JP2020146645A - Method of separating and refining fluid containing valuable object - Google Patents

Method of separating and refining fluid containing valuable object Download PDF

Info

Publication number
JP2020146645A
JP2020146645A JP2019046886A JP2019046886A JP2020146645A JP 2020146645 A JP2020146645 A JP 2020146645A JP 2019046886 A JP2019046886 A JP 2019046886A JP 2019046886 A JP2019046886 A JP 2019046886A JP 2020146645 A JP2020146645 A JP 2020146645A
Authority
JP
Japan
Prior art keywords
filtration
fluid
separating
fluid containing
solution tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019046886A
Other languages
Japanese (ja)
Other versions
JP7321729B2 (en
Inventor
秀輔 横田
Shusuke Yokota
秀輔 横田
隼人 前田
Hayato Maeda
隼人 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Original Assignee
Daicen Membrane Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd filed Critical Daicen Membrane Systems Ltd
Priority to JP2019046886A priority Critical patent/JP7321729B2/en
Publication of JP2020146645A publication Critical patent/JP2020146645A/en
Priority to JP2023100915A priority patent/JP7358675B2/en
Application granted granted Critical
Publication of JP7321729B2 publication Critical patent/JP7321729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method of separating and refining fluid while maintaining a high filtration flow rate.SOLUTION: A method of separating and refining fluid containing a valuable object includes a step of filtering fluid containing a valuable object in an undiluted solution tank. The fluid containing the valuable object has viscosity of 30 m Pas or less at 20°C and a shearing speed of 25 s-1 by filtration processing at the filtration step. The filtration step is of a method that filters the valuable object in the undiluted solution tank by supplying it to an excess filtration membrane module that uses a hollow fiber membrane with an inner diameter of 0.8-1.4 mm. The filtration method is a method that filters under conditions of a filtration pressure of 0.08-0.2 MPa and a line speed of 0.7-1.4 m/s by a cross flow method, and returns a refined liquid after filtration to the undiluted solution tank from a refining liquid line and drains a permeation liquid from a drainage line.SELECTED DRAWING: None

Description

本発明は、有価物を含む流体を中空糸型分離膜により分離精製する方法に関する。 The present invention relates to a method for separating and purifying a fluid containing valuable resources with a hollow fiber type separation membrane.

電気活性高分子溶液、顔料分散液、水溶性高分子溶液、塗料、インク、化粧品、または果汁などの液体は、濃度が高く(または温度が低く)なってくると、チキソトロピー性によって流体粘度が上昇する場合があり、このような高粘度状態となってからも継続して不純物を分離精製する方法が求められている。 Liquids such as electroactive polymer solutions, pigment dispersions, water-soluble polymer solutions, paints, inks, cosmetics, or fruit juices increase in fluid viscosity due to thixotropy at higher concentrations (or lower temperatures). In some cases, there is a demand for a method for continuously separating and purifying impurities even after such a high viscosity state is reached.

特許文献1には、ろ過対象物をろ過する方法であって、前記ろ過対象物は、チキソトロピー性を有し、粘度が0.1Pa・s〜30Pa・s(100〜30,000mPa・s)であり且つ粒子を含み、前記ろ過対象物の一部をフィルターに通し、当該フィルターの孔径よりも径の大きい粒子が除去されたろ過物を得ると共に、前記ろ過対象物の残りによって前記フィルターの表面に流れを発生させることを特徴とするろ過方法が開示されている。 Patent Document 1 describes a method of filtering an object to be filtered, wherein the object to be filtered has a thixotropic property and a viscosity of 0.1 Pa · s to 30 Pa · s (100 to 30,000 mPa · s). A filter containing particles and having a part of the object to be filtered is passed through a filter to obtain a filtered product from which particles having a diameter larger than the pore size of the filter have been removed, and the rest of the object to be filtered is applied to the surface of the filter. A filtration method characterized by generating a flow is disclosed.

特許文献2には、金属ナノ粒子を含む液体から金属ナノ粒子を分離する分離方法であって、前記金属ナノ粒子が、金属および金属化合物からなる平均粒子径が1〜300nmの範囲のものであり、前記分離方法が、濾過工程と洗浄工程を含む方法であり、前記濾過工程が、原液タンク内の金属ナノ粒子を含む液体を限外濾過膜モジュールに供給して濾過するとき、クロスフロー方式により濾過圧力50kPa以下で濾過して、金属ナノ粒子を含む精製液は原液タンクに戻し、透過液は排水する工程であり、前記洗浄工程が、濾過工程を中断して定期的に実施する逆圧洗浄工程であり、逆圧洗浄水として電気伝導度が300μS/cm以下の水を使用し、洗浄排水を前記原液タンクに戻す工程であり、前記濾過工程と前記洗浄工程の組み合わせを1サイクルとして、これを複数サイクル繰り返す、金属ナノ粒子の分離方法が開示されている。 Patent Document 2 describes a separation method for separating metal nanoparticles from a liquid containing metal nanoparticles, wherein the metal nanoparticles are composed of a metal and a metal compound and have an average particle diameter in the range of 1 to 300 nm. When the separation method includes a filtration step and a cleaning step, and the filtration step supplies a liquid containing metal nanoparticles in a stock solution tank to an ultrafiltration membrane module and filters it, a cross-flow method is used. It is a step of filtering at a filtration pressure of 50 kPa or less, returning the purified liquid containing metal nanoparticles to the stock solution tank, and draining the permeated liquid. The cleaning step is a reverse pressure cleaning performed periodically by interrupting the filtration process. This is a step of using water having an electric conductivity of 300 μS / cm or less as the back pressure washing water and returning the washing wastewater to the undiluted solution tank. The combination of the filtration step and the washing step is regarded as one cycle. A method for separating metal nanoparticles is disclosed, in which the above is repeated for a plurality of cycles.

