JP2011091280A - Wiring board and method of manufacturing the same - Google Patents

Wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2011091280A
JP2011091280A JP2009244988A JP2009244988A JP2011091280A JP 2011091280 A JP2011091280 A JP 2011091280A JP 2009244988 A JP2009244988 A JP 2009244988A JP 2009244988 A JP2009244988 A JP 2009244988A JP 2011091280 A JP2011091280 A JP 2011091280A
Authority
JP
Japan
Prior art keywords
wiring conductor
insulating resin
resin layer
layer
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009244988A
Other languages
Japanese (ja)
Other versions
JP5455116B2 (en
Inventor
Koichi Osumi
孝一 大隅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera SLC Technologies Corp
Original Assignee
Kyocera SLC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera SLC Technologies Corp filed Critical Kyocera SLC Technologies Corp
Priority to JP2009244988A priority Critical patent/JP5455116B2/en
Publication of JP2011091280A publication Critical patent/JP2011091280A/en
Application granted granted Critical
Publication of JP5455116B2 publication Critical patent/JP5455116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board high in degree of freedom in design of a wiring conductor, and small in size and high in density; and to provide a method of manufacturing the same. <P>SOLUTION: The wiring board includes: a lower insulating resin layer 3; a plurality of lower belt-shaped wiring conductors 4b formed on the lower insulating resin layer 3 abreast; an upper insulating resin layer 3 embedding the lower belt-shaped wiring conductors 4b; conductive projections 4c which are formed on the lower belt-shaped wiring conductors 4b to stand abreast with widths corresponding to the widths of the lower belt-shaped wiring conductors 4b and whose upper surfaces are exposed from the upper insulating resin layer 3; and upper belt-shaped wiring conductors 4a which are formed on the conductive projections 4c and the upper insulating resin layer 3 and have a plurality of semiconductor element connection pads 4A, with which electrode terminals of a semiconductor element are connected, on the respective conductive projections 4c. A part of the upper belt-shaped wiring conductor 4a has a lead-out part 4a' extending from its semiconductor element connection pad 4A toward at least one of both sides of the row of the semiconductor element connection pad 4A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は配線基板およびその製造方法に関し、より詳細には、例えばペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載するのに好適な配線基板およびその製造方法に関する。   The present invention relates to a wiring board and a manufacturing method thereof, and more particularly to a wiring board suitable for mounting, for example, a peripheral type semiconductor integrated circuit element by flip chip connection and a manufacturing method thereof.

従来から、半導体集積回路素子として、多数の電極端子を、その一方の主面の外周に沿って配設した、いわゆるペリフェラル型の半導体集積回路素子がある。
このような半導体集積回路素子を配線基板に搭載する方法として、フリップチップ接続により接続する方法がある。フリップチップ接続とは、配線基板上に設けた配線導体の一部を半導体集積回路素子の電極端子の配置に対応した並びに半導体素子接続パッドとして露出させ、この半導体素子接続パッドと前記半導体集積回路素子の電極端子とを対向させ、これらを半田等の導電バンプを介して電気的に接続する方法である。
2. Description of the Related Art Conventionally, as a semiconductor integrated circuit element, there is a so-called peripheral type semiconductor integrated circuit element in which a large number of electrode terminals are arranged along the outer periphery of one main surface thereof.
As a method of mounting such a semiconductor integrated circuit element on a wiring board, there is a method of connecting by flip chip connection. The flip-chip connection means that a part of the wiring conductor provided on the wiring board is exposed as a semiconductor element connection pad corresponding to the arrangement of the electrode terminals of the semiconductor integrated circuit element, and the semiconductor element connection pad and the semiconductor integrated circuit element are exposed. This electrode terminal is opposed to each other, and these are electrically connected via conductive bumps such as solder.

図8は、ペリフェラル型の半導体集積回路素子をフリップチップ接続により搭載した従来の配線基板を示す概略断面図であり、図9は、図8の配線基板において上面側における最表層の配線導体を透視して示す上面図である。   FIG. 8 is a schematic cross-sectional view showing a conventional wiring board on which peripheral type semiconductor integrated circuit elements are mounted by flip-chip connection. FIG. 9 is a perspective view of the uppermost wiring conductor on the upper surface side of the wiring board of FIG. FIG.

図8に示すように、従来の配線基板120は、上面から下面にかけてコア用の配線導体102が配設されたコア用の絶縁基板103の上下面にビルドアップ用の絶縁樹脂層104とビルドアップ用の配線導体105とが交互に積層され、さらに、その最表面には保護用のソルダーレジスト層106が披着されている。   As shown in FIG. 8, the conventional wiring board 120 includes a build-up insulating resin layer 104 and a build-up on the upper and lower surfaces of the core insulating board 103 in which the core wiring conductors 102 are disposed from the upper surface to the lower surface. Wiring conductors 105 are alternately laminated, and a protective solder resist layer 106 is displayed on the outermost surface.

コア用の絶縁基板103の上面から下面にかけては複数のスルーホール107がドリル加工により形成されている。絶縁基板103の上下面およびスルーホール107の内面にはコア用の配線導体102部が披着され、スルーホール107の内部には埋め込み樹脂108が充填されている。   A plurality of through holes 107 are formed by drilling from the upper surface to the lower surface of the core insulating substrate 103. The core wiring conductor 102 is shown on the upper and lower surfaces of the insulating substrate 103 and the inner surface of the through hole 107, and the through hole 107 is filled with a filling resin 108.

ビルドアップ用の絶縁樹脂層104には、それぞれに複数のビアホール109がレーザ加工により形成されている。各絶縁樹脂層104の表面およびビアホール109の内面には、ビルドアップ用の配線導体105が披着形成されている。配線導体105は、配線基板120の上面側における最表層の絶縁樹脂層104上に披着された一部が半導体集積回路素子101の電極端子に導電バンプ110を介して電気的に接続される半導体素子接続パッド105Aを有する帯状配線導体105aである。この帯状配線導体105aのうち、ソルダーレジスト層106から露出した露出部が半導体素子接続パッド105Aを形成しており、この半導体素子接続パッド105Aに半導体集積回路素子101の電極端子が半田や金等から成る導電バンプ110を介して電気的に接続される。また、配線基板120の下面側における最外層の絶縁樹脂層104上に披着された一部が外部電気回路基板の配線導体に電気的に接続される外部接続用パッド105Bを形成しており、この外部接続パッド105Bに、外部電気回路基板の配線導体が半田ボール111を介して電気的に接続される。   A plurality of via holes 109 are formed in each of the build-up insulating resin layers 104 by laser processing. A buildup wiring conductor 105 is formed on the surface of each insulating resin layer 104 and the inner surface of the via hole 109. A part of the wiring conductor 105 on the uppermost insulating resin layer 104 on the upper surface side of the wiring substrate 120 is electrically connected to the electrode terminal of the semiconductor integrated circuit element 101 via the conductive bump 110. This is a strip-shaped wiring conductor 105a having an element connection pad 105A. Of the strip-shaped wiring conductor 105a, an exposed portion exposed from the solder resist layer 106 forms a semiconductor element connection pad 105A, and the electrode terminal of the semiconductor integrated circuit element 101 is formed of solder, gold, or the like on the semiconductor element connection pad 105A. The conductive bumps 110 are electrically connected. In addition, a part of the outermost insulating resin layer 104 on the lower surface side of the wiring board 120 is formed as an external connection pad 105B that is electrically connected to the wiring conductor of the external electric circuit board. The wiring conductor of the external electric circuit board is electrically connected to the external connection pad 105B through the solder ball 111.

