JP2011079918A - Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property - Google Patents

Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property Download PDF

Info

Publication number
JP2011079918A
JP2011079918A JP2009232041A JP2009232041A JP2011079918A JP 2011079918 A JP2011079918 A JP 2011079918A JP 2009232041 A JP2009232041 A JP 2009232041A JP 2009232041 A JP2009232041 A JP 2009232041A JP 2011079918 A JP2011079918 A JP 2011079918A
Authority
JP
Japan
Prior art keywords
antistatic agent
organic compound
type antistatic
linear saturated
donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009232041A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Hamanaka
博義 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boron Laboratory Co Ltd
Original Assignee
Boron Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boron Laboratory Co Ltd filed Critical Boron Laboratory Co Ltd
Priority to JP2009232041A priority Critical patent/JP2011079918A/en
Publication of JP2011079918A publication Critical patent/JP2011079918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internally kneaded type antistatic agent stably present as fine solid by the multiply strong action of van der Waals attraction in a nonconductive polymer matrix, and stably exhibiting antistatic property in good repeatability for a long period by using ionic conduction mechanism by allowing a proper coulomb force to act between components. <P>SOLUTION: The donor-acceptor hybrid-based internally kneaded type antistatic agent for a nonconductive polymer product comprises a composition obtained by homogeneously mixing one or more kinds of semipolar organic compounds each having one atomic group represented by structural formula (1) and at least one 11-22C linear saturated hydrocarbon group in the molecule, with one or more kinds of basic organic compounds each having one basic nitrogen atom and at least one 11-22C linear saturated hydrocarbon group in the molecule. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は各種製品に発生する静電気障害を防止するための帯電防止剤に関す
るものである。特に本願発明はプラスチック製品や合成繊維物質に対する静電
気障害を防止する内部練り込み型として使用される帯電防止剤に関する。
The present invention relates to an antistatic agent for preventing static electricity failure occurring in various products. In particular, the present invention relates to an antistatic agent used as an internal kneading mold for preventing static electricity damage to plastic products and synthetic fiber materials.

従来からプラスチック製品や合成樹脂繊維製品に対する静電気障害対策とし
ては、主として界面活性剤を成形品や成形材料に接触、混合または反応処理さ
せる帯電防止方法が採用されてきた(非特許文献1および2)。従来からこの様
に帯電防止方法において用いられてきた帯電防止剤は大きく分けて、(イ)対象
物に馴染み易い溶剤に溶かして、外から展着する表面塗布型帯電防止剤、(ロ)
対象物の表面で反応させて帯電防止膜として固定させるか、対象物を合成する
時に混合して共重合させる外部及び内部用永久帯電防止剤、(ハ)対象物の製造
時に添加して製造物の中に混入させる内部練り込み型帯電防止剤に分類されて
いる。上記(イ)の表面塗布型帯電防止剤は処理方法が簡単で、しかも帯電防
止性能も良く発現するので重宝であるが摩擦や液体の付着等で帯電防止剤成分
が直ぐに逸脱してしまうので使用対象が限定される。また、(ロ)の外部及び内
部用永久帯電防止剤は、性能の発現持続性は優れているが、処理方法が技術的
に難しく、かつ、複雑であり、その対象物が本来持っていた表面及び内部の物
理的特性を変化させてしまうので使用が一部の用途に限定されてしまうという
問題がある。
Conventionally, as a countermeasure against static electricity damage to plastic products and synthetic resin fiber products, an antistatic method in which a surfactant is mainly contacted with, mixed with, or reacted with a molded product or a molding material has been employed (Non-Patent Documents 1 and 2). . Antistatic agents that have been conventionally used in such antistatic methods are broadly divided into (a) a surface-coated antistatic agent that is dissolved in a solvent that is easy to adapt to the object and spreads from the outside, (b)
Permanent antistatic agent for external and internal use that reacts on the surface of the object and is fixed as an antistatic film, or is mixed and copolymerized when the object is synthesized. It is classified as an internal kneading type antistatic agent to be mixed in. The surface coating type antistatic agent of the above (a) is easy to process and exhibits good antistatic performance, so it is useful, but it is used because the antistatic agent component deviates immediately due to friction, liquid adhesion, etc. The target is limited. In addition, the external and internal permanent antistatic agent (b) has excellent performance sustainability, but the processing method is technically difficult and complicated, and the surface originally possessed by the object. Further, since the internal physical characteristics are changed, there is a problem that the use is limited to some applications.

この様なことから、処理方法が比較的簡便で、しかも、帯電防止剤成分を内
部にまで分散して存在させることができる(ハ)の内部練り込み型帯電防止剤
の使用に多くの期待が集まっているが、それが実用に値するためには、帯電防
止性能が前述の表面塗布型帯電防止剤とほぼ同等で、かつ、それに基づく静電
気防止効果を長期間安定して継続させ得るものでなければならないが、現在ま
で、帯電防止剤として真に満足するものは存在しなかった。なお、本出願前か
ら帯電防止剤としてホウ素原子を介在させてドナー・アクセプターハイブリッ
ドを形成したものを高分子製品用帯電防止剤として利用することは知られては
いるが(特許文献1)、それらはポリマーブレンドを利用したものであり一定の
帯電防止効果は認められるが、複合ポリマー系であるため粗密の状態が製品の
表面に顕著に現れるので結晶性が低い有機ホウ素高分子化合物部分のベト付き
の問題が解消されない。特に高分子フィルム製品では、それが口開き性を悪化
させる原因になるめに現在まで実用化たり得なかった。一方、ホウ素原子を介
在させた低分子型のドナー・アクセプターハイブリッドについては、パージ機
能性材料、成型機清浄用樹脂組成物および成形機清浄方法をなす化合物として
は、本出願前に知られているが該技術が掲載されている文献(特許文献2)に
は内部練り込み型帯電防止剤としての効能については全く言及されていない。
For this reason, the treatment method is relatively simple, and there are many expectations for the use of the internal kneading type antistatic agent of (c) in which the antistatic component can be dispersed and present inside. However, in order for it to be practically used, the antistatic performance should be almost the same as the above-mentioned surface coating type antistatic agent, and the antistatic effect based on it should be able to continue stably for a long period of time. However, until now, there has been no truly satisfactory antistatic agent. Although it has been known that an antistatic agent in which a donor-acceptor hybrid is formed by interposing a boron atom as an antistatic agent is used as an antistatic agent for polymer products (Patent Document 1). Although they use polymer blends and have a certain antistatic effect, they are composite polymer systems, so the coarse and dense state appears prominently on the surface of the product. The problem with is not solved. Especially in the case of a polymer film product, it could not be put to practical use until now because it causes the mouth opening to deteriorate. On the other hand, low molecular type donor-acceptor hybrids interposing boron atoms are known as purge functional materials, molding machine cleaning resin compositions, and molding machine cleaning compounds prior to this application. However, the literature (Patent Document 2) in which the technology is published does not mention the effectiveness as an internal kneading type antistatic agent.

特開平 1−230653号公報Japanese Patent Laid-Open No. 1-230653 特開2004−322407号公報JP 2004-322407 A

浜中博義著「新界面活性剤の総合技術資料集」“帯電防止剤”p700、経営開発センター、1980。Hamanaka Hiroyoshi, “Comprehensive technical data collection of new surfactants” “Antistatic agent” p700, Management Development Center, 1980. 浜中博義著、日本化粧品技術者連合会会誌、“合成樹脂用帯電防止剤”、p28、1971。Hamanaka Hiroyoshi, Journal of the Japan Cosmetics Engineers Association, “Antistatic Agent for Synthetic Resins”, p. 28, 1971.

従来型の帯電防止剤では、帯電防止を必要とする絶縁体マトリックスの高分子材料と電気的性質を変えるべく添加される異種物質である分散質の内部練り込み型帯電防止剤分子との間の相溶性が常に性能発現の上での重要な因子になっている。例えば、高分子材料と相溶性の悪い帯電防止剤分子は高分子材料成形物の表面に出過ぎるので、それ自体の性質の反映による静電気防止効果を示すが、再現性が悪く、また、抜け出てしまうので、効果が長時間保持できない。それと反対に、高分子材料と相溶性の良い帯電防止剤分子は高分子材料成形物の内部に多く存在してしまうので、表面での材料の電気特性改質率が悪く、目的とする度合いまでの静電気防止効果を示すまでには至っていない。そのようなことから、これまでの帯電防止剤の研究および開発の指向としては、対象とする高分子材料に対して程々の相溶性を有する内部練り込み型帯電防止剤化合物若しくは組成物を添加するという方法を用いて種々の取り組みがなされてきた。しかしながら、この単純な性質面だけの添加検討では高分子材料表面の強力な電気特性改質と長期間変わらずに静電気防止効果を保持するという目標の技術レベルに到達するには至っていない。本発明は従来型の帯電防止剤が有するこれらの課題を解決するものである。   In the conventional antistatic agent, between the polymer material of the insulator matrix that requires antistatic and the dispersoid internal kneading type antistatic agent molecules that are added to change the electrical properties, Compatibility has always been an important factor for performance. For example, antistatic agent molecules that are poorly compatible with the polymer material are excessively exposed on the surface of the polymer material molding, and thus exhibit an antistatic effect by reflecting the properties of the polymer material itself, but the reproducibility is poor and the antistatic agent molecule escapes. So the effect cannot be kept for a long time. On the other hand, since many antistatic agent molecules that are compatible with the polymer material are present inside the polymer material molding, the electrical property modification rate of the material on the surface is poor, and the target level is reached. It has not reached the point of showing the antistatic effect. For this reason, the conventional research and development of antistatic agents is to add an internal kneading type antistatic agent compound or composition having moderate compatibility with the target polymer material. Various approaches have been made using this method. However, this simple addition of properties alone has not yet reached the target technical level of maintaining the antistatic effect without changing the strong electrical property of the polymer material surface for a long period of time. The present invention solves these problems of conventional antistatic agents.