特開2012−170901号公報Japanese Unexamined Patent Publication No. 2012-170901 特開2015−006646号公報Japanese Unexamined Patent Publication No. 2015-006646

本発明は、高粘度状態となってからも継続して高い濾過流量を維持したまま、流体を分離精製する方法を提供することを課題とする。 An object of the present invention is to provide a method for separating and purifying a fluid while continuously maintaining a high filtration flow rate even after a high viscosity state is reached.

本発明は、課題の解決手段として、
有価物を含む流体の分離精製方法であって、
前記分離精製方法が、原液タンク内の前記有価物を含む流体を濾過する工程を含む方法であり、
前記有価物を含む流体が、前記濾過工程の濾過処理により20℃、せん断速度25s-1における粘度が30mPa・s以下になるものであり、
前記濾過工程が、前記原液タンク内の有価物を内径0.8〜1.4mmの中空糸膜を使用した限外濾過膜モジュールに供給して濾過する方法であり、
前記濾過方法が、クロスフロー方式により濾過圧力0.08〜0.2MPa、線速0.7〜1.4m/sの条件で濾過する方法であり、
濾過後の精製液を精製液ラインから原液タンクに戻し、透過液を排水ラインから排水する、有価物を含む流体を分離精製する方法を提供する。
The present invention provides a means for solving a problem.
A method for separating and purifying a fluid containing valuable resources.
The separation and purification method is a method including a step of filtering a fluid containing the valuable material in a stock solution tank.
The fluid containing the valuable resources has a viscosity of 30 mPa · s or less at 20 ° C. and a shear rate of 25 s -1 by the filtration treatment in the filtration step.
The filtration step is a method of supplying valuable resources in the stock solution tank to an ultrafiltration membrane module using a hollow fiber membrane having an inner diameter of 0.8 to 1.4 mm for filtration.
The filtration method is a method of filtering under the conditions of a filtration pressure of 0.08 to 0.2 MPa and a linear velocity of 0.7 to 1.4 m / s by a cross flow method.
Provided is a method for separating and purifying a fluid containing valuable resources by returning the purified liquid after filtration from the refined liquid line to the stock solution tank and draining the permeated liquid from the drainage line.

本発明の有価物を含む流体を分離精製する方法によれば、分離精製の過程での流体粘度が高粘度状態であっても、高い濾過流量を維持したまま、流体から不純物を除去して、純度を高めることができる。 According to the method for separating and purifying a fluid containing valuable resources of the present invention, even if the fluid viscosity in the process of separation and purification is in a high viscosity state, impurities are removed from the fluid while maintaining a high filtration flow rate. Purity can be increased.

本発明の流体を分離精製する方法を実施するためのフロー図。The flow chart for carrying out the method of separating and purifying the fluid of this invention. 実施例1において有価物を含む流体を濾過するときの流体中の有価物の濃度と流体の温度、流体の粘度、せん断速度の関係を示したグラフ。The graph which showed the relationship between the concentration of a valuable substance in a fluid, the temperature of a fluid, the viscosity of a fluid, and the shear rate at the time of filtering a fluid containing a valuable substance in Example 1. 参考試験例の濾過圧力を一定で、線速を変動させた際の濾過流量をプロットしたグラフ。A graph plotting the filtration flow rate when the filtration pressure of the reference test example is constant and the linear velocity is fluctuated.

本発明の分離精製方法は、有価物を含む流体から不純物(目的の化合物の合成工程で副生する塩類やイオン分などの不純物など)を濾過工程により分離することで、有価物の純度を高めるための分離方法である。
以下、本発明の分離精製方法を図1の分離精製方法のフロー図により説明する。
The separation and purification method of the present invention enhances the purity of valuable resources by separating impurities (impurities such as salts and ions produced as by-products in the synthesis process of the target compound) from the fluid containing valuable resources by a filtration step. It is a separation method for.
Hereinafter, the separation and purification method of the present invention will be described with reference to the flow chart of the separation and purification method of FIG.

原液タンク1には、原液ライン10から供給された原液となる有価物を含む流体(以下、単に「流体」という)が入っている。原液タンク1には、撹拌装置を付設することができる。
原液タンク1内の原液は、濾過流量を高いレベルで維持し、不純物を除去し易くするため、濾過運転の開始前において希釈することができる。
このときに使用する希釈水は、電気伝導度が10μS/cm以下の純水が好ましく、1μS/cm以下の純水がより好ましい。
原液タンク1内の流体を希釈するときは、濾過工程における粘度上昇を考慮すると、20℃、せん断速度25s-1での粘度が30mPa・s未満となるように希釈することが好ましく、より好ましくは10mPa・s以下、さらに好ましくは5mPa・s以下に希釈する。
The undiluted solution tank 1 contains a fluid (hereinafter, simply referred to as “fluid”) containing valuable resources as an undiluted solution supplied from the undiluted solution line 10. A stirring device can be attached to the stock solution tank 1.
The stock solution in the stock solution tank 1 can be diluted before the start of the filtration operation in order to maintain the filtration flow rate at a high level and facilitate the removal of impurities.
The diluted water used at this time is preferably pure water having an electric conductivity of 10 μS / cm or less, and more preferably 1 μS / cm or less.
When diluting the fluid in the stock solution tank 1, considering the increase in viscosity in the filtration step, it is preferable to dilute the fluid so that the viscosity at 20 ° C. and a shear rate of 25 s -1 is less than 30 mPa · s, more preferably. Dilute to 10 mPa · s or less, more preferably 5 mPa · s or less.