ソルダーレジスト層106は、最表層の配線導体105を保護するとともに半導体素子接続パッド105Aや外部接続パッド105Bの露出部を画定する。このようなソルダーレジスト層106は、光感光性を有する熱硬化性樹脂ペーストまたはフィルムを配線導体105が形成された最外層の絶縁樹脂層104上に積層した後、半導体素子接続パッド105Aや外部接続パッド105Bを露出させる開口を有するように露光および現像し、硬化させることにより形成される。なお、図9に示すように、上面側のソルダーレジスト層106は、半導体素子接続パッド105Aを露出させるスリット状の開口106aを有している。   The solder resist layer 106 protects the outermost wiring conductor 105 and defines exposed portions of the semiconductor element connection pads 105A and the external connection pads 105B. Such a solder resist layer 106 is formed by laminating a thermosetting resin paste or film having photosensitivity on the outermost insulating resin layer 104 on which the wiring conductor 105 is formed, and then connecting the semiconductor element connection pad 105A or external connection. It is formed by exposing, developing and curing so as to have an opening for exposing the pad 105B. As shown in FIG. 9, the solder resist layer 106 on the upper surface side has a slit-like opening 106a for exposing the semiconductor element connection pad 105A.

そして、半導体集積回路素子101の電極端子と半導体素子接続パッド105Aとを導電バンプ110を介して電気的に接続した後、半導体集積回路素子101と配線基板120との間にエポキシ樹脂等の熱硬化性樹脂から成るアンダーフィルと呼ばれる充填樹脂112を充填し、半導体集積回路素子101が配線基板120上に実装される。   Then, after electrically connecting the electrode terminals of the semiconductor integrated circuit element 101 and the semiconductor element connection pads 105A via the conductive bumps 110, thermosetting of epoxy resin or the like between the semiconductor integrated circuit element 101 and the wiring board 120 is performed. Filling resin 112 called underfill made of a conductive resin is filled, and semiconductor integrated circuit element 101 is mounted on wiring board 120.

ところで近時、半導体集積回路素子101は、その高集積度化が急激に進み、半導体集積回路素子101における電極端子のピッチは100μm以下と狭ピッチになってきている。これに伴い、半導体素子接続パッド105Aのピッチも100μm以下となるとともに幅も50μm以下と狭くなってきている。このように半導体素子接続パッド105Aのピッチおよび幅が狭くなると、これらの半導体素子接続パッド105Aをビアホール109を介して下層の配線導体105に接続するには、帯状配線導体105aを半導体素子接続パッド105Aから上面側における最表層の絶縁樹脂層104上の外周部に引き出して帯状配線導体105aのピッチを150〜200μm程度に拡げ、そのピッチが拡がった部位においてビアホール109を介して下層の配線導体105に接続する必要がある。なぜなら、ビアホール109はレーザ加工により形成されており直径が30〜100μm程度あり、この直径のビアホール109を介して上下の配線導体105同士を狭いピッチのままで接続すると、隣接する配線導体105間で電気的な短絡が発生するからである。ビアホール109を介して接続される配線導体105間の絶縁信頼性の確保やビアホール109や配線導体105の製造上のずれを考慮するとビアホール109のピッチは150〜200μm程度必要となる。   Recently, the semiconductor integrated circuit element 101 has been rapidly integrated, and the pitch of electrode terminals in the semiconductor integrated circuit element 101 has become narrower than 100 μm. Along with this, the pitch of the semiconductor element connection pads 105A is also reduced to 100 μm or less and the width is reduced to 50 μm or less. When the pitch and width of the semiconductor element connection pads 105A are thus reduced, in order to connect these semiconductor element connection pads 105A to the lower wiring conductors 105 via the via holes 109, the belt-like wiring conductors 105a are connected to the semiconductor element connection pads 105A. To the outer peripheral portion on the uppermost insulating resin layer 104 on the upper surface side, the pitch of the band-like wiring conductor 105a is expanded to about 150 to 200 μm, and the lower-layer wiring conductor 105 is connected to the lower wiring conductor 105 via the via hole 109 at the portion where the pitch is increased. Need to connect. This is because the via hole 109 is formed by laser processing and has a diameter of about 30 to 100 μm, and when the upper and lower wiring conductors 105 are connected at a narrow pitch through the via hole 109 having this diameter, the adjacent wiring conductors 105 are connected to each other. This is because an electrical short circuit occurs. In consideration of ensuring insulation reliability between the wiring conductors 105 connected via the via holes 109 and manufacturing deviations of the via holes 109 and the wiring conductors 105, the pitch of the via holes 109 needs to be about 150 to 200 μm.

従来の配線基板では、上述のように、半導体素子接続パッド105Aを下層の配線導体105に接続するために帯状配線導体105aを半導体素子接続パッド105Aから上面側における最表層の絶縁樹脂層104上の外周部に引き出して帯状配線導体105aのピッチを150〜200μm程度に拡げ、そのピッチが拡がった部位においてビアホール109を介して下層の配線導体105に接続する必要があることから、半導体素子接続パッド105Aと他の層の配線導体105とを接続するための設計自由度が大きく制限される。そのため、配線基板の小型化・高密度化が困難であるという問題点を有していた。   In the conventional wiring board, as described above, in order to connect the semiconductor element connection pad 105A to the lower wiring conductor 105, the strip-shaped wiring conductor 105a is disposed on the uppermost insulating resin layer 104 on the upper surface side from the semiconductor element connection pad 105A. Since the pitch of the strip-shaped wiring conductor 105a is extended to about 150 to 200 μm by being drawn out to the outer peripheral portion and needs to be connected to the lower wiring conductor 105 via the via hole 109 at the portion where the pitch is widened, the semiconductor element connection pad 105A The degree of freedom in design for connecting the wiring conductor 105 of the other layer to the wiring layer 105 is greatly limited. For this reason, it has been difficult to reduce the size and density of the wiring board.

特開2000−77471号公報JP 2000-77471 A

本発明の課題は、半導体素子接続パッドと他の層の配線導体とを接続するための設計自由度が高く、小型で高密度の配線基板およびその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a small and high-density wiring board having a high degree of design freedom for connecting a semiconductor element connection pad and a wiring conductor of another layer, and a method for manufacturing the same.

本発明の配線基板は、下層の絶縁樹脂層と、該下層の絶縁樹脂層上に複数並んで形成された下層の帯状配線導体と、該下層の帯状配線導体を埋設する上層の絶縁樹脂層と、前記下層の帯状配線導体上に該下層の帯状配線導体の幅と一致する幅で横に一列に並ぶように形成されており、上面が前記上層の絶縁樹脂層から露出する導電突起と、該導電突起および前記上層の絶縁樹脂層上に形成されており、半導体素子の電極端子が接続される複数の半導体素子接続パッドを各前記導電突起上に有する複数の上層の帯状配線導体とを具備し、前記上層の帯状配線導体の一部は、前記半導体素子接続パッドから該半導体素子接続パッドの並びの両側の少なくとも一方に向けて延びる引き出し部を有していることを特徴とするものである。   The wiring board of the present invention includes a lower insulating resin layer, a plurality of lower strip-shaped wiring conductors formed side by side on the lower insulating resin layer, and an upper insulating resin layer in which the lower strip-shaped wiring conductor is embedded. A conductive protrusion that is formed on the lower strip-shaped wiring conductor so as to be aligned in a horizontal row with a width that matches the width of the lower strip-shaped wiring conductor; and an upper surface that is exposed from the upper insulating resin layer; A plurality of upper layer strip-like wiring conductors formed on the conductive protrusions and the upper insulating resin layer and having a plurality of semiconductor element connection pads on each of the conductive protrusions to which electrode terminals of the semiconductor elements are connected; A part of the strip-shaped wiring conductor in the upper layer has a lead portion extending from the semiconductor element connection pad toward at least one of both sides of the array of the semiconductor element connection pads.

