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(10)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を
表に示す。
[実施例11]
有機珪素化合物表面処理リン含有酸化チタン微粒子(11)の調製
実施例4と同様にして、リン含有酸化チタン微粒子(4)を得た。ついで、リン含有酸化
チタン微粒子(4)56gを純水282gに分散させ、これに、酒石酸7g、濃度10重量
%のKOH水溶液22gを加えて充分攪拌した。ついで、石英メジア1000gを加え、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理した。ついで、限外濾過膜を用いて洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)40gを加えて脱イオン処理をして、固形分としての濃度1.5重量%のリン含有酸化チタン微粒子(11)分散液を調製した。リン含有酸化チタン微粒子(11)の平均粒子径は38nmであった。また、屈折率は2.1であった。
The average particle diameter and refractive index of the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (10) were measured, and the results are shown in the table.
Preparation of Transparent Film Forming Coating Liquid (10) In Example 8, except that the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particle (10) dispersion was used, the transparent film forming coating liquid (10) was prepared. Obtained. The stability of the coating liquid for forming a transparent film (10) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (10) A substrate with transparent film (10) was prepared in the same manner as in Production Example 8 except that the coating liquid for forming a transparent film (10) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent film (10) are shown in the table.
[Example 11]
Preparation of organosilicon compound surface-treated phosphorus-containing titanium oxide fine particles (11) In the same manner as in Example 4, phosphorus-containing titanium oxide fine particles (4) were obtained. Next, 56 g of phosphorus-containing titanium oxide fine particles (4) were dispersed in 282 g of pure water, to which 7 g of tartaric acid and 22 g of a 10% strength by weight aqueous KOH solution were added and sufficiently stirred. Next, 1000 g of quartz media was added, and this was subjected to dispersion treatment with a disperser (manufactured by Campe Co., Ltd .: BATCH SAND). Next, after washing with an ultrafiltration membrane, 40 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to perform deionization treatment, and phosphorous having a concentration of 1.5% by weight as a solid content was obtained. A titanium oxide fine particle (11) dispersion liquid was prepared. The average particle size of the phosphorus-containing titanium oxide fine particles (11) was 38 nm. The refractive index was 2.1.

ついで、固形分としての濃度1.5重量%のリン含有酸化チタン微粒子(11)分散液277gにテトラエトキシシラン(多摩化学工業株式会社製:エチルシリケート-A、SiO2濃度28.8重量%)を4.33g加え、ついでメタノール277gを加えた後、50℃で15時間熟成を行った。ついで、限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度10重量%のリン含有酸化チタン微粒子アルコール分散液を調製した。 Subsequently, tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl silicate-A, SiO 2 concentration of 28.8% by weight) was added to 277 g of the phosphorous-containing titanium oxide fine particle (11) dispersion having a concentration of 1.5% by weight as a solid content. Then, 277 g of methanol was added, followed by aging at 50 ° C. for 15 hours. Subsequently, a phosphorus-containing titanium oxide fine particle alcohol dispersion having a solid content concentration of 10% by weight was prepared by replacing the solvent with methanol using an ultrafiltration membrane.

つぎに、この分散液119gに3-メタクリロキシプロピルトリメトキシシラン(信越
化学(株)製:KBM−503)2.38gを加え、50℃で16時間熟成を行い、固形分濃度20重量%の有機珪素化合物で表面処理したリン含有酸化酸化チタン微粒子(11)分散液を得た。
Next, 2.38 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added to 119 g of this dispersion, and the mixture was aged at 50 ° C. for 16 hours to obtain a solid concentration of 20% by weight. A phosphorus-containing titanium oxide fine particle (11) dispersion liquid surface-treated with an organosilicon compound was obtained.

有機珪素化合物表面処理リン含有酸化チタン微粒子(11)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(11)の調製
実施例8において、固形分濃度20重量%の有機珪素化合物で表面処理したリン含有酸化酸化チタン微粒子(11)分散液を用いた以外は同様にして、透明被膜形成用塗布液(11)を得た。透明被膜形成用塗布液(11)の安定性を評価し、結果を表に示す。
透明被膜付基材(11)の製造
実施例8において、透明被膜形成用塗布液(11)を用いた以外は同様にして、透明被膜付基材(11)を調製した。このときの透明被膜の厚さは3μmであった。
The average particle diameter and refractive index of the organosilicon compound surface-treated phosphorus-containing titanium oxide fine particles (11) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (11) In Example 8, except that the phosphorous-containing titanium oxide fine particles (11) dispersion surface-treated with an organic silicon compound having a solid concentration of 20% by weight was used, A coating solution (11) for forming a transparent film was obtained. The stability of the coating liquid for forming a transparent film (11) was evaluated, and the results are shown in the table.
Production of transparent coated substrate (11) In Example 8, a transparent coated substrate (11) was prepared in the same manner except that the transparent coating forming coating solution (11) was used. The thickness of the transparent coating at this time was 3 μm.