本発明者は、これまで試されてきた帯電防止剤の研究、開発における技術手段を超えて、さらに高性能、かつ、性能持続性を十分に満足し得る内部練り込み型帯電防止剤を創り出すことで真に上記課題を解決するべく鋭意研究した結果、分子中に下記構造式(1)で表される原子団1個と結晶性の強い直鎖型飽和炭化水素基を最小限1個有する半極性有機化合物と分子中に塩基性窒素原子1個と直鎖型飽和炭化水素基を最小限1個有する塩基性有機化合物とを共存させたドナー・アクセプターハイブリッド組成物を絶縁体である高分子材料に練り込んで製造した製品が、その表面で良好な帯電防止効果を発揮し、しかも、その効果が1年以上の長期間に亘って変わらずに保持されるという事実を見出し、これらの知見に基づいて本発明を完成するに至った。
The present inventor goes beyond the technical means of research and development of antistatic agents that have been tried so far, and creates an internal kneading type antistatic agent that can sufficiently satisfy high performance and performance sustainability. As a result of diligent research to truly solve the above-mentioned problems, the molecule has one atomic group represented by the following structural formula (1) and at least one linear saturated hydrocarbon group having strong crystallinity. Polymer that is an insulator and a donor-acceptor hybrid composition in which a polar organic compound and a basic organic compound having one basic nitrogen atom and at least one linear saturated hydrocarbon group in the molecule coexist Discovered the fact that the product manufactured by kneading into the material exhibits a good antistatic effect on its surface, and that the effect remains unchanged over a long period of one year or more. Completed the present invention based on It came to that.

本発明の請求項1は、分子中に下記構造式(1)にて表される原子団1個と炭素数11〜22の直鎖型飽和炭化水素基を最小限1個有する半極性有機化合物(以下、半極性有機化合物と称する)の1種以上と、分子中に塩基性窒素原子団1個と炭素数11〜22の直鎖型飽和炭化水素基を最小限1個有する塩基性有機化合物(以下、塩基性有機化合物と称する)の1種以上とを均一混合させた組成物よりなることを特徴とする絶縁体高分子製品用内部練り込み型ドナー・アクセプターハイブリッド系帯電防止剤(以下、内部練り込み型帯電防止剤と称する)である。
Claim 1 of the present invention is a semipolar organic compound having in the molecule at least one atomic group represented by the following structural formula (1) and at least one linear saturated hydrocarbon group having 11 to 22 carbon atoms A basic organic compound having at least one basic nitrogen atom group and at least one straight-chain saturated hydrocarbon group having 11 to 22 carbon atoms in the molecule; An internal kneaded donor-acceptor hybrid antistatic agent (hereinafter, referred to as a basic organic compound) for an insulating polymer product, characterized in that it comprises a composition in which one or more types of basic organic compounds are uniformly mixed. Internal kneading type antistatic agent).

本発明の請求項2は、半極性有機化合物の合計モル数1に対して、塩基性有機化合物の合計モル数0.5〜2.0の範囲で配合した組成物よりなることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤である。
本発明の請求項3は、半極性有機化合物が直鎖型飽和脂肪酸由来のモノアシルグリセリル残基とホウ酸エステル残基からなる化合物であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤である。
本発明の請求項4は、塩基性化合物が直鎖型飽和脂肪族アミンまたは直鎖型飽和脂肪族アミンの1〜2モルエチレンオキシド付加体であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤である。
本発明の請求項5は、塩基性有機化合物が直鎖型2−ヒドロキシ飽和脂肪族アミンまたは直鎖型2−ヒドロキシ飽和脂肪族アミンの1〜2モルエチレンオキシド付加体であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤である。
本発明の請求項6は、塩基性化合物が直鎖型飽和脂肪族アミンの2〜5モルエチレンオキシド付加体と直鎖型飽和脂肪酸とのエステルであることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤である。
Claim 2 of the present invention is characterized by comprising a composition blended in a range of 0.5 to 2.0 total moles of basic organic compound with respect to 1 total mole number of semipolar organic compound. The internal kneading type antistatic agent according to claim 1.
Claim 3 of the present invention is the internal kneading according to claim 1, wherein the semipolar organic compound is a compound comprising a monoacylglyceryl residue and a borate ester residue derived from a linear saturated fatty acid. Embedded antistatic agent.
According to Claim 4 of the present invention, the basic compound is a linear saturated aliphatic amine or a 1-2 mol ethylene oxide adduct of a linear saturated aliphatic amine. It is a kneading type antistatic agent.
According to a fifth aspect of the present invention, the basic organic compound is a linear 2-hydroxy saturated aliphatic amine or a 1-2 mol ethylene oxide adduct of a linear 2-hydroxy saturated aliphatic amine. It is an internal kneading type antistatic agent according to claim 1.
According to Claim 6 of the present invention, the basic compound is an ester of a linear saturated fatty amine 2-5 mol ethylene oxide adduct and a linear saturated fatty acid. It is an internal kneading type antistatic agent.

本発明によれば、種々の絶縁性プラスチック製品についての懸案であった静電気防止対策が再現性よく、かつ、長期間減退することなくできるようになり、プラスチック本来の外観、性質を変えずに苛酷な電圧の印加や摩擦によっても帯電しない状態をつくり得るものであり成形時に簡便な操作を行なうことにより家庭用品から電子材料用部品等に至るまで様々な用途に使用されている絶縁性プラスチック製品において帯電しない安心製品を提供することができる。   According to the present invention, antistatic measures, which have been a concern for various insulating plastic products, can be reproducibly performed without deterioration over a long period of time. Insulating plastic products used in a variety of applications from household items to electronic materials parts, etc. by performing simple operations during molding, which can create an uncharged state due to the application of various voltages and friction We can provide safe products that are not charged.

本発明は従来から用いられている帯電防止剤とは異なりドナー化合物、アクセプター化合物共に最小限1個の直鎖型飽和炭化水素基を有するものの組み合わせを以って絶縁性高分子マトリックスと多重的にファンデルワールス力を作用させて、帯電防止効能を担うクーロン力発現部分を長期に安定存在させるものである。従来から電子伝導を基礎としたドナー・アクセプターハイブリッド形式の化合物は古くから知られているが、それらは本発明のドナー・アクセプターハイブリッドとは用途だけでなく機構も構造も全く異なっている。そして、
本発明における半極性有機化合物とは隣接ヒドロキシ基を残存している状態の多価アルコールと直鎖型飽和脂肪酸との間のエステルの残存している隣接ヒドロキシ基に対してホウ酸もしくは低級アルコールのホウ酸エステルを反応させるか、隣接ヒドロキシ基を有する直鎖型飽和炭化水素化合物に対して、ホウ酸もしくは低級アルコールのホウ酸エステルを反応させるか、または、隣接ヒドロキシ基を有する3価以上の多価アルコールとホウ酸もしくは低級アルコールのホウ酸エステルを反応させた後に残存しているヒドロキシ基に対して、直鎖型飽和脂肪酸を反応させることにより得られるものであり、この反応で得られたものはファンデルワールス力の強い固体である点に特徴を有している。
以下、本発明における半極性有機化合物の代表例を構造式2〜8で示す。
In the present invention, unlike the conventional antistatic agent, the donor compound and the acceptor compound are combined with an insulating polymer matrix in combination with a combination of at least one linear saturated hydrocarbon group. By making van der Waals force act, the Coulomb force expression part which bears the antistatic effect is made to exist stably for a long time. Conventionally, donor-acceptor hybrid type compounds based on electron conduction have been known for a long time, but they are completely different from the donor-acceptor hybrid of the present invention not only in use but also in mechanism and structure. And
In the present invention, the semipolar organic compound means that boric acid or a lower alcohol is used with respect to the remaining hydroxy group of the ester between the polyhydric alcohol in which the adjacent hydroxy group remains and the linear saturated fatty acid. Either boric acid ester is reacted, boric acid or a lower alcohol boric acid ester is reacted with a linear saturated hydrocarbon compound having an adjacent hydroxy group, or a trivalent or higher polyvalent polyhydric group having an adjacent hydroxy group is reacted. Obtained by reacting a linear saturated fatty acid with a hydroxy group remaining after reacting a boric acid ester of a monohydric alcohol with boric acid or lower alcohol, and obtained by this reaction Is characterized by being a solid with a strong van der Waals force.
Hereinafter, representative examples of the semipolar organic compound in the present invention are shown by structural formulas 2 to 8.