本発明の配線基板の製造方法は、下層の絶縁樹脂層上に下層の帯状配線導体を複数並べて形成するとともに該下層の帯状配線導体上に導電突起を前記下層の帯状配線導体の幅と一致する幅で形成する工程と、粗化面を有する金属箔の前記粗化面上に塗布された半硬化の熱硬化性樹脂材料を、前記下層の絶縁樹脂層および前記下層の帯状配線導体および前記導電突起上に、前記金属箔の前記粗化面が前記導電突起上面に当接するまで前記金属箔上から圧接して前記下層の帯状配線導体および前記導電突起を前記熱硬化性樹脂材料中に埋設するとともに、前記熱硬化性樹脂材料を熱硬化させて該熱硬化性樹脂材料の硬化物から成る上層の絶縁樹脂層を形成する工程と、前記上層の絶縁樹脂層の表面から前記金属箔をエッチング除去するとともに前記導電突起上に残る前記熱硬化性樹脂材料の残渣を除去する工程と、前記導電突起上および前記上層の絶縁樹脂層上に上層の帯状配線導体を、前記導電突起上に半導体素子接続パッドを有するように形成する工程とを行うことを特徴とするものである。   In the method for manufacturing a wiring board according to the present invention, a plurality of lower strip wiring conductors are formed side by side on a lower insulating resin layer, and conductive protrusions on the lower strip wiring conductor coincide with the width of the lower strip wiring conductor. A semi-cured thermosetting resin material applied on the roughened surface of the metal foil having a roughened surface and a step of forming a width, the lower insulating resin layer, the lower belt-like wiring conductor, and the conductive On the protrusion, the lower-layer strip conductor and the conductive protrusion are embedded in the thermosetting resin material by pressing from above the metal foil until the roughened surface of the metal foil contacts the upper surface of the conductive protrusion. And a step of thermally curing the thermosetting resin material to form an upper insulating resin layer made of a cured product of the thermosetting resin material, and etching and removing the metal foil from the surface of the upper insulating resin layer. And before A step of removing a residue of the thermosetting resin material remaining on the conductive protrusion, an upper-layer strip conductor on the conductive protrusion and the upper insulating resin layer, and a semiconductor element connection pad on the conductive protrusion. In this way, the forming step is performed.

本発明の配線基板によれば、下層の絶縁樹脂層上に複数並んで形成された下層の帯状配線導体上に、この下層の帯状配線導体と一致する幅で導電突起が形成されており、この導電突起上に半導体素子接続パッドを有するとともに半導体素子接続パッドの並びの両側の少なくとも一方に向けて延びる引き出し部を有する上層の帯状配線導体が形成されていることから、半導体素子接続パッドは、半導体素子接続パッドと同じピッチの導電突起を介して下層の帯状配線導体に接続されるとともに上層の帯状配線導体の引き出し部からも他の層の配線導体に接続可能となるので、半導体素子接続パッドと他の層の配線導体とを接続するための設計自由度が高くなり、それにより小型で高密度の配線基板とすることができる。   According to the wiring board of the present invention, the conductive protrusions are formed on the lower strip-shaped wiring conductor formed side by side on the lower insulating resin layer with a width that matches the lower strip-shaped wiring conductor. Since the upper layer strip-like wiring conductor having the semiconductor element connection pads on the conductive protrusions and the leading portions extending toward at least one of the both sides of the semiconductor element connection pads is formed, Since it is connected to the lower band-shaped wiring conductor via conductive protrusions of the same pitch as the element connection pad and can be connected to the wiring conductor of another layer from the lead-out portion of the upper-layer band-shaped wiring conductor, the semiconductor element connection pad and The degree of freedom of design for connecting to the wiring conductors of other layers is increased, and thereby a small and high-density wiring board can be obtained.

また、本発明の配線基板の製造方法によれば、下層の絶縁樹脂層上に複数並んで形成された下層の帯状配線導体上に導電突起を下層の帯状配線導体と一致する幅で形成し、その上から金属箔に塗布された半硬化の熱硬化性樹脂材料を圧接して下層の帯状配線導体および導電突起を熱硬化性樹脂材料中に埋設するとともに熱硬化性樹脂材料を熱硬化させて上層の絶縁樹脂層を形成し、しかる後、上層の絶縁樹脂層上から金属箔を除去するとともに導電突起上の樹脂残渣を除去し、その上に上層の帯状配線導体を、導電突起上に半導体素子接続パッド有するように形成することら、半導体素子接続パッドと他の層の配線導体とを接続するための設計自由度が高く、かつ小型で高密度の配線基板を提供することができる。   In addition, according to the method for manufacturing a wiring board of the present invention, a conductive protrusion is formed on the lower strip-shaped wiring conductor formed side by side on the lower insulating resin layer with a width that matches the lower strip-shaped wiring conductor, A semi-cured thermosetting resin material applied to the metal foil is pressed from above to embed the underlying strip-like wiring conductor and conductive protrusion in the thermosetting resin material and thermoset the thermosetting resin material. An upper insulating resin layer is formed, and then the metal foil is removed from the upper insulating resin layer and the resin residue on the conductive protrusion is removed, and the upper strip-shaped wiring conductor is formed on the conductive protrusion. By forming the element connection pads, it is possible to provide a small and high-density wiring board having a high degree of design freedom for connecting the semiconductor element connection pads and wiring conductors of other layers.

図1は、本発明の配線基板の実施形態の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board according to the present invention. 図2は、図1に示す配線基板の上面図である。FIG. 2 is a top view of the wiring board shown in FIG. 図3は、図1および図2に示す配線基板における一部の構成部材のみを抜き出した要部斜視図である。FIG. 3 is a perspective view of a main part in which only some constituent members in the wiring board shown in FIGS. 1 and 2 are extracted. (a)〜(e)は、本発明の配線基板の製造方法を説明するための工程毎の要部斜視図であり、(a’)〜(e’)は、(a)〜(e)に対応する要部断面図である。(A)-(e) is a principal part perspective view for every process for demonstrating the manufacturing method of the wiring board of this invention, (a ')-(e') is (a)-(e). It is principal part sectional drawing corresponding to these. (f)〜(j)は、本発明の配線基板の製造方法を説明するための工程毎の要部斜視図であり、(f’)〜(j’)は、(f)〜(j)に対応する要部断面図である。(F)-(j) is a principal part perspective view for every process for demonstrating the manufacturing method of the wiring board of this invention, (f ')-(j') is (f)-(j). It is principal part sectional drawing corresponding to these. (k)〜(o)は、本発明の配線基板の製造方法を説明するための工程毎の要部斜視図であり、(k’)〜(o’)は、(k)〜(o)に対応する要部断面図である。(K)-(o) is a principal part perspective view for every process for demonstrating the manufacturing method of the wiring board of this invention, (k ')-(o') is (k)-(o). It is principal part sectional drawing corresponding to these. (p)〜(q)は、本発明の配線基板の製造方法を説明するための工程毎の要部斜視図であり、(p’)〜(q’)は、(p)〜(q)に対応する要部断面図である。(P)-(q) is a principal part perspective view for every process for demonstrating the manufacturing method of the wiring board of this invention, (p ')-(q') is (p)-(q). It is principal part sectional drawing corresponding to these. 図8は、従来の配線基板を示す断面図である。FIG. 8 is a cross-sectional view showing a conventional wiring board. 図9は、図8に示す配線基板の上面図である。FIG. 9 is a top view of the wiring board shown in FIG.

次に、本発明の配線基板の実施形態の一例を添付の図面を基に説明する。図1に示すように、本発明にかかる配線基板10は、上面から下面にかけてコア用の配線導体2が配設されたコア用の絶縁基板1の上下面にビルドアップ用の絶縁樹脂層3とビルドアップ用の配線導体4とが交互に積層され、さらに、その最表面には保護用のソルダーレジスト層5が披着されている。   Next, an example of an embodiment of a wiring board according to the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, a wiring board 10 according to the present invention has a build-up insulating resin layer 3 on the upper and lower surfaces of a core insulating substrate 1 in which core wiring conductors 2 are arranged from the upper surface to the lower surface. Build-up wiring conductors 4 are alternately laminated, and a protective solder resist layer 5 is displayed on the outermost surface.

絶縁基板1は、厚みが0.05〜0.4mm程度であり、例えばガラス繊維束を縦横に織ったガラスクロスにビスマレイミドトリアジン樹脂やエポキシ樹脂等の熱硬化性樹脂を含浸させた電気絶縁材料から成り、配線基板10のコア部材として機能する。   The insulating substrate 1 has a thickness of about 0.05 to 0.4 mm. For example, an electrically insulating material obtained by impregnating a glass cloth in which glass fiber bundles are woven vertically and horizontally with a thermosetting resin such as bismaleimide triazine resin or epoxy resin. And functions as a core member of the wiring board 10.