得られた透明被膜付基材(11)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[実施例12]
透明被膜形成用塗布液(12)の調製
実施例6において、樹脂被覆リン含有酸化チタン微粒子(6)分散液2.14gを用い、
紫外線硬化樹脂(大日本インキ(株)製:ユニデック17−824−9、固形分濃度79重
量%)1.25g、光重合開始剤1−ヒドロキシシクロヘキシルフェニルケトン(チバジャパン(株)製:イルガキュア184、PGMEで固形分濃度10%に溶解)0.75g、PGMEを2.80gとを充分に混合して固形分濃度36重量%の透明被膜形成用塗布液(12)を調製した。得られた塗布液の安定性を評価し、結果を表に示す。
透明被膜付基材(12)の製造
実施例1において、透明被膜形成用塗布液(12)を用いた以外は同様にして透明被膜付基材(12)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(12)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[実施例13]
リン含有酸化ジルコニウム微粒子(13)の調製
実施例1と同様にして、リン含有ジルコニウム微粒子(1)を得た。次に、リン含有ジル
コニウム微粒子(1)120g、有機溶媒としてイソプロピルアルコール(IPA)567g
、6.1%硝酸1.4g、アセチルアセトン2.4g、石英ビーズ628gを入れたビーズミルに充填し、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理して固形分濃度20重量%のリン含有酸化ジルコニウム微粒子(13)分散液を調製した。リン含有ジルコニウム微粒子(13)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(13)の調製
実施例1において、固形分濃度20重量%の酸化ジルコニウム微粒子(13)分散液を用いた以外は同様にして、固形分濃度30重量%の透明被膜形成用塗布液(13)を得た。透明被膜形成用塗布液(13)の安定性を評価し、結果を表に示す。
透明被膜付基材(13)の製造
実施例1において、透明被膜形成用塗布液(13)を用いた以外は同様にして、透明被膜付基材(13)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(13)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (11) with a transparent coating are shown in the table.
[Example 12]
Preparation Example of Transparent Coating Forming Coating Liquid (12) In Example 6, 2.14 g of a resin-coated phosphorus-containing titanium oxide fine particle (6) dispersion was used.
1.25 g of ultraviolet curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight), photopolymerization initiator 1-hydroxycyclohexyl phenyl ketone (Ciba Japan Co., Ltd .: IRGACURE 184) , Dissolved in PGME to a solid content concentration of 10%) 0.75 g and PGME 2.80 g were sufficiently mixed to prepare a coating solution (12) for forming a transparent film having a solid content concentration of 36% by weight. The stability of the obtained coating solution was evaluated, and the results are shown in the table.
Production of substrate with transparent film (12) A substrate with transparent film (12) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (12) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent film (12) are shown in the table.
[Example 13]
Preparation of phosphorus-containing zirconium oxide fine particles (13) In the same manner as in Example 1, phosphorus-containing zirconium fine particles (1) were obtained. Next, phosphorus-containing zirconium fine particles (1) 120 g, isopropyl alcohol (IPA) 567 g as an organic solvent
, 6.1% nitric acid 1.4 g, acetylacetone 2.4 g, and quartz beads 628 g were filled into a bead mill, and this was dispersed with a disperser (Kampe Co., Ltd .: BATCH SAND) to obtain a solid content of 20 A dispersion containing 13% by weight of phosphorus-containing zirconium oxide fine particles (13) was prepared. The average particle diameter and refractive index of the phosphorus-containing zirconium fine particles (13) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (13) Preparation of transparent film having a solid content of 30% by weight in the same manner as in Example 1 except that the dispersion of zirconium oxide fine particles (13) having a solid content of 20% by weight was used. A coating solution (13) was obtained. The stability of the coating liquid for forming a transparent film (13) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (13) A substrate with transparent film (13) was prepared in the same manner as in Production Example 1 except that the coating liquid for forming a transparent film (13) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (13) with a transparent coating are shown in the table.

[実施例14]
リン含有酸化チタン微粒子(14)の調製
実施例4と同様にして、リン含有酸化チタン微粒子(4)を得た。次に、リン含有チタン
微粒子(4)120g、有機溶媒としてイソプロピルアルコール(IPA)567g、6.1
%硝酸1.4g、アセチルアセトン2.4g、石英ビーズ628gを入れたビーズミルに充填し、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理して固形分濃度20重量%のリン含有酸化チタン微粒子(14)分散液を調製した。リン含有チタン微粒子(14)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(14)の調製
実施例1において、固形分濃度20重量%の酸化ジルコニウム微粒子(14)分散液を用いた以外は同様にして、固形分濃度30重量%の透明被膜形成用塗布液(14)を得た。透明被膜形成用塗布液(13)の安定性を評価し、結果を表に示す。
透明被膜付基材(14)の製造
実施例1において、透明被膜形成用塗布液(14)を用いた以外は同様にして、透明被膜付基材(14)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(14)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例1]
樹脂被覆酸化ジルコニウム微粒子(R1)の調製
実施例1と同様にして充分に洗浄した濃度10重量%のジルコニア微粒子(1)水分散液をバットに取り出し180℃で17時間乾燥して、酸化ジルコニウム微粒子(R1)粉末を得た。得られた微粒子の屈折率を表に示した。次に、酸化ジルコニウム微粒子(R1)120g、有機溶媒としてプロピレングリコールモノメチルエーテル(PGME)224g、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NKエステル EA-6
320)120gを、石英ビーズ628gを入れたビーズミルに充填し、メカノケミカル処理した後、石英ビーズを分離して固形分濃度20重量%の有機樹脂被覆酸化ジルコニウム微粒子(R1)分散液を調製した。有機樹脂被覆酸化ジルコニウム微粒子(R1)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R1)の調製
実施例1において、固形分濃度20重量%の有機樹脂被覆酸化ジルコニウム微粒子(R1)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R1)を得た。透明被膜形成用塗布液(R1)の安定性を評価し、結果を表に示す。
透明被膜付基材(R1)の製造
実施例1において、透明被膜形成用塗布液(R1)を用いた以外は同様にして、透明被膜付
基材(R1)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(R1)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例2]
有機珪素化合物表面処理酸化ジルコニウム微粒子(R2)の調製
比較例1と同様にして調製したジルコニウム微粒子(R1)56gを純水282gに分散させ、これに、酒石酸7g、濃度10重量%のKOH水溶液22gを加えて充分攪拌した。ついで、石英メジアを1000gを加え、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理してジルコニアゾルとした。ついで、限外濾過膜を用いて洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)40gを加えて脱イオン処理をして、固形分としての濃度1.5重量%のリン含有ジルコニア微粒子(R2)分散液を調製した。酸化ジルコニウム微粒子(R2)の平均粒子径は38nmであった。また、屈折率は2.1であった。ついで、酸化ジルコニウム微粒子(R2)分散液277gにテトラエトキシシラン(多摩化学工業株式会社製:エチルシリケート-A、SiO2濃度28.8重量%)を4.33g加え、ついでメタノール277gを加えた後、50℃で15時間熟成を行った。ついで、限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度10重量%のリン含有酸化ジルコニウム微粒子アルコール分散液を調製した。
[Example 14]
Preparation of phosphorus-containing titanium oxide fine particles (14) In the same manner as in Example 4, phosphorus-containing titanium oxide fine particles (4) were obtained. Next, phosphorus-containing titanium fine particles (4) 120 g, isopropyl alcohol (IPA) 567 g as an organic solvent, 6.1
A bead mill containing 1.4 g of% nitric acid, 2.4 g of acetylacetone, and 628 g of quartz beads is filled and dispersed with a disperser (BATCH SAND, manufactured by Campe Co., Ltd.). A dispersion liquid containing titanium oxide fine particles (14) was prepared. The average particle diameter and refractive index of the phosphorus-containing titanium fine particles (14) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (14) In Example 1, a transparent film having a solid content concentration of 30% by weight was prepared in the same manner as in Example 1 except that the dispersion of zirconium oxide fine particles (14) having a solid content concentration of 20% by weight was used. A coating solution (14) was obtained. The stability of the coating liquid for forming a transparent film (13) was evaluated, and the results are shown in the table.
Production of transparent film-coated substrate (14) A transparent film-coated substrate (14) was prepared in the same manner as in Production Example 1 except that the transparent film-forming coating solution (14) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate (14) with a transparent coating are shown in the table.
[Comparative Example 1]
Preparation of Resin-Coated Zirconium Oxide Fine Particles (R1) Zirconia Fine Particles with a Concentration of 10% by Weight (1) Washed Thickly as in Example 1 and taken out in a vat and dried at 180 ° C. for 17 hours to obtain zirconium oxide fine particles (R1) powder was obtained. The refractive index of the obtained fine particles is shown in the table. Next, 120 g of zirconium oxide fine particles (R1), 224 g of propylene glycol monomethyl ether (PGME) as an organic solvent, phenol novolac epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6
320) 120 g was filled in a bead mill containing 628 g of quartz beads, subjected to mechanochemical treatment, and then the quartz beads were separated to prepare an organic resin-coated zirconium oxide fine particle (R1) dispersion having a solid content concentration of 20% by weight. The average particle diameter and refractive index of the organic resin-coated zirconium oxide fine particles (R1) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (R1) In Example 1, a coating liquid for forming a transparent film (R1) was used in the same manner except that an organic resin-coated zirconium oxide fine particle (R1) dispersion having a solid content of 20% by weight was used. R1) was obtained. The stability of the coating solution for forming a transparent film (R1) was evaluated, and the results are shown in the table.
Production of substrate with transparent coating (R1) A substrate with transparent coating (R1) was prepared in the same manner as in Example 1 except that the coating solution for transparent coating formation (R1) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R1) are shown in the table.
[Comparative Example 2]
Preparation of organosilicon compound surface-treated zirconium oxide fine particles (R2) 56 g of zirconium fine particles (R1) prepared in the same manner as in Comparative Example 1 were dispersed in 282 g of pure water, and then 7 g of tartaric acid and 22 g of an aqueous KOH solution having a concentration of 10% by weight. And stirred well. Next, 1000 g of quartz media was added, and this was dispersed with a disperser (manufactured by Campe Co., Ltd .: BATCH SAND) to obtain a zirconia sol. Next, after washing with an ultrafiltration membrane, 40 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added to perform deionization treatment, and phosphorous having a concentration of 1.5% by weight as a solid content was obtained. A zirconia-containing fine particle (R2) dispersion liquid was prepared. The average particle diameter of the zirconium oxide fine particles (R2) was 38 nm. The refractive index was 2.1. Next, 4.33 g of tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl silicate-A, SiO 2 concentration 28.8 wt%) was added to 277 g of the zirconium oxide fine particle (R2) dispersion, and then 277 g of methanol was added. Aging was performed at 50 ° C. for 15 hours. Subsequently, a phosphorus-containing zirconium oxide fine particle alcohol dispersion having a solid content concentration of 10% by weight was prepared by replacing the solvent with methanol using an ultrafiltration membrane.