また、本発明における塩基性有機化合物は、直鎖型飽和炭化水素基を最小限1個有するN−アルキル置換一級、二級および三級アミンそのままか、直鎖型飽和炭化水素基を最小限1個有する一級および二級アミンに対してエチレンオキシドを付加して、N−ヒドロキシエチル置換基を結合させたものか、さらに、その末端ヒドロキシ基に対して直鎖型飽和脂肪酸を反応させたものか、もしくは、アンモニアと直鎖型飽和炭化水素のエポキシ化物とを反応させてつくられる直鎖型2−ヒドロキシ飽和脂肪酸族アミンそのままか、または、一級および二級の直鎖型2−ヒドロキシ飽和脂肪族アミンに対してエチレンオキシドを付加して、N−ヒドロキシエチル置換基を結合させたものか、もしくは、ポリアルキレンポリアミン中のアミノ基を1個残存させるようなモル比で、ポリアルキレンポリアミンと直鎖型飽和脂肪酸を反応させて、他のアミノ基を全て脂肪酸アミド化したもの等であり、特色としては、前記半極性有機化合物と同様に、ファンデルワールス力の強い固体である。   In addition, the basic organic compound in the present invention is an N-alkyl-substituted primary, secondary and tertiary amine having at least one linear saturated hydrocarbon group as it is, or at least one linear saturated hydrocarbon group. Whether ethylene oxide is added to primary and secondary amines having an N-hydroxyethyl substituent, or a linear saturated fatty acid is reacted to the terminal hydroxy group, Alternatively, a linear 2-hydroxy saturated fatty acid amine produced by reacting ammonia with an epoxidized product of a linear saturated hydrocarbon is used as it is, or a primary and secondary linear 2-hydroxy saturated aliphatic amine. Ethylene oxide added to N-hydroxyethyl substituent or one amino group in polyalkylene polyamine In such a molar ratio, the polyalkylene polyamine and the linear saturated fatty acid are reacted, and all other amino groups are fatty acid amidated. It is a solid with strong van der Waals power.

次に、半極性有機化合物と塩基性有機化合物とを混合させてなる内部練り込み帯電防止剤は、半極性有機化合物と塩基性有機化合物とを常温で単純混合させた形態としても、溶融混合させた形態としてもどちらでも良く、対象とする絶縁性高分子材料に添加して、加熱成形を行って製品を製造する際にクーロン力が有効に働いてドナー・アクセプター型のイオン伝導機構が首尾よく発揮できる。以下、本発明における塩基性有機化合物の代表例を、構造式9〜18を以って示す。   Next, the internal kneading antistatic agent obtained by mixing a semipolar organic compound and a basic organic compound is melt-mixed even if the semipolar organic compound and the basic organic compound are simply mixed at room temperature. It can be used in any form, and when added to the target insulating polymer material, the Coulomb force works effectively when producing products by thermoforming, and the donor-acceptor type ion conduction mechanism is successful. Can demonstrate. Hereinafter, representative examples of the basic organic compound in the present invention are shown by structural formulas 9 to 18.

次に、半極性有機化合物と塩基性有機化合物とを混合させてなる内部練り込み型帯電防止剤は、半極性有機化合物と塩基性有機化合物とを常温で単純混合させた形態のものでも、両者を溶融混合させた後、混晶とした形態にしたものでもいずれでも良い。対象とする絶縁性高分子材料に添加して加熱成形し、帯電防止製品を製造する工程中に両者間でクーロン力が有効に働き、成形終了後に製品中でドナー・アクセプター型のイオン伝導機構が首尾良く発揮されるようになる。これにより、帯電防止性能をより高め、一方でまた、固化した絶縁性高分子材料との間のファンデルワールス力を多重的に強化させてくるので、長期に亘り安定して再現性良く帯電防止性能を保持し得る。ここで、本発明の内部練り込み型帯電防止剤にあっては、半極性有機化合物や塩基性有機化合物それぞれの単体や公知の帯電防止剤に比べて、帯電防止性能が優れているので、半極性有機化合物と塩基性有機化合物とからなるドナー・アクセプターハイブリッド系として絶縁性高分子中に少量存在するだけで十分に効果を発揮する。その場合、組成として好ましい配合は、半極性有機化合物の合計モル数1に対して、塩基性有機化合物の合計モル数0.5〜2.0の範囲にすると、必然的にドナー・アクセプターハイブリッドの構成可能割合が多くなるので一層効果を高め易いものになり、その分だけ、絶縁性高分子材料に添加する量が少なくて済み、好ましい状態をもたらす。   Next, the internal kneading type antistatic agent obtained by mixing a semipolar organic compound and a basic organic compound may be a simple mixture of a semipolar organic compound and a basic organic compound at room temperature. Any of those in the form of mixed crystals after being melted and mixed may be used. It is added to the target insulating polymer material and thermoformed, and the Coulomb force works effectively between the two during the process of manufacturing the antistatic product, and the donor-acceptor type ion conduction mechanism is formed in the product after the molding is completed. It will come out successfully. As a result, the antistatic performance is further enhanced, while the van der Waals force between the solidified insulating polymer material and the solidified multi-layer is strengthened in a multi-layered manner. Performance can be maintained. Here, in the internal kneading type antistatic agent of the present invention, since the antistatic performance is superior to each of the semipolar organic compound and the basic organic compound alone or a known antistatic agent, As a donor-acceptor hybrid system composed of a polar organic compound and a basic organic compound, it is sufficiently effective if it is present in a small amount in an insulating polymer. In that case, when the total number of moles of the basic organic compound is in the range of 0.5 to 2.0 with respect to the total number of moles of the semipolar organic compound is 1 as a preferable composition, the donor-acceptor hybrid is necessarily formed. Therefore, the effect can be improved more easily, and the amount added to the insulating polymer material can be reduced by that much, resulting in a preferable state.

一方、本発明によりなる多重的にファンデルワールス力を強める結晶性の低分子からなる内部練り込み型ドナー・アクセプターハイブリッド系帯電防止剤は、内部で働くドナー・アクセプター間のクーロン力によって、構成素材であるそれぞれのドナー化合物やアクセプター化成物よりも極性が強まり、さらに帯電防止を必要とする対象の絶縁性高分子との相溶性が低下しても各種絶縁性高分子マトリックス中に製品製造時および製造終了後、十分に相溶した状態を呈することが固有の特色である。その結果、無極性高分子のポリエチレン、ポリプロピレン、ポリ四弗化エチレン等の単独重合体や側鎖に極性を持つポリ塩化ビニルやアクリル樹脂、ABS樹脂、AS樹脂等の共重合体等の付加重合製品やポリアミド、ポリエステル等の縮合重合製品およびポリウレタンのような付加縮合製品の帯電防止化をあまねく長期的に行なうことができるようになる。   On the other hand, the internal kneading-type donor-acceptor hybrid antistatic agent composed of low molecular weight molecules that reinforce Van der Waals force according to the present invention is constituted by the Coulomb force between the donor-acceptor working inside. When products are manufactured in various insulating polymer matrices even if their polarity is stronger than the respective donor compounds and acceptor compounds, and the compatibility with the target insulating polymer that requires antistatic properties is reduced. It is a unique feature that it exhibits a sufficiently compatible state after the end of production. As a result, addition polymerization of homopolymers such as nonpolar polymers such as polyethylene, polypropylene, and polytetrafluoroethylene, and copolymers such as polyvinyl chloride, acrylic resin, ABS resin, and AS resin having polar side chains. Products, condensation polymerization products such as polyamide and polyester, and addition condensation products such as polyurethane can be made antistatic in a long term.

以下に、実施例をあげて本発明の絶縁性高分子製品の内部練り込み型帯電防止剤の帯電防止性能の試験結果について説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきではないことは言うまでもない。
また、これらの実施例において記載された「部」は対象とする絶縁性高分子100部に対する添加量である(但し、表中では略号のPHRで示す)。
The test results of the antistatic performance of the internal kneading type antistatic agent of the insulating polymer product of the present invention will be described below with reference to examples, but these examples are illustrative and are limited. Needless to say, it should not be interpreted.
In addition, “part” described in these examples is an addition amount with respect to 100 parts of the target insulating polymer (however, in the table, it is indicated by the abbreviation PHR).

<実施例1>
直鎖状低密度ポリエチレンペレット100部に対して顆粒状にした構造式(2)の半極性有機化合物0.2部と粉末状にした構造式(12)の塩基性有機化合物0.2部を添加し、ブラベンダーで10min混合させた後、160℃でインフレーション成形を行って厚さ40μmの帯電防止性透明ポリエチレンフィルムを製造した。
<Example 1>
0.2 parts of the semipolar organic compound of the structural formula (2) granulated with respect to 100 parts of the linear low density polyethylene pellets and 0.2 part of the basic organic compound of the structural formula (12) powdered The mixture was added and mixed for 10 minutes with a Brabender, and then subjected to inflation molding at 160 ° C. to produce a 40 μm thick antistatic transparent polyethylene film.

<実施例2>
実施例1と同様の直鎖状低密度ポリエチレンペレット100部に対して構造式(8)の半極性有機化合物0.3部と構造式(9)の塩基性有機化合物の0.1部および構造式(10)の塩基性有機化合物0.1部を混合溶融後にフレーク固体としたものを添加し、実施例1と同様にしてインフレーション成形を行ない、厚さ40μmの帯電防止性透明ポリエチレンフィルムを製造した。
<Example 2>
0.3 part of semipolar organic compound of structural formula (8) and 0.1 part of basic organic compound of structural formula (9) and structure with respect to 100 parts of linear low-density polyethylene pellets as in Example 1. A mixture of 0.1 parts of the basic organic compound of formula (10), which was mixed and melted to form a flake solid, was subjected to inflation molding in the same manner as in Example 1 to produce an antistatic transparent polyethylene film having a thickness of 40 μm. did.

<実施例3〜7>
以下、実施例1もしくは実施例2と同様にして、直鎖状低密度ポリエチレンペレットに対して半極性有機化合物と塩基性有機化合物とを表1のように混合した本発明の内部練り込み型帯電防止剤を添加し、それぞれ、インフレーション成形を行って、厚さ40μmの帯電防止性透明ポリエチレンフィルム袋を製造した。
<Examples 3 to 7>
Hereinafter, in the same manner as in Example 1 or Example 2, the internal kneading type charging of the present invention in which a semipolar organic compound and a basic organic compound were mixed as shown in Table 1 with respect to a linear low density polyethylene pellet. Inhibitors were added and each was subjected to inflation molding to produce an antistatic transparent polyethylene film bag having a thickness of 40 μm.