絶縁基板1の上面から下面にかけては、直径が0.05〜0.3mm程度の複数のスルーホール6が形成されており、絶縁基板1の上下面およびスルーホール6の内面には、コア用の配線導体2が披着されている。コア用の配線導体2は、絶縁基板1の上下面では、主として銅箔から形成されており、スルーホール6内面では、無電解銅めっきおよびその上の電解銅めっきから形成されている。   A plurality of through holes 6 having a diameter of about 0.05 to 0.3 mm are formed from the upper surface to the lower surface of the insulating substrate 1, and the upper and lower surfaces of the insulating substrate 1 and the inner surface of the through hole 6 are for cores. A wiring conductor 2 is shown. The core wiring conductor 2 is mainly formed of copper foil on the upper and lower surfaces of the insulating substrate 1, and is formed of electroless copper plating and electrolytic copper plating thereon on the inner surface of the through hole 6.

また、スルーホール6内部には、エポキシ樹脂等の熱硬化性樹脂から成る埋め込み樹脂7が充填されており、絶縁基板1の上下面に形成された配線導体2同士がスルーホール6を介して電気的に接続されている。   The through hole 6 is filled with an embedded resin 7 made of a thermosetting resin such as an epoxy resin, and the wiring conductors 2 formed on the upper and lower surfaces of the insulating substrate 1 are electrically connected through the through hole 6. Connected.

このような絶縁基板1は、ガラス織物に未硬化の熱硬化性樹脂を含浸させたシートの上下面に配線導体2用の銅箔を貼着した後、そのシートを熱硬化させ、これに上面から下面にかけてスルーホール6用のドリル加工を施すことにより製作される。   Such an insulating substrate 1 is obtained by sticking a copper foil for the wiring conductor 2 on the upper and lower surfaces of a sheet in which a glass fabric is impregnated with an uncured thermosetting resin, and then thermally curing the sheet, The through hole 6 is drilled from the bottom to the bottom.

コア用の配線導体2は、絶縁基板1用のシートの上下全面に厚みが3〜50μm程度の銅箔を上述のように貼着しておくとともに、これらの銅箔および絶縁基板1にスルーホール6を穿孔した後、このスルーホール6の内面および銅箔表面に無電解銅めっきおよび電解銅めっきを順次施し、次にスルーホール6内を埋め込み樹脂7で充填した後、この上下面の銅箔および銅めっきをフォトリソグラフィ技術を用いて所定のパターンにエッチング加工することにより絶縁基板1の上下面およびスルーホール6の内面に形成される。   The core wiring conductor 2 has a copper foil having a thickness of about 3 to 50 μm adhered to the entire upper and lower surfaces of the sheet for the insulating substrate 1 as described above, and through holes are formed in the copper foil and the insulating substrate 1. 6 is drilled, electroless copper plating and electrolytic copper plating are sequentially applied to the inner surface of the through hole 6 and the surface of the copper foil, and then the through hole 6 is filled with the embedded resin 7. Then, the copper plating is formed on the upper and lower surfaces of the insulating substrate 1 and the inner surface of the through hole 6 by etching into a predetermined pattern using a photolithography technique.

埋め込み樹脂7は、スルーホール6を塞ぐことによりスルーホール6の直上および直下にビルドアップ用の絶縁樹脂層3を形成可能とするためのものであり、未硬化のペースト状の熱硬化性樹脂をスルーホール6内にスクリーン印刷法により充填し、これを熱硬化させた後、その上下面を略平坦に研磨することにより形成される。   The embedding resin 7 is for making it possible to form the insulating resin layer 3 for buildup directly above and below the through-hole 6 by closing the through-hole 6, and an uncured pasty thermosetting resin is used. The through-hole 6 is formed by filling the through-hole 6 by screen printing, thermally curing it, and then polishing the upper and lower surfaces thereof substantially flatly.

絶縁基板1の上下面に積層されたビルドアップ用の絶縁樹脂層3は、それぞれの厚みが20〜60μm程度であり、絶縁基板1と同様にガラスクロスに熱硬化性樹脂を含浸させた電気絶縁材料や、あるいはエポキシ樹脂等の熱硬化性樹脂に酸化ケイ素等の無機絶縁フィラーを分散させた電気絶縁材料から成る。各絶縁樹脂層3には、直径が30〜100μm程度の複数のビアホール8が形成されている。   The insulating resin layers 3 for buildup laminated on the upper and lower surfaces of the insulating substrate 1 each have a thickness of about 20 to 60 μm. Similarly to the insulating substrate 1, the glass cloth is impregnated with a thermosetting resin. It consists of a material or an electrically insulating material in which an inorganic insulating filler such as silicon oxide is dispersed in a thermosetting resin such as an epoxy resin. A plurality of via holes 8 having a diameter of about 30 to 100 μm are formed in each insulating resin layer 3.

各絶縁樹脂層3の表面およびビアホール8内面には、無電解銅めっきおよびその上の電解銅めっきから成るビルドアップ用の配線導体4が披着形成されている。そして、絶縁樹脂層3を挟んで上層に位置する配線導体4と下層に位置する配線導体4とをビアホール8を介して電気的に接続することにより高密度配線が立体的に形成される。   A build-up wiring conductor 4 made of electroless copper plating and electrolytic copper plating thereon is formed on the surface of each insulating resin layer 3 and the inner surface of the via hole 8. Then, the wiring conductor 4 located in the upper layer and the wiring conductor 4 located in the lower layer are electrically connected via the via hole 8 with the insulating resin layer 3 interposed therebetween, whereby a high-density wiring is formed in three dimensions.

配線導体4は、配線基板10の上面側における最表層の絶縁樹脂層3上に披着された一部がソルダーレジスト層5から露出して半導体集積回路素子101の電極と半田等の導電バンプ110を介して電気的に接続される半導体素子接続パッド4Aを形成しており、配線基板10の下面側の最表層の絶縁樹脂層3上に披着された一部がソルダーレジスト層5から露出して外部電気回路基板の配線導体に半田ボール111を介して電気的に接続される外部接続パッド4Bを形成している。   A part of the wiring conductor 4 exposed on the uppermost insulating resin layer 3 on the upper surface side of the wiring substrate 10 is exposed from the solder resist layer 5, and conductive bumps 110 such as electrodes of the semiconductor integrated circuit element 101 and solder. A semiconductor element connection pad 4A is formed which is electrically connected through the wiring board 10, and a part of the semiconductor substrate connection pad 4A exposed on the outermost insulating resin layer 3 on the lower surface side of the wiring substrate 10 is exposed from the solder resist layer 5. Thus, external connection pads 4B that are electrically connected to the wiring conductors of the external electric circuit board via the solder balls 111 are formed.

そして、半導体集積回路素子101の電極端子と半導体素子接続パッド4Aとを導電バンプ110を介して電気的に接続した後、半導体集積回路素子101と配線基板10との間にエポキシ樹脂等の熱硬化性樹脂から成るアンダーフィルと呼ばれる充填樹脂112を充填し、半導体集積回路素子101が配線基板10上に実装される。   Then, after the electrode terminals of the semiconductor integrated circuit element 101 and the semiconductor element connection pads 4A are electrically connected via the conductive bumps 110, a thermosetting such as epoxy resin is performed between the semiconductor integrated circuit element 101 and the wiring board 10. Filling resin 112 called underfill made of a conductive resin is filled, and semiconductor integrated circuit element 101 is mounted on wiring substrate 10.

なお、本例の配線基板10においては、半導体素子接続パッド4Aは、図2に上面側における最表層の絶縁樹脂層3上に形成された配線導体4を透視した上面図で示すように、100μm以下(例えば50〜80μm)のピッチで複数並んだ幅が20〜40μm程度の帯状配線導体4aの一部をソルダーレジスト層5に設けたスリット状の開口部5a内に横に一列に並べて露出させることにより形成されている。   In the wiring substrate 10 of this example, the semiconductor element connection pad 4A is 100 μm as shown in a top view of the wiring conductor 4 formed on the uppermost insulating resin layer 3 on the upper surface side in FIG. A portion of the strip-like wiring conductor 4a having a width of about 20 to 40 μm arranged at a pitch of the following (for example, 50 to 80 μm) is exposed in a line in the slit-like opening 5 a provided in the solder resist layer 5. It is formed by.