つぎに、この分散液119gに3-メタクリロキシプロピルトリメトキシシラン(信越
化学(株)製:KBM−503)2.38gを加え、50℃で16時間熟成を行った後、蒸留法でプロピレングリコールモノメチルエーテル(PGME)に溶媒置換するとともに濃縮し、有機珪素化合物で表面処理した固形分濃度20重量%のリン含有酸化ジルコニウム微粒子(R2)分散液を得た。有機珪素化合物表面処理リン含有酸化ジルコニウム微粒子(R2)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R2)の調製
実施例1において、固形分濃度20重量%の有機樹脂被覆酸化ジルコニウム微粒子(R2)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R2)を得た。透明被膜形成
用塗布液(R2)の安定性を評価し、結果を表に示す。
透明導電性被膜付基材(R2)の製造
実施例1において、透明被膜形成用塗布液(R2)を用いた以外は同様にして、透明被膜付基材(R2)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(R2)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例3]
樹脂被覆酸化チタン微粒子(R3)の調製
実施例4と同様にして、限外濾過膜法で洗浄した、固形分(TiO2)濃度20重量%
の酸化チタン微粒子(4)分散液を得た。
Next, 2.38 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added to 119 g of this dispersion, and the mixture was aged at 50 ° C. for 16 hours, and then propylene glycol by a distillation method. Substitution with monomethyl ether (PGME) and concentration were performed, and a dispersion containing phosphorus-containing zirconium oxide fine particles (R2) having a solid content concentration of 20% by weight and surface-treated with an organosilicon compound was obtained. The average particle diameter and refractive index of the organosilicon compound surface-treated phosphorus-containing zirconium oxide fine particles (R2) were measured, and the results are shown in the table.
Preparation of Transparent Coating Forming Coating Solution (R2) In Example 1, a coating solution for forming a transparent coating (R2) was used in the same manner except that a dispersion of organic resin-coated zirconium oxide fine particles (R2) having a solid concentration of 20% by weight was used. R2) was obtained. The stability of the coating solution for forming a transparent film (R2) was evaluated, and the results are shown in the table.
Production of transparent conductive film-coated substrate (R2) In Example 1, a transparent film-coated substrate (R2) was prepared in the same manner except that the transparent film-forming coating solution (R2) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R2) are shown in the table.
[Comparative Example 3]
Preparation of Resin-Coated Titanium Oxide Fine Particles (R3) Solid content (TiO 2 ) concentration of 20% by weight, washed by ultrafiltration membrane method in the same manner as in Example 4.
A titanium oxide fine particle (4) dispersion was obtained.