本発明の分離精製対象となる流体は、前記濾過工程の濾過処理により20℃、せん断速度25s−1における粘度が30mPa・s以下になるものであれば特に制限されるものではなく、前記粘度は10〜30mPa・sが好ましい。
濾過工程の濾過処理により20℃、せん断速度25s-1における粘度が30mPa・sを超える場合には、中空糸膜を使用した限外濾過膜モジュールで濾過することが困難になる。
The fluid to be separated and purified of the present invention is not particularly limited as long as the viscosity at 20 ° C. and a shear rate of 25s-1 is 30 mPa · s or less by the filtration treatment in the filtration step, and the viscosity is not particularly limited. 10 to 30 mPa · s is preferable.
When the viscosity at 20 ° C. and a shear rate of 25 s -1 exceeds 30 mPa · s due to the filtration process in the filtration step, it becomes difficult to filter with an ultrafiltration membrane module using a hollow fiber membrane.

本発明の分離精製対象となる流体は、化合物(無機化合物、有機化合物)、天然物、それらの混合物からなる有価物を含有しているものであり、有価物は、高分子量のもの、水に溶解していない分散粒子である。
前記流体としては、電気活性高分子溶液(導電性ポリマーなどを含む溶液)、顔料分散液、水溶性高分子溶液(ポリフェノール、コンドロイチン、ゼラチンなどの天然高分子、またはポリビニルアルコールなどの合成高分子を含む溶液)、塗料、インク、化粧品、果汁などを挙げることができる。
The fluid to be separated and purified of the present invention contains valuable resources composed of compounds (inorganic compounds, organic compounds), natural products, and mixtures thereof, and the valuable resources are high-molecular-weight ones and water. It is an undissolved dispersed particle.
As the fluid, an electroactive polymer solution (a solution containing a conductive polymer or the like), a pigment dispersion, a water-soluble polymer solution (a natural polymer such as polyphenol, chondroitin or gelatin, or a synthetic polymer such as polyvinyl alcohol) is used. Contains solutions), paints, inks, cosmetics, fruit juices and the like.

原液タンク1内の原液(有価物を含む流体)は、原液送水ライン11から中空糸膜を使用した限外濾過膜モジュール2に供給して濾過分離される。ライン11にはポンプ21が設置されている。 The undiluted solution (fluid containing valuable resources) in the undiluted solution tank 1 is supplied from the undiluted solution water supply line 11 to the ultrafiltration membrane module 2 using the hollow fiber membrane, and is filtered and separated. A pump 21 is installed on the line 11.

濾過膜(分離膜)は、本発明の濾過運転や逆圧洗浄が容易であることから、中空糸膜であり、中空糸膜は、内圧型、外圧型のいずれでも使用できるが、適切な膜面線速の確保や、逆圧洗浄の容易性の面から内圧型が好ましい。
中空糸膜の内径は、0.8〜1.4mmであり、0.9〜1.3mmが好ましい。
中空糸膜の内径が、0.8mm未満の場合は、高粘度状態(流体の粘度が30mPa・sを超える場合)における濾過流量確保が困難になり、中空糸膜の内径が、1.4mmを上回る場合には、限外濾過膜モジュール内の有効濾過面積が減るため単位面積当たりの濾過流量が低下することで、精製目的を満足できない場合がある。
中空糸膜の分画分子量は、精製目的に合わせ決定されるが、濾過膜の分画分子量3,000〜300,000のものが挙げられ、さらには6,000〜200,000のものが挙げられる。
限外濾過膜モジュール2で使用する濾過膜(分離膜)は公知の材質からなるものを使用できるが、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリルなどを挙げることができ、ポリエーテルスルホンが好ましい。
The filtration membrane (separation membrane) is a hollow fiber membrane because the filtration operation and back pressure cleaning of the present invention are easy. The hollow fiber membrane can be used in either an internal pressure type or an external pressure type, but is an appropriate membrane. The internal pressure type is preferable from the viewpoint of ensuring the surface line speed and facilitating back pressure cleaning.
The inner diameter of the hollow fiber membrane is 0.8 to 1.4 mm, preferably 0.9 to 1.3 mm.
If the inner diameter of the hollow fiber membrane is less than 0.8 mm, it becomes difficult to secure the filtration flow rate in a high viscosity state (when the viscosity of the fluid exceeds 30 mPa · s), and the inner diameter of the hollow fiber membrane is 1.4 mm. If it exceeds the limit, the effective filtration area in the ultrafiltration membrane module is reduced, so that the filtration flow rate per unit area is reduced, and the purification purpose may not be satisfied.
The molecular weight cut-off of the hollow fiber membrane is determined according to the purpose of purification, and examples thereof include those having a molecular weight cut-off of 3,000 to 300,000, and further 6,000 to 200,000.
The filtration membrane (separation membrane) used in the ultrafiltration membrane module 2 can be made of a known material, and examples thereof include polysulfone, polyether sulfone, and polyacrylonitrile, and polyether sulfone is preferable.

濾過は、クロスフロー方式により濾過圧力0.08〜0.2MPa、線速0.7〜1.4m/sの条件で濾過する。
濾過圧力は、好ましくは0.10〜0.18MPaであり、線速は、好ましくは0.8〜1.2m/sである。
濾過圧力が0.08MPa未満の場合は、高粘度状態における線速確保が困難になり、線速が確保できなければ益々濾過流量の確保ができなくなる。
濾過圧力が0.2MPaを上回る場合でも、電気消費量の割に濾過流量は上昇せず、エネルギー効率が落ちる。
線速が0.7m/s未満の場合は、高粘度状態においては流体粘度が高いため濾過流量の確保が困難となり、線速が1.4m/sを上回った場合でも、流体粘度が極端に低下するわけではないので濾過流量が大幅には上昇せず、エネルギー効率が落ちる。
Filtration is performed by a cross-flow method under the conditions of a filtration pressure of 0.08 to 0.2 MPa and a linear velocity of 0.7 to 1.4 m / s.
The filtration pressure is preferably 0.10 to 0.18 MPa, and the linear velocity is preferably 0.8 to 1.2 m / s.
When the filtration pressure is less than 0.08 MPa, it becomes difficult to secure the linear velocity in a high viscosity state, and if the linear velocity cannot be secured, the filtration flow rate cannot be secured more and more.
Even when the filtration pressure exceeds 0.2 MPa, the filtration flow rate does not increase for the electricity consumption, and the energy efficiency decreases.
When the linear velocity is less than 0.7 m / s, it is difficult to secure the filtration flow rate because the fluid viscosity is high in the high viscosity state, and even when the linear velocity exceeds 1.4 m / s, the fluid viscosity becomes extremely high. Since it does not decrease, the filtration flow rate does not increase significantly, and energy efficiency decreases.