さらに、図3に上面側における最表層の絶縁樹脂層3およびその下層の絶縁樹脂層3上に被着された配線導体4の一部のみを抜き出した要部拡大斜視図で示すように、下層の絶縁樹脂層3上に半導体素子接続パッド4Aの並びに対応した複数の下層の帯状配線導体4bが形成されているとともに、この下層の帯状配線導体4bの上に、半導体素子接続パッド4Aと接続する導電突起4cが下層の帯状配線導体4bと一致する幅で横に一列に並んで形成されている。このように、半導体素子接続パッド4Aと下層の帯状配線導体4bとは、下層の帯状配線導体4bと一致する幅の導電突起4cを介して接続されていることから、半導体素子接続パッド4Aと下層の配線導体4bとを狭いピッチのままで接続することができる。さらに、上層の帯状配線導体4aの一部は、半導体素子接続パッド4Aから配線基板10の外周側や中央側に向けて延びる引き出し部4a’を有しており、この引き出し部4a’を上面側における最表層の絶縁樹脂層3に形成されたビアホール8を介して下層の配線導体4に接続することで、半導体素子接続パッド4Aと他の層の配線導体4とを接続するための設計自由度が高いものとなる。したがって、本発明の配線基板10によれば、小型で高密度の配線基板とすることができる。   Further, as shown in FIG. 3 in an enlarged perspective view of the main part, only the uppermost insulating resin layer 3 on the upper surface side and a part of the wiring conductor 4 deposited on the insulating resin layer 3 below the uppermost layer are extracted. A plurality of lower-layer strip-like wiring conductors 4b corresponding to the semiconductor element connection pads 4A are formed on the insulating resin layer 3 and connected to the semiconductor-element connection pads 4A on the lower-layer strip-like wiring conductors 4b. The conductive protrusions 4c are formed side by side in a row with a width that coincides with the lower strip-shaped wiring conductor 4b. As described above, the semiconductor element connection pad 4A and the lower strip-shaped wiring conductor 4b are connected via the conductive protrusions 4c having a width matching the lower strip-shaped wiring conductor 4b. The wiring conductor 4b can be connected with a narrow pitch. Furthermore, a part of the upper layer strip-shaped wiring conductor 4a has a lead portion 4a ′ extending from the semiconductor element connection pad 4A toward the outer peripheral side or the center side of the wiring substrate 10, and this lead portion 4a ′ is connected to the upper surface side. The degree of freedom in design for connecting the semiconductor element connection pad 4A and the wiring conductor 4 of the other layer by connecting to the lower wiring conductor 4 through the via hole 8 formed in the outermost insulating resin layer 3 in FIG. Is expensive. Therefore, according to the wiring board 10 of the present invention, a small and high-density wiring board can be obtained.

次に、本発明の配線基板の製造方法に従い、上述の下層の絶縁樹脂層3、下層の帯状配線導体4b、導電突起4c、上層の絶縁樹脂層3および上層の帯状配線導体4aおよびその上のソルダーレジスト層5を形成する方法の例について図4〜図7を基にして説明する。なお、図4〜図7は、本例における工程毎の要部斜視図およびそれに対応する断面図を示している。   Next, according to the method for manufacturing the wiring board of the present invention, the lower insulating resin layer 3, the lower strip-shaped wiring conductor 4b, the conductive protrusion 4c, the upper insulating resin layer 3, the upper strip-shaped wiring conductor 4a and the upper layer An example of a method for forming the solder resist layer 5 will be described with reference to FIGS. 4 to 7 show a perspective view of a main part for each step in this example and a cross-sectional view corresponding thereto.

まず、図4(a),(a’)に示すように、下層の絶縁樹脂層3を絶縁基板1上またはその上の絶縁樹脂層3上に形成する。このような下層の絶縁樹脂層3は、未硬化の絶縁樹脂フィルムを絶縁基板1またはその上の絶縁樹脂層3上に貼着するとともに熱硬化させることにより形成される。   First, as shown in FIGS. 4A and 4A, a lower insulating resin layer 3 is formed on the insulating substrate 1 or on the insulating resin layer 3 thereon. Such a lower insulating resin layer 3 is formed by sticking an uncured insulating resin film on the insulating substrate 1 or the insulating resin layer 3 thereon and thermally curing it.

次に、図4(b),(b’)に示すように、下層の絶縁樹脂層3の表面に、電解めっき用の下地金属層51を無電解めっきにより被着形成する。下地金属層51の厚みは0.1〜2μm程度である。下地金属層51を形成する無電解めっきとしては無電解銅めっきが好ましい。   Next, as shown in FIGS. 4B and 4B, a base metal layer 51 for electrolytic plating is deposited on the surface of the lower insulating resin layer 3 by electroless plating. The thickness of the base metal layer 51 is about 0.1 to 2 μm. As the electroless plating for forming the base metal layer 51, electroless copper plating is preferable.

ついで、図4(c),(c’)に示すように、下地金属層51の表面に、第一レジスト層R1を形成する。第一レジスト層R1は、下層の帯状配線導体4bに対応する形状の開口を有しており、光感光性アルカリ現像型ドライフィルムレジストを下地金属層51上に貼着するとともにそれにフォトリソグラフィ技術を用いて露光および現像を行なうことにより下層の帯状配線導体4bに対応する形状の開口を有するパターンに形成される。また、第一レジスト層R1の厚みは、下層の帯状配線導体4bおよびその上に形成される導電突起4cの合計厚みよりも若干厚い厚みであるのがよい。   Next, as shown in FIGS. 4C and 4C, a first resist layer R <b> 1 is formed on the surface of the base metal layer 51. The first resist layer R1 has an opening having a shape corresponding to the lower strip-shaped wiring conductor 4b, and a photo-sensitive alkali development type dry film resist is stuck on the base metal layer 51 and photolithography technology is applied thereto. By using and exposing and developing, it is formed in the pattern which has an opening of the shape corresponding to the lower strip | belt-shaped wiring conductor 4b. Further, the thickness of the first resist layer R1 is preferably slightly thicker than the total thickness of the lower strip-shaped wiring conductor 4b and the conductive protrusion 4c formed thereon.

ついで、図4(d),(d’)に示すように、第一レジスト層R1の開口内に露出する下地金属層51上に電解めっきにより下層の帯状配線導体4bを被着形成する。下層の帯状配線導体4bを形成するための電解めっきとしては、電解銅めっきが好ましい。ここで、下層の帯状配線導体4bの厚みは、第一レジスト層R1より薄くなっている。具体的には、下層の帯状配線導体4bの厚みは、8〜20μm、好ましくは10〜15μmであるのがよい。   Next, as shown in FIGS. 4D and 4D, a lower band-shaped wiring conductor 4b is formed by electrolytic plating on the base metal layer 51 exposed in the opening of the first resist layer R1. As the electrolytic plating for forming the lower strip-shaped wiring conductor 4b, electrolytic copper plating is preferable. Here, the thickness of the lower strip-shaped wiring conductor 4b is smaller than that of the first resist layer R1. Specifically, the thickness of the lower strip-shaped wiring conductor 4b is 8 to 20 μm, preferably 10 to 15 μm.

ついで、図4(e),(e’)に示すように、第一レジスト層R1および下層の帯状配線導体4bの表面に第二レジスト層R2を形成する。第二レジスト層R2は、導電突起4cが形成される位置に導電突起4cの長さに対応した幅で下層の帯状配線導体4bを真横に横切る開口を有しており、光感光性アルカリ現像型ドライフィルムレジストを第一レジスト層R1および下層の帯状配線導体4b上に貼着するとともにそれにフォトリソグラフィ技術を用いて露光および現像を行なうことにより前述の開口を有するパターンに形成される。なお、第二レジスト層R2の厚みは第一レジスト層R1の厚み以上であることが好ましい。   Next, as shown in FIGS. 4E and 4E ', a second resist layer R2 is formed on the surface of the first resist layer R1 and the lower strip wiring conductor 4b. The second resist layer R2 has an opening at a position corresponding to the length of the conductive protrusion 4c at the position where the conductive protrusion 4c is formed, and extends across the lower strip-shaped wiring conductor 4b. A dry film resist is stuck on the first resist layer R1 and the lower strip-like wiring conductor 4b, and is exposed to light and developed using a photolithography technique to form a pattern having the aforementioned openings. In addition, it is preferable that the thickness of 2nd resist layer R2 is more than the thickness of 1st resist layer R1.