<比較例1>
実施例1〜7と同様の直鎖状低密度ポリエチレンペレット100部に対して、構造式(2)の半極性有機化合物を単独で0.5部添加し、実施例1〜7と同様にしてインフレーション成形を行ない、厚さ40μmの透明ポリエチレンフィルム袋を製造した。
<Comparative Example 1>
0.5 parts of the semipolar organic compound of the structural formula (2) is added alone to 100 parts of the linear low-density polyethylene pellets similar to those in Examples 1 to 7, and the same as in Examples 1 to 7. Inflation molding was performed to produce a transparent polyethylene film bag having a thickness of 40 μm.

<比較例2>
実施例1〜7および比較例1と同様の直鎖状低密度ポリエチレンペレット100部に対して、構造式(12)の塩基性有機化合物を単独で0.5部添加し、実施例1と同様にしてインフレーション成形を行ない厚さ40μmの透明ポリエチレンフィルム袋を製造した。
<Comparative Example 2>
0.5 parts of the basic organic compound of the structural formula (12) is added alone to 100 parts of the linear low density polyethylene pellets similar to Examples 1 to 7 and Comparative Example 1, and the same as in Example 1. Inflation molding was carried out to produce a transparent polyethylene film bag having a thickness of 40 μm.

<比較例3>
実施例1〜7および比較例1,2と同様の直鎖状低密度ポリエチレンペレット100部に対して、下記構造式(19)の半極性有機ホウ素高分子化合物0.25部と構造式(12)の塩基性有機化合物0.25部を混合融解後にフレーク固体としたものを添加し、実施例1と同様にしてインフレーション成形を行ない厚さ40μmの透明ポリエチレンフィルム袋を製造した。
<Comparative Example 3>
With respect to 100 parts of the linear low density polyethylene pellets similar to those in Examples 1 to 7 and Comparative Examples 1 and 2, 0.25 parts of a semipolar organic boron polymer compound of the following structural formula (19) and the structural formula (12 And 0.25 part of the basic organic compound obtained by mixing and melting the mixture was added to form a flake solid, and inflation molding was performed in the same manner as in Example 1 to produce a transparent polyethylene film bag having a thickness of 40 μm.

本発明実施例1〜7で製造した透明ポリエチレンフィルム袋および比較例1〜3で製造した透明ポリエチレンフィルム袋を23℃、50%RHの恒温恒湿条件下で静置保管し、24時間後に、先ず、それぞれの表面固有抵抗値を測定し、また、口開き性の良否を観測した。次いで、6ヶ月経過後の表面固有抵抗値と5000Vの電圧を印加させて強制帯電させ、印加を解除してから2秒後の帯電減衰率を同時に調べた。
その結果を表2に示す。
The transparent polyethylene film bag produced in Examples 1 to 7 of the present invention and the transparent polyethylene film bag produced in Comparative Examples 1 to 3 were kept stationary under constant temperature and humidity conditions of 23 ° C. and 50% RH, and after 24 hours, First, each surface specific resistance value was measured, and the quality of the mouth opening property was observed. Next, the surface specific resistance value after 6 months and a voltage of 5000 V were applied to forcibly charge, and the charge decay rate after 2 seconds from the cancellation of the application was examined simultaneously.
The results are shown in Table 2.

注)※ 口開き性は、次の評価基準にしたがって示した。
○・・・・表面滑性に優れ、容易に口を開くことができる。
△・・・・表面でのベト付きはあるが、口開きができる。
×・・・・表面に粘着性があり、口開き画困難である。
Note) * Mouth openness is shown according to the following evaluation criteria.
○ ··· Excellent surface lubricity and easily open mouth.
Δ: There is stickiness on the surface, but the mouth can be opened.
× ··· The surface is sticky and the mouth-opening image is difficult.

表2では、比較例1および2のようなドナー・アクセプター系ハイブリッドをつくり得る単体成分だけや、比較例3のようなポリマーブレンド型のドナー・アクセプター系ではアンカー効果が小さく無極性高分子のポリエチレンマトリックス中での安定存在状態が得られないために、経時的に帯電防止性能が劣化し、また、袋製品としての重要な要素である口開き性が悪くなる欠点がそのまま残っているのに対して、本発明の内部練り込み型帯電防止剤は、マトリックスのポリエチレン樹脂中に添加して透明フィルムを成形後、常温で固化し、クーロン力を強めてドナー・アクセプター系のイオン伝導機構により優れた帯電防止効果を発揮し、かつ、それぞれの成分ともに結晶性の高い直鎖の飽和炭化水素基を有していることで、ポリエチレンマトリックスと多重的にファンデルワールス力を働かせてアンカー効果を大きいものにしてることが歩留まりの良い安定存在状態をもたらして、その優れた帯電防止性能を長期間維持するということが確認された。   Table 2 shows that only a single component capable of forming a donor-acceptor hybrid as in Comparative Examples 1 and 2 and a non-polar polymer polyethylene with a small anchor effect in a polymer blend type donor-acceptor system as in Comparative Example 3. Whereas the stable presence in the matrix cannot be obtained, the antistatic performance deteriorates over time, and the disadvantage that the mouth-opening property, which is an important element as a bag product, deteriorates remains. The internal kneading type antistatic agent of the present invention was added to the matrix polyethylene resin to form a transparent film, solidified at room temperature, and enhanced the Coulomb force by the donor-acceptor system ion conduction mechanism. Polyethylene has an antistatic effect and each component has a linear saturated hydrocarbon group with high crystallinity. And exercising matrix and multiplex manner van der Waals forces bring the good stable presence state yield that is the larger the anchor effect, that maintains its excellent antistatic performance long time has been confirmed.

<実施例8>
ポリプロピレンペレット100部に対して、粉末状の構造式(2)の半極性有機化合物0.5部と、粉末状の構造式(18)の塩基性有機化合物0.5部を添加、混合した後、220℃で射出成形を行ない3cm×10cm×0.3cmの帯電防止性ポリプロピレン板を製造した。
<Example 8>
After adding and mixing 0.5 parts of the semipolar organic compound of the powdery structural formula (2) and 0.5 part of the basic organic compound of the powdery structural formula (18) to 100 parts of the polypropylene pellets Injection molding was performed at 220 ° C. to produce a 3 cm × 10 cm × 0.3 cm antistatic polypropylene plate.

<実施例9>
実施例8と同様のポリプロピレンペレット100部に対して、構造式(3)の半極性有機化合物0.7部と構造式(15)の塩基性有機化合物0.3部を混合・溶融後に粉末化したものを添加、混合し、実施例8と同様にして射出成形を行ない、3cm×10cm×0.3cmの帯電防止性ポリプロピレン板を製造した。
<Example 9>
For 100 parts of the same polypropylene pellet as in Example 8, 0.7 part of the semipolar organic compound of the structural formula (3) and 0.3 part of the basic organic compound of the structural formula (15) are mixed and melted and powdered. These were added and mixed, and injection molding was carried out in the same manner as in Example 8 to produce a 3 cm × 10 cm × 0.3 cm antistatic polypropylene plate.

<実施例10〜13>
以下、実施例8もしくは実施例9と同様にして、ポリプロピレンペレットに対して半極性有機化合物と塩基性有機化合物とを表3のように混合した本発明の内部練り込み型帯電防止剤を添加し、それぞれ、射出成形を行ない、3cm×10cm×0.3cmの帯電防止性ポリプロピレン板を製造した。
<Examples 10 to 13>
Hereinafter, in the same manner as in Example 8 or Example 9, the internal kneading type antistatic agent of the present invention in which a semipolar organic compound and a basic organic compound were mixed as shown in Table 3 with respect to polypropylene pellets was added. Each was injection molded to produce a 3 cm × 10 cm × 0.3 cm antistatic polypropylene plate.

<比較例4>
実施例8〜13と同様の、ポリプロピレンペレット100部に対して、構造式(2)の半極性有機化合物を単独で1部添加し、実施例8と同様にして射出成形を行ない、3cm×10cm×0.3cmのポリプロピレン板を製造した。
<Comparative example 4>
One part of the semipolar organic compound of the structural formula (2) is added alone to 100 parts of the polypropylene pellets as in Examples 8 to 13, and injection molding is performed in the same manner as in Example 8, and 3 cm × 10 cm. A polypropylene plate of × 0.3 cm was produced.

<比較例5>
本発明の実施例8〜13及び比較例4と同様のポリプロピレンペレット100部に対して、構造式(15)の塩基性有機化合物を単独で1部添加し、実施例8と同様にして射出成形を行ない3cm×10cm×0.3cmのポリプロピレン板を製造した。
<Comparative Example 5>
One part of the basic organic compound of the structural formula (15) is added to 100 parts of the same polypropylene pellets as in Examples 8 to 13 and Comparative Example 4 of the present invention, and injection molding is performed in the same manner as in Example 8. To produce a 3 cm × 10 cm × 0.3 cm polypropylene plate.

<比較例6>
本発明の実施例8〜13および比較例4、5と同様のポリプロピレンペレット100部に対して、本発明の範囲外の下記の構造式(20)の半極性有機化合物0.5部と構造式(18)の塩基性化合物0.5部の混合物を添加し、実施例8と同様にして射出成形を行ない3cm×10cm×0.3cmのポリプロピレン板を製造した。
<Comparative Example 6>
For 100 parts of the same polypropylene pellets as in Examples 8 to 13 and Comparative Examples 4 and 5 of the present invention, 0.5 part of a semipolar organic compound of the following structural formula (20) outside the scope of the present invention and the structural formula A mixture of 0.5 part of the basic compound (18) was added, and injection molding was performed in the same manner as in Example 8 to produce a 3 cm × 10 cm × 0.3 cm polypropylene plate.