濾過後、目的の有価物を含む精製液(濃縮液)は、精製液ライン12から原液タンク1に戻し、不純物を含む透過液は透過液ライン13、14から透過液タンク3に送った後、排水する。なお、透過液ライン13と透過液ライン14との分岐部分には開閉弁(電磁弁など)を設けることができる。
濾過工程は30〜60分間の間隔で実施することが好ましい。
After filtration, the purified liquid (concentrated liquid) containing the target valuable resources is returned from the purified liquid line 12 to the stock solution tank 1, and the permeated liquid containing impurities is sent from the permeated liquid lines 13 and 14 to the permeated liquid tank 3. Drain. An on-off valve (solenoid valve or the like) can be provided at the branch portion between the permeate line 13 and the permeate line 14.
The filtration step is preferably carried out at intervals of 30 to 60 minutes.

濾過工程において20℃、せん断速度25s-1での流体粘度が30mPa・sを上回ると、濾過流量の確保が困難になる。その場合は、原液送水ライン11または限外濾過膜モジュール2に設けた加温装置により流体温度を上げることによって流体粘度を下げ、20℃、せん断速度25s-1で測定した場合における流体粘度が30mPa・s未満になるようにすることが好ましい。 If the fluid viscosity at 20 ° C. and a shear rate of 25 s -1 exceeds 30 mPa · s in the filtration step, it becomes difficult to secure the filtration flow rate. In that case, the fluid viscosity is lowered by raising the fluid temperature by a heating device provided in the stock solution water supply line 11 or the ultrafiltration membrane module 2, and the fluid viscosity when measured at 20 ° C. and a shear rate of 25 s -1 is 30 mPa. -It is preferable to make it less than s.

本発明の分離精製方法は、洗浄工程を含むことが好ましい。
洗浄工程は、所定時間だけ濾過工程を実施した後、濾過工程を中断して、逆圧洗浄を実施することが好ましい。
逆圧洗浄は、ポンプ22を駆動させ、逆圧洗浄水タンク4内の水を逆圧洗浄ライン(一部を透過液ライン13と共用している)13から限外濾過膜モジュール2に供給して実施する。
逆圧洗浄は1〜2分間実施する。
逆圧洗浄時の圧力は、濾過圧力(最大で0.2MPa)よりも高い圧力であり、0.1〜0.22MPaであることが好ましく、0.12〜0.2MPaであることがより好ましい。
逆圧洗浄水タンク4の水(逆圧洗浄水)は、洗浄水(純水)供給ライン15から供給された電気伝導度が300μS/cm以下の水であり、好ましくは10μS/cm以下の水であり、より好ましくは1μS/cm以下の水である。
逆圧洗浄後の排水(逆圧洗浄排水)は、限外濾過膜モジュール2の膜面に付着していた微量の有価物を含んでおり、原液送水ライン11の一部と、逆圧洗浄排水ライン15から原液タンク1に戻す。
このようにして微量の有価物を含む逆圧洗浄排水を原液タンク1に戻すことによって、有価物の回収率が高められるほか、原液濃度(原液粘度)を低下させることができるので好ましい。
なお、原液送水ライン11と逆圧洗浄排水ライン15との分岐部分には開閉弁(電磁弁など)を設けることができる。
The separation and purification method of the present invention preferably includes a washing step.
In the cleaning step, it is preferable to carry out the filtration step for a predetermined time, then interrupt the filtration step and carry out back pressure cleaning.
In the back pressure cleaning, the pump 22 is driven to supply the water in the back pressure cleaning water tank 4 from the back pressure cleaning line (partly shared with the permeate line 13) 13 to the ultrafiltration membrane module 2. To carry out.
Back pressure washing is performed for 1 to 2 minutes.
The pressure during back pressure cleaning is higher than the filtration pressure (up to 0.2 MPa), preferably 0.1 to 0.22 MPa, and more preferably 0.12 to 0.2 MPa. ..
The water in the back pressure washing water tank 4 (back pressure washing water) is water having an electrical conductivity of 300 μS / cm or less, preferably 10 μS / cm or less, supplied from the washing water (pure water) supply line 15. It is more preferably water of 1 μS / cm or less.
The drainage after back pressure cleaning (back pressure cleaning drainage) contains a small amount of valuable resources adhering to the membrane surface of the ultrafiltration membrane module 2, and is a part of the undiluted solution water supply line 11 and the back pressure cleaning drainage. Return to the undiluted solution tank 1 from the line 15.
By returning the back pressure washing wastewater containing a small amount of valuable resources to the stock solution tank 1 in this way, the recovery rate of the valuable resources can be increased and the stock solution concentration (stock solution viscosity) can be lowered, which is preferable.
An on-off valve (solenoid valve or the like) can be provided at the branch portion between the undiluted solution water supply line 11 and the back pressure cleaning drainage line 15.

本発明の分離精製方法では、濾過工程と洗浄工程の組み合わせを1サイクルとして、これを複数サイクル繰り返すことが好ましい。
繰り返すサイクル数は、好ましくは2〜5サイクルであり、より好ましくは2〜4サイクルである。
In the separation and purification method of the present invention, it is preferable that the combination of the filtration step and the washing step is set as one cycle, and this is repeated for a plurality of cycles.
The number of cycles to be repeated is preferably 2 to 5 cycles, more preferably 2 to 4 cycles.