ついで、濃度20重量%酸化チタン微粒子(4)分散液をバットに取り出し180℃で1
7時間乾燥して、酸化チタン微粒子(R3)粉末を得た。得られた酸化チタン微粒子(R3)の屈折率を表に示した。次に、酸化チタン微粒子(R3)粉末120g、有機溶媒としてプロピレングリコールモノメチルエーテル(PGME)224g、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NKエステル EA-6320)120gを、石英
ビーズ(0.15mm)628gを入れたビーズミルに充填し、メカノケミカル処理した後、石英ビーズを分離して固形分濃度20重量%の有機樹脂被覆酸化チタン微粒子(R3)分散液を調製した。有機樹脂被覆酸化ジルコニウム微粒子(R3)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R3)の調製
実施例1において、固形分濃度20重量%の有機樹脂被覆酸化チタン微粒子(R3)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R3)を得た。透明被膜形成用塗布液(R
3)の安定性を評価し、結果を表に示す。
透明被膜付基材(R3)の製造
実施例1において、透明被膜形成用塗布液(R3)を用いた以外は同様にして、透明被膜付基材(R3)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(R3)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例4]
有機珪素化合物表面処理酸化チタン微粒子(R4)の調製
実施例4と同様にして調製した酸化チタン微粒子(4)分散液500gをバットに取り出
し180℃で17時間加熱して乾燥し、酸化チタン微粒子(R4)を得た。得られた酸化チタン微粒子(R4)の屈折率を表に示した。ついで、酸化チタン微粒子(R4)56gを純水282gに分散させ、これに、酒石酸7g、濃度10重量%のKOH水溶液22gを加えて充分攪拌した。ついで、石英メジアを1000gを加え、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理した。ついで、限外濾過膜を用いて洗浄した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)40gを加えて脱イオン処理をして、固形分としての濃度1.5重量%の酸化チタン微粒子(R4)分散液を調製した。酸化チタン微粒子(R4)分散液の平均粒子径は39nmであった。また、屈折率は2.4であった。
Then, the dispersion of titanium oxide fine particles (4) having a concentration of 20% by weight was taken out into a vat and heated at 180 ° C.
After drying for 7 hours, fine titanium oxide (R3) powder was obtained. The refractive index of the obtained titanium oxide fine particles (R3) is shown in the table. Next, 120 g of titanium oxide fine particle (R3) powder, 224 g of propylene glycol monomethyl ether (PGME) as an organic solvent, 120 g of phenol novolac type epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6320), quartz beads ( 0.15 mm) was filled in a bead mill containing 628 g, and after mechanochemical treatment, quartz beads were separated to prepare a dispersion of organic resin-coated titanium oxide fine particles (R3) having a solid concentration of 20% by weight. The average particle diameter and refractive index of the organic resin-coated zirconium oxide fine particles (R3) were measured, and the results are shown in the table.
Preparation of Transparent Coating Forming Coating Solution (R3) In Example 1, a coating solution for forming a transparent coating (R3) was used in the same manner except that an organic resin-coated titanium oxide fine particle (R3) dispersion having a solid content of 20% by weight was used. R3) was obtained. Transparent film forming coating solution (R
The stability of 3) was evaluated and the results are shown in the table.
Production of substrate with transparent coating (R3) A substrate with transparent coating (R3) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent coating (R3) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R3) are shown in the table.
[Comparative Example 4]
Preparation of organosilicon compound surface-treated titanium oxide fine particles (R4) 500 g of a titanium oxide fine particle (4) dispersion prepared in the same manner as in Example 4 was taken out into a vat and dried by heating at 180 ° C. for 17 hours. R4) was obtained. The refractive index of the obtained titanium oxide fine particles (R4) is shown in the table. Next, 56 g of titanium oxide fine particles (R4) were dispersed in 282 g of pure water, and 7 g of tartaric acid and 22 g of a 10% strength by weight aqueous KOH solution were added thereto and sufficiently stirred. Next, 1000 g of quartz media was added, and this was subjected to dispersion treatment with a disperser (manufactured by Campe Co., Ltd .: BATCH SAND). Next, after washing with an ultrafiltration membrane, 40 g of an anion exchange resin (Mitsubishi Chemical Corporation: SANUPC) was added for deionization treatment to oxidize with a solid content of 1.5% by weight. A titanium fine particle (R4) dispersion was prepared. The average particle diameter of the titanium oxide fine particle (R4) dispersion was 39 nm. The refractive index was 2.4.

ついで、固形分としての濃度1.5重量%の酸化チタン微粒子(R4)分散液277gにテトラエトキシシラン(多摩化学工業株式会社製:エチルシリケート-A、SiO2濃度28.8重量%)を4.33g加え、ついでメタノール277gを加えた後、50℃で15時間熟成を行った。ついで、限外濾過膜を用いて溶媒をメタノールに置換した固形分濃度10重量%の酸化チタン微粒子メタノール分散液を調製した。 Subsequently, 4 liters of tetraethoxysilane (manufactured by Tama Chemical Industry Co., Ltd .: ethyl silicate-A, SiO 2 concentration of 28.8% by weight) was added to 277 g of the solid dispersion of titanium oxide fine particles (R4) having a concentration of 1.5% by weight. .33 g was added, and then 277 g of methanol was added, followed by aging at 50 ° C. for 15 hours. Next, a methanol dispersion of titanium oxide fine particles having a solid content concentration of 10% by weight, in which the solvent was replaced with methanol using an ultrafiltration membrane, was prepared.

つぎに、この分散液119gに3-メタクリロキシプロピルトリメトキシシラン(信越
化学(株)製:KBM−503)2.38gを加え、50℃で16時間熟成を行い、固形分濃度20重量%の有機珪素化合物で表面処理した有機珪素化合物表面処理酸化チタン微粒子(R4)分散液を得た。有機珪素化合物表面処理酸化チタン微粒子(R4)分散液の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R4)の調製
実施例1において、固形分濃度20重量%の有機樹脂被覆酸化チタン微粒子(R4)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R4)を得た。透明被膜形成用塗布液(R4)の安定性を評価し、結果を表に示す。
透明被膜付基材(R4)の製造
実施例1において、透明被膜形成用塗布液(R4)を用いた以外は同様にして、透明被膜付基材(R4)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(R4)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例5]
樹脂被覆リン含有酸化ジルコニウム微粒子(R5)の調製
実施例1において、リン酸(関東化学(株)製:純度85重量%)を35.4g用いた以外は同様にしてリン含有酸化ジルコニウム微粒子(R5)を得た。リン含有酸化ジルコニウム微粒子(R5)のリンのP25としての含有量、屈折率を表に示した。
Next, 2.38 g of 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM-503) was added to 119 g of this dispersion, and the mixture was aged at 50 ° C. for 16 hours to obtain a solid concentration of 20% by weight. An organosilicon compound surface-treated titanium oxide fine particle (R4) dispersion liquid surface-treated with an organosilicon compound was obtained. The average particle diameter and refractive index of the organosilicon compound surface-treated titanium oxide fine particle (R4) dispersion were measured, and the results are shown in the table.
Preparation of Transparent Coating Forming Coating Solution (R4) In Example 1, a coating solution for forming a transparent coating (R4) was used in the same manner except that an organic resin-coated titanium oxide fine particle (R4) dispersion with a solid content concentration of 20% by weight was used. R4) was obtained. The stability of the coating solution for forming a transparent film (R4) was evaluated, and the results are shown in the table.
Production of substrate with transparent coating (R4) A substrate with transparent coating (R4) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent coating (R4) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R4) are shown in the table.
[Comparative Example 5]
Preparation of resin-coated phosphorus-containing zirconium oxide fine particles (R5) Phosphorus-containing zirconium oxide fine particles (R5) were prepared in the same manner as in Example 1 except that 35.4 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. ) The phosphorus content and refractive index of phosphorus-containing zirconium oxide fine particles (R5) as P 2 O 5 are shown in the table.