本発明の実施例8〜13および比較例4〜6で製造したポリプロピレン板の表面状態をそれぞれについて観察した後、23℃、50%RHの恒温恒湿条件下で静置保管し、先ず24時間後の表面固有抵抗値を測定した。
次いで、1年経過後の表面固有抵抗値と、300gの加重をかけて10分間回転摩擦処理をした時の帯電量を測定した。その結果を表4に示す。
After observing the surface states of the polypropylene plates produced in Examples 8 to 13 and Comparative Examples 4 to 6 of the present invention, the polypropylene plates were stored at 23 ° C. and 50% RH at a constant temperature and humidity for 24 hours. The subsequent surface resistivity was measured.
Next, the surface resistivity after one year and the amount of charge when the rotary friction treatment was performed for 10 minutes while applying a weight of 300 g were measured. The results are shown in Table 4.

注)※ 表面状態の良否は、次の評価基準にしたがって示した。
○・・・・ベト付きが無く全体に滑性がある。
△・・・・ベト付きは無いが引っかかる感じがある。
×・・・・ベト付きが見られる。
Note) * The quality of the surface condition was indicated according to the following evaluation criteria.
○ ・ ・ ・ ・ There is no stickiness and the whole is slippery.
Δ: There is no stickiness, but there is a feeling of being caught.
× ····· Sticky

表4において、本発明の実施例のように内部練り込み型帯電防止剤を添加した場合とそうでない場合とではポリプロピレン板の帯電防止効果に格段の差が見られることから、ポリプロピレンマトリックスの中では、ドナー・アクセプター系のイオン伝導機構を組み立てることと、合わせてそれぞれの構成成分が直鎖型飽和炭化水素基を有していることが必須要素であり、それにより、多重的にファンデルワールス力をもって、より微細な状態で幅広く安定して分散し得るために優れた帯電防止性能が発現できるということが確かめられた。   In Table 4, there is a marked difference in the antistatic effect of the polypropylene plate between the case where the internal kneading type antistatic agent is added and the case where the internal kneading type antistatic agent is not added as in the examples of the present invention. In addition, it is essential to assemble the ion conduction mechanism of the donor-acceptor system and to have each component have a linear saturated hydrocarbon group. Therefore, it was confirmed that excellent antistatic performance can be exhibited because it can be dispersed stably in a finer state.

<実施例14>
ポリエチレンテレフタレート(以下、PETと称する)100部に対して、構造式(2)の半極性有機化合物0.7部と構造式(12)の塩基性有機化合物0.3部を混合してペレット化した後、250℃でニ軸延伸ブロー成形を行ない、厚さ0.1mmの帯電防止性透明PETボトルを製造した。
<Example 14>
100 parts of polyethylene terephthalate (hereinafter referred to as PET) is mixed with 0.7 part of a semipolar organic compound of structural formula (2) and 0.3 part of a basic organic compound of structural formula (12) to form a pellet. Then, biaxial stretch blow molding was performed at 250 ° C. to produce an antistatic transparent PET bottle having a thickness of 0.1 mm.

<実施例15>
実施例14と同様にして、PET100部に対して、構造式(2)の半極性有機化合物0.6部と構造式(14)の塩基性有機化合物0.4部を混合させてペレット化した後、250℃でニ軸延伸ブロー成形を行ない、厚さ0.1mmの帯電防止性透明PETボトルを製造した。
<Example 15>
In the same manner as in Example 14, with respect to 100 parts of PET, 0.6 part of the semipolar organic compound of the structural formula (2) and 0.4 part of the basic organic compound of the structural formula (14) were mixed and pelletized. Thereafter, biaxial stretch blow molding was performed at 250 ° C. to produce an antistatic transparent PET bottle having a thickness of 0.1 mm.

<実施例16>
実施例14、15と同様にして、PET100部に対して、構造式(7)の半極性有機化合物0.5部と構造式(18)の塩基性有機化合物0.5部を混合させてペレット化した後、250℃でニ軸延伸ブロー成形を行ない、厚さ0.1mmの帯電防止性透明PETボトルを製造した。
<Example 16>
In the same manner as in Examples 14 and 15, 100 parts of PET was mixed with 0.5 part of a semipolar organic compound of structural formula (7) and 0.5 part of a basic organic compound of structural formula (18) to give a pellet. Then, biaxial stretch blow molding was performed at 250 ° C. to produce an antistatic transparent PET bottle having a thickness of 0.1 mm.

<比較例7>
実施例14〜16と同様のPET100部に対して、構造式(2)の半極性有機化合物を単独で1部添加して作成したペレットについて、実施例14〜16と同様にしてニ軸延伸ブロー成形を行ない、厚さ0.1mmの透明PETボトルを製造した。
<Comparative Example 7>
Biaxially stretched blow in the same manner as in Examples 14 to 16 for pellets prepared by adding 1 part of the semipolar organic compound of structural formula (2) alone to 100 parts of PET similar to Examples 14 to 16 Molding was performed to produce a transparent PET bottle having a thickness of 0.1 mm.

<比較例8>
実施例14〜16および比較例7と同様のPET100部に対して、構造式(12)の塩基性有機化合物を単独で1部添加して作成したペレットについて、実施例14〜16および比較例7と同様にしてニ軸延伸ブロー成形を行ない、厚さ0.1mmの透明PETボトルを製造した。
<Comparative Example 8>
About pellets prepared by adding 1 part of the basic organic compound of the structural formula (12) alone to 100 parts of PET similar to Examples 14 to 16 and Comparative Example 7, Examples 14 to 16 and Comparative Example 7 In the same manner, biaxial stretch blow molding was performed to produce a transparent PET bottle having a thickness of 0.1 mm.

<比較例9>
実施例14〜16および比較例7、8と同様のPET100部に対して、構造式(2)の半極性有機化合物0.6部と本発明の範囲外の下記構造式(21)の塩基性有機化合物0.4部を添加して作成したペレットについて、実施例14〜16および比較例7、8と同様にして二軸延伸ブロー成形を行ない、厚さ0.1mmの透明PETボトルを製造した。
<Comparative Example 9>
For 100 parts of PET similar to Examples 14 to 16 and Comparative Examples 7 and 8, 0.6 part of the semipolar organic compound of the structural formula (2) and the basicity of the following structural formula (21) outside the scope of the present invention The pellets prepared by adding 0.4 part of the organic compound were biaxially stretch blow molded in the same manner as in Examples 14 to 16 and Comparative Examples 7 and 8 to produce a transparent PET bottle having a thickness of 0.1 mm. .

本発明の実施例14〜16および比較例7〜9で製造した透明PETボトルの表面状態と着色性の有無のそれぞれについて観察した後、各3cm×10cmに切り取った試験片を23℃、50%RHの恒温恒湿条件下で静置保管し、先ず24時間後の表面固有抵抗値を測定した。次いで、3ヶ月経過後の表面固有抵抗値を測定した。その結果を表5に示す。   After observing each of the surface state of the transparent PET bottles produced in Examples 14 to 16 and Comparative Examples 7 to 9 of the present invention and the presence or absence of coloration, the test pieces cut out to 3 cm × 10 cm each were 23 ° C. and 50%. The RH was kept stationary under constant temperature and humidity conditions, and the surface resistivity after 24 hours was first measured. Subsequently, the surface specific resistance value after three months passed was measured. The results are shown in Table 5.

注)※ 表面状態の良否は、次の評価基準にしたがって示した。
○・・・・ベト付きが無く全体に滑性がある。
△・・・・ベト付きは無いが引っかかる感じがある。
×・・・・ベト付きが見られる。
注)※※ 着色性の有無は、次の評価基準にしたがって示した。
○・・・・無色透明である。
△・・・・切断部に黄ばみが見られる。
×・・・・全体に黄ばみがある。
Note) * The quality of the surface condition was indicated according to the following evaluation criteria.
○ ・ ・ ・ ・ There is no stickiness and the whole is slippery.
Δ: There is no stickiness, but there is a feeling of being caught.
× ····· Sticky
Note) ** The presence or absence of coloring was shown according to the following evaluation criteria.
○ ···· Colorless and transparent.
Δ ··· Yellow on the cut part.
× ··· Yellowish throughout.

表5からも本発明の内部練り込み型帯電防止剤の特徴であるドナー・アクセプター型のイオン伝導機構とそれぞれの構成成分が直鎖型の飽和炭化水素基を有していることによる帯電防止効果の優位性と経時安定性および製品品質保護性の良さが確認された。   Also from Table 5, the donor-acceptor type ion conduction mechanism, which is a feature of the internal kneading type antistatic agent of the present invention, and the antistatic effect due to the fact that each component has a linear saturated hydrocarbon group. The superiority and stability over time and good product quality protection were confirmed.

<実施例17>
メタクリル酸メチル100部、アゾジイソブチロニトリル0.3部の混合溶液に対して、構造式(2)の半極性有機化合物2部と構造式(17)の塩基性有機化合物1部を添加して溶融混合させた後、120℃で4時間を要してモノマーキャスティング成形を行ない、20cm×20cm×0.15cmの帯電防止性透明アクリル樹脂板を製造した。
<Example 17>
To a mixed solution of 100 parts of methyl methacrylate and 0.3 part of azodiisobutyronitrile, 2 parts of a semipolar organic compound of structural formula (2) and 1 part of a basic organic compound of structural formula (17) were added. After melt mixing, monomer casting molding was performed at 120 ° C. for 4 hours to produce a 20 cm × 20 cm × 0.15 cm antistatic transparent acrylic resin plate.