本発明の分離精製方法では、原液タンク1に精製液を戻した後、原液タンク1中に電気伝導度が10μS/cm以下の水を入れて希釈することで、濾過工程の濾過処理において有価物を含む流体の20℃、せん断速度25s-1における粘度が30mPa・s以下、好ましくは10mPa・s以下、より好ましくは5mPa・s以下になるように調整する希釈工程を含むことができる。
希釈工程は、図1には示していないが、原液タンク1と希釈液供給源を接続するラインから供給することができる。
希釈量は、例えば、排水する透過液量と同量以上を希釈することができる。
In the separation and purification method of the present invention, after returning the purified liquid to the stock solution tank 1, water having an electric conductivity of 10 μS / cm or less is added to the stock solution tank 1 to dilute it, which is a valuable resource in the filtration process of the filtration step. A dilution step can be included in which the viscosity of the fluid containing the above is adjusted to be 30 mPa · s or less, preferably 10 mPa · s or less, more preferably 5 mPa · s or less at a shear rate of 25 s- 1 .
Although the dilution step is not shown in FIG. 1, it can be supplied from a line connecting the stock solution tank 1 and the diluent supply source.
The amount of dilution can be, for example, equal to or greater than the amount of permeate to be drained.

原液タンク1に水を入れる希釈工程と洗浄工程における洗浄排水を原液タンク1に戻す工程は、両方を組み合わせて実施することが好ましいが、いずれか一方のみを実施することもできる。
なお、洗浄工程において浄排水を原液タンク1に戻す工程を実施しないときは、前記洗浄排水はそのまま排出する。
このように原液タンク1内の原液を希釈しながら濾過運転を実施することで、限外濾過膜モジュールで使用している中空糸膜の閉塞が抑えられ、濾過流量が高いレベルで維持される。
本発明の分離精製方法は、流体粘度が高粘度状態になる過程を含む流体から目的の有価物を分離、精製する方法として適している。
The dilution step of putting water in the stock solution tank 1 and the step of returning the washing wastewater to the stock solution tank 1 in the washing step are preferably carried out in combination of both, but only one of them can be carried out.
If the step of returning the purified wastewater to the undiluted solution tank 1 is not performed in the cleaning step, the cleaning wastewater is discharged as it is.
By performing the filtration operation while diluting the stock solution in the stock solution tank 1 in this way, blockage of the hollow fiber membrane used in the ultrafiltration membrane module is suppressed, and the filtration flow rate is maintained at a high level.
The separation and purification method of the present invention is suitable as a method for separating and purifying a target valuable resource from a fluid including a process in which the fluid viscosity becomes highly viscous.

実施例1
<濾過工程>
市販の顔料分散液(MF-5630 Black、大日精化(株)製、カーボンブラック固形分濃度32質量%)に対して、カーボンブラックの濃度が16.5質量%になるように純水(電気伝導度1μS/cm)で希釈した。さらに不純物として硫酸ナトリウムを0.5質量%になるように添加・溶解して未精製原液(原液)(2mPa・s)とした。
この未精製原液を、ポリエーテルスルホン素材でできた中空糸膜の内径が1.2mm、分画分子量が1万の限外濾過中空糸膜モジュール(FB03-VC-FUS15C1;ダイセン・メンブレン・システムズ(株)製)を用いて、濾過圧力0.1MPa、線速1.0m/s、液温度25℃にてクロスフロー濾過を行った。このとき原液タンク内の原液は撹拌した。
このクロスフロー濾過により透過液側に硫酸ナトリウムが移行し、精製液側にカーボンブラックが移行した。
精製液は原液タンクに戻し、透過液は透過液タンクに送った。
Example 1
<Filtration process>
Pure water (electricity) so that the concentration of carbon black is 16.5% by mass with respect to the commercially available pigment dispersion (MF-5630 Black, manufactured by Dainichiseika Co., Ltd., carbon black solid content concentration 32% by mass). Diluted with conductivity 1 μS / cm). Further, sodium sulfate was added and dissolved as an impurity so as to be 0.5% by mass to obtain an unpurified stock solution (stock solution) (2 mPa · s).
This unpurified undiluted solution is an ultrafiltration hollow fiber membrane module (FB03-VC-FUS15C1; Daisen Membrane Systems) with an inner diameter of 1.2 mm and a molecular weight cut-off of 10,000. Cross-flow filtration was performed at a filtration pressure of 0.1 MPa, a linear velocity of 1.0 m / s, and a liquid temperature of 25 ° C. using (manufactured by Co., Ltd.). At this time, the undiluted solution in the undiluted solution tank was stirred.
By this cross-flow filtration, sodium sulfate was transferred to the permeate side, and carbon black was transferred to the purified liquid side.
The purified liquid was returned to the stock solution tank, and the permeate was sent to the permeation tank.

<洗浄工程>
濾過運転を30分継続した後、濾過運転を停止して、逆圧洗浄を1分間実施した。逆圧洗浄に使用した逆圧洗浄水は電気伝導度1μS/cmであった。逆圧洗浄排水の全量を原液タンクに戻した。
<Washing process>
After continuing the filtration operation for 30 minutes, the filtration operation was stopped and back pressure washing was performed for 1 minute. The back pressure washing water used for back pressure washing had an electric conductivity of 1 μS / cm. The entire amount of back pressure cleaning wastewater was returned to the stock solution tank.