ついで、図5(f),(f’)に示すように、第一レジスト層R1の開口内および第二レジスト層R2の開口内に露出する下層の帯状配線導体4b上に、導電突起4cを電解めっきにより形成する。導電突起4cを形成するための電解めっきとしては、電解銅めっきが好ましい。なお、導電突起4cの高さは8〜20μm、好ましくは10〜15μmであり、第一レジスト層R1の上面よりも若干低い位置とする。このとき、導電突起4cは、第一レジスト層R1の開口内および第二レジスト層R2の開口内に露出する下層の帯状配線導体4b上に形成されるので、その幅が第一レジスト層R1の開口で画定される幅、すなわち下層の帯状配線導体4bの幅と一致する幅で形成される。   Next, as shown in FIGS. 5F and 5F, conductive protrusions 4c are formed on the lower strip-like wiring conductor 4b exposed in the opening of the first resist layer R1 and the opening of the second resist layer R2. It is formed by electrolytic plating. As electrolytic plating for forming the conductive protrusions 4c, electrolytic copper plating is preferable. The height of the conductive protrusion 4c is 8 to 20 [mu] m, preferably 10 to 15 [mu] m, and is slightly lower than the upper surface of the first resist layer R1. At this time, the conductive protrusion 4c is formed on the lower strip-like wiring conductor 4b exposed in the opening of the first resist layer R1 and in the opening of the second resist layer R2, so that the width thereof is the same as that of the first resist layer R1. The width is defined by the opening, that is, the width coincides with the width of the lower strip-shaped wiring conductor 4b.

導電突起4cを形成後、図5(g),(g’)に示すように、第一レジスト層R1および第二レジスト層R2を除去する。第一レジスト層R1および第二レジスト層R2の除去は、例えば水酸化ナトリウム水溶液への浸漬により行なうことができる。   After forming the conductive protrusions 4c, the first resist layer R1 and the second resist layer R2 are removed as shown in FIGS. The removal of the first resist layer R1 and the second resist layer R2 can be performed, for example, by immersion in an aqueous sodium hydroxide solution.

次に、図5(h),(h’)に示すように、下層の帯状配線導体4bが形成された部分以外の下地金属層51を除去する。これにより、隣接する下層の帯状配線導体4b間が電気的に独立することになる。このとき、下層の帯状配線導体4bの上に形成された導電突起4cは、その幅が下層の帯状配線導体4bと一致する幅で形成されており、下層の帯状配線導体4bからはみ出すことはないので、隣接する下層の帯状配線導体4b間の電気的な絶縁が良好に保たれる。なお、下層の帯状配線導体4bが形成された部分以外の下地金属層51を除去するには、第一レジスト層R1および第二レジスト層R2を除去した後に露出する下地金属層51を例えば過硫酸ナトリウムあるいは過酸化水素水を含有するエッチング液によりエッチング除去する方法が採用される。   Next, as shown in FIGS. 5H and 5H, the base metal layer 51 other than the portion where the lower strip-shaped wiring conductor 4b is formed is removed. As a result, the adjacent lower layer strip-like wiring conductors 4b are electrically independent. At this time, the conductive protrusion 4c formed on the lower strip-shaped wiring conductor 4b has a width that matches the lower strip-shaped wiring conductor 4b, and does not protrude from the lower strip-shaped wiring conductor 4b. Therefore, the electrical insulation between the adjacent lower layer strip-like wiring conductors 4b is kept good. In order to remove the base metal layer 51 other than the portion where the lower strip-like wiring conductor 4b is formed, the base metal layer 51 exposed after the removal of the first resist layer R1 and the second resist layer R2 is, for example, persulfuric acid. A method of etching away with an etching solution containing sodium or hydrogen peroxide solution is employed.

ついで、図5(i),(i’)に示すように、下層の絶縁樹脂層3および下層の帯状配線導体4bおよび導電突起4c上に、粗化面を有する金属箔Fの前記粗化面に塗布された半硬化の熱硬化性樹脂材料3Pを、金属箔Fの粗化面が導電突起4cの上面に当接するまで金属箔F上から圧接して下層の帯状配線導体4bおよび導電突起4cを熱硬化性樹脂材料3P中に埋設する。なお、金属箔Fとしては、電解銅箔が好適に用いられ、熱硬化性樹脂材料3Pとしては、エポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂となる樹脂組成物に酸化ケイ素粉末等の無機絶縁フィラーを含有させた熱硬化性樹脂材料を金属箔Fの粗化面上で半硬化のシート状としたものが使用される。なお、金属箔Fとしては、熱硬化性樹脂材料3Pが塗布された面が十点平均粗さRzで1.0〜8.0μmの粗化面となっており、この粗化面が導電突起4cの上面に当接するまで熱硬化性樹脂材料3Pを圧接することにより下層の帯状配線導体4bおよび導電突起4cが熱硬化性樹脂材料3P中に良好に埋設されるとともに、導電突起4c上に残存する熱硬化性樹脂材料3Pの樹脂残渣を極めて少ないものとすることができる。   Next, as shown in FIGS. 5 (i) and (i ′), the roughened surface of the metal foil F having a roughened surface on the lower insulating resin layer 3, the lower belt-like wiring conductor 4 b and the conductive protrusion 4 c. The semi-cured thermosetting resin material 3P applied to the metal foil F is pressed from above the metal foil F until the roughened surface of the metal foil F comes into contact with the upper surface of the conductive protrusion 4c, and the lower strip-like wiring conductor 4b and conductive protrusion 4c. Is embedded in the thermosetting resin material 3P. As the metal foil F, an electrolytic copper foil is preferably used, and as the thermosetting resin material 3P, a resin composition that becomes a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin, a silicon oxide powder, or the like. A thermosetting resin material containing an inorganic insulating filler in a semi-cured sheet shape on the roughened surface of the metal foil F is used. In addition, as the metal foil F, the surface to which the thermosetting resin material 3P is applied is a roughened surface having a ten-point average roughness Rz of 1.0 to 8.0 μm, and this roughened surface is a conductive protrusion. By pressing the thermosetting resin material 3P until it comes into contact with the upper surface of 4c, the lower strip-shaped wiring conductor 4b and the conductive protrusion 4c are well embedded in the thermosetting resin material 3P and remain on the conductive protrusion 4c. The resin residue of the thermosetting resin material 3P to be made can be made extremely small.

次に、熱硬化性樹脂材料3Pを熱硬化させて上層の絶縁樹脂層3とした後、 図5(j),(j’)に示すように、金属箔Fをエッチング除去する。このとき、導電突起4cの上面には熱硬化性樹脂材料3Pが硬化した樹脂残渣が極めて薄い状態で残る。また、上層の絶縁樹脂層3の表面には金属箔Fの粗化面に対応した粗化面が形成される。なお、金属箔Fのエッチング除去は、例えば金属箔Fが銅箔から成る場合であれば、塩化第二銅を含有するエッチング液により行なえばよい。   Next, the thermosetting resin material 3P is thermally cured to form the upper insulating resin layer 3, and then the metal foil F is removed by etching as shown in FIGS. 5 (j) and (j '). At this time, the resin residue obtained by curing the thermosetting resin material 3P remains on the upper surface of the conductive protrusion 4c in an extremely thin state. Further, a roughened surface corresponding to the roughened surface of the metal foil F is formed on the surface of the upper insulating resin layer 3. For example, if the metal foil F is made of a copper foil, the metal foil F may be removed by an etching solution containing cupric chloride.

次に、図6(k),(k’)に示すように、上層の絶縁樹脂層3の表面にプラズマエッチング処理やアルカリ過マンガン酸エッチング処理を施すことにより、導電突起4c上に残っていた樹脂残渣を除去して導電突起4cの上面を露出させる。   Next, as shown in FIGS. 6 (k) and (k ′), the surface of the upper insulating resin layer 3 was left on the conductive protrusions 4c by performing plasma etching treatment or alkaline permanganate etching treatment. The resin residue is removed to expose the upper surface of the conductive protrusion 4c.