ついで、リン含有酸化ジルコニウム微粒子(R5)を用いた以外は実施例1と同様にして、固形分濃度20重量%の樹脂被覆リン含有酸化ジルコニウム微粒子(R5)分散液を調製した。有機樹脂被覆リン含有ジルコニウム微粒子(R5)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R5)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(R5)分散液を用いた以外
は同様にして固形分濃度36重量%の透明被膜形成用塗布液(R5)を調製した。透明被膜形成用塗布液(R5)の安定性を評価し、結果を表に示す。
透明被膜付基材(R5)の製造
実施例1において、透明被膜形成用塗布液(R5)を用いた以外は同様にして透明被膜付基材(R5)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(R5)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例6]
樹脂被覆リン含有酸化チタン微粒子(R6)の調製
実施例4において、リン酸(関東化学(株)製:純度85重量%)を35.4gを用いた以外は同様にしてリン含有酸化酸化チタン微粒子(R6)を得た。リン含有酸化チタン微粒子(R6)のリンのP25としての含有量、屈折率を表に示した。ついで、リン含有酸化チタン微粒子(R6)を用いた以外は実施例1と同様にして、固形分濃度20重量%の樹脂被覆リン含有酸化チタン微粒子(R6)分散液を調製した。
Subsequently, a resin-coated phosphorus-containing zirconium oxide fine particle (R5) dispersion having a solid concentration of 20% by weight was prepared in the same manner as in Example 1 except that phosphorus-containing zirconium oxide fine particles (R5) were used. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (R5) were measured, and the results are shown in the table.
Preparation of Transparent Coating Forming Coating Solution (R5) In Example 1, a transparent coating forming coating solution having a solid content concentration of 36% by weight (except for using a resin-coated phosphorus-containing zirconium oxide fine particle (R5) dispersion) ( R5) was prepared. The stability of the coating solution for forming a transparent film (R5) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (R5) A substrate with transparent film (R5) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (R5) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained transparent film-coated substrate (R5) are shown in the table.
[Comparative Example 6]
Preparation of Resin-Coated Phosphorus-containing Titanium Oxide Fine Particles (R6) Phosphorus-containing titanium oxide fine particles in the same manner as in Example 4 except that 35.4 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85% by weight) was used. (R6) was obtained. The phosphorus content and refractive index of phosphorus-containing titanium oxide fine particles (R6) as P 2 O 5 are shown in the table. Subsequently, a resin-coated phosphorus-containing titanium oxide fine particle (R6) dispersion having a solid content concentration of 20% by weight was prepared in the same manner as in Example 1 except that phosphorus-containing titanium oxide fine particles (R6) were used.

有機樹脂被覆リン含有ジルコニウム微粒子(R6)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R6)の調製
実施例1において、樹脂被覆リン含有酸化ジルコニウム微粒子(R6)分散液を用いた以外は同様にして固形分濃度36重量%の透明被膜形成用塗布液(R6)を調製した。透明被膜形成用塗布液(R6)の安定性を評価し、結果を表に示す。
透明被膜付基材(R6)の製造
実施例1において、透明被膜形成用塗布液(R6)を用いた以外は同様にして透明被膜付基材(R6)を調製した。このときの透明被膜の厚さは3μmであった。
得られた透明被膜付基材(R6)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例7]
酸化ジルコニウム微粒子(R7)の調製
比較例1と同様にして、酸化ジルコニウム微粒子(R1)を得た。
The average particle diameter and refractive index of the organic resin-coated phosphorus-containing zirconium fine particles (R6) were measured, and the results are shown in the table.
Preparation of coating liquid for forming transparent film (R6) In Example 1, a coating liquid for forming a transparent film having a solid content concentration of 36% by weight (except for using a resin-coated phosphorus-containing zirconium oxide fine particle (R6) dispersion) ( R6) was prepared. The stability of the coating solution for forming a transparent film (R6) was evaluated, and the results are shown in the table.
Production of substrate with transparent coating (R6) A substrate with transparent coating (R6) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R6) was used. The thickness of the transparent coating at this time was 3 μm.
The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained transparent film-coated substrate (R6) are shown in the table.
[Comparative Example 7]
Preparation of Zirconium Oxide Fine Particles (R7) Zirconium oxide fine particles (R1) were obtained in the same manner as in Comparative Example 1.

次に、酸化ジルコニウム微粒子(R1)120g、有機溶媒としてイソプロピルアルコール(IPA)567g、6.1%硝酸1.4g、アセチルアセトン2.4g、石英ビーズ628gを入れたビーズミルに充填し、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理して固形分濃度20重量%の酸化ジルコニウム微粒子(R7)分散液を調製した。酸化ジルコニウム微粒子(R7)分散液の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R7)の調製
実施例8において、酸化ジルコニウム微粒子(R7)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R7)を得た。透明被膜形成用塗布液(R7)の安定性を評価し、結果を表に示す。
透明被膜付基材(R7)の製造
実施例1において、透明被膜形成用塗布液(R7)を用いた以外は同様にして透明被膜付基材(R7)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(R7)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[比較例8]
酸化チタン微粒子(R8)の調製
比較例2と同様にして、酸化チタン微粒子(R8)を得た。
Next, 120 g of zirconium oxide fine particles (R1), 567 g of isopropyl alcohol (IPA) as an organic solvent, 1.4 g of 6.1% nitric acid, 2.4 g of acetylacetone, and 628 g of quartz beads are filled into a bead mill. A dispersion of zirconium oxide fine particles (R7) having a solid content concentration of 20% by weight was prepared by dispersion treatment using (Kampe Co., Ltd. product: BATCH SAND). The average particle diameter and refractive index of the zirconium oxide fine particle (R7) dispersion were measured, and the results are shown in the table.
Preparation of Transparent Film Forming Coating Liquid (R7) A transparent film forming coating liquid (R7) was obtained in the same manner as in Example 8, except that the zirconium oxide fine particle (R7) dispersion was used. The stability of the coating solution for forming a transparent film (R7) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (R7) A substrate with transparent film (R7) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (R7) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R7) are shown in the table.
[Comparative Example 8]
Preparation of Titanium Oxide Fine Particles (R8) Titanium oxide fine particles (R8) were obtained in the same manner as in Comparative Example 2.

次に、酸化チタン微粒子(R8)120g、有機溶媒としてイソプロピルアルコール(IP
A)567g、6.1%硝酸1.4g、アセチルアセトン2.4g、石英ビーズ628g
を入れたビーズミルに充填し、これを分散機(カンペ(株)製:BATCH SAND)にて分散処理して固形分濃度20重量%の酸化ジルコニウム微粒子(R8)分散液を調製した。
Next, 120 g of titanium oxide fine particles (R8), isopropyl alcohol (IP
A) 567 g, 6.1% nitric acid 1.4 g, acetylacetone 2.4 g, quartz beads 628 g
The bead mill was charged and dispersed with a disperser (manufactured by Campe Co., Ltd .: BATCH SAND) to prepare a dispersion of zirconium oxide fine particles (R8) having a solid content concentration of 20% by weight.

酸化ジルコニウム微粒子(R8)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R8)の調製
実施例8において、酸化チタン微粒子(R8)分散液を用いた以外は同様にして、透明被膜形成用塗布液(R8)を得た。透明被膜形成用塗布液(R8)の安定性を評価し、結果を表に示す。
透明被膜付基材(R8)の製造
実施例1において、透明被膜形成用塗布液(R8)を用いた以外は同様にして透明被膜付基材(R8)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(R8)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
[参考例]
樹脂被覆リン含有酸化ジルコニウム微粒子(R9)の調製
実施例4と同様にして固形分濃度20重量%の酸化チタン微粒子(4)水分散液を調製し
た。ついで、濃度20重量%酸化チタン微粒子(4)分散液500gに対してリン酸(関東
化学(株)製:純度85%)を5.9gを10分かけて添加し、10分間攪拌した。その後、バットに取り出し180℃で17時間加熱し、さらに、520℃で2時間焼成してリン含有酸化チタン微粒子(R9)を得た。得られたリン含有酸化チタン微粒子(R9)のリンのP25としての含有量、屈折率を表に示した。
The average particle diameter and refractive index of the zirconium oxide fine particles (R8) were measured, and the results are shown in the table.
Preparation of Transparent Film Forming Coating Liquid (R8) A transparent film forming coating liquid (R8) was obtained in the same manner as in Example 8, except that the titanium oxide fine particle (R8) dispersion was used. The stability of the coating solution for forming a transparent film (R8) was evaluated, and the results are shown in the table.
Production of substrate with transparent coating (R8) A substrate with transparent coating (R8) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent coating (R8) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained transparent film-coated substrate (R8) are shown in the table.
[Reference example]
Preparation of Resin-Coated Phosphorus-Containing Zirconium Oxide Fine Particles (R9) In the same manner as in Example 4, titanium oxide fine particles (4) aqueous dispersion having a solid content concentration of 20% by weight was prepared. Next, 5.9 g of phosphoric acid (manufactured by Kanto Chemical Co., Inc .: purity 85%) was added to 500 g of the 20 wt% titanium oxide fine particle (4) dispersion over 10 minutes, and the mixture was stirred for 10 minutes. Thereafter, it was taken out into a vat, heated at 180 ° C. for 17 hours, and further fired at 520 ° C. for 2 hours to obtain phosphorus-containing titanium oxide fine particles (R9). The phosphorus content and refractive index of the obtained phosphorus-containing titanium oxide fine particles (R9) as P 2 O 5 are shown in the table.

次に、リン含有酸化チタン微粒子(R9)120g、有機溶媒としてプロピレングリコールモノメチルエーテル(PGME)224g、フェノールノボラック型エポキシアクリレート(新中村化学(株)製:NKエステル EA-6320)120gを、石英ビーズ628
gを入れたビーズミルに充填し、メカノケミカル処理した後、石英ビーズを分離して固形分濃度25重量%の有機樹脂被覆リン含有酸化チタン微粒子(R9)分散液を調製した。有機樹脂被覆リン含有酸化チタン微粒子(R9)の平均粒子径および屈折率を測定し、結果を表に示す。
透明被膜形成用塗布液(R9)の調製
実施例1において、固形分濃度25重量%の有機樹脂被覆リン含有酸化チタン微粒子(R9)分散液を用いた以外は同様にして固形分濃度36重量%の透明被膜形成用塗布液(R9)を調製した。透明被膜形成用塗布液(R9)の安定性を評価し、結果を表に示す。
透明被膜付基材(R9)の製造
実施例1において、透明被膜形成用塗布液(R9)を用いた以外は同様にして透明被膜付基材(R9)を調製した。このときの透明被膜の厚さは3μmであった。得られた透明被膜付基材(R9)の屈折率、全光線透過率、ヘーズ、密着性、鉛筆硬度、耐擦傷性および耐候性を表に示す。
Next, 120 g of phosphorus-containing titanium oxide fine particles (R9), 224 g of propylene glycol monomethyl ether (PGME) as an organic solvent, 120 g of phenol novolac type epoxy acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester EA-6320), quartz beads 628
After being filled in a bead mill containing g and subjected to mechanochemical treatment, quartz beads were separated to prepare an organic resin-coated phosphorus-containing titanium oxide fine particle (R9) dispersion having a solid concentration of 25% by weight. The average particle diameter and refractive index of the organic resin-coated phosphorus-containing titanium oxide fine particles (R9) were measured, and the results are shown in the table.
Preparation of Transparent Film Forming Coating Liquid (R9) In Example 1, the solid content concentration was 36% by weight except that the organic resin-coated phosphorus-containing titanium oxide fine particle (R9) dispersion having a solid content concentration of 25% by weight was used. A coating solution for forming a transparent film (R9) was prepared. The stability of the coating solution for forming a transparent film (R9) was evaluated, and the results are shown in the table.
Production of substrate with transparent film (R9) A substrate with transparent film (R9) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (R9) was used. The thickness of the transparent coating at this time was 3 μm. The refractive index, total light transmittance, haze, adhesion, pencil hardness, scratch resistance and weather resistance of the obtained substrate with transparent coating (R9) are shown in the table.