<実施例18>
実施例17と同様のメタクリル酸メチル100部、アゾジイソブチロニトリル0.3部の混合溶液に対して、構造式(3)の半極性有機化合物1部と構造式(11)の塩基性有機化合物2部を添加し、実施例17と同様にしてモノマーキャスティング成形を行ない、20cm×20cm×0.15cmの帯電防止性透明アクリル樹脂板を製造した。
<Example 18>
1 part of semipolar organic compound of structural formula (3) and basic organic compound of structural formula (11) with respect to a mixed solution of 100 parts of methyl methacrylate and 0.3 part of azodiisobutyronitrile as in Example 17. Two parts were added and monomer casting was performed in the same manner as in Example 17 to produce a 20 cm × 20 cm × 0.15 cm antistatic transparent acrylic resin plate.

<比較例10>
実施例17、18と同様のメタクリル酸メチル100部、アゾジイソブチロニトリル0.3部の混合溶液に対して、下記構造式(22)の公知のカチオン界面活性剤系内部練り込み型帯電防止剤を3部添加し、実施例17、18と同様にしてモノマーキャスティング成形を行ない、20cm×20cm×0.15cmの透明アクリル樹脂板を製造した。
<Comparative Example 10>
A known cationic surfactant-based internal kneading type antistatic agent of the following structural formula (22) with respect to a mixed solution of 100 parts of methyl methacrylate and 0.3 part of azodiisobutyronitrile as in Examples 17 and 18. 3 parts were added, and monomer casting was performed in the same manner as in Examples 17 and 18, to produce a transparent acrylic resin plate of 20 cm × 20 cm × 0.15 cm.

<比較例11>
実施例17、18および比較例10と同様のメタクリル酸メチル100部、アゾジイソブチロニトリル0.3部の混合溶液に対して、構造式(3)の半極性有機化合物を単独で3部添加し、実施例17、18および比較例10と同様にしてモノマーキャスティング成形を行ない、20cm×20cm×0.15cmの透明アクリル樹脂板を製造した。
<Comparative Example 11>
3 parts of the semipolar organic compound of the structural formula (3) alone was added to a mixed solution of 100 parts of methyl methacrylate and 0.3 part of azodiisobutyronitrile as in Examples 17 and 18 and Comparative Example 10. In the same manner as in Examples 17 and 18 and Comparative Example 10, monomer casting was performed to produce a 20 cm × 20 cm × 0.15 cm transparent acrylic resin plate.

<比較例12>
実施例17、18および比較例10、11と同様のメタクリル酸メチル100部、アゾジイソブチロニトリル0.3部の混合溶液に対して、構造式(11)の塩基性有機化合物を単独で3部添加し、実施例17、18および比較例10、11と同様にしてモノマーキャスティング成形を行ない、20cm×20cm×0.15cmの透明アクリル樹脂板を製造した。
<Comparative Example 12>
3 parts of the basic organic compound of the structural formula (11) alone with respect to a mixed solution of 100 parts of methyl methacrylate and 0.3 part of azodiisobutyronitrile as in Examples 17 and 18 and Comparative Examples 10 and 11 Then, monomer casting was performed in the same manner as in Examples 17 and 18 and Comparative Examples 10 and 11, and a 20 cm × 20 cm × 0.15 cm transparent acrylic resin plate was produced.

本発明の実施例17、18および比較例の10〜12で製造した透明アクリル樹脂板の表面状態と着色性の有無をそれぞれについて観察した後、23℃50%RHの恒温恒湿条件下で静置保管し、先ず、24時間後の表面固有抵抗値を測定した。次いで、1年経過後の表面固有抵抗値を測定した。その結果を表6に示す。   After observing each of the surface states of the transparent acrylic resin plates produced in Examples 17 and 18 of the present invention and Comparative Examples 10 to 12 and the presence or absence of coloration, the static acrylic resin plates were kept at a constant temperature and humidity of 23 ° C. and 50% RH. First, the surface specific resistance value after 24 hours was measured. Subsequently, the surface specific resistance value after one year passed was measured. The results are shown in Table 6.

注)※ 表面状態の良否は、次の評価基準にしたがって示した。
○・・・・全面平滑であり、ベト付きが無い。
△・・・・全面平滑であるが、ベト付きがある。
×・・・・表面が不均一であり、ベト付きがある。
注)※※ 着色性の有無は、次の評価基準にしたがって示した。
○・・・・無色透明である。
△・・・・切断部に黄ばみが見られる。
×・・・・全体に黄ばみがある。
Note) * The quality of the surface condition was indicated according to the following evaluation criteria.
○ ··· Smooth and smooth without any stickiness.
Δ ···· Smooth, but sticky.
× ··· The surface is uneven and sticky.
Note) ** The presence or absence of coloring was shown according to the following evaluation criteria.
○ ···· Colorless and transparent.
Δ ··· Yellow on the cut part.
× ··· Yellowish throughout.

モノマー、ポリマーの両方に親和し続ける状態を保ちつつ、表面の電気特性を確実に変換させ、しかも、それを持続させる効能を満たすことが必要条件となるモノマーキャスティング成形アクリル樹脂の帯電防止処理操作であるが、表6からは強固なイオン構造骨格を持つカチオン界面活性剤系内部練り込み型帯電防止剤はポリメタクリル酸メチルマトリックスへの相溶性が極端に悪化して帯電防止効果も十分に発揮できず、また、完全なイオン構造を有しない半極性有機化合物や塩基性有機化合物ではポリメタクリル酸メチルマトリックスに相溶するが、イオン伝導性が殆ど望めないためにマトリックスの内部でも表面でも電気特性を変換させる能力を持たないという既知の技術レベルが確認され、これに対して、ポリマーマトリックスと多重的に強いファンデルワールス力を作用させて安定分散しつつ、一方で適度にクローン力を作用させて調和の取れたドナー・アクセプター系のイオン伝導を呈する本発明の内部練り込み型帯電防止剤では、成形物の品質を損なわずに確実に帯電防止効果を発揮し、かつ、それを安定して持続させるという固有の特性が見られた。   In the antistatic treatment operation of monomer-casting acrylic resin, which requires the ability to reliably convert the electrical properties of the surface while maintaining a state of being compatible with both the monomer and the polymer, and satisfy the effect of sustaining it. However, from Table 6, the cationic surfactant-based internal kneading type antistatic agent having a strong ionic structure skeleton is extremely deteriorated in the compatibility with the polymethyl methacrylate matrix and can sufficiently exert the antistatic effect. In addition, semipolar organic compounds and basic organic compounds that do not have a complete ionic structure are compatible with the polymethyl methacrylate matrix. A known level of technology is identified that does not have the ability to convert, whereas the polymer matrix and The internal kneading-type antistatic agent of the present invention that exhibits stable ion dispersion of a donor-acceptor system by applying a clonal force moderately while stably dispersing by applying a heavy van der Waals force Then, an inherent characteristic that the antistatic effect was surely exhibited without deteriorating the quality of the molded product and it was stably maintained was observed.

<実施例19>
半硬質ポリウレタンペレット100部に対して、構造式(2)の半極性有機化合物1.5部と構造式(12)の塩基性有機化合物1部を混融後にフレーク固体としたものを添加し、混和させた後、190℃で押出し成形を行ない、幅2.5cm、厚さ1cmの角棒を製造した。
<Example 19>
To 100 parts of the semi-rigid polyurethane pellets, 1.5 parts of the semipolar organic compound of the structural formula (2) and 1 part of the basic organic compound of the structural formula (12) are mixed and added as a flake solid, After mixing, extrusion molding was carried out at 190 ° C. to produce a square bar having a width of 2.5 cm and a thickness of 1 cm.

<実施例20>
実施例19と同様の半硬質ポリウレタンペレット100部に対して、粉末状の構造式(4)の半極性有機化合物2部と粉末状の構造式(16)1部を添加し、混和させた後、実施例19と同様にして押出し成形を行ない、幅2.5cm、厚さ1cmの角棒を製造した。
<Example 20>
After adding 2 parts of a semipolar organic compound of the powdery structural formula (4) and 1 part of the powdery structural formula (16) to 100 parts of the semi-rigid polyurethane pellets as in Example 19, and mixing them. Extrusion molding was carried out in the same manner as in Example 19 to produce a square bar having a width of 2.5 cm and a thickness of 1 cm.

<比較例13>
実施例19、20と同様の半硬質ポリウレタンペレット100部に対して、本発明の範囲外の液状である構造式(20)の半極性有機化合物1.5部と加熱溶融させた構造式(12)の塩基性有機化合物1部を添加し、混和させた後、実施例19、20と同様にして押出し成形を行ない、幅2.5cm、厚さ1cmの角棒を製造した。
<Comparative Example 13>
100 parts of semi-rigid polyurethane pellets similar to Examples 19 and 20 are heated and melted with 1.5 parts of a semipolar organic compound of structural formula (20) that is in a liquid state outside the scope of the present invention (12 After adding 1 part of the basic organic compound (1) and mixing, extrusion molding was carried out in the same manner as in Examples 19 and 20 to produce a square bar having a width of 2.5 cm and a thickness of 1 cm.

<比較例14>
実施例19、20および比較例13と同様の半硬質ポリウレタンペレット100部に対して、前記構造式(19)の半極性有機ホウ素高分子化合物1.5部と構造式(12)の塩基性有機化合物1部を混融後にフレーク固体としたものを添加し、混和させた後、実施例19、20および比較例13と同様にして押出し成形行ない幅2.5cm、厚さ1cmの角棒を製造した。
<Comparative example 14>
For 100 parts of the semi-rigid polyurethane pellets similar to Examples 19 and 20 and Comparative Example 13, 1.5 parts of the semipolar organic boron polymer compound of the structural formula (19) and the basic organic of the structural formula (12) After adding 1 part of the compound into a flaky solid after mixing, the mixture was mixed and then extruded in the same manner as in Examples 19 and 20 and Comparative Example 13 to produce a square bar having a width of 2.5 cm and a thickness of 1 cm. did.