次に、図6(l),(l’)に示すように、上層の絶縁樹脂層3の表面および露出した導電突起4cの上面に、電解めっき用の下地金属層52を無電解めっきにより被着形成する。下地金属層52の厚みは0.1〜2μm程度である。下地金属層52としては、下地金属層51の場合と同様に無電解銅めっきが好ましい。   Next, as shown in FIGS. 6 (l) and (l '), a base metal layer 52 for electrolytic plating is applied to the surface of the upper insulating resin layer 3 and the exposed upper surface of the conductive protrusion 4c by electroless plating. It forms. The thickness of the base metal layer 52 is about 0.1 to 2 μm. As the base metal layer 52, electroless copper plating is preferable as in the case of the base metal layer 51.

図6(m),(m’)に示すように、下地金属層52の表面に、第三レジスト層R3を形成する。第三レジスト層R3は、上層の帯状配線導体4aに対応する形状の開口を有しており、光感光性アルカリ現像型ドライフィルムレジストを下地金属層52上に貼着するとともにそれにフォトリソグラフィ技術を用いて露光および現像を行なうことにより上層の帯状配線導体4aに対応する形状の開口を有するパターンに形成される。また、第三レジスト層R3の厚みは、上層の帯状配線導体4aの厚みよりも若干厚い厚みであるのがよい。   As shown in FIGS. 6M and 6M ′, a third resist layer R3 is formed on the surface of the base metal layer 52. The third resist layer R3 has an opening having a shape corresponding to the upper layer strip-like wiring conductor 4a, and a photo-sensitive alkali development type dry film resist is attached onto the base metal layer 52 and photolithography technology is applied thereto. By performing exposure and development using the pattern, a pattern having an opening having a shape corresponding to the upper strip-shaped wiring conductor 4a is formed. The thickness of the third resist layer R3 is preferably slightly thicker than the thickness of the upper strip-shaped wiring conductor 4a.

ついで、図6(n),(n’)に示すように、第三レジスト層R3の開口内に露出する下地金属層52上に電解めっきにより上層の帯状配線導体4aを被着形成する。上層の帯状配線導体4aを形成するための電解めっきとしては、電解銅めっきが好ましい。ここで、上層の帯状配線導体4aの厚みは、第三レジスト層R3より薄くなっている。具体的には、上層の帯状配線導体4aの厚みは、8〜20μm、好ましくは10〜15μmであるのがよい。また、上層の帯状配線導体4aの幅は、導電突起4cの幅よりも5〜10μm程度広いことが好ましい。   Next, as shown in FIGS. 6 (n) and (n '), the upper layer strip-shaped wiring conductor 4a is deposited on the underlying metal layer 52 exposed in the opening of the third resist layer R3 by electrolytic plating. Electrolytic copper plating is preferable as the electrolytic plating for forming the upper layer strip-like wiring conductor 4a. Here, the thickness of the upper strip-shaped wiring conductor 4a is smaller than that of the third resist layer R3. Specifically, the thickness of the upper-layer strip-shaped wiring conductor 4a is 8 to 20 μm, preferably 10 to 15 μm. Moreover, it is preferable that the width | variety of the strip | belt-shaped wiring conductor 4a of an upper layer is about 5-10 micrometers wider than the width | variety of the conductive protrusion 4c.

上層の帯状配線導体4aを形成後、図6(o),(o’)に示すように、第三レジスト層R3を除去する。第三レジスト層R3の除去は、第一レジスト層R1および第二レジスト層R2の場合と同様に、例えば水酸化ナトリウム水溶液への浸漬により行なうことができる。   After forming the upper layer strip-shaped wiring conductor 4a, the third resist layer R3 is removed as shown in FIGS. 6 (o) and (o '). The removal of the third resist layer R3 can be performed, for example, by immersion in an aqueous sodium hydroxide solution, as in the case of the first resist layer R1 and the second resist layer R2.

次に、図7(p),(p’)に示すように、上層の帯状配線導体4aが形成された部分以外の下地金属層52を除去する。これにより、隣接する上層の帯状配線導体4a間が電気的に独立することになる。上層の帯状配線導体4aが形成された部分以外の下地金属層52を除去するには、前記下地金属層51の場合と同様に、第三レジスト層R3を除去した後に露出する下地金属層52を例えば過硫酸ナトリウムあるいは過酸化水素水を含有するエッチング液によりエッチング除去する方法が採用される。   Next, as shown in FIGS. 7 (p) and (p '), the base metal layer 52 other than the portion where the upper band-like wiring conductor 4a is formed is removed. As a result, the adjacent upper layer strip-shaped wiring conductors 4a are electrically independent. In order to remove the base metal layer 52 other than the portion where the upper strip-shaped wiring conductor 4a is formed, the base metal layer 52 exposed after the third resist layer R3 is removed is removed in the same manner as the base metal layer 51. For example, a method of removing by etching with an etching solution containing sodium persulfate or hydrogen peroxide is employed.

このとき、本発明の配線基板の製造方法によれば、上層の帯状配線導体4aが下層の帯状配線導体4b上に形成された導電突起4cを介して下層の帯状配線導体4bに接続されることから、半導体素子接続パッド4Aと下層の帯状配線導体4bとを狭いピッチのままで接続することができる。さらに、半導体素子接続パッド4Aから配線基板10の外周側や中央側に向けて延びる引き出し部4a’を上層の絶縁樹脂層3に形成された図示しないビアホール8を介して下層の配線導体4に接続することで、半導体素子接続パッド4Aと他の層の配線導体4とを接続するための設計自由度を高いものとすることができる。   At this time, according to the method for manufacturing a wiring board of the present invention, the upper layer strip conductor 4a is connected to the lower strip conductor 4b through the conductive protrusion 4c formed on the lower strip conductor 4b. Therefore, the semiconductor element connection pad 4A and the lower strip-shaped wiring conductor 4b can be connected with a narrow pitch. Further, a lead portion 4a ′ extending from the semiconductor element connection pad 4A toward the outer peripheral side or the center side of the wiring substrate 10 is connected to the lower wiring conductor 4 through a via hole 8 (not shown) formed in the upper insulating resin layer 3. As a result, the degree of freedom in design for connecting the semiconductor element connection pads 4A and the wiring conductors 4 of other layers can be increased.

最後に、図7(q),(q’)に示すように、上層の絶縁樹脂層3および上層の帯状配線導体4a上に、半導体素子接続パッド4Aを露出させるスリット状の開口を有するソルダーレジスト層5を形成する。ソルダーレジスト層5は、例えば光感光性を有するアクリル変性エポキシ樹脂のフィルムを上層の絶縁樹脂層3および上層の帯状配線導体4a上に貼着するとともにそのフィルムをフォトリソグラフィ技術を採用して前記開口を有する所定のパターンに露光および現像した後、熱硬化および紫外線硬化させることにより形成される。かくして、本発明の配線基板の製造方法によれば、小型で高密度の配線基板を提供することができる。   Finally, as shown in FIGS. 7 (q) and 7 (q '), a solder resist having slit-like openings exposing the semiconductor element connection pads 4A on the upper insulating resin layer 3 and the upper strip-like wiring conductor 4a. Layer 5 is formed. The solder resist layer 5 is formed by, for example, adhering a photo-sensitive acrylic modified epoxy resin film on the upper insulating resin layer 3 and the upper strip-shaped wiring conductor 4a and using the photolithography technique to apply the film to the opening. It is formed by exposing and developing a predetermined pattern having a heat curing and ultraviolet curing. Thus, according to the method for manufacturing a wiring board of the present invention, a small and high-density wiring board can be provided.