Figure 0005754884
Figure 0005754884

Figure 0005754884
Figure 0005754884

Claims (10)

リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子であって、
リン酸(ただし、リン酸の塩を除く)の含有量が金属酸化物微粒子に対してP25として0.1〜15重量%の範囲にあり、平均粒子径が5〜50nmの範囲にあり、前記金属酸化物が酸化チタンおよび/または酸化ジルコニウムであり、
前記リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子の表面が、下記式(1)で表される有機珪素化合物で、前記有機珪素化合物の含有量がRn-SiO(4n)/2として前記微粒子の1〜50重量%の範囲となるように表面処理されているか、あるいは、前記微粒子の表面が、有機樹脂で被覆されてなり、前記有機樹脂の被覆量が固形分として前記微粒子の1〜300重量%の範囲にあることを特徴とするリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子。
n‐SiX4n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
Metal oxide fine particles treated with phosphoric acid (excluding phosphate salts) ,
The content of phosphoric acid (excluding the salt of phosphoric acid) is in the range of 0.1 to 15% by weight as P 2 O 5 with respect to the metal oxide fine particles, and the average particle size is in the range of 5 to 50 nm. There, the metal oxide is titanium oxide and / or zirconium oxide,
The phosphoric acid (except a salt of phosphoric acid) surface of the treated metal oxide fine particles, an organic silicon compound represented by the following formula (1), the content of the organic silicon compound R n -SiO (4 - n) / 2 as if they were surface treated to be 1 to 50 wt% of the range of the fine particles, or the surface of the fine particles, it is coated with an organic resin, the coating amount of the organic resin solid phosphoric acid, characterized in that in the range of 1 to 300 wt% of said as minute particles (excluding the salt of phosphoric acid) treated metal oxide particles.
R n -SiX 4 - n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
前記微粒子に被覆した有機樹脂がアクリル系樹脂および/またはメタクリル系樹脂であることを特徴とする請求項1記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子。 2. The phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles according to claim 1, wherein the organic resin coated on the fine particles is an acrylic resin and / or a methacrylic resin. 屈折率が1.80〜2.20の範囲にあることを特徴とする請求項1または2に記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子。 The metal oxide fine particles treated with phosphoric acid (excluding a salt of phosphoric acid ) according to claim 1 or 2, wherein the refractive index is in the range of 1.80 to 2.20. 下記の工程からなることを特徴とするリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子の製造方法;
(a)平均粒子径が5〜50nmの範囲にある酸化チタンおよび/または酸化ジルコニウムからなる金属酸化物微粒子の水分散液に、リン酸(ただし、リン酸の塩を除く)水溶液を、得られる前記微粒子中のリン酸(ただし、リン酸の塩を除く)の含有量が前記金属酸化物微粒子に対してP25として0.1〜15重量%の範囲となるように添加する工程
(b)リン酸を吸着させる工程
(c)微粒子を分離し、乾燥したのち、150〜480℃で加熱処理する工程
前記工程(c)についで、下記の工程(d)あるいは(e)を実施する;
(d)前記微粒子をアルコールに分散させたリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子アルコール分散液に、下記式(1)で表される有機珪素化合物を、前記有機珪素化合物の含有量がRn−SiO(4n)/2として前記微粒子の1〜50重量%の範囲となるように添加し、水および有機珪素化合物加水分解用触媒を添加して、前記有機珪素化合物の加水分解物で表面処理する工程。
n−SiX4n(1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:1〜3の整数)
(e)前記微粒子と分散媒と有機樹脂とを、有機樹脂の含有量が固形分として前記微粒子の1〜300重量%の範囲となるように混合し、メカノケミカル処理する工程。
A process for producing fine metal oxide particles treated with phosphoric acid (excluding a salt of phosphoric acid) , characterized by comprising the following steps:
(A) An aqueous solution of phosphoric acid (excluding a salt of phosphoric acid) can be obtained in an aqueous dispersion of metal oxide fine particles comprising titanium oxide and / or zirconium oxide having an average particle diameter in the range of 5 to 50 nm. the phosphoric acid in the microparticles (except for salts of phosphoric acid) adding to the content of in the range of 0.1 to 15 wt% as P 2 O 5 with respect to the metal oxide fine particles ( b) Step of adsorbing phosphoric acid (c) Step of separating and drying fine particles, followed by heat treatment at 150 to 480 ° C. Following the step (c), the following step (d) or (e) is carried out ;
(D) phosphoric acid and the fine particles are dispersed in an alcohol (where phosphorus excluding salt of the acid) in the treated metal oxide particles alcohol dispersion, an organic silicon compound represented by the following formula (1), the organic silicon content R n -SiO compound (4 - n) / 2 as added to be in the range of 1 to 50% by weight of the fine particles, and adding water and an organic silicon compound hydrolyzable catalyst, the organic Surface treatment with hydrolyzate of silicon compound.
R n -SiX 4 - n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 1 to 3)
(E) and the fine particles and a dispersion medium and an organic resin, the content of the organic resin is mixed so that the range of 1 to 300 wt% of the fine particles as solids, mechanochemical processing steps.
前記有機樹脂がアクリル系樹脂および/またはメタクリル系樹脂であることを特徴とする請求項4に記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子の製造方法。 The method for producing metal oxide fine particles treated with phosphoric acid (excluding a salt of phosphoric acid ) according to claim 4, wherein the organic resin is an acrylic resin and / or a methacrylic resin. 前記分散媒が、エーテル類、エステル類、ケトン類、アルコール類から選ばれる1種または2種以上であることを特徴とする請求項4または5に記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子の製造方法。 The phosphoric acid according to claim 4 or 5, wherein the dispersion medium is one or more selected from ethers, esters, ketones, and alcohols. Excluding) Process for producing treated metal oxide fine particles. 基材と、基材の一方の表面上に形成された透明被膜とからなり、該透明被膜がマトリックス成分と請求項1〜3のいずれかに記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子とを含んでなることを特徴とする透明被膜付基材。 It consists of a base material and the transparent film formed on the one surface of a base material, and this transparent film is a matrix component and the phosphoric acid in any one of Claims 1-3 (however, except the salt of phosphoric acid) ) A substrate with a transparent coating, comprising treated metal oxide fine particles. 前記透明被膜中の前記リン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子の含有量が固形分として10〜80重量%の範囲にあり、前記マトリックス成分の含有量が固形分として20〜90重量%の範囲にあることを特徴とする請求項7に記載の透明被膜付基材。 The phosphoric acid of the transparent in the coating (except for salts of phosphoric acid) content of the treated metal oxide particles is in the range of 10 to 80 wt% as solids content of the matrix component as a solid The substrate with a transparent coating according to claim 7, which is in the range of 20 to 90% by weight. 前記透明被膜の膜厚が0.5〜20μmの範囲にあることを特徴とする請求項7または8に記載の透明被膜付基材。   The substrate with a transparent coating according to claim 7 or 8, wherein the thickness of the transparent coating is in the range of 0.5 to 20 µm. マトリックス形成成分と請求項1〜3のいずれかに記載のリン酸(ただし、リン酸の塩を除く)処理金属酸化物微粒子と分散媒とを含んでなり、全固形分濃度が1〜60重量%の範囲にあり、前記微粒子の濃度が固形分として0.1〜48重量%の範囲にあり、マトリックス形成成分の濃度が固形分として0.2〜54重量%の範囲にあることを特徴とする透明被膜形成用塗布液。 It comprises a matrix-forming component, phosphoric acid (excluding a salt of phosphoric acid) -treated metal oxide fine particles according to any one of claims 1 to 3, and a dispersion medium, and has a total solid content concentration of 1 to 60 weights. % Yes in the range, the range concentration of 0.1 to 48 wt% as solid content of the fine particles, and characterized in that the concentration of the matrix forming component is in the range of 0.2 to 54 wt% as solids A coating solution for forming a transparent film.
JP2009298217A 2009-12-28 2009-12-28 Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating Active JP5754884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009298217A JP5754884B2 (en) 2009-12-28 2009-12-28 Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009298217A JP5754884B2 (en) 2009-12-28 2009-12-28 Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating

Publications (2)

Publication Number Publication Date
JP2011136871A JP2011136871A (en) 2011-07-14
JP5754884B2 true JP5754884B2 (en) 2015-07-29

Family

ID=44348693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009298217A Active JP5754884B2 (en) 2009-12-28 2009-12-28 Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating

Country Status (1)

Country Link
JP (1) JP5754884B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6065021B2 (en) 2012-12-28 2017-01-25 セイコーエプソン株式会社 Surface-coated particles and uses thereof
WO2015076175A1 (en) * 2013-11-20 2015-05-28 東亞合成株式会社 Filler and glass composition, and method for producing hexagonal phosphate compound
JP6327549B2 (en) * 2013-12-06 2018-05-23 ナガセケムテックス株式会社 Thermosetting resin composition and heat conductive sheet
WO2015146925A1 (en) * 2014-03-28 2015-10-01 日本ゼオン株式会社 Resin composition, resin molded article, and optical component
JP6713320B2 (en) * 2016-03-31 2020-06-24 日揮触媒化成株式会社 Surface-treated metal oxide sol

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59150538A (en) * 1983-01-03 1984-08-28 テキサコ・デベロツプメント・コ−ポレ−シヨン Regeneration process for producing linear polyethylene polyamine using supported catalyst
JPH08117589A (en) * 1994-10-18 1996-05-14 Kanebo Ltd Modified particle
JP3894597B2 (en) * 1996-09-04 2007-03-22 石原産業株式会社 Ultrafine titanium oxide and method for producing the same
US7507483B2 (en) * 1997-02-04 2009-03-24 Jeffrey Schwartz Enhanced bonding layers on native oxide surfaces
JPH1121469A (en) * 1997-07-03 1999-01-26 Ishihara Sangyo Kaisha Ltd Production of inorganic compound
JP4026041B2 (en) * 1999-04-09 2007-12-26 テイカ株式会社 Neutral titania sol
US20050129634A1 (en) * 2003-12-16 2005-06-16 Frerichs Scott R. Passivated nano-titanium dioxide particles and methods of making the same
JP4273959B2 (en) * 2003-12-25 2009-06-03 Jsr株式会社 Zirconia particle dispersion, method for producing the same, and photocurable composition
JP2009040613A (en) * 2007-08-06 2009-02-26 Kaneka Corp Metal oxide ultrafine particle coated with polymer, hardenable composition containing it and its hardened material
JP5252898B2 (en) * 2007-11-30 2013-07-31 日揮触媒化成株式会社 Method for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles, and substrate with transparent film

Also Published As

Publication number Publication date
JP2011136871A (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP5078620B2 (en) Hollow silica fine particles, composition for forming transparent film containing the same, and substrate with transparent film
JP5546239B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5839993B2 (en) Method for producing silica / alumina sol, silica / alumina sol, transparent film-forming coating material containing the sol, and substrate with transparent film
JP5142617B2 (en) Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
US8748001B2 (en) Substrate with hard coat film and coating solution for forming hard coat film comprising core-shell composite oxide surface-treated with an organic silicon compound
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP2008291174A (en) Coating material for forming transparent coating film and substrate with transparent film
JP6112753B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and method for producing hydrophobic metal oxide particles
JP2009132819A (en) Process for producing modified zirconia fine particles, coating liquid for forming transparent film containing modified zirconia fine particles and substrate with transparent film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5148846B2 (en) Paint for forming transparent film and substrate with transparent film
JP2018123043A (en) Method for producing silica-based particle dispersion, silica-based particle dispersion, coating liquid for forming transparent coating film, and substrate with transparent coating film
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5480743B2 (en) Substrate with transparent film and paint for forming transparent film
JP5530158B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5534758B2 (en) Phosphorus-containing antimony pentoxide fine particles, a transparent conductive film-forming coating solution containing the fine particles, and a substrate with a transparent conductive film
JP5837155B2 (en) Method for producing microring-shaped inorganic oxide particles
JP5503241B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5501117B2 (en) Substrate with transparent film and coating liquid for forming transparent film
JP5026172B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5089312B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film
JP2014129480A (en) Case comprising hard coat film, coating liquid for hard coat, silica sol used for coating liquid and method for producing silica sol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150302

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150526

R150 Certificate of patent or registration of utility model

Ref document number: 5754884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250