<比較例15>
実施例19、20および比較例13、14と同様の半硬質ポリウレタンペレット100部に対して、粉末状の下記構造式(23)の公知の非イオン界面活性剤系内部練り込み型帯電防止剤2部と粉末状の構造式(16)の塩基性有機化合物1部を添加し、混和させた後、実施例19、20および比較例13、14と同様にして押出し成形行ない幅2.5cm、厚さ1cmの角棒を製造した。
<Comparative Example 15>
With respect to 100 parts of semi-rigid polyurethane pellets similar to Examples 19 and 20 and Comparative Examples 13 and 14, a known nonionic surfactant-based internal kneading type antistatic agent 2 of the following structural formula (23) After adding 1 part of the basic organic compound of the structural formula (16) in powder form and mixing, extrusion was performed in the same manner as in Examples 19 and 20 and Comparative Examples 13 and 14, and the width was 2.5 cm and the thickness was A 1 cm square bar was produced.

本発明の実施例19、20および比較例13〜15で製造した半硬質ポリウレタン角棒を23℃、50%RH恒温恒湿条件下で静置保管し、はじめに、24時間後にそれぞれの表面固有抵抗値を測定した。次いで、1年間、同条件で静置保管した後の表面固有抵抗値を再測定した。その結果を表7に示す。   The semi-rigid polyurethane square bars produced in Examples 19 and 20 of the present invention and Comparative Examples 13 to 15 were stored at 23 ° C. and 50% RH constant temperature and humidity conditions. The value was measured. Subsequently, the surface specific resistance value after standing still for 1 year under the same conditions was measured again. The results are shown in Table 7.

半硬質ポリウレタンはセグメントの構成上絶縁性がそれ程高いものではなく、その特性が極性物質を含有させることでの帯電防止性能の発現を妨げているために、必要とする時の静電気対策を不完全にしている現状にあった。
それで、比較例13および14のように、単純にB,N型のドナー・アクセプター系を配合させたり、また、比較例15のように、直鎖型の飽和炭化水素基を有する界面活性剤同士の単純複合物を添加する既知の技術の限界を見極め、ドナー成分、アクセプター成分の両方に直鎖型の飽和炭化水素基を連結した構造にした上で結晶性を高めて、ドナー・アクセプター系のイオン伝導機構を非結晶性の半硬質ポリウレタンマトリックス中で作用させるという本発明の技術思想による帯電防止性能の実態を調べたが、表7から明らかなように、本発明の実施例19および20において、性能の優位性が認められ十分に実用可能な領域に到達していると判断された。
Semi-rigid polyurethane is not so high in insulation due to its segment structure, and its characteristics prevent the development of antistatic performance due to the inclusion of polar substances. Was in the current situation.
Therefore, as in Comparative Examples 13 and 14, a B / N type donor / acceptor system is simply blended, or, as in Comparative Example 15, surfactants having a linear saturated hydrocarbon group are combined. Of the known technology for adding simple composites of the above, and by making a structure in which a linear saturated hydrocarbon group is linked to both the donor component and the acceptor component, the crystallinity is improved, and the donor-acceptor system The actual state of antistatic performance according to the technical idea of the present invention in which the ion conduction mechanism is allowed to act in an amorphous semi-rigid polyurethane matrix was examined. As is clear from Table 7, in Examples 19 and 20 of the present invention, The superiority of the performance was recognized, and it was judged that it had reached a sufficiently practical area.

本発明者は、絶縁体プラスチック用内部練り込み型帯電防止剤の研究開発における技術思想として、はじめに、界面活性剤の応用から界面張力低下能に基づいて添加した物質がガラス転移点以上のプラスチック製品の成形時に表面に効率良く移行し、そして、成形後の固化表面に配向吸着する極性物質の中からそれぞれのプラスチックに適するものを探査するという操作を非特許文献1に示すような種々の構造の界面活性剤について行なってきた。   As a technical idea in the research and development of an internal kneading type antistatic agent for insulating plastics, the present inventor firstly introduced a plastic product whose substance added based on the ability to lower interfacial tension from the application of a surfactant to a glass transition point or higher. As shown in Non-Patent Document 1, there is an operation of searching for a suitable material for each plastic among polar substances that are efficiently transferred to the surface during molding and are oriented and adsorbed on the solidified surface after molding. Has been done on surfactants.

次に、本発明者は別の観点からポリマーブレンドによる電気的性質の改質を手段にして、絶縁性プラスチックの帯電防止をはかるべく、セグメントの主鎖内に極性基を繰り返し導入させた特許文献1に示すような半極性有機ホウ素化合物やその誘導体であるN・Bコンプレックスポリマーをそれぞれ相溶するプラスチック素材と混合させるという操作を平行して行なってきた。   Next, from another viewpoint, the present inventor made a patent blend in which a polar group was repeatedly introduced into the main chain of the segment in order to prevent the antistatic property of the insulating plastic by means of modification of electrical properties by polymer blend. The operation of mixing the semipolar organoboron compound as shown in 1 and the N · B complex polymer which is a derivative thereof with a compatible plastic material has been performed in parallel.

しかしながら、素材である絶縁性プラスチックに対して極性のある異種物質を混入させる以上、安定存在には無理があり、例えば、界面活性剤型の帯電防止剤では実際にはプラスチック表面で強固な配向吸着膜がつくられず(非特許文献2参照)、内部から無制限に移行して帯電防止性能を変化させたり、低下させたりする現象がある。一方、ポリマーブレンドでは均質な相溶状態とすることに無理があるために、成形時に帯電防止性能の再現性を得ることが困難であった。また、そのような帯電防止性能の不安定化を来たす既存の帯電防止剤分子のプラスチックスマトリックス内部および表面での挙動は帯電防止剤を添加しない状態で製造したプラスチック成形物では見られなかったベト付きや口開き性の悪化を招くという厄介な欠点をもたらしていた。   However, as long as foreign materials with polarity are mixed in the insulating plastic material, it is impossible to exist stably. For example, surfactant type antistatic agents actually have strong orientation adsorption on the plastic surface. There is a phenomenon that a film is not formed (see Non-Patent Document 2), and the antistatic performance is changed or lowered by moving from the inside to unlimited. On the other hand, since it is impossible to obtain a homogeneous compatible state in the polymer blend, it is difficult to obtain reproducibility of the antistatic performance at the time of molding. In addition, the behavior of the existing antistatic agent molecules that cause the destabilization of the antistatic performance inside and on the surface of the plastic matrix was not seen in the plastic molding produced without the addition of the antistatic agent. It had the troublesome drawback of causing stickiness and poor mouth opening.

本発明者は直鎖型飽和炭化水素基をそれぞれ連結させた成分同士がプラスチックマトリックス内部でそれぞれ微小固体となってプラスチックの主鎖の炭化水素セグメント部分と多重的にファンデルワールス力を作用させて安定存在しつつ、相互に適切な分子間距離を保って極端に強くなくクーロン力を作用させることを手段とする新しいドナー・アクセプターハイブリッド系の内部練り込み型帯電防止剤をここに開発したが、それらは、これまでに示した各実施例から明確なように、上述の既知の内部練り込み型帯電防止剤において問題となっていた諸欠点を解決する能力を有する組成物である。   The inventor of the present invention has obtained a structure in which linear saturated hydrocarbon groups are connected to each other to form a micro solid in the plastic matrix, and the van der Waals force acts on the hydrocarbon segment portion of the plastic main chain in a multiple manner. A new donor-acceptor hybrid internal kneading type antistatic agent has been developed here, which is a means to maintain the appropriate intermolecular distance while maintaining stability and to make the Coulomb force act without being extremely strong. These are compositions having the ability to solve the various disadvantages that have been problematic in the above-mentioned known internal kneading type antistatic agents, as is clear from the respective examples shown so far.

なお、本発明者は、本発明の内部練り込み型帯電防止剤と類似の低分子のN・Bコンプレックスをプラスチック成形機清浄剤として使用することを前に研究したが(特許文献2参照)、この時点では本発明のドナー・アクセプターハイブリッド系内部練り込み型帯電防止剤として使用可能な組成物を構造追跡して誘導するという技術思想は持ち得なかった。







In addition, although this inventor researched before using the low molecular weight N * B complex similar to the internal kneading-type antistatic agent of this invention as a plastic molding machine detergent (refer patent document 2), At this time, it was impossible to have the technical idea that the composition that can be used as the internal kneading type antistatic agent of the donor-acceptor hybrid system of the present invention is derived by tracking the structure.







Claims (6)

分子中に下記構造式(1)にて表される原子団1個と炭素数11〜22の直鎖型飽和炭化水素基を最小限1個有する半極性有機化合物の1種以上と、分子中に塩基性窒素原子団1個と炭素数11〜22の直鎖型飽和炭化水素基を最小限1個有する塩基性有機化合物の1種以上とを均一混合させた組成物よりなることを特徴とする絶縁性高分子製品用ドナー・アクセプターハイブリッド系内部練り込み型帯電防止剤。
One or more semipolar organic compounds having at least one atomic group represented by the following structural formula (1) and at least one linear saturated hydrocarbon group having 11 to 22 carbon atoms in the molecule; Characterized by comprising a composition in which one basic nitrogen atom group and one or more basic organic compounds having at least one straight-chain saturated hydrocarbon group having 11 to 22 carbon atoms are uniformly mixed. Donor-acceptor hybrid internal kneading type antistatic agent for insulating polymer products.
半極性有機化合物の合計モル数1に対して、塩基性有機化合物の合計モル数0.5〜2.0の範囲で配合した組成物よりなることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤。   2. The interior according to claim 1, comprising a composition blended in a range of 0.5 to 2.0 total moles of the basic organic compound with respect to 1 total mole of the semipolar organic compound. Kneading type antistatic agent. 半極性有機化合物が直鎖型飽和脂肪酸由来のモノアシルグリセリル残基とホウ酸エステル残基からなる化合物であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤。   The internal kneading type antistatic agent according to claim 1, wherein the semipolar organic compound is a compound comprising a monoacylglyceryl residue derived from a linear saturated fatty acid and a borate ester residue. 塩基性有機化合物が直鎖型飽和脂肪族アミンまたは直鎖型飽和脂肪族アミンの1〜2モルエチレンオキシド付加体であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤。   2. The internal kneading type antistatic agent according to claim 1, wherein the basic organic compound is a linear saturated aliphatic amine or a 1 to 2 mol ethylene oxide adduct of a linear saturated aliphatic amine. 塩基性有機化合物が直鎖型2−ヒドロキシ飽和脂肪族アミンまたは直鎖型2−ヒドロキシ飽和脂肪族アミンの1〜2モルエチレンオキシド付加体であることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤。   2. The internal kneading according to claim 1, wherein the basic organic compound is a linear 2-hydroxy saturated aliphatic amine or a 1-2 mol ethylene oxide adduct of a linear 2-hydroxy saturated aliphatic amine. Built-in antistatic agent. 塩基性化合物が直鎖型飽和脂肪族アミンの2〜5モルエチレンオキシド付加体と直鎖型飽和脂肪酸とのエステルであることを特徴とする前記請求項1に記載の内部練り込み型帯電防止剤。   2. The internal kneading type antistatic agent according to claim 1, wherein the basic compound is an ester of a linear saturated aliphatic amine adduct of 2 to 5 mol ethylene oxide and a linear saturated fatty acid.
JP2009232041A 2009-10-05 2009-10-05 Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property Pending JP2011079918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232041A JP2011079918A (en) 2009-10-05 2009-10-05 Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232041A JP2011079918A (en) 2009-10-05 2009-10-05 Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property

Publications (1)

Publication Number Publication Date
JP2011079918A true JP2011079918A (en) 2011-04-21

Family

ID=44074306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232041A Pending JP2011079918A (en) 2009-10-05 2009-10-05 Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property

Country Status (1)

Country Link
JP (1) JP2011079918A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083750A (en) * 2012-10-23 2014-05-12 Toppan Cosmo Inc Polyolefin decorative sheet having antistatic function
JP2014113772A (en) * 2012-12-11 2014-06-26 Toppan Cosmo Inc Polyolefinic decorative sheet having antistatic function
JP2014193949A (en) * 2013-03-28 2014-10-09 Kaneka Corp Foam molding
JP5734491B1 (en) * 2014-04-10 2015-06-17 株式会社ボロン研究所 Molded product comprising antistatic agent and insulator polymer material and method for producing the same
JP2017119837A (en) * 2015-12-24 2017-07-06 松本油脂製薬株式会社 Thermoplastic resin antistatic agent and thermoplastic resin composition containing the same
JP2017171884A (en) * 2016-03-18 2017-09-28 日本ポリプロ株式会社 Propylene-based resin composition and molded article
JP2017186460A (en) * 2016-04-06 2017-10-12 東ソー株式会社 Additive for sealant and easily peelable film
JP2018150476A (en) * 2017-03-14 2018-09-27 日本ポリプロ株式会社 Propylene-based resin composition and molded article
JP2020164585A (en) * 2019-03-28 2020-10-08 株式会社ボロン研究所 Antistatic acrylic resin and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238839A (en) * 1985-04-17 1986-10-24 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic polyolefin resin composition
JPH0372555A (en) * 1989-05-31 1991-03-27 Japan Synthetic Rubber Co Ltd Antistatic resin composition
JP2006241350A (en) * 2005-03-04 2006-09-14 Toho Chem Ind Co Ltd Biodegradable resin composition
JP2006241351A (en) * 2005-03-04 2006-09-14 Toho Chem Ind Co Ltd Thermoplastic resin composition
JP2008063422A (en) * 2006-09-06 2008-03-21 Toho Chem Ind Co Ltd Polylactic acid-based biaxially stretched film exhibiting excellent retention of antistatic effect

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238839A (en) * 1985-04-17 1986-10-24 Dai Ichi Kogyo Seiyaku Co Ltd Antistatic polyolefin resin composition
JPH0372555A (en) * 1989-05-31 1991-03-27 Japan Synthetic Rubber Co Ltd Antistatic resin composition
JP2006241350A (en) * 2005-03-04 2006-09-14 Toho Chem Ind Co Ltd Biodegradable resin composition
JP2006241351A (en) * 2005-03-04 2006-09-14 Toho Chem Ind Co Ltd Thermoplastic resin composition
JP2008063422A (en) * 2006-09-06 2008-03-21 Toho Chem Ind Co Ltd Polylactic acid-based biaxially stretched film exhibiting excellent retention of antistatic effect

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014083750A (en) * 2012-10-23 2014-05-12 Toppan Cosmo Inc Polyolefin decorative sheet having antistatic function
JP2014113772A (en) * 2012-12-11 2014-06-26 Toppan Cosmo Inc Polyolefinic decorative sheet having antistatic function
JP2014193949A (en) * 2013-03-28 2014-10-09 Kaneka Corp Foam molding
CN105164224A (en) * 2014-04-10 2015-12-16 株式会社博洛恩研究所 Antistatic agent, molded article comprising insulator polymer material, and method for producing same
WO2015156133A1 (en) 2014-04-10 2015-10-15 株式会社ボロン研究所 Antistatic agent, molded article comprising insulator polymer material, and method for producing same
KR20150123271A (en) 2014-04-10 2015-11-03 가부시키가이샤보론켄큐죠 Antistatic agent, molded article composed of insulating polymer material, and method of producing the molded article
JP5734491B1 (en) * 2014-04-10 2015-06-17 株式会社ボロン研究所 Molded product comprising antistatic agent and insulator polymer material and method for producing the same
KR101630590B1 (en) * 2014-04-10 2016-06-14 가부시키가이샤보론켄큐죠 Antistatic agent, molded article comprising insulator polymer material, and method for producing same
CN105164224B (en) * 2014-04-10 2017-05-03 株式会社博洛恩研究所 Antistatic agent, molded article comprising insulator polymer material, and method for producing same
JP2017119837A (en) * 2015-12-24 2017-07-06 松本油脂製薬株式会社 Thermoplastic resin antistatic agent and thermoplastic resin composition containing the same
JP2017171884A (en) * 2016-03-18 2017-09-28 日本ポリプロ株式会社 Propylene-based resin composition and molded article
JP2017186460A (en) * 2016-04-06 2017-10-12 東ソー株式会社 Additive for sealant and easily peelable film
JP2018150476A (en) * 2017-03-14 2018-09-27 日本ポリプロ株式会社 Propylene-based resin composition and molded article
JP2021193182A (en) * 2017-03-14 2021-12-23 日本ポリプロ株式会社 Method for stabilizing propylene-based resin
JP2020164585A (en) * 2019-03-28 2020-10-08 株式会社ボロン研究所 Antistatic acrylic resin and method for producing the same

Similar Documents

Publication Publication Date Title
JP2011079918A (en) Donor-acceptor hybrid-based internally kneaded type antistatic agent stably exhibiting antistatic property
KR101630590B1 (en) Antistatic agent, molded article comprising insulator polymer material, and method for producing same
JP5290313B2 (en) Method for producing resin composition
JPH11124465A (en) Antistatic resin composition containing phosphonium fluorinated sulfonate
CA2280028A1 (en) Electrostatic dissipative composition
JP2005015573A (en) Antistatic resin composition
JP2010100759A (en) Resin composition
US9428607B2 (en) Polylactic acid-polyalkylene glycol copolymer with fast crystallization rate and composition comprising the same
JP2005264059A (en) Method for producing composite resin composition, composite resin composition and composite resin molding
JP4515737B2 (en) Antistatic resin composition
JP2007119702A5 (en)
JP5078174B2 (en) Crystal nucleating agent for polylactic acid resin, polylactic acid resin composition, method for preparing crystal nucleating agent for polylactic acid resin, and method for preparing polylactic acid resin composition
EP4219628A1 (en) Resin composition for injection molding, and injection-molded object
Mohsin et al. Enhanced thermal, mechanical and morphological properties of CNT/HDPE nanocomposite using MMT as secondary filler
Fairgrieve Nucleating agents
TWI526449B (en) Molded product composed of antistatic agent and insulator polymer material and method for producing same
KR102140491B1 (en) Antistatic master batch composition for fiber and antistatic resin composition containing the same
JPS5853658B2 (en) Antistatic synthetic polymer material composition.
JP3930346B2 (en) Antistatic resin composition
JP2020059781A (en) Antistatic agent for polyolefin-based resin and polyolefin-based resin composition containing the same
JP4451639B2 (en) Antistatic resin composition
TWI550021B (en) Antistatic compositions comprising a thermoplastic polyester and a mixture of antistatic additives
JPS642137B2 (en)
JPS62179558A (en) Polyethylene terephthalate composition
JPH01259052A (en) Antistatic resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20130111

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625

A521 Written amendment

Effective date: 20130914

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20130914

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20131101

Free format text: JAPANESE INTERMEDIATE CODE: A821

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131126

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140811