上記の濾過工程と洗浄工程の組み合わせを1サイクルとして繰り返し行いながら、未精製原液を対液量比で2倍まで濃縮を実施した。その後、精製液に純水(電気伝導度1μS/cm)を希釈倍率が2倍となるように加えた。
希釈後、上記の濾過工程と洗浄工程の組み合わせのサイクルを繰り返し行うことで、加水量と同量を濾過処理し、再度加水する操作を合計2回繰り返した。
未精製原液の濾過時の平均濾過流量は7g/分、1回目の加水後の濾過時の平均濾過流量は15g/分、2回目の加水後の濾過時の平均濾過流量は18g/分であった。
未精製原液の電気伝導度は3100μS/cmであり、全操作後のカーボンブラックを含む最終精製液の電気伝導度は1400μS/cmであった。
この結果から、高い濾過流量を維持したまま、不純物(硫酸ナトリウム)が除去され、カーボンブラックの純度が高められたことが確認された。
また、最終精製液を英弘精機(株)製のコーンプレート型粘度計DV2Tを用いて、20℃における、せん断速度25s-1での粘度を測定したところ、18mPa・sであり、流体粘度が高粘度状態になる過程を含んでいることを確認した。最終精製液の温度が10℃、30℃の粘度測定結果を併せ、図2に示した。
図2は、顔料分散液中のカーボンブラック濃度と顔料分散液の違いとせん断速度(横軸)と粘度(縦軸)との関係を示すグラフである。
図2中、
30は、濃度10質量%、温度10℃、
31は、濃度10質量%、温度20℃、
32は、濃度10質量%、温度30℃、
33は、濃度20質量%、温度20℃、
34は、濃度20質量%、温度30℃、
35は、濃度32質量%、温度10℃、
36は、濃度32質量%、温度20℃、
30は、濃度32質量%、温度30℃を示す。
While repeating the combination of the above filtration step and washing step as one cycle, the unpurified undiluted solution was concentrated up to twice the volume ratio. Then, pure water (electrical conductivity 1 μS / cm) was added to the purified liquid so that the dilution ratio was doubled.
After the dilution, the cycle of the combination of the above filtration step and the washing step was repeated to filter the same amount as the amount of water added, and the operation of adding water again was repeated twice in total.
The average filtration flow rate during filtration of the unpurified stock solution was 7 g / min, the average filtration flow rate during filtration after the first addition was 15 g / min, and the average filtration flow rate during filtration after the second addition was 18 g / min. It was.
The electrical conductivity of the unpurified stock solution was 3100 μS / cm, and the electrical conductivity of the final purified solution containing carbon black after all operations was 1400 μS / cm.
From this result, it was confirmed that impurities (sodium sulfate) were removed and the purity of carbon black was enhanced while maintaining a high filtration flow rate.
Further, when the viscosity of the final purified liquid was measured at a shear rate of 25 s -1 at 20 ° C. using a cone plate type viscometer DV2T manufactured by Eiko Seiki Co., Ltd., it was 18 mPa · s, and the fluid viscosity was high. It was confirmed that it included a process of becoming viscous. The results of viscosity measurement when the temperature of the final purified liquid was 10 ° C. and 30 ° C. were also shown in FIG.
FIG. 2 is a graph showing the relationship between the carbon black concentration in the pigment dispersion, the difference between the pigment dispersion, the shear rate (horizontal axis), and the viscosity (vertical axis).
In Fig. 2,
30 has a concentration of 10% by mass and a temperature of 10 ° C.
31 has a concentration of 10% by mass and a temperature of 20 ° C.
32 has a concentration of 10% by mass, a temperature of 30 ° C., and
33 has a concentration of 20% by mass and a temperature of 20 ° C.
34 has a concentration of 20% by mass and a temperature of 30 ° C.
35 has a concentration of 32% by mass and a temperature of 10 ° C.
36 has a concentration of 32% by mass and a temperature of 20 ° C.
Reference numeral 30 denotes a concentration of 32% by mass and a temperature of 30 ° C.

比較例1
実施例1と同じ未精製原液を用いて、濾過工程において、濾過圧力を0.75MPa、線速を0.6m/sにてクロスフロー濾過を行った以外は、実施例1と同様の方法でカーボンブラックの分離精製を行った。
未精製原液の濃縮時の平均濾過流量は2g/分、1回目の加水後の濃縮時の平均濾過流量は5g/分、2回目の加水後の濃縮時の平均濾過流量は8g/分であり、実施例1と比較して実質的な処理効率が得られなかった。
Comparative Example 1
Using the same unpurified stock solution as in Example 1, in the filtration step, cross-flow filtration was performed at a filtration pressure of 0.75 MPa and a linear velocity of 0.6 m / s, except that the same method as in Example 1 was used. Carbon black was separated and purified.
The average filtration flow rate during concentration of the unpurified stock solution is 2 g / min, the average filtration flow rate during concentration after the first addition is 5 g / min, and the average filtration flow rate during concentration after the second addition is 8 g / min. , Substantial processing efficiency was not obtained as compared with Example 1.

参考試験例
実施例1と同じ未精製原液を純水(電気伝導度1μS/cm)で2倍希釈した液体を用いて、実施例1の濾過工程に記載の濾過方法で、濾過圧力を0.03、0.05、0.075、0.1、0.13MPaの5点にそれぞれ固定し、線速を変動させた際の濾過流量をプロットしたグラフを図3に示す。
図3の結果より、実施例1の未精製原液を2倍希釈した場合でも、濾過圧力が0.08MPa未満の場合、線速を上げても、濾過流量は上昇しないことが分かった。
Reference test example Using a liquid obtained by diluting the same unpurified stock solution as in Example 1 with pure water (electrical conductivity 1 μS / cm) twice, the filtration pressure was set to 0 by the filtration method described in the filtration step of Example 1. FIG. 3 shows a graph in which the filtration flow rate is plotted when the linear velocity is changed by fixing at 5 points of 03, 0.05, 0.075, 0.1, and 0.13 MPa, respectively.
From the results of FIG. 3, it was found that even when the unpurified stock solution of Example 1 was diluted 2-fold, when the filtration pressure was less than 0.08 MPa, the filtration flow rate did not increase even if the linear velocity was increased.

本発明の有価物を含む流体を分離精製する方法は、電気活性高分子溶液(導電性ポリマーなどを含む溶液)、顔料分散液、水溶性高分子溶液(ポリフェノール、コンドロイチン、ゼラチンなどの天然高分子、または変性ポリビニルアルコールなどの合成高分子を含む溶液)、塗料、インク、化粧品、果汁などから不純物を除去して精製する方法に利用することができる。 The method for separating and purifying a fluid containing valuable resources of the present invention is a method for separating and purifying an electroactive polymer solution (solution containing a conductive polymer, etc.), a pigment dispersion, and a water-soluble polymer solution (natural polymers such as polyphenol, chondroitin, and gelatin). , Or a solution containing a synthetic polymer such as modified polyvinyl alcohol), paints, inks, cosmetics, fruit juices, etc. can be used for purification by removing impurities.

1 原液タンク
2 限外濾過膜モジュール
3 透過液タンク
4 逆圧洗浄水タンク
10 原液ライン
11 原液送水ライン
12 精製液ライン
13 透過液ライン
15 逆圧洗浄排水ライン
1 Undiluted solution tank 2 Ultrafiltration membrane module 3 Permeate tank 4 Reverse pressure wash water tank 10 Undiluted solution line 11 Undiluted solution water supply line 12 Purified solution line 13 Permeate line 15 Reverse pressure wash drainage line

Claims (8)

有価物を含む流体の分離精製方法であって、
前記分離精製方法が、原液タンク内の前記有価物を含む流体を濾過する工程を含む方法であり、
前記有価物を含む流体が、前記濾過工程の濾過処理において20℃、せん断速度25s-1における粘度が30mPa・s以下になるものであり、
前記濾過工程が、前記原液タンク内の有価物を含む流体を内径0.8〜1.4mmの中空糸膜を使用した限外濾過膜モジュールに供給して濾過する方法であり、
前記濾過方法が、クロスフロー方式により濾過圧力0.08〜0.2MPa、線速0.7〜1.4m/sの条件で濾過する方法であり、
濾過後の精製液を精製液ラインから原液タンクに戻し、透過液を排水ラインから排水する、有価物を含む流体を分離精製する方法。
A method for separating and purifying a fluid containing valuable resources.
The separation and purification method is a method including a step of filtering a fluid containing the valuable material in a stock solution tank.
The fluid containing the valuable resources has a viscosity of 30 mPa · s or less at 20 ° C. and a shear rate of 25 s -1 in the filtration process of the filtration step.
The filtration step is a method of supplying a fluid containing valuable resources in the stock solution tank to an ultrafiltration membrane module using a hollow fiber membrane having an inner diameter of 0.8 to 1.4 mm and filtering the fluid.
The filtration method is a method of filtering under the conditions of a filtration pressure of 0.08 to 0.2 MPa and a linear velocity of 0.7 to 1.4 m / s by a cross flow method.
A method of separating and purifying a fluid containing valuable resources by returning the purified liquid after filtration from the refined liquid line to the stock solution tank and draining the permeated liquid from the drainage line.
前記濾過工程が洗浄工程を含む工程であり、
前記洗浄工程が、濾過工程を停止して定期的に実施する逆圧洗浄工程であり、逆圧洗浄水として電気伝導度が300μS/cm以下の水を使用し、洗浄排水を前記原液タンクに戻す工程であり、
前記濾過工程と前記洗浄工程の組み合わせを1サイクルとして、これを複数サイクル繰り返す、請求項1に記載の有価物を含む流体を分離精製する方法。
The filtration step is a step including a cleaning step.
The cleaning step is a back pressure cleaning step that is periodically performed by stopping the filtration process. Water having an electric conductivity of 300 μS / cm or less is used as the back pressure cleaning water, and the cleaning wastewater is returned to the stock solution tank. It's a process
The method for separating and purifying a fluid containing a valuable resource according to claim 1, wherein the combination of the filtration step and the cleaning step is regarded as one cycle, and this is repeated for a plurality of cycles.
前記濾過工程において、前記原液タンクに精製液を戻した後、前記原液タンク中に電気伝導度が10μS/cm以下の水を入れて希釈することで、前記濾過工程の濾過処理において有価物を含む流体の20℃、せん断速度25s-1における粘度が30mPa・s以下になるように調整する工程を含んでいる、請求項1または2記載の流体を分離精製する方法。 In the filtration step, after returning the purified liquid to the stock solution tank, water having an electric conductivity of 10 μS / cm or less is put into the stock solution tank to dilute it, thereby containing valuable resources in the filtration process of the filtration step. The method for separating and purifying a fluid according to claim 1 or 2, which comprises a step of adjusting the viscosity of the fluid at 20 ° C. and a shear rate of 25 s -1 to 30 mPa · s or less. 前記有価物を含む流体の温度を上げることで、濾過工程における前記流体の20℃、せん断速度25s-1の粘度が30mPa・s以下になるように調整する、請求項1〜3のいずれか1項に記載の流体を分離精製する方法。 Any one of claims 1 to 3 is adjusted so that the viscosity of the fluid at 20 ° C. and a shear rate of 25 s -1 in the filtration step is 30 mPa · s or less by raising the temperature of the fluid containing the valuable material. The method for separating and purifying the fluid according to the item. 前記濾過工程において、濾過開始前の前記有価物を含む流体を希釈して、20℃、せん断速度25s-1における粘度が5mPa・s以下になるように調整する、請求項1〜4のいずれか1項記載の流体を分離精製する方法。 Any of claims 1 to 4, wherein in the filtration step, the fluid containing the valuable material before the start of filtration is diluted and adjusted so that the viscosity at 20 ° C. and a shear rate of 25 s -1 is 5 mPa · s or less. The method for separating and purifying the fluid according to item 1. 前記濾過工程が30〜60分間濾過運転を実施する工程であり、前記洗浄工程が1〜2分間逆圧洗浄する工程である、請求項1〜5のいずれか1項に記載の流体を分離精製する方法。 The fluid according to any one of claims 1 to 5, wherein the filtration step is a step of performing a filtration operation for 30 to 60 minutes, and the washing step is a step of back pressure washing for 1 to 2 minutes. how to. 限外濾過膜モジュールが、濾過膜としてポリエーテルスルホンからなる中空糸膜を使用しているものである、請求項1〜6のいずれか1項に記載の流体を分離精製する方法。 The method for separating and purifying a fluid according to any one of claims 1 to 6, wherein the ultrafiltration membrane module uses a hollow fiber membrane made of polyether sulfone as the filtration membrane. 前記有価物を含む流体が、電気活性高分子溶液、顔料分散液、水溶性高分子溶液、塗料、インク、化粧品、果汁から選ばれるものである、請求項1〜7のいずれか1項に記載の流体を分離精製する方法。 The fluid according to any one of claims 1 to 7, wherein the fluid containing the valuable material is selected from an electroactive polymer solution, a pigment dispersion, a water-soluble polymer solution, a paint, an ink, cosmetics, and fruit juice. How to separate and purify the fluid.
JP2019046886A 2019-03-14 2019-03-14 Method for separating and purifying fluid containing valuables Active JP7321729B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019046886A JP7321729B2 (en) 2019-03-14 2019-03-14 Method for separating and purifying fluid containing valuables
JP2023100915A JP7358675B2 (en) 2019-03-14 2023-06-20 Method for separating and purifying fluids containing valuables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046886A JP7321729B2 (en) 2019-03-14 2019-03-14 Method for separating and purifying fluid containing valuables

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023100915A Division JP7358675B2 (en) 2019-03-14 2023-06-20 Method for separating and purifying fluids containing valuables

Publications (2)

Publication Number Publication Date
JP2020146645A true JP2020146645A (en) 2020-09-17
JP7321729B2 JP7321729B2 (en) 2023-08-07

Family

ID=72431226

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019046886A Active JP7321729B2 (en) 2019-03-14 2019-03-14 Method for separating and purifying fluid containing valuables
JP2023100915A Active JP7358675B2 (en) 2019-03-14 2023-06-20 Method for separating and purifying fluids containing valuables

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023100915A Active JP7358675B2 (en) 2019-03-14 2023-06-20 Method for separating and purifying fluids containing valuables

Country Status (1)

Country Link
JP (2) JP7321729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054648A1 (en) 2021-09-30 2023-04-06 東レ株式会社 Method for operating hollow fiber membrane module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076143A (en) * 1996-09-05 1998-03-24 Asahi Chem Ind Co Ltd Filtration treatment and filter
JP2006321677A (en) * 2005-05-18 2006-11-30 Nippon Chem Ind Co Ltd High purity phosphoric acid and its production method
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2012017369A (en) * 2010-07-06 2012-01-26 Kao Corp Method of producing pigment dispersion for color filter
JP2018150192A (en) * 2017-03-13 2018-09-27 株式会社ダイセル Method for producing nanodiamond water dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076143A (en) * 1996-09-05 1998-03-24 Asahi Chem Ind Co Ltd Filtration treatment and filter
JP2006321677A (en) * 2005-05-18 2006-11-30 Nippon Chem Ind Co Ltd High purity phosphoric acid and its production method
JP2011079701A (en) * 2009-10-07 2011-04-21 Mitsubishi Gas Chemical Co Inc Method for producing purified graphite oxide particle-containing liquid
JP2012017369A (en) * 2010-07-06 2012-01-26 Kao Corp Method of producing pigment dispersion for color filter
JP2018150192A (en) * 2017-03-13 2018-09-27 株式会社ダイセル Method for producing nanodiamond water dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054648A1 (en) 2021-09-30 2023-04-06 東レ株式会社 Method for operating hollow fiber membrane module

Also Published As

Publication number Publication date
JP2023123616A (en) 2023-09-05
JP7358675B2 (en) 2023-10-10
JP7321729B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
JP7358675B2 (en) Method for separating and purifying fluids containing valuables
JP2013085983A (en) Organic wastewater collection processing device and collection processing method
CN202016917U (en) Secondary landfill leachate treatment system
CN106630311A (en) Desulfurization wastewater zero-discharge treatment method
JP2018502710A (en) Method and system for solar driven osmotic water purification
Karakulski et al. Production of process water using integrated membrane processes
CN104086011A (en) Zero discharge process suitable for waste water of viscose fiber industrial acid station
WO2012138900A1 (en) Use of rhamnolipids in the water treatment industry
KR20170100882A (en) Eco-friendly desalination system using forward osmosis and reverse osmosis
CN107010768A (en) Derived energy chemical strong brine Zero discharging system and its handling process
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material
JP3817799B2 (en) Wastewater membrane treatment equipment
KR102203037B1 (en) Treatment method and treatment device for wastewater containing cationic surfactant
CN216427235U (en) Silicon chip cutting fluid resource utilization device
JP2019188338A (en) Water treatment method and water treatment apparatus
JP2018192453A (en) Membrane filtration apparatus and method
CN214243957U (en) Waste water recovery device
CN211111443U (en) Oil-containing wastewater emulsification, concentration, separation and oil removal device
CN101475275B (en) Water recovery processing system and water recovery processing method
US20230019509A1 (en) Methods and apparatus for removing contaminants from an aqueous material
CN113045062A (en) Resourceful treatment method and system for chelating agent production wastewater
JP5802580B2 (en) Membrane filtration device
JP2022174372A (en) Water treatment apparatus and water treatment method
JPH1157710A (en) Device for treating waste water with membrane
JP2016112518A (en) Deoxidation apparatus, and production method of deoxidized water

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230620

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150