3 絶縁樹脂層
3P 熱硬化性樹脂材料
4a 上層の帯状配線導体
4a’ 引き出し部
4A 半導体素子接続パッド
4b 下層の帯状配線導体
4c 導電突起
101 半導体素子
F 金属箔
DESCRIPTION OF SYMBOLS 3 Insulating resin layer 3P Thermosetting resin material 4a Upper strip | belt-shaped wiring conductor 4a 'Lead part 4A Semiconductor element connection pad 4b Lower strip | belt-shaped wiring conductor 4c Conductive protrusion 101 Semiconductor element F Metal foil

Claims (2)

下層の絶縁樹脂層と、該下層の絶縁樹脂層上に複数並んで形成された下層の帯状配線導体と、該下層の帯状配線導体を埋設する上層の絶縁樹脂層と、前記下層の帯状配線導体上に該下層の帯状配線導体の幅と一致する幅で横に一列に並ぶように形成されており、上面が前記上層の絶縁樹脂層から露出する導電突起と、該導電突起および前記上層の絶縁樹脂層上に形成されており、半導体素子の電極端子が接続される複数の半導体素子接続パッドを各前記導電突起上に有する複数の上層の帯状配線導体とを具備し、前記上層の帯状配線導体の一部は、前記半導体素子接続パッドから該半導体素子接続パッドの並びの両側の少なくとも一方に向けて延びる引き出し部を有していることを特徴とする配線基板。   A lower insulating resin layer; a plurality of lower layer wiring conductors formed side by side on the lower insulating resin layer; an upper insulating resin layer in which the lower band wiring conductor is embedded; and the lower band wiring conductor A conductive protrusion whose upper surface is exposed from the upper insulating resin layer, the upper surface of the conductive protrusion and the upper layer being insulated; A plurality of upper layer strip-shaped wiring conductors formed on the resin layer and having a plurality of semiconductor element connection pads on each of the conductive protrusions to which electrode terminals of the semiconductor elements are connected, and the upper layer strip-shaped wiring conductor A part of the wiring board has a lead portion extending from the semiconductor element connection pad toward at least one of both sides of the array of the semiconductor element connection pads. 下層の絶縁樹脂層上に下層の帯状配線導体を複数並べて形成するとともに該下層の帯状配線導体上に導電突起を前記下層の帯状配線導体の幅と一致する幅で形成する工程と、粗化面を有する金属箔の前記粗化面上に塗布された半硬化の熱硬化性樹脂材料を、前記下層の絶縁樹脂層および前記下層の帯状配線導体および前記導電突起上に、前記金属箔の前記粗化面が前記導電突起上面に当接するまで前記金属箔上から圧接して前記下層の帯状配線導体および前記導電突起を前記熱硬化性樹脂材料中に埋設するとともに、前記熱硬化性樹脂材料を熱硬化させて該熱硬化性樹脂材料の硬化物から成る上層の絶縁樹脂層を形成する工程と、前記上層の絶縁樹脂層の表面から前記金属箔をエッチング除去するとともに前記導電突起上に残る前記熱硬化性樹脂材料の残渣を除去する工程と、前記導電突起上および前記上層の絶縁樹脂層上に上層の帯状配線導体を、前記導電突起上に半導体素子接続パッドを有するように形成する工程とを行うことを特徴とする配線基板の製造方法。   Forming a plurality of lower strip-shaped wiring conductors on the lower insulating resin layer side by side and forming conductive protrusions on the lower strip-shaped wiring conductor with a width matching the width of the lower strip-shaped wiring conductor; and a roughened surface A semi-cured thermosetting resin material applied on the roughened surface of the metal foil having the metal foil on the roughened insulating resin layer, the lower-layer strip-shaped wiring conductor, and the conductive protrusions. The lower surface strip-shaped wiring conductor and the conductive protrusion are embedded in the thermosetting resin material by pressing from above the metal foil until the conversion surface contacts the upper surface of the conductive protrusion, and the thermosetting resin material is heated. A step of curing to form an upper insulating resin layer made of a cured product of the thermosetting resin material; and removing the metal foil from the surface of the upper insulating resin layer by etching and the heat remaining on the conductive protrusions Curability Performing a step of removing a residue of the fat material, and a step of forming an upper band-like wiring conductor on the conductive protrusion and the upper insulating resin layer so as to have a semiconductor element connection pad on the conductive protrusion. A method of manufacturing a wiring board, characterized in that
JP2009244988A 2009-10-24 2009-10-24 Wiring board and manufacturing method thereof Expired - Fee Related JP5455116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244988A JP5455116B2 (en) 2009-10-24 2009-10-24 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244988A JP5455116B2 (en) 2009-10-24 2009-10-24 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011091280A true JP2011091280A (en) 2011-05-06
JP5455116B2 JP5455116B2 (en) 2014-03-26

Family

ID=44109256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244988A Expired - Fee Related JP5455116B2 (en) 2009-10-24 2009-10-24 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5455116B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662398A (en) * 1979-10-26 1981-05-28 Nippon Electric Co Method of manufacturing high density multilayer board
JPH0423390A (en) * 1990-05-18 1992-01-27 Internatl Business Mach Corp <Ibm> Manufacture of multilayer wiring board
JPH0455167U (en) * 1990-09-17 1992-05-12
JP2000294930A (en) * 1999-04-06 2000-10-20 Mitsubishi Electric Corp Manufacture of multilayer printed circuit board and semiconductor device using the multilayer printed circuit board
JP2001284783A (en) * 2000-03-30 2001-10-12 Shinko Electric Ind Co Ltd Substrate for surface-mounting and surface-mounting structure
JP2002094243A (en) * 2000-09-18 2002-03-29 Toagosei Co Ltd Method for manufacturing multi-layer printed wiring board
JP2005159261A (en) * 2003-10-31 2005-06-16 Sankyo Kasei Co Ltd Circuit substrate for solid configuration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662398A (en) * 1979-10-26 1981-05-28 Nippon Electric Co Method of manufacturing high density multilayer board
JPH0423390A (en) * 1990-05-18 1992-01-27 Internatl Business Mach Corp <Ibm> Manufacture of multilayer wiring board
JPH0455167U (en) * 1990-09-17 1992-05-12
JP2000294930A (en) * 1999-04-06 2000-10-20 Mitsubishi Electric Corp Manufacture of multilayer printed circuit board and semiconductor device using the multilayer printed circuit board
JP2001284783A (en) * 2000-03-30 2001-10-12 Shinko Electric Ind Co Ltd Substrate for surface-mounting and surface-mounting structure
JP2002094243A (en) * 2000-09-18 2002-03-29 Toagosei Co Ltd Method for manufacturing multi-layer printed wiring board
JP2005159261A (en) * 2003-10-31 2005-06-16 Sankyo Kasei Co Ltd Circuit substrate for solid configuration

Also Published As

Publication number Publication date
JP5455116B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP4769022B2 (en) Wiring board and manufacturing method thereof
JP5138277B2 (en) Wiring board and manufacturing method thereof
KR101627574B1 (en) Wiring substrate and the method of manufacturing the same
JP6158676B2 (en) WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
JP5091469B2 (en) Wiring board and manufacturing method thereof
JPH11233678A (en) Manufacture of ic package
JPWO2007126090A1 (en) CIRCUIT BOARD, ELECTRONIC DEVICE DEVICE, AND CIRCUIT BOARD MANUFACTURING METHOD
WO2010052942A1 (en) Wiring board with built-in electronic component and method for manufacturing the wiring board
JP5576547B2 (en) Wiring board manufacturing method
JP5221887B2 (en) Wiring board manufacturing method
CN107770947A (en) The manufacture method of printed wiring board and printed wiring board
TWI466611B (en) Printed circuit board having buried component, method for manufacturing same and chip package structure
JP5106197B2 (en) Semiconductor device and manufacturing method thereof
JP2010010329A (en) Wiring substrate and method for manufacturing therefor
JP2011014644A (en) Wiring board and manufacturing method thereof
TW201523798A (en) IC substrate, semiconductor device with IC substrate and manufucturing method thereof
JP2014179430A (en) Multilayer printed wiring board for mounting semiconductor element
JP2010135347A (en) Wiring substrate, and method for manufacturing the same
JP2010040936A (en) Wiring board and method of manufacturing the same
JP5432800B2 (en) Wiring board manufacturing method
JP5058929B2 (en) Wiring board and manufacturing method thereof
JP4802155B2 (en) Wiring board
JP2009289868A (en) Wiring substrate and its manufacturing method
JP5455116B2 (en) Wiring board and manufacturing method thereof
JP5106351B2 (en) Wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Ref document number: 5455116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees