JP2011023704A - Lead frame for led - Google Patents

Lead frame for led Download PDF

Info

Publication number
JP2011023704A
JP2011023704A JP2010094492A JP2010094492A JP2011023704A JP 2011023704 A JP2011023704 A JP 2011023704A JP 2010094492 A JP2010094492 A JP 2010094492A JP 2010094492 A JP2010094492 A JP 2010094492A JP 2011023704 A JP2011023704 A JP 2011023704A
Authority
JP
Japan
Prior art keywords
film
led
alloy
alloy film
element mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094492A
Other languages
Japanese (ja)
Other versions
JP5525315B2 (en
Inventor
Jun Suzuki
順 鈴木
Toshiki Sato
俊樹 佐藤
Hidehito Okamoto
秀仁 岡本
Toshiyuki Mitsui
俊幸 三井
Jin Suematsu
仁 末松
Masayasu Nishimura
昌泰 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Leadmikk Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2010094492A priority Critical patent/JP5525315B2/en
Publication of JP2011023704A publication Critical patent/JP2011023704A/en
Application granted granted Critical
Publication of JP5525315B2 publication Critical patent/JP5525315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead frame for an LED, the lead frame having a reflective film that maintains high reflectivity for a long period and is stably and easily formed. <P>SOLUTION: The lead frame 10 for LED is formed by stacking a substrate 11 made of copper or copper alloy and an Ag alloy film 13 containing 0.06-0.5 at.% Ge and 0.02-0.2 at.% Bi across an Ag plating film 12 formed on a surface of the substrate, and the Ag alloy film 13 is formed by a sputtering method to concentrate Ge and Bi on a surface, thereby imparting heat resistance, resistance to halogenation, and resistance to sulfidization. Further, the film thickness of the Ag alloy film 13 which is not easily made thick is limited to 20-500 nm, and the total thickness including the Ag plating film 12 is set to ≥0.6 μm, thereby preventing discoloration due to diffusion of Cu from the substrate 11 to the surface. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶ディスプレイのバックライト、照明器具、自動車のヘッドランプやリアランプ等に用いられる発光ダイオード(LED:Light Emitting Diode)を光源とする発光装置を構成するLED用リードフレームに関する。   The present invention relates to an LED lead frame constituting a light emitting device using a light emitting diode (LED) used as a light source for a backlight of a liquid crystal display, a lighting fixture, an automobile headlamp, a rear lamp, and the like.

近年、LED素子を光源とする発光装置が、省エネルギかつ長寿命である利点を活かして、広範囲の分野に普及し、各種機器に適用されている。LED素子を光源とする発光装置の一例として、表面実装型の発光装置の構造および動作について、図7を参照して説明する。図7はLED素子を光源とする表面実装型の発光装置の模式図であり、(a)は斜視図、(b)は(a)のG−G線矢視断面図である。   2. Description of the Related Art In recent years, light-emitting devices using LED elements as light sources have spread in a wide range of fields and applied to various devices, taking advantage of energy saving and long life. As an example of a light-emitting device using an LED element as a light source, the structure and operation of a surface-mounted light-emitting device will be described with reference to FIG. 7A and 7B are schematic views of a surface-mounted light-emitting device using an LED element as a light source. FIG. 7A is a perspective view, and FIG. 7B is a cross-sectional view taken along line GG in FIG.

図7(a)、(b)に示すように、発光装置100は、LED素子(図中では「LED」と記載する。)と、LED素子が収容される凹状の素子実装部122が形成された樹脂製のLED素子実装体102と、LED素子実装体102の外側から素子実装部122内側へ貫通する帯状の銅等からなる一対のリード部材101a,101bと、備える。LED素子実装体102は、素子実装部122の上方が広がって開口したカップ状で、この素子実装部122の開口部から、LED素子の発光した光が発光装置100の外部へ照射される。   As shown in FIGS. 7A and 7B, the light emitting device 100 is formed with an LED element (described as “LED” in the drawing) and a concave element mounting portion 122 that accommodates the LED element. The resin-made LED element mounting body 102 and a pair of lead members 101a and 101b made of strip-like copper or the like penetrating from the outside of the LED element mounting body 102 into the element mounting portion 122 are provided. The LED element mounting body 102 has a cup shape in which the upper part of the element mounting part 122 is widened and opened, and light emitted from the LED element is irradiated from the opening part of the element mounting part 122 to the outside of the light emitting device 100.

一対のリード部材101a,101bのそれぞれにおいて、素子実装部122の底面122aに配設された領域をインナーリード部115a,115b、LED素子実装体102の外側に延出された領域をアウターリード部116a,116bと称する。LED素子は、素子実装部122の底面122aの略中央の、一方のリード部材101aのインナーリード部115aの上面にシリコーンダイボンド材等からなる接着剤(図示省略)によって接着され、LED素子の電極(図示省略)が一対のリード部材101a,101bのそれぞれのインナーリード部115a,115bにボンディングワイヤ(ワイヤ)で接続されている。また、素子実装部122内は、エポキシ樹脂等の透明な封止樹脂(図示省略)が充填されて封止されている。そして、一対のリード部材101a,101bのそれぞれのアウターリード部116a,116bが図示しない電源に接続されてLED素子に電流が供給される。なお、本明細書における「上」とは、原則として、リード部材のLED素子が搭載される側を指し、図7(b)における上である。   In each of the pair of lead members 101a and 101b, the regions disposed on the bottom surface 122a of the element mounting portion 122 are the inner lead portions 115a and 115b, and the region extending outside the LED element mounting body 102 is the outer lead portion 116a. , 116b. The LED element is bonded to the upper surface of the inner lead portion 115a of one lead member 101a at the approximate center of the bottom surface 122a of the element mounting portion 122 with an adhesive (not shown) made of a silicone die bond material or the like, and the LED element electrode ( (Not shown) are connected to the inner lead portions 115a and 115b of the pair of lead members 101a and 101b by bonding wires (wires). The element mounting portion 122 is filled and sealed with a transparent sealing resin (not shown) such as an epoxy resin. And each outer lead part 116a, 116b of a pair of lead member 101a, 101b is connected to the power supply which is not shown in figure, and an electric current is supplied to a LED element. In addition, “upper” in this specification indicates the side on which the LED element of the lead member is mounted in principle, and is the upper in FIG. 7B.

このような発光装置100においては、LED素子の発光部(発光層)が発光して、この発光部を中心に光を放射し、素子実装部122内のあらゆる方向へ照射される。これらの光のうち、上方へ照射された光は直接、素子実装部122の開口部から発光装置100の外部へ出射して照明光等として利用される。しかし、それ以外の、側方や下方へ照射された光は、素子実装部122の側面122bおよび底面122aならびにリード部材101a,101bのインナーリード部115a,115b表面に入射する。そこで、これらの面は、LED素子から入射した光をよく反射させるように、光反射率(以下、反射率という)を高くすることが求められている。特にAgは、金属の中で最も高い反射率を示すため、多くの光を反射させるためにこのような面に設ける反射膜の材料として最適である。   In such a light emitting device 100, the light emitting portion (light emitting layer) of the LED element emits light, radiates light around the light emitting portion, and is irradiated in all directions in the element mounting portion 122. Among these lights, the light irradiated upward is directly emitted from the opening of the element mounting part 122 to the outside of the light emitting device 100 and used as illumination light or the like. However, the other light irradiated to the side and the lower side is incident on the surfaces 122b and bottom 122a of the element mounting portion 122 and the surfaces of the inner lead portions 115a and 115b of the lead members 101a and 101b. Therefore, these surfaces are required to have high light reflectivity (hereinafter referred to as reflectivity) so that light incident from the LED element is well reflected. In particular, Ag exhibits the highest reflectance among metals, and is therefore optimal as a material for a reflective film provided on such a surface in order to reflect a large amount of light.

しかしAgは、発光装置100の使用時間の経過と共に、大気や封止樹脂に含まれるハロゲンイオンや硫黄と反応して表面に塩化物(AgCl)等のハロゲン化物や硫化物(Ag2S)を形成するため、これらの生成物により反射膜の表面が黒褐色に変色したり凝集して表面が荒れ、またAgはLED素子から発生する熱によっても凝集するため、反射率が劣化するという問題がある。また、封止樹脂にエポキシ樹脂を用いた場合には、この透明なエポキシ樹脂に反射膜中のAgが拡散してAgのナノ粒子として析出し、褐色に変色させて光透過性を劣化させる。 However, Ag reacts with the halogen ions and sulfur contained in the atmosphere and the sealing resin as the usage time of the light-emitting device 100 elapses to form a halide or sulfide (Ag 2 S) such as chloride (AgCl) on the surface. As a result, the surface of the reflective film is changed to blackish brown or aggregates due to these products, and the surface is roughened, and Ag also aggregates due to heat generated from the LED element, so that the reflectance is deteriorated. . In addition, when an epoxy resin is used as the sealing resin, Ag in the reflective film diffuses into the transparent epoxy resin and precipitates as Ag nanoparticles, and changes its color to brown to deteriorate the light transmittance.

この問題を解決するために、例えば、特許文献1には、封止樹脂にシリコーン樹脂を適用し、反射面の純Agめっき層に、塩化物や硫化物を形成し難いAg−Au合金めっき層をさらに被覆したリードフレームが記載されている。また、特許文献2には、Ge,Biを含有するAg合金膜をめっき等で成膜した後、熱可塑性樹脂でリフレクタ(図7のLED素子実装体102に相当)を形成することで、あるいは熱処理を行うことで、その際の加熱により前記Ag合金膜のGe,Biを拡散させて表面に濃化させ、ハロゲン化銀を形成し難くしたリードフレームが記載されている。   In order to solve this problem, for example, Patent Document 1 discloses that an Ag—Au alloy plating layer in which a silicone resin is applied as a sealing resin and chloride or sulfide is difficult to form on a pure Ag plating layer on a reflective surface. A lead frame is further described. In Patent Document 2, an Ag alloy film containing Ge and Bi is formed by plating or the like, and then a reflector (corresponding to the LED element mounting body 102 in FIG. 7) is formed from a thermoplastic resin, or There is described a lead frame in which Ge and Bi of the Ag alloy film are diffused and concentrated on the surface by heat treatment to make it difficult to form silver halide.

特開2008−91818号公報(請求項1,2、段落番号0015〜0016)JP 2008-91818 A (Claims 1 and 2, paragraph numbers 0015 to 0016) 特開2008−192635号公報(請求項1)JP 2008-192635 A (Claim 1)

しかしながら、特許文献1のAg−Au合金膜は、塩化物や硫化物を形成し難くするためにAg含有量を50質量%未満に制限したAuを主成分とする合金からなり、Agと比較して反射率に劣り、さらにコストも高くなる。特許文献2のAg合金膜では、めっきでGe,Bi濃度を制御したAg合金膜を成膜することが困難である上、その後の熱処理によりAg合金膜表面で安定してGe,Biを濃化させることも困難である。特に、硫化物形成を防止するGeの拡散には温度および時間が不十分であり、このようなAg合金膜では硫化物の形成が十分に抑制できない上、封止樹脂とするシリコーン樹脂には、樹脂の硬化触媒として塩化白金酸のような金属塩化物や金属硫化物等が含まれている。   However, the Ag-Au alloy film of Patent Document 1 is made of an alloy containing Au as a main component, in which the Ag content is limited to less than 50% by mass in order to make it difficult to form chlorides and sulfides. Therefore, the reflectance is inferior and the cost is also increased. In the Ag alloy film of Patent Document 2, it is difficult to form an Ag alloy film in which the Ge and Bi concentrations are controlled by plating, and the Ge and Bi are stably concentrated on the surface of the Ag alloy film by the subsequent heat treatment. It is also difficult to make it. In particular, the temperature and time are insufficient for the diffusion of Ge to prevent sulfide formation. In such an Ag alloy film, the formation of sulfide cannot be sufficiently suppressed. As a resin curing catalyst, metal chlorides such as chloroplatinic acid, metal sulfides, and the like are included.

本発明の課題は、前記問題点に鑑みてなされたものであり、高い反射率を長期間維持でき、また安定してかつ容易に形成できる反射膜を備えたLED用リードフレームを提供することにある。   An object of the present invention is to provide an LED lead frame including a reflective film that can maintain a high reflectance for a long period of time and can be stably and easily formed. is there.

本発明者らは、LED用リードフレームの反射面に被覆する反射膜を形成するAgを主成分とする材料を、主に硫化物の形成を抑制する(耐硫化性)元素としてGeを、主にハロゲン化物の形成を抑制する(耐ハロゲン化性)元素としてBiを、添加したAg合金とすることにした。そして、これらの添加元素Ge,Biの効果が十分なものとなる量を反射膜に一様に添加するとAgの高反射率が損われるために、反射膜の表面近傍のみにおいてGe,Biを高濃度とする方法を鋭意研究した。前記特許文献2に記載されたような、Ag合金膜への熱処理により表面のGe,Biを濃化する方法では、Geを濃化するためには高温および長時間を要し、このような熱処理を行うとAgが凝集してしまう。そこで、Ag合金膜をスパッタリング法で形成することで、成膜時に、表面から10nm程度の深さの領域においてGe,Biが高濃度となって、熱処理等の成分濃化を行うことなく表面のGe,Bi濃度が高いAg合金膜が得られることを見出した。   The inventors of the present invention mainly used a material mainly composed of Ag for forming a reflective film covering the reflective surface of the LED lead frame, mainly Ge as an element that suppresses the formation of sulfide (sulfuration resistance). In addition, Bi was added as an element that suppresses the formation of halides (halogenation resistance). Then, if an amount that makes the effect of these additive elements Ge and Bi sufficient to be uniformly added to the reflective film, the high reflectivity of Ag is impaired, so that Ge and Bi are increased only in the vicinity of the surface of the reflective film. We have intensively studied the method of concentration. In the method of concentrating Ge and Bi on the surface by heat treatment to an Ag alloy film as described in Patent Document 2, a high temperature and a long time are required to concentrate Ge, and such heat treatment is performed. When Ag is performed, Ag is aggregated. Therefore, by forming the Ag alloy film by the sputtering method, Ge and Bi are concentrated at a depth of about 10 nm from the surface at the time of film formation, and the surface layer is not subjected to concentration of components such as heat treatment. It has been found that an Ag alloy film having a high Ge and Bi concentration can be obtained.

スパッタリング法で成膜することにより、成膜後に熱処理等の成分濃化を行うことなく表面のGe,Bi濃度が高いAg合金膜が得られるが、一方、スパッタリング法でLED用リードフレームの反射膜を形成するには、以下の問題がある。LED用リードフレームの基板には導電性に優れたCuまたはCu合金が好適であるが、基板を被覆する反射膜(Ag合金膜)が薄いと、Ag合金膜の形成後のLED用リードフレームの製造工程、さらに発光装置の製造工程での加熱、例えばワイヤボンディングや封止樹脂の充填等の際に、基板からCuがAg合金膜の表面まで拡散し、表面が変色して反射率が低下する。このような基板からのCuの拡散を防止するためには、0.6μm以上の厚さの膜で基板を被覆することが望ましいが、スパッタリング法ではこのような厚膜の形成は時間がかかり生産性に劣る。また、スパッタリング法等の物理蒸着による膜は、めっき膜と異なり、厚膜にしても下地の表面形状が膜の表面形状に保持される。Cu等で形成した基板は表面にある程度の凹凸があるため、このような表面形状が保持された凹凸のある反射膜とすると、拡散反射(乱反射)に伴う多重反射により発光装置の出射光量が減衰することになる。   By forming the film by the sputtering method, an Ag alloy film having a high Ge and Bi concentration on the surface can be obtained without performing concentration of components such as heat treatment after the film formation. On the other hand, the reflective film of the LED lead frame is formed by the sputtering method. In order to form, there are the following problems. Cu or Cu alloy having excellent electrical conductivity is suitable for the substrate of the LED lead frame. However, if the reflective film (Ag alloy film) covering the substrate is thin, the LED lead frame of the LED alloy film after the formation is formed. During heating in the manufacturing process and further in the manufacturing process of the light emitting device, for example, wire bonding or sealing resin filling, Cu diffuses from the substrate to the surface of the Ag alloy film, the surface is discolored, and the reflectance decreases. . In order to prevent such diffusion of Cu from the substrate, it is desirable to cover the substrate with a film having a thickness of 0.6 μm or more. However, in the sputtering method, formation of such a thick film takes time and is produced. Inferior to sex. In addition, unlike a plating film, a film formed by physical vapor deposition such as a sputtering method can maintain the surface shape of the base in the surface shape even if it is thick. Since a substrate made of Cu or the like has a certain degree of unevenness on the surface, if the reflection film has such an unevenness that maintains the surface shape, the amount of light emitted from the light emitting device is attenuated by multiple reflections associated with diffuse reflection (diffuse reflection). Will do.

そこで、本発明者らは、基板からのCuの拡散を防止し、かつ下地(基板)の表面形状に対して平滑な表面形状とするためにめっき膜を形成して、その上にGe,Biを所定濃度に添加したAg合金膜をスパッタリング法で成膜することに想到した。   Therefore, the inventors of the present invention formed a plating film to prevent Cu from diffusing from the substrate and to have a smooth surface shape with respect to the surface shape of the base (substrate), and Ge, Bi thereon. The inventors have conceived that an Ag alloy film to which is added at a predetermined concentration is formed by a sputtering method.

すなわち本発明に係るLED用リードフレームは、銅または銅合金からなる基板と、この基板上の少なくとも片面側に形成された膜厚10μm以下のAgめっき膜と、このAgめっき膜上にスパッタリング法で形成されて、膜厚20nm以上500nm以下のGe:0.06〜0.5at%およびBi:0.02〜0.2at%を含有するAg合金膜とを備え、前記Agめっき膜と前記Ag合金膜の膜厚の合計は0.6μm以上であることを特徴とする。   That is, the LED lead frame according to the present invention includes a substrate made of copper or a copper alloy, an Ag plating film having a thickness of 10 μm or less formed on at least one side of the substrate, and a sputtering method on the Ag plating film. And an Ag alloy film containing Ge: 0.06 to 0.5 at% and Bi: 0.02 to 0.2 at% having a film thickness of 20 nm to 500 nm, the Ag plated film and the Ag alloy The total film thickness is 0.6 μm or more.

また、本発明に係る別のLED用リードフレームは、上方に開口した凹状の素子実装部が形成されたLED素子実装体と、このLED素子実装体に支持され、前記素子実装部の底面に互いに離間領域を隔てて配設されて、それぞれが当該素子実装部から前記LED素子実装体の外側に延出した一対のリード部材とを備えるものである。前記リード部材は、銅または銅合金からなる基板と、前記素子実装部の内側において前記基板上に形成された膜厚10μm以下のAgめっき膜と、このAgめっき膜上に形成された膜厚20nm以上500nm以下のAg合金膜とを備え、前記Agめっき膜と前記Ag合金膜の膜厚の合計は0.6μm以上であり、前記LED素子実装体は、絶縁材料からなる基体と、前記離間領域を除く領域において前記素子実装部の表面に形成された膜厚70nm以上500nm以下のAg合金膜とを備え、前記それぞれのAg合金膜は、スパッタリング法で形成され、Ge:0.06〜0.5at%およびBi:0.02〜0.2at%を含有することを特徴とする。   Further, another LED lead frame according to the present invention includes an LED element mounting body having a concave element mounting portion that is open upward, and is supported by the LED element mounting body, and is attached to the bottom surface of the element mounting portion. A pair of lead members, which are arranged with a separation area therebetween and extend from the element mounting portion to the outside of the LED element mounting body, are provided. The lead member includes a substrate made of copper or a copper alloy, an Ag plating film having a thickness of 10 μm or less formed on the substrate inside the element mounting portion, and a film thickness of 20 nm formed on the Ag plating film. An Ag alloy film having a thickness of 500 nm or less, a total thickness of the Ag plating film and the Ag alloy film is 0.6 μm or more, and the LED element mounting body includes a base made of an insulating material, the separation region And an Ag alloy film having a film thickness of 70 nm to 500 nm formed on the surface of the element mounting portion in a region excluding the region, each of the Ag alloy films is formed by a sputtering method, and Ge: 0.06-0. It contains 5 at% and Bi: 0.02 to 0.2 at%.

このように、表面にスパッタリング法でGe,Biを所定量含有するAg合金膜を被覆することにより、硫黄やハロゲンイオン、熱等によるAgの凝集や変色を引き起こさず、高い反射率を維持できる耐久性に優れた反射膜となり、さらにAgが封止樹脂に拡散して変色させることがないため、搭載されたLED素子の発光した光を高効率で継続して利用することを可能とする。また、基板上にAgめっき膜を介して表面に前記Ag合金膜が積層されて十分な厚さの積層膜とすることにより、基板から表面にCuが拡散して変色することなく、また基板の表面に対して平滑な表面となって高い正反射率を示す反射膜となる。また、LED素子を囲繞するLED素子実装体を備えたLED用リードフレームにおいては、このLED素子実装体の内面にも前記のAg合金膜を被覆することで、LED素子から側方へ照射された光も高効率で外部へ出射される。   In this way, by coating the surface with an Ag alloy film containing a predetermined amount of Ge and Bi by sputtering, durability and high reflectance can be maintained without causing Ag aggregation or discoloration due to sulfur, halogen ions, heat, or the like. In addition, it is possible to use the light emitted from the mounted LED element with high efficiency because Ag is not diffused and discolored in the sealing resin. In addition, the Ag alloy film is laminated on the surface of the substrate through an Ag plating film to form a laminated film having a sufficient thickness, so that Cu does not diffuse and discolor from the substrate to the surface. The surface is smooth with respect to the surface and becomes a reflective film exhibiting high regular reflectance. In addition, in the LED lead frame including the LED element mounting body surrounding the LED element, the inner surface of the LED element mounting body is covered with the Ag alloy film, and the LED element is irradiated laterally. Light is also emitted outside with high efficiency.

また、前記の本発明に係るLED用リードフレームのそれぞれにおいて、Ag合金膜がさらにAu:0.5〜5at%を含有してもよい。Auもハロゲン化物の形成を抑制する作用を有するため、いっそう耐久性に優れた反射膜となる。   In each of the LED lead frames according to the present invention, the Ag alloy film may further contain Au: 0.5 to 5 at%. Since Au also has the action of suppressing the formation of halides, it becomes a reflective film with even better durability.

また、前記の本発明に係るLED用リードフレームのそれぞれにおいて、Ag合金膜の表面の二乗平均粗さが30nm以下であることが好ましい。このように二乗平均粗さの小さい表面とすることにより、さらに高い正反射率を示す反射膜となる。   In each of the LED lead frames according to the present invention, it is preferable that the root mean square roughness of the surface of the Ag alloy film is 30 nm or less. Thus, by setting it as the surface with small mean square roughness, it becomes a reflective film which shows a higher regular reflectance.

また、前記の本発明に係るLED用リードフレームのそれぞれにおいて、Ag合金膜上に、さらに、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選択される1種の金属の金属酸化膜または2種以上からなる合金の金属酸化膜を膜厚0.1nm以上5nm以下で備えてもよい。これらの金属または合金の酸化膜を表面に備えることで、Ag合金膜に外部から硫黄が接触することを防止し、いっそう耐久性に優れた反射膜となる。   Further, in each of the LED lead frames according to the present invention described above, one kind of metal selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W is further formed on the Ag alloy film. A metal oxide film or a metal oxide film of an alloy composed of two or more kinds may be provided with a thickness of 0.1 nm to 5 nm. By providing an oxide film of these metals or alloys on the surface, it is possible to prevent sulfur from coming into contact with the Ag alloy film from the outside, and a reflective film having excellent durability.

本発明のLED用リードフレームは、LED素子を搭載して、その発光した光を高効率で利用して照明光の明るさを向上させ、使用時間の経過による照明光の減衰等の劣化を抑えた発光装置とすることができる。   The LED lead frame of the present invention is equipped with an LED element, uses the emitted light with high efficiency to improve the brightness of the illumination light, and suppresses deterioration of the illumination light due to the passage of usage time. A light emitting device.

本発明の第1実施形態に係るLED用リードフレームの構成を模式的に示す断面図であり、(a)は第1実施形態、(b)は第1実施形態の変形例を示す図である。It is sectional drawing which shows typically the structure of the lead frame for LED which concerns on 1st Embodiment of this invention, (a) is 1st Embodiment, (b) is a figure which shows the modification of 1st Embodiment. . 本発明の第2実施形態に係るLED用リードフレームの模式図であり、(a)は平面図、(b)は(a)のA−A線矢視断面図である。It is a schematic diagram of the lead frame for LED which concerns on 2nd Embodiment of this invention, (a) is a top view, (b) is an AA arrow directional cross-sectional view of (a). 本発明の第2実施形態の変形例に係るLED用リードフレームおよびその基板の模式図であり、(a)は基板の平面図、(b)は(a)の部分拡大図、(c)はLED用リードフレームの断面図である。It is a schematic diagram of the lead frame for LEDs and its board concerning the modification of a 2nd embodiment of the present invention, (a) is a top view of a board, (b) is the elements on larger scale of (a), (c) is It is sectional drawing of the lead frame for LED. 本発明の第2実施形態に係るLED用リードフレームのAg合金膜を形成される前の模式図であり、(a)は平面図、(b)は(a)のD−D線矢視断面図、(c)は(a)のE−E線矢視断面図である。It is a schematic diagram before forming the Ag alloy film of the LED lead frame according to the second embodiment of the present invention, (a) is a plan view, (b) is a cross-sectional view taken along line DD of (a). FIG. 4C is a cross-sectional view taken along line EE in FIG. 本発明の第2実施形態の別の変形例に係るLED用リードフレームの模式図であり、(a)は平面図、(b)は(a)のF−F線矢視断面図である。It is a schematic diagram of the lead frame for LED which concerns on another modification of 2nd Embodiment of this invention, (a) is a top view, (b) is FF arrow directional cross-sectional view of (a). 光の反射を説明する発光装置のモデルであり、(a)は正反射、(b)は拡散反射を示す。It is the model of the light-emitting device explaining reflection of light, (a) shows regular reflection and (b) shows diffuse reflection. LED素子を光源とする表面実装型の発光装置の構造を示す模式図であり、(a)は斜視図、(b)は(a)のG−G線矢視断面図である。It is a schematic diagram which shows the structure of the surface mount type light-emitting device which uses an LED element as a light source, (a) is a perspective view, (b) is a GG arrow directional cross-sectional view of (a).

本発明のLED用リードフレームは、LED素子を光源として実装される発光装置を構成するための部品であり、発光装置の形状および形態、ならびにLED素子の実装形態、製品としてユーザに提供する形態等に応じて、所要の形状および形態に構成される。以下、本発明のLED用リードフレームについて、図面を参照して詳細に説明する。   The LED lead frame of the present invention is a component for constituting a light emitting device mounted using an LED element as a light source, and the shape and form of the light emitting apparatus, the LED element mounting form, and the form provided to the user as a product, etc. Depending on the configuration, it is configured in the required shape and form. Hereinafter, the LED lead frame of the present invention will be described in detail with reference to the drawings.

〔第1実施形態〕
本発明の第1実施形態に係るLED用リードフレームについて、図1を参照して説明する。第1実施形態およびその変形例に係るLED用リードフレーム10,10Aは、発光装置に組み込んだときに、光源であるLED素子にこのLED素子を発光動作させる電流を供給するための配線であり、かつ、LED素子の発光した光を反射させる反射板である。
[First Embodiment]
An LED lead frame according to a first embodiment of the present invention will be described with reference to FIG. The LED lead frames 10 and 10A according to the first embodiment and the modifications thereof are wirings for supplying a current for causing the LED element to emit light to the LED element as a light source when incorporated in the light emitting device. And it is a reflecting plate which reflects the light which the LED element emitted.

第1実施形態に係るLED用リードフレーム10は、基板11と、基板11の少なくとも一方の面に形成されたAgめっき膜12と、さらにその上に形成されたAg合金膜13と、を備える。Agめっき膜12およびAg合金膜13は、図1(a)に示すように、基板11のLED素子が搭載される側の面になる上面(以下、適宜表面という)のみに形成されていてもよいし、基板11の下面(裏面)を含めた両面に形成されていてもよい。さらには、Agめっき膜12およびAg合金膜13は、基板11の表面の一部の領域、例えば発光装置に組み込まれたときにLED素子の発光した光が入射する領域のみに形成されていてもよい。したがって、LED用リードフレーム10は、裏面や、表面の前記以外の領域においては、Agめっき膜12およびAg合金膜13が積層されていてもよいし、基板11が露出していても、あるいはAgめっき膜12およびAg合金膜13の一方のみが形成されていてもよい(例えば、図1(b)参照)。また、LED用リードフレーム10の平面視形状は特に限定されず、発光装置の形状および形態等に応じて設計され、例えば、後記の第2実施形態の変形例に係るLED用リードフレームの基板11A(図3(a)参照)のように、複数個のLED用リードフレーム10が連結された構成としてもよい。   The LED lead frame 10 according to the first embodiment includes a substrate 11, an Ag plating film 12 formed on at least one surface of the substrate 11, and an Ag alloy film 13 formed thereon. As shown in FIG. 1A, the Ag plating film 12 and the Ag alloy film 13 may be formed only on the upper surface (hereinafter referred to as “surface” as appropriate) of the substrate 11 on which the LED element is mounted. Alternatively, it may be formed on both surfaces including the lower surface (back surface) of the substrate 11. Further, the Ag plating film 12 and the Ag alloy film 13 may be formed only in a part of the surface of the substrate 11, for example, a region where light emitted from the LED element is incident when incorporated in the light emitting device. Good. Therefore, the lead frame 10 for LED may be formed by laminating the Ag plating film 12 and the Ag alloy film 13 in the back surface or other regions on the front surface, even if the substrate 11 is exposed, or Ag. Only one of the plating film 12 and the Ag alloy film 13 may be formed (see, for example, FIG. 1B). The shape of the LED lead frame 10 in plan view is not particularly limited, and is designed according to the shape and form of the light emitting device. For example, the LED lead frame substrate 11A according to a modification of the second embodiment described later. As shown in FIG. 3A, a plurality of LED lead frames 10 may be connected.

(基板)
基板11は、銅または銅合金からなり、LED用リードフレーム10の形状に成形される。銅合金としては、銅を主成分とし、Ni,Si,Fe,Zn,Sn,Mg,P,Cr,Mn,Zr,Ti,Sb等の元素の1種または2種以上を含有する合金、例えばCu−Fe−P系銅合金を用いることができる。基板11の板厚は特に限定されないが、形状と同様に、発光装置の形状および形態等に応じて決定され、圧延等により、この所要の厚さの素板(圧延板)とし、これをプレス加工やエッチング加工等により所要の形状に成形することによって製造することができる。
(substrate)
The substrate 11 is made of copper or a copper alloy, and is formed into the shape of the LED lead frame 10. As a copper alloy, an alloy containing copper as a main component and containing one or more elements such as Ni, Si, Fe, Zn, Sn, Mg, P, Cr, Mn, Zr, Ti, and Sb, for example, A Cu—Fe—P-based copper alloy can be used. Although the thickness of the substrate 11 is not particularly limited, it is determined according to the shape and form of the light emitting device, as with the shape, and is formed into a base plate (rolled plate) having the required thickness by rolling or the like, and this is pressed. It can be manufactured by forming into a required shape by processing or etching.

(Agめっき膜)
本実施形態に係るLED用リードフレーム10において、Agめっき膜12は、Ag合金膜13の下地として基板11の表面に設けられ、また発光装置としたときにLED素子から照射される光を反射する役割を有する。後記の通り、Ag合金膜13はスパッタリング法により成膜されるが、スパッタリング法による膜だけで基板11からのCuの熱による拡散を防止できる膜厚にすることは、生産性の上で好ましくない。また、スパッタリング法等の物理蒸着による膜は、厚く形成されても下地の表面形状が膜の表面形状に保持される。すなわち、Agめっき膜12は、Ag合金膜13の表面すなわちLED用リードフレーム10の反射面を平滑にする役割も有する。
(Ag plating film)
In the LED lead frame 10 according to the present embodiment, the Ag plating film 12 is provided on the surface of the substrate 11 as a base of the Ag alloy film 13, and reflects light emitted from the LED element when used as a light emitting device. Have a role. As will be described later, the Ag alloy film 13 is formed by a sputtering method. However, it is not preferable in terms of productivity to make the film thickness that can prevent diffusion of Cu from the substrate 11 by heat only by the sputtering method. . In addition, even if a film formed by physical vapor deposition such as sputtering is formed thick, the surface shape of the base is maintained at the surface shape of the film. That is, the Ag plating film 12 also has a role of smoothing the surface of the Ag alloy film 13, that is, the reflection surface of the LED lead frame 10.

Agめっき膜12は、平滑な表面を形成するめっき膜であれば、公知のめっき方法で形成される無光沢Agめっき、半光沢Agめっき、光沢Agめっきのいずれであってもよいが、発光装置としたときにLED素子から照射された光を高効率で外部へ出射するためには光沢Agめっきが最も好ましい。また、成分はAg単体(純Ag)に限定されず、例えば、Ag−Au合金、Ag−Pd合金等のAg合金で形成されるめっき膜であってもよい。   As long as the Ag plating film 12 is a plating film that forms a smooth surface, it may be any of a matte Ag plating, a semi-gloss Ag plating, and a glossy Ag plating formed by a known plating method. In order to emit light emitted from the LED element to the outside with high efficiency, gloss Ag plating is most preferable. The component is not limited to Ag alone (pure Ag), and may be a plating film formed of an Ag alloy such as an Ag—Au alloy or an Ag—Pd alloy.

Agめっき膜12の膜厚は10μm以下とする。Agめっき膜12の膜厚が10μmを超えても、Cuの熱拡散防止や表面の平滑化の効果が飽和する。好ましくは8μm以下、より好ましくは6μm以下である。なお、Agめっき膜12の膜厚の下限は規定しないが、後記するようにAg合金膜13との合計の厚さが0.6μm以上になるようにする。また、Agめっき膜12の膜厚が薄いと結晶粒径が大きくなり難く、その上に成膜されるAg合金膜13の結晶粒径も大きくならない。ここで、Ag合金膜13は単独ではAgめっき膜12より結晶粒径が小さいが、Ag合金膜13はAgめっき膜12上でエピタキシャル成長するため、Agめっき膜12の結晶に引きずられる形でAg合金膜13の結晶が大きく成長して、Agめっき膜12の結晶粒径に近い結晶粒径になる。Agの熱による凝集は結晶粒径にも依存し、結晶粒径が大きいと凝集し難く、具体的には100nm以上が好ましい。したがって、耐熱性をいっそう向上させるために、Agめっき膜12の膜厚は、Agめっき膜12の結晶粒径が100nm以上に大きくなるように、好ましくは0.2μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。さらに、Agめっき膜12の膜厚が薄いと、基板11の表面粗さにも影響されるが、Agめっき膜12の表面が十分に平滑にならず、その上に成膜されるAg合金膜13の表面も平滑にならないため、発光装置としたときに、反射における拡散反射が多くなって出射光の光量の損失が多くなる。Ag合金膜13の表面を平滑にする上では、Agめっき膜12の膜厚は好ましくは1μm以上、より好ましくは1.5μm以上である。   The thickness of the Ag plating film 12 is 10 μm or less. Even if the thickness of the Ag plating film 12 exceeds 10 μm, the effects of Cu thermal diffusion prevention and surface smoothing are saturated. Preferably it is 8 micrometers or less, More preferably, it is 6 micrometers or less. Although the lower limit of the thickness of the Ag plating film 12 is not specified, the total thickness with the Ag alloy film 13 is set to 0.6 μm or more as will be described later. Further, when the Ag plating film 12 is thin, the crystal grain size is difficult to increase, and the crystal grain diameter of the Ag alloy film 13 formed thereon is not increased. Here, the Ag alloy film 13 alone has a crystal grain size smaller than that of the Ag plating film 12. However, since the Ag alloy film 13 is epitaxially grown on the Ag plating film 12, the Ag alloy film 13 is dragged by the crystals of the Ag plating film 12. The crystal of the film 13 grows large and becomes a crystal grain size close to the crystal grain size of the Ag plating film 12. Ag aggregation due to heat depends also on the crystal grain size. When the crystal grain size is large, aggregation is difficult, and specifically, 100 nm or more is preferable. Therefore, in order to further improve the heat resistance, the thickness of the Ag plating film 12 is preferably 0.2 μm or more, more preferably 0.5 μm, so that the crystal grain size of the Ag plating film 12 is increased to 100 nm or more. More preferably, it is 1 μm or more. Further, when the thickness of the Ag plating film 12 is thin, the surface roughness of the substrate 11 is also affected, but the surface of the Ag plating film 12 is not sufficiently smooth, and the Ag alloy film formed thereon is formed. Since the surface of 13 does not become smooth, when it is set as a light emitting device, the diffuse reflection in reflection increases and the loss of the amount of emitted light increases. In order to smooth the surface of the Ag alloy film 13, the thickness of the Ag plating film 12 is preferably 1 μm or more, more preferably 1.5 μm or more.

(Ag合金膜)
Ag合金膜13は、Agめっき膜12上の、LED用リードフレーム10の最表面に設けられ、発光装置としたときに、Agめっき膜12のAgが大気や封止樹脂に含まれるハロゲンイオンや硫黄と反応して黒褐色化や凝集することを防止するための保護膜としての役割を有する。このAg合金膜13は、Ge:0.06〜0.5at%、およびBi:0.02〜0.2at%を含有し、残部が不可避的不純物およびAgからなるAg合金で構成される。
(Ag alloy film)
The Ag alloy film 13 is provided on the outermost surface of the LED lead frame 10 on the Ag plating film 12, and when used as a light emitting device, Ag of the Ag plating film 12 is a halogen ion contained in the atmosphere or a sealing resin. It has a role as a protective film for preventing black browning and aggregation by reacting with sulfur. This Ag alloy film 13 contains Ge: 0.06 to 0.5 at% and Bi: 0.02 to 0.2 at%, and the balance is composed of an Ag alloy composed of inevitable impurities and Ag.

Ag合金膜13を構成するAg合金において、Ge,Biは、それぞれが、熱によりAgが凝集することを抑制する作用(耐熱性)、およびハロゲンイオンによりハロゲン化銀を形成することを抑制する作用(耐ハロゲン化性)を有する。特に、Biは耐ハロゲン化性の効果に優れる。一方、Geは、さらに硫黄により硫化銀を形成することを抑制する作用(耐硫化性)を有する。したがって、Ge,Biの両方の元素を添加することにより、Ag合金膜13が凝集で表面が荒れることやそれぞれの生成物で黒褐色化することを防止する。Ag合金膜13において、Geの含有率が0.06at%未満、Biの含有率が0.02at%未満では、それぞれ前記効果が十分に得られず、特にGeが不足した場合は耐硫化性が、Biが不足した場合は耐ハロゲン化性が、それぞれ不十分となり、Ag合金膜13の表面が黒褐色化したり荒れて反射率が劣化する。したがって、Geの含有率は0.06at%以上とし、好ましくは0.1at%以上、より好ましくは0.2at%以上である。同様に、Biの含有率は0.02at%以上とし、好ましくは0.04at%以上、より好ましくは0.07at%以上である。   In the Ag alloy constituting the Ag alloy film 13, Ge and Bi each have an effect of suppressing aggregation of Ag by heat (heat resistance) and an effect of suppressing formation of silver halide by halogen ions. (Halogen resistance). In particular, Bi is excellent in the halogenation resistance effect. On the other hand, Ge has an action (sulfur resistance) that further suppresses the formation of silver sulfide by sulfur. Therefore, by adding both elements of Ge and Bi, the Ag alloy film 13 is prevented from agglomerating and roughening the surface, and blackening of each product. In the Ag alloy film 13, when the Ge content is less than 0.06 at% and the Bi content is less than 0.02 at%, the above effects cannot be obtained sufficiently. When Bi is insufficient, the halogenation resistance is insufficient, and the surface of the Ag alloy film 13 becomes dark brown or rough, and the reflectance is deteriorated. Therefore, the Ge content is 0.06 at% or more, preferably 0.1 at% or more, more preferably 0.2 at% or more. Similarly, the Bi content is 0.02 at% or more, preferably 0.04 at% or more, and more preferably 0.07 at% or more.

一方、これらの添加元素が多くなるとAg合金膜13の表面が黄色化して反射率が低下するため、Geの含有率は0.5at%以下、Biの含有率は0.2at%以下とする。好ましくは、Ge,Biの各含有率(at%)を[Ge]、[Bi]と表したとき、(7×[Ge]+13×[Bi])が4以下とする。   On the other hand, since the surface of the Ag alloy film 13 is yellowed and the reflectance decreases when the amount of these additive elements increases, the Ge content is set to 0.5 at% or less and the Bi content is set to 0.2 at% or less. Preferably, when each content rate (at%) of Ge and Bi is expressed as [Ge] and [Bi], (7 × [Ge] + 13 × [Bi]) is 4 or less.

前記Ge,Biの各含有率はAg合金膜13の膜全体での平均値であり、実際にはAg合金膜13の表面から10nm程度の深さの領域においてGe,Biが高濃度に分布しているために、これらの元素による前記効果が得られる。このような濃度分布の膜とするため、Ag合金膜13はスパッタリング法にて形成する。また、スパッタリング法では、所定の組成の合金ターゲットを形成できれば所望の組成の膜を容易にかつ再現性よく成膜できる。   The respective contents of Ge and Bi are average values of the entire Ag alloy film 13, and actually Ge and Bi are distributed at a high concentration in a region having a depth of about 10 nm from the surface of the Ag alloy film 13. Therefore, the above-mentioned effect by these elements can be obtained. In order to obtain a film having such a concentration distribution, the Ag alloy film 13 is formed by a sputtering method. Further, in the sputtering method, if an alloy target having a predetermined composition can be formed, a film having a desired composition can be easily and reproducibly formed.

Ag合金膜13を構成するAg合金に、さらにAuを0.5at%以上添加してもよい。AuもAg合金に耐ハロゲン化性を付与し、Ag合金膜13の表面がハロゲンイオンにより黒褐色化することをいっそう防止できる。より好ましくは1at%以上、さらに好ましくは2at%以上である。一方、Auの含有率が5at%を超えるとAg合金膜13の反射率が低下するため、Auの含有率は5at%以下とする。   Au may further be added to the Ag alloy constituting the Ag alloy film 13 by 0.5 at% or more. Au also imparts halogenation resistance to the Ag alloy, and can further prevent the surface of the Ag alloy film 13 from being blackish brown by halogen ions. More preferably, it is 1 at% or more, More preferably, it is 2 at% or more. On the other hand, if the Au content exceeds 5 at%, the reflectance of the Ag alloy film 13 decreases, so the Au content is set to 5 at% or less.

Ag合金膜13の膜厚は20nm以上500nm以下とする。Ag合金膜13の膜厚が20nm未満では、Agめっき膜12の表面を完全に被覆できない虞がある。好ましくは50nm以上、より好ましくは70nm以上である。特に、膜厚が70nm以上になると、Ag合金膜13は光をほとんど透過せずにそれ自体が反射膜となる。一方、Ag合金膜13の膜厚が500nmを超えても、効果は飽和し、生産性が低下する。   The film thickness of the Ag alloy film 13 is 20 nm or more and 500 nm or less. If the thickness of the Ag alloy film 13 is less than 20 nm, the surface of the Ag plating film 12 may not be completely covered. Preferably it is 50 nm or more, More preferably, it is 70 nm or more. In particular, when the film thickness is 70 nm or more, the Ag alloy film 13 hardly transmits light and becomes a reflective film itself. On the other hand, even if the thickness of the Ag alloy film 13 exceeds 500 nm, the effect is saturated and the productivity is lowered.

さらに、Ag合金膜13の膜厚は、Agめっき膜12の膜厚との合計で0.6μm以上となるようにする。Agめっき膜12とAg合金膜13の膜厚の合計が0.6μm未満であると、基板11からAgめっき膜12を経由してAg合金膜13にCuが熱で拡散し、Ag合金膜13の表面が変色して反射率が劣化する。好ましくは1.0μm以上、より好ましくは1.5μm以上である。   Furthermore, the film thickness of the Ag alloy film 13 is set to 0.6 μm or more in total with the film thickness of the Ag plating film 12. When the total thickness of the Ag plating film 12 and the Ag alloy film 13 is less than 0.6 μm, Cu diffuses from the substrate 11 through the Ag plating film 12 to the Ag alloy film 13 due to heat, and the Ag alloy film 13 The surface of the material changes color and the reflectance deteriorates. Preferably it is 1.0 micrometer or more, More preferably, it is 1.5 micrometers or more.

また、Ag合金膜13は、表面の二乗平均粗さRrms(Root Mean Square Roughness:粗さの二乗平均平方根値)を30nm以下とすることが好ましい。表面のRrmsが30nm以下であれば、Ag合金膜13の正反射率が50%以上、すなわち入射した光の半分以上を正反射させることができる。正反射率とは、入射光量に対する正反射による反射光(反射面に対して入射光と同じ角度で反射した光)の光量の割合である。正反射に対して、入射角に対してあらゆる角度で反射する現象を拡散反射(乱反射)という。ここで、光が反射膜で正反射する場合と拡散反射する場合の反射光の違いについて、図6に示す、下方および側方(素子実装部の底面および側面)に反射膜を備えて光源(LED素子の発光部)からの光を上方へ取り出す発光装置のモデルを参照して説明する。   The Ag alloy film 13 preferably has a root mean square roughness Rrms (Root Mean Square Roughness) of 30 nm or less. When the surface Rrms is 30 nm or less, the regular reflectance of the Ag alloy film 13 is 50% or more, that is, half or more of the incident light can be regularly reflected. The regular reflectance is the ratio of the amount of light reflected by regular reflection with respect to the amount of incident light (light reflected from the reflecting surface at the same angle as the incident light). In contrast to regular reflection, the phenomenon of reflection at any angle with respect to the incident angle is called diffuse reflection (diffuse reflection). Here, regarding the difference between reflected light when the light is regularly reflected by the reflecting film and when the light is diffusely reflected, a light source (see FIG. 6) is provided with a reflecting film on the lower side and the side (bottom surface and side surface of the element mounting portion). A description will be given with reference to a model of a light emitting device that extracts light from the light emitting portion of the LED element upward.

光源から放射された光のうちの下方へ照射された光L0について説明する。図6(a)に示すように、正反射率の高い底面に入射した光L0は、そのほとんどが正反射して、反射光Lsとして上方へ照射されるので、光L0は1回の反射で外部へ出射される。これに対して、図6(b)に示すように、反射膜の正反射率が低い場合、光L0は拡散反射により、あらゆる方向へ照射される反射光Ld1となる。その一部は上方へ照射されて1回の反射で外部へ出射されるが、それ以外の光は、側面に入射して再び拡散反射したり(反射光Ld2)、あるいは光源に入射する。このように、光源から照射された光L0は外部へ出射されるまで、一部を除いて何度も反射を繰り返す(多重反射する)ことになる。 The light L 0 emitted downward from the light emitted from the light source will be described. As shown in FIG. 6A, most of the light L 0 incident on the bottom surface having a high regular reflectance is regularly reflected and irradiated upward as reflected light Ls. Therefore, the light L 0 is emitted once. It is emitted to the outside by reflection. On the other hand, as shown in FIG. 6B, when the regular reflectance of the reflection film is low, the light L 0 becomes reflected light Ld 1 irradiated in all directions by diffuse reflection. A part of the light is irradiated upward and emitted to the outside by one reflection, but other light is incident on the side surface and diffusely reflected (reflected light Ld 2 ) or incident on the light source. In this way, the light L 0 emitted from the light source is repeatedly reflected (multiple reflected) many times except for a part until it is emitted to the outside.

光は、反射する度に一部が反射面に吸収されて減衰するので、光L0から反射光Ld1、反射光Ld1から反射光Ld2と反射を繰り返すにしたがい、反射光の光量は段階的に減少する。このように反射率の内訳として拡散反射が多いと、多重反射により損失量が累積されて、光源すなわちLED素子の発光した光に対して、発光装置の出射光となる光量は大きく減少することになる。本実施形態に係るLED用リードフレーム10においては、Ag合金膜13のRrmsを制御することで正反射率を高くして、発光装置としたときに、LED素子の発光する光の多くが、光量の損失の少ない1、2回程度の反射で発光装置の外部へ出射するようにして、発光装置の照明光を明るくすることができる。 Light, a portion each time the reflected is attenuated is absorbed by the reflecting surface, the reflected light Ld 1 from the light L 0, in accordance repeatedly reflected and the reflected light Ld 2 from the reflected light Ld 1, the light quantity of the reflected light Decreases in steps. As described above, when there is a lot of diffuse reflection as a breakdown of the reflectance, the amount of loss is accumulated due to multiple reflection, and the amount of light that is emitted from the light emitting device is greatly reduced with respect to the light emitted from the light source, that is, the LED element. Become. In the LED lead frame 10 according to the present embodiment, when the Rrms of the Ag alloy film 13 is controlled so that the regular reflectance is increased to obtain a light emitting device, most of the light emitted from the LED element is light quantity. The illumination light of the light emitting device can be brightened by emitting the light to the outside of the light emitting device with one or two reflections with less loss.

以上の理由から、Ag合金膜13の正反射率を高くするために表面を平滑とすることが好ましい。本発明において表面の平滑性を表す指標として用いる二乗平均粗さRrmsは、下式(1)で表される値であり、表面に存在する凹凸の表面高さの標準偏差である。したがって、例えば算術平均粗さRaが同等であっても、高い突起や深い谷が多い表面ほどRrmsは大きくなる。すなわち、Rrmsが大きいほど表面の凹凸が激しいことを示し、そのような表面に入射した光は拡散反射による反射が多くなって正反射率が減少し、Rrmsが30nmを超えると、Ag合金膜の正反射率が50%未満となって入射した光の半分以上が拡散反射することになる。反対にRrmsが小さいほど表面が平滑となって正反射率が向上し、好ましくは30nm以下、より好ましくは20nm以下、さらに好ましくは10nm以下である。   For the above reasons, it is preferable to make the surface smooth in order to increase the regular reflectance of the Ag alloy film 13. The root mean square roughness Rrms used as an index representing the smoothness of the surface in the present invention is a value represented by the following formula (1), and is a standard deviation of the surface height of the unevenness present on the surface. Therefore, for example, even if the arithmetic average roughness Ra is equal, the surface having more high protrusions and deep valleys has a larger Rrms. That is, as Rrms is larger, the unevenness of the surface is more severe, and the light incident on such a surface is increased in reflection due to diffuse reflection and the regular reflectance is reduced. When Rrms exceeds 30 nm, the Ag alloy film The regular reflectance is less than 50%, and more than half of the incident light is diffusely reflected. On the contrary, as Rrms is smaller, the surface becomes smoother and the regular reflectance is improved, and is preferably 30 nm or less, more preferably 20 nm or less, and further preferably 10 nm or less.

Figure 2011023704
ここで、Zave:表面高さの平均値、Zji:個々の表面高さの測定値、N:測定点の数を示す。
具体的には、例えば、原子間力顕微鏡を用いて、任意の領域について表面高さ(Zji)を測定して式(1)によってRrmsを算出することができる。好ましくは、複数の領域について測定し、その平均値を適用する。
Figure 2011023704
Here, Zave: average value of surface height, Zji: measured value of individual surface height, N: number of measurement points.
Specifically, for example, using an atomic force microscope, the surface height (Zji) can be measured for an arbitrary region, and Rrms can be calculated by Equation (1). Preferably, measurement is performed for a plurality of regions, and the average value is applied.

このような表面の二乗平均粗さRrmsが小さいAg合金膜13を形成するためには、下地表面の凹凸を小さくして同程度のRrmsにすればよい。しかしながら、基板11をこのような平滑な表面とすることは困難である。前記したように、基板11は銅または銅合金からなる圧延板を成形加工して製造されるが、圧延面に形成された酸化皮膜や、この酸化皮膜が脱落して圧延により埋め込まれた酸化物を除去するために、圧延後の研磨工程が必須である。この工程により研磨痕が表面に残るため、基板11表面が粗くなり、Rrmsでは60〜100nmになる。そこで、Ag合金膜13が形成される下地表面を平滑にするために、基板11の表面に、Agめっき膜12を成膜して平滑な下地表面とする。また、Agめっき膜12を成膜する前に、基板11の表面を硝酸を主成分とする強酸の混合液(キリンス酸)等を用いて酸によるエッチングを行ったり、コイニングにより基板11の表面の凹凸を潰しておけば、Agめっき膜12の膜厚を薄く形成しても平滑性が得られるので、より好ましい。   In order to form such an Ag alloy film 13 having a small mean square roughness Rrms of the surface, it is only necessary to reduce the unevenness of the underlying surface to the same degree of Rrms. However, it is difficult to make the substrate 11 have such a smooth surface. As described above, the substrate 11 is manufactured by forming a rolled plate made of copper or a copper alloy. The oxide film formed on the rolled surface or the oxide embedded by rolling after the oxide film is dropped. In order to remove this, a polishing process after rolling is essential. Since the polishing marks remain on the surface by this step, the surface of the substrate 11 becomes rough, and the Rrms becomes 60 to 100 nm. Therefore, in order to smooth the ground surface on which the Ag alloy film 13 is formed, the Ag plating film 12 is formed on the surface of the substrate 11 to obtain a smooth ground surface. In addition, before the Ag plating film 12 is formed, the surface of the substrate 11 is etched with an acid using a mixed solution of strong acid mainly composed of nitric acid (chirinic acid) or the like. If the unevenness is crushed, smoothness can be obtained even if the thickness of the Ag plating film 12 is reduced, which is more preferable.

また、Agめっき膜12とAg合金膜13との密着性をよくするために、Ag合金膜13を成膜する前に、Agめっき膜12の表面にアルゴン(Ar)のイオンビームを照射したり、Ar雰囲気中で、Agめっき膜12を形成された基板11に高周波を印加することにより、Agめっき膜12の表面の酸化皮膜や汚れを除去してもよい。   In order to improve the adhesion between the Ag plating film 12 and the Ag alloy film 13, the surface of the Ag plating film 12 is irradiated with an ion beam of argon (Ar) before the Ag alloy film 13 is formed. In addition, an oxide film and dirt on the surface of the Ag plating film 12 may be removed by applying a high frequency to the substrate 11 on which the Ag plating film 12 is formed in an Ar atmosphere.

(金属酸化膜)
第1実施形態に係るLED用リードフレーム10は、Ag合金膜13上に、さらにTi,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選択される1種の金属のまたは2種以上の合金の酸化膜(以下、適宜、金属酸化膜という)を設けてもよい(図示せず)。
(Metal oxide film)
The LED lead frame 10 according to the first embodiment is made of one kind of metal selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W on the Ag alloy film 13 or two kinds. An oxide film of the above alloy (hereinafter appropriately referred to as a metal oxide film) may be provided (not shown).

Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wは、大気中等で表面に安定した酸化膜(不働態皮膜)を形成するため、硫黄と反応し難い。また、これらの金属は、元の金属に対する酸化物の体積比(PB比:Pilling-bedworth ratio)が1を超えるものであり、酸化により膨張するため、極めて薄い金属膜として成膜した時点でピンホールが形成されていた場合、酸化して金属酸化膜となることでピンホールが塞がれる。このような金属酸化膜は、極めて薄い、具体的には膜厚2nm以下であっても、Ag合金膜13表面を被覆する緻密な保護膜を構成し、Ag合金膜13が外部からの硫黄と接触することを防止する。   Since Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W form a stable oxide film (passive film) on the surface in the atmosphere or the like, they hardly react with sulfur. Further, these metals have a volume ratio of oxide to the original metal (PB ratio: Pilling-bedworth ratio) exceeding 1, and expand due to oxidation. When the hole is formed, the pinhole is closed by oxidizing to become a metal oxide film. Even if such a metal oxide film is very thin, specifically, a film thickness of 2 nm or less, it constitutes a dense protective film that covers the surface of the Ag alloy film 13, and the Ag alloy film 13 is made of sulfur from the outside. Prevent contact.

前記した通り、Ag合金膜13はGeを含有するAg合金で構成されることで、Ag合金膜13自体が耐硫化性を有し、その下のAgめっき膜12を保護する。しかし、LED用リードフレーム10が発光装置に組み込まれて、LED素子を搭載されて封止されるための封止樹脂にシリコーン樹脂を適用する場合、そしてこのシリコーン樹脂が金属硫化物を含有する材料である場合は、Ag合金膜13表面は常に硫黄と接触していることになる。あるいは、発光装置の使用環境に硫化水素が存在する場合、硫化水素が封止樹脂に拡散してAg合金膜13表面に到達する虞がある。これらのように、LED用リードフレーム10が発光装置として使用された際に、表面すなわちAg合金膜13表面が比較的高濃度の硫黄に曝され続けた場合、Ag合金膜13を構成するAg合金の成分による耐硫化性だけでは不十分で、長期間の使用で表面が黒褐色化して反射率が劣化する虞がある。したがって、LED用リードフレーム10が発光装置に組み込まれた際の封止樹脂の材料や使用環境によっては、Ag合金膜13上に金属酸化膜を備えることが好ましい。   As described above, the Ag alloy film 13 is made of an Ag alloy containing Ge, so that the Ag alloy film 13 itself has sulfidation resistance and protects the underlying Ag plating film 12. However, when the LED lead frame 10 is incorporated in a light-emitting device and a silicone resin is applied as a sealing resin for mounting and sealing an LED element, and the silicone resin contains a metal sulfide. In this case, the surface of the Ag alloy film 13 is always in contact with sulfur. Or when hydrogen sulfide exists in the use environment of a light-emitting device, there exists a possibility that hydrogen sulfide may diffuse into sealing resin and may reach the Ag alloy film 13 surface. As described above, when the LED lead frame 10 is used as a light emitting device, when the surface, that is, the surface of the Ag alloy film 13 continues to be exposed to a relatively high concentration of sulfur, the Ag alloy constituting the Ag alloy film 13 is used. The sulfidation resistance due to this component alone is not sufficient, and there is a possibility that the reflectance will deteriorate due to the surface becoming dark brown after long-term use. Therefore, it is preferable to provide a metal oxide film on the Ag alloy film 13 depending on the material and use environment of the sealing resin when the LED lead frame 10 is incorporated in the light emitting device.

Ag合金膜13上に金属酸化膜を形成する場合、その膜厚は0.1nm以上5nm以下とする。金属酸化膜の膜厚が0.1nm未満では、硫黄に対するAg合金膜13の保護膜として不十分である。金属酸化膜の膜厚は、厚いほどAg合金膜13の耐硫化性への効果が高いため、好ましくは0.2nm以上、より好ましくは0.3nm以上である。一方、Ag合金膜13は、LED用リードフレーム10を発光装置に組み込んでLED素子を実装する際の、当該LED用リードフレーム10へのワイヤボンディングのための層でもあるため、それを被覆する金属酸化膜の膜厚が厚くなると、LED用リードフレーム10のワイヤボンディング性が低下する。したがって、金属酸化膜の膜厚は5nm以下とし、好ましくは4.5nm以下、より好ましくは4nm以下である。   When a metal oxide film is formed on the Ag alloy film 13, the film thickness is 0.1 nm or more and 5 nm or less. If the thickness of the metal oxide film is less than 0.1 nm, it is insufficient as a protective film for the Ag alloy film 13 against sulfur. The thickness of the metal oxide film is preferably 0.2 nm or more, more preferably 0.3 nm or more because the thicker the film, the higher the effect on the sulfidation resistance of the Ag alloy film 13. On the other hand, the Ag alloy film 13 is also a layer for wire bonding to the LED lead frame 10 when the LED lead frame 10 is incorporated in the light emitting device and the LED element is mounted. As the thickness of the oxide film increases, the wire bonding property of the LED lead frame 10 decreases. Therefore, the thickness of the metal oxide film is 5 nm or less, preferably 4.5 nm or less, more preferably 4 nm or less.

また、金属酸化膜は、その下地であるAg合金膜13の表面が平滑であるほど、薄い膜でもピンホールが形成され難くなるため、Ag合金膜13の耐硫化性への効果が高くなる。言い換えると、Ag合金膜13の表面が粗い場合は、金属酸化膜の膜厚を厚くする必要がある。前記した通り、本実施形態に係るLED用リードフレーム10は、Ag合金膜13の表面の二乗平均粗さRrmsを30nm以下とすることが、正反射率を高くするために好ましいが、さらにこの範囲の表面粗さとすることにより、金属酸化膜の膜厚を5nm以下において調整することでピンホールが形成され難くすることができる。   In addition, in the metal oxide film, the smoother the surface of the underlying Ag alloy film 13, the harder the pinholes are formed even in a thin film, so the effect on the sulfidation resistance of the Ag alloy film 13 is enhanced. In other words, when the surface of the Ag alloy film 13 is rough, it is necessary to increase the thickness of the metal oxide film. As described above, in the LED lead frame 10 according to the present embodiment, it is preferable that the root mean square roughness Rrms of the surface of the Ag alloy film 13 is 30 nm or less in order to increase the regular reflectance. By adjusting the surface roughness of the film, pinholes can be hardly formed by adjusting the thickness of the metal oxide film to 5 nm or less.

金属酸化膜は物理蒸着によって成膜することが好ましく、特にAg合金膜13と同じスパッタリング法を用いることが好ましい。Ag合金膜13と同じ成膜方法であれば、同じ装置でAg合金膜13と金属酸化膜を連続的に成膜することができる。スパッタリング法を用いて金属酸化膜を形成する場合、金属酸化膜と同じ組成の金属酸化物ターゲットを用いて直接に金属酸化膜を成膜してもよいし、金属(合金)ターゲットを用いて金属膜(合金膜)を成膜後、大気中等の酸素雰囲気で金属膜を酸化して金属酸化膜としてもよい。ただし、前記したように、膜厚2nm以下の金属酸化膜を形成する場合は、成膜時はピンホールが形成されている場合があるので、金属膜として成膜した後に酸化処理を行う。膜厚2nmを超える金属酸化膜を形成する場合は、どちらのターゲットを用いてもよい。   The metal oxide film is preferably formed by physical vapor deposition, and in particular, the same sputtering method as that for the Ag alloy film 13 is preferably used. If the film formation method is the same as that for the Ag alloy film 13, the Ag alloy film 13 and the metal oxide film can be continuously formed using the same apparatus. When forming a metal oxide film using a sputtering method, a metal oxide film may be formed directly using a metal oxide target having the same composition as the metal oxide film, or a metal (alloy) target may be used to form a metal oxide film. After the film (alloy film) is formed, the metal film may be oxidized in an oxygen atmosphere such as the air to form a metal oxide film. However, as described above, when a metal oxide film having a thickness of 2 nm or less is formed, pinholes may be formed at the time of film formation. Therefore, oxidation treatment is performed after the metal film is formed. When forming a metal oxide film having a film thickness exceeding 2 nm, either target may be used.

Ag合金膜13上の金属酸化膜の膜厚は、X線光電子分光分析(XPS)法で測定することができる。具体的にはX線光電子分光分析装置を用いて、LED用リードフレーム10の表面(金属酸化膜の表面)から深さ(膜厚)方向へ、金属酸化膜に含まれる金属元素および酸素元素O、ならびにAgの各濃度を測定し、表面から深さ方向へのプロファイルを得る。金属酸化膜に含まれる金属元素の濃度(含有率)が、最高濃度の1/2まで減少した深さを金属酸化膜の膜厚と規定することができる。   The film thickness of the metal oxide film on the Ag alloy film 13 can be measured by an X-ray photoelectron spectroscopy (XPS) method. Specifically, using an X-ray photoelectron spectrometer, the metal element and oxygen element O contained in the metal oxide film from the surface of the LED lead frame 10 (surface of the metal oxide film) to the depth (film thickness) direction. As well as each concentration of Ag, a profile from the surface in the depth direction is obtained. The depth at which the concentration (content ratio) of the metal element contained in the metal oxide film is reduced to ½ of the maximum concentration can be defined as the film thickness of the metal oxide film.

(製造方法)
第1実施形態のLED用リードフレーム10は、前記の構成を形成できる方法であれば特に制限されず、いずれの方法により製造してもよい。例えば、LED用リードフレーム10は、基板11を作製する基板作製工程S1、基板11表面にAgめっき膜12を形成するAgめっき工程S2、および基板11上のAgめっき膜12表面にAg合金膜13を形成するAg合金膜スパッタリング工程S5を含む方法によって製造することができる。以下に、LED用リードフレームの製造方法の一例を説明する。
(Production method)
The LED lead frame 10 of the first embodiment is not particularly limited as long as it is a method capable of forming the above-described configuration, and may be manufactured by any method. For example, the LED lead frame 10 includes a substrate production step S1 for producing the substrate 11, an Ag plating step S2 for forming the Ag plating film 12 on the surface of the substrate 11, and an Ag alloy film 13 on the surface of the Ag plating film 12 on the substrate 11. It can manufacture by the method including Ag alloy film sputtering process S5 which forms. Below, an example of the manufacturing method of the lead frame for LED is demonstrated.

基板作製工程S1では、材料の銅または銅合金を連続鋳造して鋳造板(例えば、薄板鋳塊)を製造し、次に、焼鈍、冷間圧延、中間焼鈍および時効処理、さらに、仕上げ圧延、研磨等の工程を経て、所要の厚さの素板を製造する。この素板をプレス加工等により所要の形状に成形して基板11を得ることができる。   In the substrate production step S1, a copper or copper alloy as a material is continuously cast to produce a cast plate (for example, a thin plate ingot), and then annealing, cold rolling, intermediate annealing and aging treatment, and finish rolling, A base plate having a required thickness is manufactured through a process such as polishing. The base plate 11 can be obtained by forming the base plate into a required shape by press working or the like.

Agめっき工程S2では、基板11の表面にAgめっき膜12を形成する。Agめっき膜12は、例えば、シアン浴、チオ硫酸塩浴等の公知のめっき浴を用い、Ag(純度99.99%)板を対極とし、電流密度5A/dm2、めっき浴温度15℃等の条件で電気めっきすることによって成膜することができる。また、光沢剤を添加しためっき浴を用いて光沢Agめっきとすることもできる。電気めっきにおいては、電流密度やめっき通板速度(めっき時間)等を調整することによって、所望の膜厚のAgめっき膜12を得ることができる。このAgめっき膜12の成膜に際して、予め基板11を脱脂液による脱脂、電解脱脂、および酸溶液によって前処理することが好ましい。前処理は、例えば、基板11を、脱脂液に浸漬して脱脂した後、対極をステンレス304として、リードフレーム側がマイナスとなるようにして直流電圧を印加して30秒間程度電解脱脂を行い、さらに、10%硫酸水溶液に10秒程度浸漬することによって行うことができる。なお、基板11の片面(上面)のみ、あるいはさらに一部の領域のみにAgめっき膜12を形成する場合は、下面や前記領域以外にマスキングテープ等でマスキングした後、めっき浴でAgめっきを行うことによって、基板11の所望の部位のみにAgめっき膜12を形成することができる。 In the Ag plating step S <b> 2, an Ag plating film 12 is formed on the surface of the substrate 11. As the Ag plating film 12, for example, a known plating bath such as a cyan bath or a thiosulfate bath is used, with an Ag (purity 99.99%) plate as a counter electrode, a current density of 5 A / dm 2 , a plating bath temperature of 15 ° C., etc. The film can be formed by electroplating under the following conditions. Moreover, it can also be set as gloss Ag plating using the plating bath which added the brightener. In electroplating, the Ag plating film 12 having a desired film thickness can be obtained by adjusting the current density, plating plate speed (plating time), and the like. When forming the Ag plating film 12, it is preferable to pre-treat the substrate 11 in advance by degreasing with a degreasing solution, electrolytic degreasing, and an acid solution. For example, after the substrate 11 is immersed in a degreasing solution and degreased, the counter electrode is made of stainless steel 304, and a DC voltage is applied so that the lead frame side is negative, and electrolytic degreasing is performed for about 30 seconds. It can be performed by immersing in a 10% sulfuric acid aqueous solution for about 10 seconds. In addition, when forming the Ag plating film 12 only on one side (upper surface) of the substrate 11 or further only on a part of the region, the Ag plating is performed in a plating bath after masking with a masking tape or the like on the lower surface or other region. Thus, the Ag plating film 12 can be formed only on a desired portion of the substrate 11.

Ag合金膜スパッタリング工程S5では、Agめっき膜12上に前記の所定の組成および膜厚のAg合金膜13をスパッタリング法にて形成する。スパッタリング法で形成することで、表面近傍のGe,Bi濃度が高いAg合金膜13が得られる。以下に、スパッタリング法による成膜方法の一例を示す。成膜するAg合金膜13の組成に合わせて組成が調整されたAg合金ターゲットをスパッタリング装置の電極に設置し、Agめっき膜12を形成した基板11を、スパッタリング装置のチャンバー内に載置する。次に、チャンバー内を1.3×10-3Pa以下の圧力まで真空排気した後、チャンバー内にArガスを導入して、チャンバー内圧力を所定の圧力、例えば2×10-2Pa程度に調整する。そして、イオンガンに所定の放電電圧を印加してArイオンを発生させ、さらに所定の加速電圧とビーム電圧を印加することにより、ArイオンビームをAgめっき膜12に照射してAgめっき膜12表面に存在する酸化皮膜や汚れを除去する。その後、チャンバー内にArガスを導入しながら、チャンバー内の圧力を0.27Pa程度に調整し、Ag合金ターゲットに直流電圧(出力200W)を印加することによりスパッタリングを行って、Ag合金膜13を成膜する。 In the Ag alloy film sputtering step S5, the Ag alloy film 13 having the predetermined composition and film thickness is formed on the Ag plating film 12 by a sputtering method. By forming by the sputtering method, an Ag alloy film 13 having a high Ge and Bi concentration near the surface can be obtained. Below, an example of the film-forming method by sputtering method is shown. An Ag alloy target whose composition is adjusted in accordance with the composition of the Ag alloy film 13 to be deposited is placed on the electrode of the sputtering apparatus, and the substrate 11 on which the Ag plating film 12 is formed is placed in the chamber of the sputtering apparatus. Next, after evacuating the chamber to a pressure of 1.3 × 10 −3 Pa or less, Ar gas is introduced into the chamber, and the pressure in the chamber is set to a predetermined pressure, for example, about 2 × 10 −2 Pa. adjust. Then, a predetermined discharge voltage is applied to the ion gun to generate Ar ions, and further, a predetermined acceleration voltage and beam voltage are applied to irradiate the Ag plating film 12 to the surface of the Ag plating film 12. Remove existing oxide film and dirt. Thereafter, while introducing Ar gas into the chamber, the pressure in the chamber is adjusted to about 0.27 Pa, and sputtering is performed by applying a DC voltage (output 200 W) to the Ag alloy target. Form a film.

以上のように、前記工程S1,S2,S5をこの順に行うことにより、第1実施形態に係るLED用リードフレーム10を製造することができる。なお、Agめっき工程S2において、基板11をマスキングせず両面にAgめっき膜12を形成し、Ag合金膜スパッタリング工程S5にて、片面(表面)にのみAg合金膜13を形成すると、図1(b)に示す第1実施形態の変形例に係るLED用リードフレーム10Aを製造することができる。また、基板作製工程S1における成形前に、工程S2、あるいはさらに工程S5を行ってから、所望の形状に加工して製造することもできる。   As described above, the LED lead frame 10 according to the first embodiment can be manufactured by performing the steps S1, S2, and S5 in this order. In addition, when Ag plating film 12 is formed on both surfaces without masking substrate 11 in Ag plating step S2, and Ag alloy film 13 is formed only on one surface (surface) in Ag alloy film sputtering step S5, FIG. An LED lead frame 10A according to a modification of the first embodiment shown in b) can be manufactured. Moreover, after performing in step S2 or further step S5 before shaping | molding in board | substrate preparation process S1, it can also process and manufacture in a desired shape.

また、Ag合金膜13上に金属酸化膜を形成する場合は、前記Ag合金成膜工程S5の次に金属酸化膜形成工程S6を行う。以下に、Ag合金成膜工程S5と同じくスパッタリング法を用いた方法の一例として、金属酸化膜を成膜する方法を示す。成膜する金属酸化膜の組成に合わせて組成が調整された金属酸化物ターゲットをスパッタリング装置の電極に設置し、Agめっき膜12およびAg合金膜13を形成した基板11をスパッタリング装置のチャンバー内に載置する。次に、チャンバー内を1.3×10-3Pa以下の圧力まで真空排気した後、チャンバー内にArガスを導入して、チャンバー内の圧力を0.27Pa程度に調整し、金属酸化物ターゲットに直流電圧(出力100W)を印加することによりスパッタリングを行って、金属酸化膜を成膜する。なお、この方法による場合は、ピンホールが形成されないように、金属酸化膜の膜厚を2nm超とする。 When a metal oxide film is formed on the Ag alloy film 13, a metal oxide film formation process S6 is performed after the Ag alloy film formation process S5. Hereinafter, a method for forming a metal oxide film will be described as an example of a method using a sputtering method as in the Ag alloy film forming step S5. A metal oxide target whose composition is adjusted in accordance with the composition of the metal oxide film to be formed is placed on the electrode of the sputtering apparatus, and the substrate 11 on which the Ag plating film 12 and the Ag alloy film 13 are formed is placed in the chamber of the sputtering apparatus. Place. Next, after evacuating the inside of the chamber to a pressure of 1.3 × 10 −3 Pa or less, Ar gas is introduced into the chamber, the pressure in the chamber is adjusted to about 0.27 Pa, and a metal oxide target Sputtering is performed by applying a DC voltage (output: 100 W) to form a metal oxide film. In this method, the thickness of the metal oxide film is more than 2 nm so that pinholes are not formed.

また、別の例として、ターゲットを非酸化物の金属(合金)材料として、Ag合金膜13上に金属膜(または合金膜)を成膜後、この金属膜を酸化して金属酸化膜とする方法を示す。スパッタリング装置にて成膜する工程は、電極に、成膜する金属酸化膜の組成の金属成分に合わせて組成が調整された金属(合金)ターゲットを設置する以外は、前記と同様である。金属膜を成膜後、チャンバーを開放して、またはチャンバーから取り出して大気中に曝すことで、金属膜が酸化して金属酸化膜となる。なお、Ag合金膜13上に金属酸化膜、金属膜のいずれを成膜する場合も、Ag合金成膜工程S5において、スパッタリング装置に、金属酸化膜の組成に合わせた金属酸化物ターゲットまたは金属ターゲットをAg合金ターゲットとは別の電極に設置しておくことが好ましい。このようにすることで、Ag合金膜13の成膜後、チャンバー内雰囲気をそのままに金属酸化膜形成工程S6に移行して、印加する電極(ターゲット)を切り替えるだけで、連続して金属酸化膜または金属膜を成膜できる。   As another example, a metal film (or alloy film) is formed on the Ag alloy film 13 using a non-oxide metal (alloy) material as a target, and the metal film is oxidized to form a metal oxide film. The method is shown. The step of forming a film with a sputtering apparatus is the same as described above except that a metal (alloy) target whose composition is adjusted according to the metal component of the composition of the metal oxide film to be formed is placed on the electrode. After the metal film is formed, the chamber is opened or removed from the chamber and exposed to the atmosphere, whereby the metal film is oxidized to form a metal oxide film. Note that, in the case where either a metal oxide film or a metal film is formed on the Ag alloy film 13, a metal oxide target or a metal target that matches the composition of the metal oxide film is used in the sputtering apparatus in the Ag alloy film forming step S5. Is preferably placed on an electrode separate from the Ag alloy target. In this way, after the Ag alloy film 13 is formed, the process proceeds to the metal oxide film forming step S6 while keeping the atmosphere in the chamber as it is, and the metal oxide film is continuously changed only by switching the applied electrode (target). Alternatively, a metal film can be formed.

〔第2実施形態〕
次に、第2実施形態に係るLED用リードフレームについて、図2および図3を参照して説明する。なお、第1実施形態に係るLED用リードフレームと同じ要素については、同じ符号を付し、説明を省略する。第2実施形態に係るLED用リードフレームは、LED素子を光源として実装される表面実装型の発光装置(図7参照)を構成するための部品である。
[Second Embodiment]
Next, an LED lead frame according to a second embodiment will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the same element as the lead frame for LED which concerns on 1st Embodiment, and description is abbreviate | omitted. The LED lead frame according to the second embodiment is a component for constituting a surface-mounted light-emitting device (see FIG. 7) mounted using an LED element as a light source.

図2(a)、(b)に示すように、第2実施形態に係るLED用リードフレーム10Bは、上方に開口した凹状の素子実装部22が形成されたLED素子実装体2と、このLED素子実装体2に支持された一対のリード部材1a,1bと、を備える。一対のリード部材1a,1bは、素子実装部22の底面22aに、互いに離間して配設されて、それぞれが当該素子実装部22からLED素子実装体2の外側に延出、すなわちLED素子実装体2の内側(素子実装部22)から外側へ突き抜けた構成となる。LED用リードフレーム10Bが発光装置に組み込まれたとき、LED素子実装体2は素子実装部22の内側に光源であるLED素子を収容するための器および台座であり、リード部材1a,1bはこのLED素子に電流を供給するための配線になる。本明細書では、リード部材1a,1bの、素子実装部22の底面22aに配置された領域をインナーリード部15a,15b、LED素子実装体2の外側に延出された領域をアウターリード部16a,16bと称する。インナーリード部15a,15bは、実装されるLED素子を電気的に接続するための領域であり、同時に、このLED素子の発光した光を反射させる反射板を構成する。そして、アウターリード部16a,16bは、外部の電源または配線に電気的に接続するための領域である。
以下、第2実施形態に係るLED用リードフレームを構成する要素について、詳細に説明する。
As shown in FIGS. 2A and 2B, an LED lead frame 10B according to the second embodiment includes an LED element mounting body 2 in which a concave element mounting portion 22 opened upward is formed. A pair of lead members 1 a and 1 b supported by the element mounting body 2. The pair of lead members 1a and 1b are disposed on the bottom surface 22a of the element mounting portion 22 so as to be separated from each other, and each extends from the element mounting portion 22 to the outside of the LED element mounting body 2, that is, the LED element mounting. The structure penetrates from the inside (element mounting portion 22) of the body 2 to the outside. When the LED lead frame 10B is incorporated in the light emitting device, the LED element mounting body 2 is a container and a pedestal for accommodating the LED element as a light source inside the element mounting portion 22, and the lead members 1a and 1b are Wiring is used to supply current to the LED element. In the present specification, regions of the lead members 1a and 1b arranged on the bottom surface 22a of the element mounting portion 22 are defined as inner lead portions 15a and 15b, and a region extending outside the LED element mounting body 2 is defined as an outer lead portion 16a. 16b. The inner lead portions 15a and 15b are regions for electrically connecting the LED elements to be mounted, and at the same time, constitute a reflector that reflects the light emitted by the LED elements. The outer lead portions 16a and 16b are regions for electrical connection to an external power source or wiring.
Hereinafter, elements constituting the LED lead frame according to the second embodiment will be described in detail.

(リード部材)
図2(a)に示すように、本実施形態においては、リード部材1a,1bは帯状で、その長手方向に沿って並設され、素子実装部22にて、長手方向中心に対して右寄りの位置で、間隔を空けて対向する。したがって、図2(a)、(b)において左側のインナーリード部15aが、右側のインナーリード部15bより長く、素子実装部22の底面22aの中央まで配置されている。これは、後記するように、LED用リードフレーム10Bが、ワイヤボンディングで実装されるLED素子を搭載する発光装置に組み込まれるためである。詳しくは、インナーリード部15a上の、底面22aの略中央(図2(a)に太破線の枠で示す領域)にLED素子が搭載され、さらにインナーリード部15a,15bのLED素子の両側(図における左右)における領域が、ワイヤボンディングのための領域となる。また、例えばフリップチップ実装のLED素子を搭載する発光装置に組み込まれるLED用リードフレーム(図示せず)の場合は、このLED素子が搭載される底面22aの領域の、当該LED素子の底面に設けられた一対の電極のそれぞれに対向する位置に、インナーリード部15a,15bが配置される。
(Lead material)
As shown in FIG. 2A, in the present embodiment, the lead members 1a and 1b are strip-shaped and are juxtaposed along the longitudinal direction thereof. Opposite with a gap in position. Therefore, in FIGS. 2A and 2B, the left inner lead portion 15 a is longer than the right inner lead portion 15 b and is disposed up to the center of the bottom surface 22 a of the element mounting portion 22. This is because, as will be described later, the LED lead frame 10B is incorporated into a light emitting device on which an LED element mounted by wire bonding is mounted. Specifically, an LED element is mounted on the inner lead portion 15a at the approximate center of the bottom surface 22a (a region indicated by a thick broken line in FIG. 2A), and both sides of the LED elements of the inner lead portions 15a and 15b ( Regions in the left and right in the figure are regions for wire bonding. For example, in the case of an LED lead frame (not shown) incorporated in a light emitting device on which a flip-chip mounted LED element is mounted, it is provided on the bottom surface of the LED element in the region of the bottom surface 22a on which the LED element is mounted. Inner lead portions 15a and 15b are disposed at positions facing each of the pair of electrodes formed.

素子実装部22におけるリード部材1a,1b(インナーリード部15a,15b)に挟まれた領域(空間)を、素子実装部22の底面22aおよび側面22b,22bを含めて、離間領域28と称する。前記挟まれた領域(空間)とは、詳しくは、底面22aにおけるインナーリード部15a,15b間の領域の、上下方向および短辺方向(図2(a)における上下方向)の延長上を指す。また、この延長上の、さらにLED素子実装体2の外側表面までの領域を、離間領域28の延長上という。そして、素子実装部22における、リード部材1a,1b(インナーリード部15a,15b)の形状および配置、ならびに離間領域28の位置は、前記したように、LED用リードフレームを組み込む発光装置(以下、適宜、発光装置という)の形状および形態、ならびにLED素子の実装形態等に応じて設計される。   A region (space) between the lead members 1a and 1b (inner lead portions 15a and 15b) in the element mounting portion 22 is referred to as a separation region 28 including the bottom surface 22a and the side surfaces 22b and 22b of the element mounting portion 22. Specifically, the sandwiched region (space) refers to an extension of the region between the inner lead portions 15a and 15b on the bottom surface 22a in the vertical direction and the short side direction (vertical direction in FIG. 2A). Further, a region on this extension and further to the outer surface of the LED element mounting body 2 is referred to as an extension of the separation region 28. The shape and arrangement of the lead members 1a and 1b (inner lead portions 15a and 15b) and the position of the separation region 28 in the element mounting portion 22 are as follows. Designed according to the shape and form of the light emitting device) and the mounting form of the LED element.

また、LED素子実装体2の外側において、リード部材1a,1b(アウターリード部16a,16b)は、その長手方向にまっすぐに延出され、したがって、図2(b)に示すように、素子実装部22の対向する側面22c,22cをそれぞれ貫通する構成となる。ただし、前記したように、アウターリード部16a,16bは、発光装置に組み込んだときに外部の電源または配線に電気的に接続するための部位であり、この形状および配置に限られず、発光装置の形状および形態等に応じて設計される。例えば、アウターリード部16a,16bは、後記の変形例(図3(b)参照)のように平面視で屈曲したL字型に形成されたり、LED素子実装体2の外側の同じ側に突出したり、または折り曲げて、あるいはLED素子実装体2に埋設した領域で折り曲げてLED素子実装体2の下方や下面に配設されてもよい。なお、このようにリード部材1a,1bがLED素子実装体2を内側から外側へ(外側から内側へ)貫通する構造とするためには、例えば後記するように、リード部材1a,1bを所要の形状に加工したものを、樹脂と一体に射出成形して、LED素子実装体2の基体である樹脂成形体21を作製すればよい。また、リード部材1a,1bは、以下、適宜まとめてリード部材1と称する。   In addition, outside the LED element mounting body 2, the lead members 1a and 1b (outer lead portions 16a and 16b) extend straight in the longitudinal direction thereof. Therefore, as shown in FIG. It becomes the structure which each penetrates the side surfaces 22c and 22c which the part 22 opposes. However, as described above, the outer lead portions 16a and 16b are portions for electrically connecting to an external power source or wiring when incorporated in the light emitting device, and are not limited to this shape and arrangement. It is designed according to shape and form. For example, the outer lead portions 16a and 16b are formed in an L-shape bent in a plan view as shown in a modification example (see FIG. 3B) described later, or protrude to the same side outside the LED element mounting body 2. Alternatively, the LED element mounting body 2 may be disposed under or under the LED element mounting body 2 by bending or bending in an area embedded in the LED element mounting body 2. In order to make the lead members 1a and 1b penetrate the LED element mounting body 2 from the inside to the outside (from the outside to the inside) as described above, for example, as described later, the lead members 1a and 1b are required to have the required structure. What is necessary is just to produce the resin molding 21 which is a base | substrate of the LED element mounting body 2 by inject-molding what was processed into the shape integrally with resin. The lead members 1a and 1b are hereinafter collectively referred to as a lead member 1 as appropriate.

リード部材1は、基板11と、基板11のLED素子が搭載される側の面である上面(以下、適宜表面という)に形成されたAgめっき膜12と、さらにその上に形成されたAg合金膜13と、を備える。すなわち、リード部材1は、図1(a)に示す第1実施形態に係るLED用リードフレーム10と同じ積層構造を有する。第1実施形態と同様に、Agめっき膜12およびAg合金膜13は、基板11の片面すなわち表面のみに形成されていてもよいし、基板11の下面(裏面)を含めた両面に形成されていてもよい。さらには、Agめっき膜12およびAg合金膜13は、発光装置としてLED素子を実装されたときに素子実装部22内に露出する領域のみに、すなわち、インナーリード部15a表面のLED素子搭載領域(図2(a)参照)を除く領域、およびインナーリード部15bの表面に形成されていればよい。したがって、リード部材1は、裏面、端面や、表面のアウターリード部16a,16b等の領域においては、Agめっき膜12およびAg合金膜13が積層されていてもよいし、基板11が露出していても、あるいはAgめっき膜12およびAg合金膜13の一方のみが形成されていてもよい(例えば、図1(b)参照)。本実施形態に係るLED用リードフレーム10Bでは、インナーリード部15a,15bにおいて、表面にAgめっき膜12およびAg合金膜13を積層した図1(a)に示す構造となる。また、第1実施形態に係るLED用リードフレーム10と同様に、Ag合金膜13上に金属酸化膜(図示せず)を備える構造としてもよい。   The lead member 1 includes a substrate 11, an Ag plating film 12 formed on an upper surface (hereinafter referred to as an appropriate surface) on which the LED element is mounted on the substrate 11, and an Ag alloy formed thereon. A film 13. That is, the lead member 1 has the same laminated structure as the LED lead frame 10 according to the first embodiment shown in FIG. Similar to the first embodiment, the Ag plating film 12 and the Ag alloy film 13 may be formed only on one surface, that is, the front surface of the substrate 11, or formed on both surfaces including the lower surface (back surface) of the substrate 11. May be. Furthermore, the Ag plating film 12 and the Ag alloy film 13 are only in a region exposed in the element mounting portion 22 when the LED element is mounted as a light emitting device, that is, the LED element mounting region (on the surface of the inner lead portion 15a ( It suffices if it is formed in the area excluding FIG. 2A and the surface of the inner lead portion 15b. Therefore, the lead member 1 may be formed by laminating the Ag plating film 12 and the Ag alloy film 13 or exposing the substrate 11 in the regions such as the back surface, the end surface, and the outer lead portions 16a and 16b on the front surface. Alternatively, only one of the Ag plating film 12 and the Ag alloy film 13 may be formed (see, for example, FIG. 1B). The LED lead frame 10B according to the present embodiment has a structure shown in FIG. 1A in which the Ag plating film 12 and the Ag alloy film 13 are laminated on the surfaces of the inner lead portions 15a and 15b. Moreover, it is good also as a structure provided with a metal oxide film (not shown) on the Ag alloy film 13 like the LED lead frame 10 according to the first embodiment.

基板11は、リード部材1a,1bの形状に成形され、材料および製造方法等は第1実施形態と同様であるため、説明を省略する。また、第2実施形態の変形例として、図3に示す形状の基板(リード部材)とすることもできる。   The substrate 11 is formed into the shape of the lead members 1a and 1b, and the material, the manufacturing method, and the like are the same as those in the first embodiment, and thus description thereof is omitted. As a modification of the second embodiment, a substrate (lead member) having the shape shown in FIG. 3 can be used.

第2実施形態の変形例に係るLED用リードフレーム10Cの基板11Aは、図3(a)に示すように、複数個が連続して、マトリクス状の打ち抜きパターンを形成されたロール状または短冊状の板を構成している。図3(b)は1個のパターンを拡大した図で、図中の破線で示す位置に、第2実施形態と同様にLED素子実装体2を貫通させて、図3(c)に示すLED用リードフレーム10Cに形成される。すなわち、基板11Aは、1個のパターンが1個のLED用リードフレーム10Cの一対のリード部材1a,1bを構成する。また、本変形例において、リード部材1a,1bは、アウターリード部16a,16bが平面視で屈曲したL字型に形成されている。基板11Aは、図3(a)では、板幅方向(図における左右方向)に4個、板の送り方向に3個の合計12個分のリード部材1a,1bを構成し、さらに両縁(図における左右)に送り穴を形成されている。このように連続したリード部材1a,1bの基板11Aは、リール・トゥ・リールまたは短冊状の板の1枚単位の搬送で、LED用リードフレーム10Cに製造される部材である。   As shown in FIG. 3A, the substrate 11A of the LED lead frame 10C according to the modification of the second embodiment has a roll shape or a strip shape in which a plurality of continuous substrates are formed with a matrix punching pattern. The board is composed. FIG. 3B is an enlarged view of one pattern, and the LED element mounting body 2 is penetrated at the position indicated by the broken line in the drawing in the same manner as in the second embodiment, and the LED shown in FIG. The lead frame 10C is formed. That is, in the substrate 11A, one pattern constitutes a pair of lead members 1a and 1b of one LED lead frame 10C. In the present modification, the lead members 1a and 1b are formed in an L shape in which the outer lead portions 16a and 16b are bent in a plan view. In FIG. 3 (a), the substrate 11A constitutes a total of 12 lead members 1a and 1b, four in the plate width direction (left and right direction in the drawing) and three in the plate feed direction, and both edges ( Feed holes are formed on the left and right in the figure. The substrate 11A of the lead members 1a and 1b that are continuous in this manner is a member that is manufactured on the LED lead frame 10C by carrying one reel-to-reel or strip-like plate.

第2実施形態およびその変形例において、Agめっき膜12、Ag合金膜13のそれぞれの構成、すなわちAgめっき膜12の材料および膜厚、ならびにAg合金膜13の材料、膜厚および表面の二乗平均粗さRrms、さらにAgめっき膜12とAg合金膜13の膜厚の合計は、いずれも第1実施形態におけるAgめっき膜12、Ag合金膜13と同様であり、第1実施形態のAgめっき工程S2、Ag合金膜スパッタリング工程S5と同様の方法でそれぞれ形成できる。さらに、Ag合金膜13上に金属酸化膜を備える場合は、当該金属酸化膜の材料および膜厚は第1実施形態における金属酸化膜と同様であり、第1実施形態の金属酸化膜形成工程S6と同様の方法で形成できる。   In the second embodiment and its modifications, the respective configurations of the Ag plating film 12 and the Ag alloy film 13, that is, the material and film thickness of the Ag plating film 12, and the root mean square of the material, film thickness, and surface of the Ag alloy film 13 The roughness Rrms and the total thickness of the Ag plating film 12 and the Ag alloy film 13 are the same as those of the Ag plating film 12 and the Ag alloy film 13 in the first embodiment, and the Ag plating process of the first embodiment. S2 and Ag alloy film can be formed by the same method as in sputtering step S5. Further, when a metal oxide film is provided on the Ag alloy film 13, the material and film thickness of the metal oxide film are the same as those of the metal oxide film in the first embodiment, and the metal oxide film formation step S6 of the first embodiment. It can be formed by the same method.

(LED素子実装体)
LED素子実装体2は、図2(a)、(b)に示すように、凹状の素子実装部22が形成されたカップ状の樹脂成形体(基体)21と、素子実装部22の表面に形成されたAg合金膜23とを備える。素子実装部22は上方に広がって開口し、底面22aとこれを囲む4面の側面22b,22c,22b,22cとから構成される平面視で長方形の四角錐台である。素子実装部22の形状はこれに限定されず、例えば平面視で正方形であったり、上方に広がって開口した円錐台でもよい。LED素子実装体2は、LED用リードフレーム10B,10Cを組み込む発光装置の形状および形態、ならびにLED素子の実装形態、製品としてユーザに提供する形態等に応じて所要の形状に成形される。
(LED element mounting body)
As shown in FIGS. 2A and 2B, the LED element mounting body 2 includes a cup-shaped resin molded body (base body) 21 having a concave element mounting portion 22 formed on the surface of the element mounting portion 22. And an Ag alloy film 23 formed. The element mounting portion 22 is a rectangular pyramid that is rectangular in plan view and is formed by opening upward and opening, and comprising a bottom surface 22a and four side surfaces 22b, 22c, 22b, and 22c surrounding the bottom surface 22a. The shape of the element mounting portion 22 is not limited to this, and may be, for example, a square in a plan view or a truncated cone that opens upward. The LED element mounting body 2 is formed into a required shape according to the shape and form of the light emitting device incorporating the LED lead frames 10B and 10C, the LED element mounting form, the form provided to the user as a product, and the like.

樹脂成形体21はLED素子実装体2の基体であり、絶縁材料である樹脂をLED素子実装体2の形状に成形してなる。したがって、樹脂成形体21は、その外側から内側(素子実装部22)へリード部材1a,1bがそれぞれ貫通するように、射出成形(インサート成形)等によって、リード部材1a,1bと一体的に成形されることが好ましい。樹脂は、耐熱性が200℃以上のものであればよく、ポリアミド(PA)樹脂等のエンジニアリングプラスチック、ポリフェニレンサルファイド(PPS)樹脂等のスーパーエンジニアリングプラスチック等を用いることができる。   The resin molded body 21 is a base of the LED element mounting body 2 and is formed by molding a resin, which is an insulating material, into the shape of the LED element mounting body 2. Therefore, the resin molded body 21 is molded integrally with the lead members 1a and 1b by injection molding (insert molding) or the like so that the lead members 1a and 1b penetrate from the outside to the inside (element mounting portion 22). It is preferred that The resin has only to have heat resistance of 200 ° C. or higher, and engineering plastics such as polyamide (PA) resin, super engineering plastics such as polyphenylene sulfide (PPS) resin, and the like can be used.

LED素子実装体2の内面すなわち素子実装部22の表面(面22a,22b,22c)における離間領域28を除く領域には、Ag合金膜23を備える。Ag合金膜23を構成するAg合金は、リード部材1における前記のAg合金膜13を構成するAg合金の組成成分の範囲であれば、Ag合金膜13と同一の組成であっても異なる組成であってもよい。また、リード部材1がAg合金膜13上に金属酸化膜を備える構造である場合は、Ag合金膜23上にも金属酸化膜を備えることが好ましい。この金属酸化膜についても、第1実施形態における金属酸化膜として規定された金属の種類および膜厚の範囲であれば、Ag合金膜13上の金属酸化膜と組成や膜厚が同一であっても異なってもよい。なお、底面22aにおけるリード部材1a,1bの配置される領域(インナーリード部15a,15bの下)にはAg合金膜23が形成されなくてよい。   An Ag alloy film 23 is provided in a region excluding the separation region 28 on the inner surface of the LED element mounting body 2, that is, on the surface (surfaces 22 a, 22 b, 22 c) of the element mounting portion 22. The Ag alloy film 23 may have the same composition as that of the Ag alloy film 13 as long as it is within the range of the composition components of the Ag alloy film constituting the Ag alloy film 13 in the lead member 1. There may be. When the lead member 1 has a structure including a metal oxide film on the Ag alloy film 13, it is preferable that a metal oxide film is also provided on the Ag alloy film 23. This metal oxide film also has the same composition and film thickness as the metal oxide film on the Ag alloy film 13 as long as it is in the range of the metal type and film thickness specified as the metal oxide film in the first embodiment. May be different. Note that the Ag alloy film 23 does not have to be formed in the region of the bottom surface 22a where the lead members 1a and 1b are disposed (under the inner lead portions 15a and 15b).

このことから、リード部材1a,1bと一体的に射出成形された樹脂成形体21に対して、Ag合金膜23を成膜することができる。したがって、後記するように、樹脂成形体21を、Ag合金膜13を形成する前のリード部材1a,1b(Agめっき膜12を形成した基材11)と一体的に射出成形し、インナーリード部15a,15b(Agめっき膜12)および素子実装部22(樹脂成形体21)の表面に、Ag合金膜13,23を一体に成膜することができる。さらに、素子実装部22を上方に広がって開口した形状とすることで、インナーリード部15a,15bにAg合金膜13を物理蒸着で成膜すれば、同時に素子実装部22の底面22aだけでなく、傾斜した側面22b,22cにもAg合金膜23が成膜される。なお、図2(b)、図3(c)、および後記変形例の図5(b)において、素子実装部22の表面に、インナーリード部15a(15b)表面を含めて一体にAg合金膜を示しているが、樹脂成形体21上に形成されたものはAg合金膜23、Agめっき膜12上すなわちリード部材1表面に形成されたものはAg合金膜13とする。   Therefore, the Ag alloy film 23 can be formed on the resin molded body 21 that is integrally molded with the lead members 1a and 1b. Therefore, as will be described later, the resin molded body 21 is injection-molded integrally with the lead members 1a and 1b (the base material 11 on which the Ag plating film 12 is formed) before the Ag alloy film 13 is formed, and the inner lead portion Ag alloy films 13 and 23 can be integrally formed on the surfaces of 15a and 15b (Ag plating film 12) and element mounting portion 22 (resin molded body 21). Furthermore, by forming the element mounting portion 22 to open upward and forming the Ag alloy film 13 on the inner lead portions 15a and 15b by physical vapor deposition, not only the bottom surface 22a of the element mounting portion 22 is simultaneously formed. The Ag alloy film 23 is also formed on the inclined side surfaces 22b and 22c. 2B, FIG. 3C, and FIG. 5B, which will be described later, the Ag alloy film is integrally formed on the surface of the element mounting portion 22 including the surface of the inner lead portion 15a (15b). However, what is formed on the resin molded body 21 is an Ag alloy film 23, and what is formed on the Ag plating film 12, that is, on the surface of the lead member 1, is an Ag alloy film 13.

ここで、素子実装部22の表面(底面22aおよび側面22b,22c)の全領域にAg合金膜が形成されていると、このAg合金膜を介してリード部材1a,1b間(インナーリード部15a,15b間)が短絡する。したがって、底面22aおよび側面22b,22bの離間領域28における領域には、Ag合金膜23は形成されない。また、Ag合金膜23は、素子実装部22の表面以外、すなわち図3(c)に示すようにLED素子実装体2の上面(側壁の上端面)や外側の側面等にも形成されてもよいが、離間領域28の延長上で、インナーリード部15a,15bから連続して形成されないようにする。すなわち、Ag合金膜23は、インナーリード部15aの配置される領域に連続する領域と、インナーリード部15bの配置される領域に連続する領域とで、離間領域28を隔てて完全に分離される。このようなAg合金膜23の形成方法は、後記のLED用リードフレームの製造方法で詳細に説明する。   Here, when an Ag alloy film is formed on the entire surface (bottom surface 22a and side surfaces 22b, 22c) of the element mounting portion 22, the lead members 1a, 1b (inner lead portion 15a) are interposed via the Ag alloy film. , 15b) is short-circuited. Therefore, the Ag alloy film 23 is not formed in the region in the separation region 28 between the bottom surface 22a and the side surfaces 22b and 22b. Moreover, the Ag alloy film 23 may be formed on the upper surface (upper end surface of the side wall) or the outer side surface of the LED element mounting body 2 as shown in FIG. Although it is good, on the extension of the separation region 28, it is not formed continuously from the inner lead portions 15a and 15b. That is, the Ag alloy film 23 is completely separated across the separation region 28 by a region continuing to the region where the inner lead portion 15a is disposed and a region continuing to the region where the inner lead portion 15b is disposed. . A method for forming such an Ag alloy film 23 will be described in detail in a method for manufacturing an LED lead frame described later.

Ag合金膜23は、膜厚が70nm以上500nm以下とする。リード部材1においてAgめっき膜12上に形成されるAg合金膜13と異なり、Ag合金膜23はそれ自体が反射膜となるため、膜厚が70nm未満では、光がAg合金膜を透過して下地である樹脂成形体21に吸収されるため反射率が低下する。好ましくは100nm以上、より好ましくは120nm以上である。一方、リード部材1におけるAgめっき膜12上におけるAg合金膜13と同様に、Ag合金膜23の膜厚が500nmを超えても、反射膜としての効果は飽和し、生産性が低下する。   The Ag alloy film 23 has a thickness of 70 nm to 500 nm. Unlike the Ag alloy film 13 formed on the Ag plating film 12 in the lead member 1, the Ag alloy film 23 itself is a reflective film. Therefore, when the film thickness is less than 70 nm, light passes through the Ag alloy film. Since it is absorbed by the resin molded body 21 as a base, the reflectance is lowered. Preferably it is 100 nm or more, More preferably, it is 120 nm or more. On the other hand, similarly to the Ag alloy film 13 on the Ag plating film 12 in the lead member 1, even if the thickness of the Ag alloy film 23 exceeds 500 nm, the effect as a reflective film is saturated and the productivity is lowered.

また、Ag合金膜23も、リード部材1におけるAg合金膜13と同様に、正反射率を高くするため、表面の二乗平均粗さRrmsを30nm以下とすることが好ましい。より好ましくは20nm以下、さらに好ましくは10nm以下である。このような平滑な表面のAg合金膜23は、その下地である樹脂成形体21の素子実装部22における表面を同程度のRrmsとすればよい。例えば、樹脂成形体21の成形に用いる金型を、同程度のRrmsの表面に作製すれば、金型の表面粗さが樹脂成形体21の表面に転写されるため、このような平滑な表面に形成することができる。   Further, the Ag alloy film 23 also preferably has a root mean square roughness Rrms of 30 nm or less in order to increase the regular reflectance, similarly to the Ag alloy film 13 in the lead member 1. More preferably, it is 20 nm or less, More preferably, it is 10 nm or less. Such a smooth surface Ag alloy film 23 may have a surface with a similar degree of Rrms in the element mounting portion 22 of the resin molded body 21 which is the base. For example, if the mold used for molding the resin molded body 21 is made on the surface of the same degree of Rrms, the surface roughness of the mold is transferred to the surface of the resin molded body 21, and thus such a smooth surface Can be formed.

(製造方法)
第2実施形態およびその変形例に係るLED用リードフレーム10B,10Cは、前記の構成を形成できる方法であれば特に制限されず、いずれの方法により製造してもよい。例えば、LED用リードフレーム10B,10Cは、第1実施形態における基板作製工程S1、Agめっき工程S2、Ag合金膜スパッタリング工程S5に、さらに樹脂成形工程S3およびマスク工程S4を含む方法によって製造することができる。以下に、第2実施形態に係るLED用リードフレームの製造方法の一例を説明する。
(Production method)
The LED lead frames 10B and 10C according to the second embodiment and the modifications thereof are not particularly limited as long as they can form the above-described configuration, and may be manufactured by any method. For example, the LED lead frames 10B and 10C are manufactured by a method including a substrate forming step S1, an Ag plating step S2, and an Ag alloy film sputtering step S5 in the first embodiment, and further including a resin molding step S3 and a mask step S4. Can do. Below, an example of the manufacturing method of the lead frame for LED which concerns on 2nd Embodiment is demonstrated.

基板作製工程S1およびAgめっき工程S2は、前記第1実施形態における工程S1,S2と同様であるので、説明を省略する。   Since the substrate manufacturing step S1 and the Ag plating step S2 are the same as the steps S1 and S2 in the first embodiment, description thereof is omitted.

樹脂成形工程S3は、射出成形(インサート成形)等によって、樹脂成形体21をリード部材1a,1bと一体的に成形する。詳しくは、樹脂成形体21の外側から内側(素子実装部22)へ、Agめっき膜12を形成された基板11(または基板11A)が貫通するように、樹脂を前記基板11と一体的に成形する。なお、樹脂成形体21の底面22aとなる面は、リード部材1a,1bのAgめっき膜12表面と面一であることが好ましいが、例えば基板11の下面と面一に成形されてもよい。   In the resin molding step S3, the resin molded body 21 is integrally molded with the lead members 1a and 1b by injection molding (insert molding) or the like. Specifically, the resin is molded integrally with the substrate 11 so that the substrate 11 (or the substrate 11A) on which the Ag plating film 12 is formed penetrates from the outside to the inside (element mounting portion 22) of the resin molded body 21. To do. In addition, although it is preferable that the surface used as the bottom face 22a of the resin molding 21 is the same as the surface of the Ag plating film 12 of the lead members 1a and 1b, it may be formed flush with the lower surface of the substrate 11, for example.

次に、インナーリード部15a,15bにおけるAgめっき膜12表面にAg合金膜13を、樹脂成形体21の素子実装部22における表面にAg合金膜23を、それぞれ形成する(Ag合金膜スパッタリング工程S5)。しかしながら、素子実装部22の開口部から底面22aに向けて、そのまま、すなわち素子実装部22表面の全領域にAg合金膜を成膜すると、前記したように、素子実装部22表面のAg合金膜を介してインナーリード部15a,15b間(リード部材1a,1b間)が短絡することになる。そこで、インナーリード部15a,15b間の短絡を防止するため、Ag合金膜スパッタリング工程S5の前にマスク工程S4を行う。   Next, an Ag alloy film 13 is formed on the surface of the Ag plating film 12 in the inner lead portions 15a and 15b, and an Ag alloy film 23 is formed on the surface of the element mounting portion 22 of the resin molded body 21 (Ag alloy film sputtering step S5). ). However, when the Ag alloy film is formed as it is from the opening of the element mounting portion 22 toward the bottom surface 22a, that is, in the entire region of the surface of the element mounting portion 22, as described above, the Ag alloy film on the surface of the element mounting portion 22 Thus, the inner lead portions 15a and 15b (between the lead members 1a and 1b) are short-circuited. Therefore, in order to prevent a short circuit between the inner lead portions 15a and 15b, a mask process S4 is performed before the Ag alloy film sputtering process S5.

以下、マスク工程S4について、図4を参照して説明する。マスク工程S4では、図4(b)に示すように、素子実装部22内に、その開口部から、底面22aのインナーリード部15a,15b間に向けて、インナーリード部15a,15b間距離と同じ厚さの板状のマスク33を嵌装する。マスク33は、図4(c)に示すように、素子実装部22内側のE−E線矢視断面形状と同じ逆台形の上にLED素子実装体2(樹脂成形体21)の側方へ張り出す耳部を有する形状である。マスク33の構成は特に制限されず、例えば、銅、アルミニウム、チタン、SUS等の金属材料をエッチングやプレス加工等で作製されたものを用いることができる。このマスク33を素子実装部22内に嵌装した状態で、Ag合金膜スパッタリング工程S5を行う。なお、このとき、LED素子実装体2における素子実装部22の外部を覆うマスク(図示せず)も設けて、LED素子実装体2の外側表面のAg合金膜でインナーリード部15a,15b間が短絡しないようにする。   Hereinafter, the mask process S4 will be described with reference to FIG. In the mask process S4, as shown in FIG. 4B, the distance between the inner lead portions 15a and 15b from the opening portion into the inner lead portions 15a and 15b of the bottom surface 22a is formed in the element mounting portion 22. A plate-like mask 33 having the same thickness is fitted. As shown in FIG. 4C, the mask 33 is formed on the same trapezoidal shape as the cross-sectional shape taken along the line E-E inside the element mounting portion 22, to the side of the LED element mounting body 2 (resin molded body 21). It has a shape having protruding ears. The configuration of the mask 33 is not particularly limited, and for example, a mask made of a metal material such as copper, aluminum, titanium, or SUS by etching or pressing can be used. In a state where the mask 33 is fitted in the element mounting portion 22, an Ag alloy film sputtering step S5 is performed. At this time, a mask (not shown) that covers the outside of the element mounting portion 22 in the LED element mounting body 2 is also provided, and an Ag alloy film on the outer surface of the LED element mounting body 2 is formed between the inner lead portions 15a and 15b. Avoid short circuit.

Ag合金膜スパッタリング工程S5は、前記第1実施形態における工程と同様であり、所定の組成および膜厚のAg合金膜13,23を、インナーリード部15a,15bも含めて素子実装部22内に、一体に成膜する。ここで、基板11を貫通させた樹脂成形体21は、スパッタリング装置において、素子実装部22の底面22aおよびインナーリード部15a,15bをAg合金ターゲットに対向する向きに載置される。したがって、傾斜角度にもよるが、これらの面より、素子実装部22の側面22b,22cにおける成膜速度の方が遅い傾向がある。一方、インナーリード部15a,15b表面のAg合金膜13より樹脂成形体21表面のAg合金膜23の方が必要な膜厚が厚いため、樹脂成形体21の側面22b,22cとなる表面におけるAg合金膜の膜厚に合わせて成膜すればよい。   The Ag alloy film sputtering step S5 is the same as the step in the first embodiment, and the Ag alloy films 13 and 23 having a predetermined composition and film thickness are included in the element mounting portion 22 including the inner lead portions 15a and 15b. , Forming a film integrally. Here, the resin molded body 21 that has penetrated the substrate 11 is placed in a sputtering apparatus so that the bottom surface 22a of the element mounting portion 22 and the inner lead portions 15a and 15b face the Ag alloy target. Therefore, although depending on the inclination angle, the film formation speed on the side surfaces 22b and 22c of the element mounting portion 22 tends to be slower than these surfaces. On the other hand, the required thickness of the Ag alloy film 23 on the surface of the resin molded body 21 is larger than that of the Ag alloy film 13 on the surfaces of the inner lead portions 15a and 15b. What is necessary is just to form into a film according to the film thickness of an alloy film.

Ag合金膜13,23を成膜した後、素子実装部22からマスク33を外すと、図2(a)、(b)に示すように、素子実装部22の表面において、底面22aおよび側面22b,22bにわたって、Ag合金膜23が形成されず樹脂成形体21が露出した領域が、離間領域28に沿って帯状に存在するLED素子実装体2となる。このように離間領域28にAg合金膜が形成されないようにすることによって、Ag合金膜23を介してインナーリード部15a,15b間で短絡することを防止して、リード部材1a,1b間の絶縁性を確保することができる。なお、インナーリード部15a,15b間(離間領域28)には、樹脂成形体21を構成する樹脂、あるいは発光装置に組み込んだときに封止樹脂が充填されるので、リード部材1a,1b間の絶縁性は保持される。なお、本実施形態は、マスク33の他に、LED素子実装体2における素子実装部22の外部全体を覆うマスク(図示せず)を用いて、LED素子実装体2における素子実装部22以外の表面、およびアウターリード部16a,16bには、Ag合金膜23,13が形成されないようにしたものである。さらに、アウターリード部16a,16bは、Agめっき工程S2においてマスキングを施して、銅または銅合金からなる基板11が剥き出しになる構成とすることもできる。   When the mask 33 is removed from the element mounting portion 22 after the Ag alloy films 13 and 23 are formed, the bottom surface 22a and the side surface 22b are formed on the surface of the element mounting portion 22 as shown in FIGS. 2 (a) and 2 (b). , 22b, the region in which the Ag alloy film 23 is not formed and the resin molded body 21 is exposed is the LED element mounting body 2 that exists in a strip shape along the separation region 28. By preventing the Ag alloy film from being formed in the separation region 28 in this way, it is possible to prevent a short circuit between the inner lead portions 15a and 15b via the Ag alloy film 23 and to insulate the lead members 1a and 1b. Sex can be secured. Since the inner lead portions 15a and 15b (separation region 28) are filled with the resin constituting the resin molded body 21 or the sealing resin when incorporated in the light emitting device, the space between the lead members 1a and 1b is reduced. Insulation is maintained. In the present embodiment, in addition to the mask 33, a mask (not shown) that covers the entire outside of the element mounting portion 22 in the LED element mounting body 2 is used, and other than the element mounting portion 22 in the LED element mounting body 2. The Ag alloy films 23 and 13 are not formed on the surface and the outer lead portions 16a and 16b. Further, the outer lead portions 16a and 16b may be configured such that the substrate 11 made of copper or copper alloy is exposed by performing masking in the Ag plating step S2.

また、図3(c)に示す変形例のLED用リードフレーム10Cのように、LED素子実装体2の上面および外側の側面、アウターリード部16a,16b(図3(b)参照)、およびLED用リードフレーム10C,10C間の基板11A上にもAg合金膜23,13が形成されてもよい。ただし、前記したように、LED素子実装体2の全表面において、離間領域28とその延長上にはAg合金膜23が連続して形成されないようにする。LED素子実装体2の側壁の上端面においては、図4(a)、(c)に示すようにマスク33の上部にLED素子実装体2の上面の離間領域28の延長上を覆う耳部を有しているので、この領域にはAg合金膜23が形成されない。さらに、LED素子実装体2の外側の長手(長辺)方向の側面(図3(c)不図示)における、少なくとも離間領域28の延長上を別のマスクで覆うことにより、インナーリード部15a,15b間の短絡を防止できる。また、本変形例のLED用リードフレーム10Cにおいては、Agめっき工程S2にて基板11Aの全面(両面および端面)にAgめっき膜12を形成し、Ag合金膜スパッタリング工程S5にて表面(上面)のみにAg合金膜13を形成したことで、インナーリード部15a,15b(リード部材1A)は、図1(b)に示す積層構造となる。   Further, like the LED lead frame 10C of the modification shown in FIG. 3C, the upper surface and the outer side surface of the LED element mounting body 2, the outer lead portions 16a and 16b (see FIG. 3B), and the LED Ag alloy films 23 and 13 may also be formed on the substrate 11A between the lead frames 10C and 10C for use. However, as described above, the Ag alloy film 23 is not continuously formed on the separation region 28 and its extension on the entire surface of the LED element mounting body 2. On the upper end surface of the side wall of the LED element mounting body 2, as shown in FIGS. 4A and 4C, an ear portion covering the extension of the separation region 28 on the upper surface of the LED element mounting body 2 is provided on the upper side of the mask 33. Therefore, the Ag alloy film 23 is not formed in this region. Further, by covering at least the extension of the separation region 28 on the side surface (FIG. 3C (not shown)) in the longitudinal (long side) direction of the outer side of the LED element mounting body 2 with another mask, Short circuit between 15b can be prevented. In addition, in the LED lead frame 10C of this modification, the Ag plating film 12 is formed on the entire surface (both sides and end faces) of the substrate 11A in the Ag plating step S2, and the surface (upper surface) in the Ag alloy film sputtering step S5. Since the Ag alloy film 13 is formed only on the inner lead portions 15a and 15b (lead member 1A), the laminated structure shown in FIG.

第2実施形態においては、マスク33の板厚をインナーリード部15a,15b間距離(離間領域28の幅)と同じとし、図2(a)、(b)に示すように、Ag合金膜23の形成されない領域を離間領域28に一致させて、Ag合金膜23の境界がインナーリード部15a,15b(リード部材1a,1b)の端面に沿うように構成している。しかし、離間領域28において、インナーリード部15a,15b間の短絡を防止できれば、Ag合金膜23の形成されない領域はこれに限られず、離間領域28より広くても狭くてもよい。   In the second embodiment, the thickness of the mask 33 is the same as the distance between the inner lead portions 15a and 15b (the width of the separation region 28), and the Ag alloy film 23 is shown in FIGS. 2 (a) and 2 (b). The region where no lead is formed coincides with the separation region 28 so that the boundaries of the Ag alloy film 23 are along the end surfaces of the inner lead portions 15a and 15b (lead members 1a and 1b). However, in the separation region 28, the region where the Ag alloy film 23 is not formed is not limited to this as long as a short circuit between the inner lead portions 15 a and 15 b can be prevented, and may be wider or narrower than the separation region 28.

以上のように、前記の工程S1,S2,S3,S4,S5をこの順に行うことにより、第2実施形態およびその変形例に係るLED用リードフレーム10B,10Cを製造することができる。なお、Ag合金膜13,23上に金属酸化膜を形成する場合は、Ag合金成膜工程S5の次に、金属酸化膜形成工程S6を前記第1実施形態における工程と同様に行い、金属酸化膜を形成した後、素子実装部22からマスク33を外す。しかし、本実施形態に係るLED用リードフレームにおいては、リード部材1a,1bのAgめっき膜12およびAg合金膜13が形成される部位に応じて、これらの工程を行う順序を変更して製造することができる。例えば、基板11を作製し(工程S1)、Agめっき膜12の形成前に、この基板11と一体的に樹脂成形体21を成形する(工程S3)。次に、樹脂成形体21を貫通した基板11に、電気めっきによりAgめっき膜12を形成する(工程S2)。電気めっきによれば、絶縁材料からなる樹脂成形体21の表面にはAgめっき膜は形成されない。そして、前記と同様に、樹脂成形体21の素子実装部22にマスク33を嵌装して(工程S4)から、基板11および樹脂成形体21の表面にAg合金膜13,23を形成する(工程S5)。このような工程S2,S3の順序を入れ替えて製造されたLED用リードフレームにおいては、リード部材1a,1bのLED素子実装体2の側面に埋設された領域(15a−16a間、15b−16b間)は基板11のみで構成され、インナーリード部15a,15bの下面(裏面)にもAgめっき膜12は形成されない。   As described above, by performing the steps S1, S2, S3, S4, and S5 in this order, the LED lead frames 10B and 10C according to the second embodiment and the modifications thereof can be manufactured. When forming a metal oxide film on the Ag alloy films 13 and 23, the metal oxide film forming process S6 is performed in the same manner as the process in the first embodiment after the Ag alloy film forming process S5. After the film is formed, the mask 33 is removed from the element mounting portion 22. However, the LED lead frame according to the present embodiment is manufactured by changing the order in which these steps are performed in accordance with the portion where the Ag plating film 12 and the Ag alloy film 13 of the lead members 1a and 1b are formed. be able to. For example, the substrate 11 is produced (step S1), and the resin molded body 21 is formed integrally with the substrate 11 before the Ag plating film 12 is formed (step S3). Next, the Ag plating film 12 is formed on the substrate 11 penetrating the resin molded body 21 by electroplating (step S2). According to electroplating, an Ag plating film is not formed on the surface of the resin molding 21 made of an insulating material. Then, similarly to the above, the mask 33 is fitted to the element mounting portion 22 of the resin molded body 21 (step S4), and then the Ag alloy films 13 and 23 are formed on the surface of the substrate 11 and the resin molded body 21 ( Step S5). In the LED lead frame manufactured by switching the order of the steps S2 and S3, the regions embedded between the side surfaces of the LED element mounting body 2 of the lead members 1a and 1b (between 15a-16a and 15b-16b). ) Is composed only of the substrate 11, and the Ag plating film 12 is not formed on the lower surfaces (back surfaces) of the inner lead portions 15a and 15b.

ここで、第2実施形態の別の変形例に係るLED用リードフレームについて、図5を参照して説明する。本変形例において、第2実施形態に係るLED用リードフレームと同じ要素については、同じ符号を付し、説明を省略する。本変形例のLED用リードフレーム10Dは、図5(a)に示すように、LED素子実装体2Aが、素子実装部22の側面22b,22bを離間領域28に沿って切り欠いた形状で、底面22aは離間領域28において素子実装部22の外側へ延出する平面22eを構成する。このような形状のLED素子実装体2Aとするために、樹脂成形工程S3の後、樹脂成形体21に、開口部側から底面22aまで離間領域28に沿って切込みを入れ、あるいは切込みを有する樹脂成形体21を成形する。   Here, an LED lead frame according to another modification of the second embodiment will be described with reference to FIG. In this modification, the same elements as those of the LED lead frame according to the second embodiment are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 5A, the LED lead frame 10D of the present modification has a shape in which the LED element mounting body 2A is cut out along the separation region 28 on the side surfaces 22b and 22b of the element mounting portion 22. The bottom surface 22 a constitutes a flat surface 22 e that extends to the outside of the element mounting portion 22 in the separation region 28. In order to obtain the LED element mounting body 2A having such a shape, after the resin molding step S3, the resin molded body 21 is cut along the separation region 28 from the opening side to the bottom surface 22a, or the resin having the cut. The molded body 21 is molded.

本変形例は、LED素子実装体2A(樹脂成形体21)に離間領域28に沿って切込みが形成されているため、マスク工程S4において、図5(b)に二点鎖線で示すように、LED素子実装体2AのF−F線矢視断面形状より大きく、切込みの幅と同じまたはそれより薄い板厚のマスク34を切込みに挟んで嵌装することができる。マスク34の材料は前記マスク33と同様である。また、LED素子実装体2Aの外側表面においては、少なくとも長辺方向の側面の素子実装部22の底面22a(平面22e)から下の、離間領域28(平面22e)の延長上を覆う別のマスクを設ける。このようなマスク34を嵌装してAg合金膜13,23を成膜する(工程S5)と、図5(a)、(b)に示すように、素子実装部22の離間領域28における底面22aすなわち平面22eにはAg合金膜23が形成されず樹脂成形体21が露出した状態となり、Ag合金膜23をインナーリード部15a側とインナーリード部15b側とに分離して形成することができる。   In this modified example, the LED element mounting body 2A (resin molded body 21) is cut along the separation region 28. Therefore, in the mask process S4, as shown by a two-dot chain line in FIG. A mask 34 having a plate thickness larger than the cross-sectional shape of the LED element mounting body 2A taken along the line FF and equal to or thinner than the width of the notch can be fitted between the notches. The material of the mask 34 is the same as that of the mask 33. Further, on the outer surface of the LED element mounting body 2A, another mask that covers at least the extension of the separation region 28 (plane 22e) below the bottom surface 22a (plane 22e) of the element mounting portion 22 on the side surface in the long side direction. Is provided. When such a mask 34 is fitted to form the Ag alloy films 13 and 23 (step S5), as shown in FIGS. 5 (a) and 5 (b), the bottom surface in the separation region 28 of the element mounting portion 22 is obtained. The Ag alloy film 23 is not formed on 22a, that is, the plane 22e, and the resin molded body 21 is exposed, and the Ag alloy film 23 can be formed separately on the inner lead portion 15a side and the inner lead portion 15b side. .

〔発光装置〕
次に、本発明の第1、第2実施形態および各変形例に係るLED用リードフレームを組み込んだ発光装置について説明する。
第2実施形態およびその変形例に係るLED用リードフレーム10B,10C,10Dを組み込んで発光装置に製造する方法の一例は、次の通りである。まず、リード部材1aの素子実装部22の略中央におけるインナーリード部15aの表面(図2(a)に示すLED素子搭載領域)にシリコーンダイボンド材等からなる接着剤を塗布して、その上にLED素子を接着して搭載する。次に、ワイヤボンディングにより、金ワイヤでLED素子の電極をインナーリード部15a,15bに接続する。そして、素子実装部22内にエポキシ樹脂等の封止樹脂を充填することにより封止して、LED素子を光源として搭載した表面実装型の発光装置(図7参照)となる。なお、LED用リードフレーム10Cにおいては、基板11Aで複数個を連結された状態で発光装置に製造されてから図3(b)、(c)に示す太破線で切り離されて使用される。
[Light emitting device]
Next, a light emitting device incorporating the LED lead frame according to the first and second embodiments of the present invention and each modification will be described.
An example of a method for manufacturing a light emitting device by incorporating the LED lead frames 10B, 10C, and 10D according to the second embodiment and the modifications thereof is as follows. First, an adhesive made of a silicone die bond material or the like is applied to the surface of the inner lead portion 15a (the LED element mounting region shown in FIG. 2 (a)) at the approximate center of the element mounting portion 22 of the lead member 1a, and then on the surface. The LED element is attached and mounted. Next, the electrodes of the LED elements are connected to the inner lead portions 15a and 15b with gold wires by wire bonding. And it seals by filling sealing resin, such as an epoxy resin, in the element mounting part 22, and becomes a surface mount type light-emitting device (refer FIG. 7) which mounted the LED element as a light source. Note that the LED lead frame 10C is used after being manufactured as a light emitting device in a state where a plurality of LED lead frames are connected by the substrate 11A and separated by the thick broken lines shown in FIGS. 3B and 3C.

第1実施形態およびその変形例に係るLED用リードフレーム10,10Aも、前記の第2実施形態に係るLED用リードフレーム10B等と同様に、表面実装型の発光装置に組み込むことができる。例えば、図3(a)に示す第2実施形態の変形例における基板11Aを適用してLED用リードフレーム10を製造した場合、LED用リードフレーム10表面の図3(b)の破線で示すLED素子実装体2の位置に、枠状の樹脂を取り付ける。あるいは、第2実施形態に係るLED用リードフレームの製造方法における樹脂成形工程S3のように、樹脂をLED用リードフレーム10と一体的に射出成形してもよい。そして、この枠状の樹脂の内側におけるLED用リードフレーム10の一方の端部(図3(b)のインナーリード部15a)にLED素子を搭載する。LED素子を搭載したら、前記の第2実施形態と同様に、ワイヤボンディングを行い、枠状の樹脂の内側に封止樹脂を充填して、LED素子を光源とする発光装置となる。このような発光装置とすることで、LED用リードフレーム10,10Aは、LED素子の背面(下方)の反射面を構成する。なお、LED素子を囲む枠状の樹脂は、第2実施形態に係るLED用リードフレーム10B等のLED素子実装体2のように、その内側の表面にAg合金膜を形成されることが好ましい。このような発光装置とすることで、第2実施形態に係るLED用リードフレーム10B等を組み込んだ発光装置と同様の後記の効果が得られる。   Similarly to the LED lead frame 10B according to the second embodiment, the LED lead frames 10 and 10A according to the first embodiment and the modifications thereof can also be incorporated into the surface mount type light emitting device. For example, when the LED lead frame 10 is manufactured by applying the substrate 11A in the modification of the second embodiment shown in FIG. 3A, the LED indicated by the broken line in FIG. 3B on the surface of the LED lead frame 10 A frame-shaped resin is attached to the position of the element mounting body 2. Alternatively, the resin may be injection-molded integrally with the LED lead frame 10 as in the resin molding step S3 in the LED lead frame manufacturing method according to the second embodiment. Then, an LED element is mounted on one end portion (inner lead portion 15a in FIG. 3B) of the LED lead frame 10 inside the frame-shaped resin. When the LED element is mounted, similarly to the second embodiment, wire bonding is performed, and a sealing resin is filled inside the frame-shaped resin, so that a light emitting device using the LED element as a light source is obtained. By setting it as such a light-emitting device, LED lead frames 10 and 10A comprise the reflective surface of the back surface (downward) of an LED element. The frame-shaped resin surrounding the LED element is preferably formed with an Ag alloy film on the inner surface thereof, like the LED element mounting body 2 such as the LED lead frame 10B according to the second embodiment. By setting it as such a light-emitting device, the following effect similar to the light-emitting device incorporating LED lead frame 10B etc. which concern on 2nd Embodiment is acquired.

第1実施形態に係るLED用リードフレーム10,10Aを組み込んだ発光装置は、枠状の樹脂を備えず、LED用リードフレーム10,10Aを下方のみならず側方の反射面に構成することもできる。例えば、基板11を、異形条材(圧延幅方向に板厚の異なる圧延板)の板厚の厚い部位をプレス鍛造でカップ形状に成型して、このカップ形状の外側に板厚の薄い部位が帯状に延出された形状に作製する。そして、この基板11のカップ形状の内側表面にAgめっき膜12およびAg合金膜13を形成してLED用リードフレームとする(図示せず)。このように構成することで、第2実施形態におけるリード部材1aに相当する部材とLED素子実装体2に相当する部材とが一体に構成されたLED用リードフレームとなる。詳しくは、カップ形状の内面がリード部材1aのインナーリード部15aと素子実装部22とを兼ね、帯状の部位がアウターリード部16aとなる。これに、別部材で作製したリード部材1b(基板11のみで構成されてもよい)を合わせて一組のLED用リードフレームとする。このようなLED用リードフレームでは、LED素子はカップ形状の内底面に搭載されて実装され、カップ形状の内部に封止樹脂を充填して封止されて、例えば砲弾型の発光装置に製造される。   The light emitting device incorporating the LED lead frames 10 and 10A according to the first embodiment does not include a frame-shaped resin, and the LED lead frames 10 and 10A may be configured not only on the lower side but also on the side reflecting surfaces. it can. For example, the substrate 11 is formed into a cup shape by press forging a thick strip portion of a deformed strip (rolled plate having a different thickness in the rolling width direction), and a thin plate portion is formed outside the cup shape. It is produced in a shape extending in a strip shape. Then, an Ag plating film 12 and an Ag alloy film 13 are formed on the cup-shaped inner surface of the substrate 11 to form an LED lead frame (not shown). With this configuration, the LED lead frame in which the member corresponding to the lead member 1a and the member corresponding to the LED element mounting body 2 in the second embodiment are integrally formed is obtained. Specifically, the cup-shaped inner surface serves as the inner lead portion 15a and the element mounting portion 22 of the lead member 1a, and the band-shaped portion serves as the outer lead portion 16a. This is combined with a lead member 1b (which may be composed of only the substrate 11) manufactured as a separate member to form a set of LED lead frames. In such an LED lead frame, the LED element is mounted and mounted on a cup-shaped inner bottom surface, and the cup-shaped interior is filled with a sealing resin and sealed, for example, manufactured in a shell-type light emitting device. The

このようなLED用リードフレーム10,10A〜10Dを用いて得られる発光装置において、Ag合金膜13およびそれに被覆されたAgめっき膜12、ならびにAg合金膜23は、耐久性に優れ、熱や硫黄、ハロゲンイオン等によるAgの凝集を引き起こさず、LED素子から発光した光を安定して反射して発光装置から光として取り出すことができる。さらに、Ag合金膜13,23は、Agのナノ粒子の析出を引き起こさず、エポキシ樹脂等の封止樹脂を変色させることがないため、LED素子が発光した光を高効率で利用することを可能とする。また、LED素子が発光する光の多くを正反射させて拡散反射を抑えられるため、LED素子を搭載した発光装置の明るさを向上させることができる(図6(a)参照)。   In the light emitting device obtained by using such LED lead frames 10, 10 </ b> A to 10 </ b> D, the Ag alloy film 13, the Ag plating film 12 coated thereon, and the Ag alloy film 23 are excellent in durability, heat and sulfur. The light emitted from the LED element can be stably reflected and extracted from the light emitting device without causing aggregation of Ag due to halogen ions or the like. Furthermore, since the Ag alloy films 13 and 23 do not cause precipitation of Ag nanoparticles and do not discolor the sealing resin such as epoxy resin, the light emitted from the LED element can be used with high efficiency. And In addition, since most of the light emitted from the LED element can be regularly reflected to suppress diffuse reflection, the brightness of the light emitting device equipped with the LED element can be improved (see FIG. 6A).

以下、本発明の実施例によって、本発明をより具体的に説明するが、本発明は、以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of examples of the present invention, but the present invention is not limited to the following examples.

〔試料作製〕
下記のようにして、図1(b)に示す積層構造の第1実施形態の変形例に係るLED用リードフレーム10Aの試料を、Agめっき膜の膜厚、ならびにAg合金膜の組成および膜厚を変化させて作製した。
[Sample preparation]
In the following manner, a sample of the LED lead frame 10A according to the modification of the first embodiment having the laminated structure shown in FIG. 1B is obtained by using the film thickness of the Ag plating film and the composition and film thickness of the Ag alloy film. It was produced by changing.

(基板の作製)
厚さ0.1mmのCu−Fe−P系銅合金板(KLF194H、(株)神戸製鋼所製)を、プレス加工して、図3(a)に示す形状の基板(基板11A)を作製した。なお、この基板11Aのインナーリード部15a,15b(図3(b)参照)間の距離は0.09mmである。この基板の表面の二乗平均粗さRrmsを後記の方法で測定したところ、62nmであった。
(Production of substrate)
A Cu-Fe-P-based copper alloy plate (KLF194H, manufactured by Kobe Steel, Ltd.) having a thickness of 0.1 mm was pressed to produce a substrate (substrate 11A) having the shape shown in FIG. . The distance between the inner lead portions 15a and 15b (see FIG. 3B) of the substrate 11A is 0.09 mm. The root mean square roughness Rrms of the surface of this substrate was measured by the method described later to be 62 nm.

(Agめっき膜の形成)
前記基板を、めっき前処理として、脱脂液に浸漬して、対極をステンレス304として、基板側がマイナスとなるようにして直流電圧を印加して30秒間電解脱脂を行った後、10%硫酸水溶液に10秒浸漬した。次に、基板の表面(全面)に、下記成分、液温50℃のシアン浴で、対極をAg(純度99.99%)板とし、電流密度:5A/dm2で、光沢Agめっきを施して、表1に示す膜厚のAgめっき膜を有する基板を製造した。
Agめっき浴成分
シアン化銀カリウム(I):50g/L
シアン化カリウム :40g/L
炭酸カリウム :35g/L
添加剤A :3ml/L
(Formation of Ag plating film)
The substrate was immersed in a degreasing solution as a pretreatment for plating, and the counter electrode was made of stainless steel 304. A DC voltage was applied so that the substrate side was negative, and electrolytic degreasing was performed for 30 seconds. Immersion for 10 seconds. Next, the surface (entire surface) of the substrate was subjected to bright Ag plating at a current density of 5 A / dm 2 with a cyan bath having the following components and a liquid temperature of 50 ° C. and a counter electrode as an Ag (purity 99.99%) plate. Thus, a substrate having an Ag plating film having a thickness shown in Table 1 was manufactured.
Ag plating bath component Silver potassium cyanide (I): 50 g / L
Potassium cyanide: 40 g / L
Potassium carbonate: 35 g / L
Additive A: 3 ml / L

なお、Agめっき膜の膜厚は、めっき速度に基づいてめっき時間を調整することで制御した。すなわち、ダミー基板に前記と同じ条件で一定時間めっきを施して、ダミー基板のめっき前との重量差を測定することによりAgの付着量を求め、この付着量をめっき面積、Agの理論密度、およびめっき時間で割ることにより単位時間に析出するAgめっき膜厚(めっき速度)を算出し、めっき速度から所望の膜厚を形成するめっき時間を算出した。   The film thickness of the Ag plating film was controlled by adjusting the plating time based on the plating speed. That is, the dummy substrate is plated for a certain period of time under the same conditions as described above, and the amount of Ag deposited is determined by measuring the weight difference between the dummy substrate and the plated substrate, and this deposited amount is determined as the plating area, the theoretical density of Ag, Further, the Ag plating film thickness (plating speed) deposited per unit time was calculated by dividing by the plating time, and the plating time for forming a desired film thickness was calculated from the plating speed.

(Ag合金膜の成膜)
Agめっきを施した基板に、下記の方法でAg合金膜を形成した。
Agめっき膜を形成した基板を、表1に示す組成のAg合金ターゲット(直径10.16cm(4インチφ)×厚さ5mm)を設けたスパッタリング装置のチャンバー内に配置した。次に、真空ポンプで、チャンバー内圧力が1.3×10-3Pa以下となるように真空排気した。その後、イオンガン(3cm DC Ion Source、イオンテック社製)を通してArガスをチャンバー内に導入してチャンバー内圧力を2×10-2Paに調整し、イオンガンに放電電圧60V、加速電圧500V、ビーム電圧500Vを印加して、Arイオンビームを発生させ、基板のAgめっき膜の表面に300秒間照射した。
(Formation of Ag alloy film)
An Ag alloy film was formed on the substrate plated with Ag by the following method.
The substrate on which the Ag plating film was formed was placed in a chamber of a sputtering apparatus provided with an Ag alloy target (diameter 10.16 cm (4 inches φ) × thickness 5 mm) having the composition shown in Table 1. Next, the chamber was evacuated with a vacuum pump so that the pressure inside the chamber was 1.3 × 10 −3 Pa or less. After that, Ar gas was introduced into the chamber through an ion gun (3 cm DC Ion Source, manufactured by Iontech Co., Ltd.), the pressure inside the chamber was adjusted to 2 × 10 −2 Pa, and the discharge voltage 60 V, acceleration voltage 500 V, and beam voltage were applied to the ion gun. An Ar ion beam was generated by applying 500 V, and the surface of the Ag plating film on the substrate was irradiated for 300 seconds.

次に、チャンバー内にArガスを導入しながら真空排気を続けることにより、チャンバー内圧力を0.27Paに調整した。この状態で、前記Ag合金ターゲットに直流電圧(出力200W)を印加してスパッタリングを行い、基板の上面側のAgめっき膜の上に、表1に示す膜厚のAg合金膜を成膜して、LED用リードフレーム10Aの試料(試料No.2〜16)を作製した。また、比較例として、Ag合金膜を設けない試料(試料No.1)を作製した。なお、Agめっき膜とAg合金膜の膜厚の合計も表1に併記する。   Next, the pressure in the chamber was adjusted to 0.27 Pa by continuing the vacuum evacuation while introducing Ar gas into the chamber. In this state, a DC voltage (output 200 W) is applied to the Ag alloy target for sputtering, and an Ag alloy film having a thickness shown in Table 1 is formed on the Ag plating film on the upper surface side of the substrate. Samples of LED lead frame 10A (Sample Nos. 2 to 16) were produced. Moreover, the sample (sample No. 1) which does not provide an Ag alloy film was produced as a comparative example. The total thickness of the Ag plating film and the Ag alloy film is also shown in Table 1.

なお、Ag合金膜の膜厚は、成膜速度に基づいて成膜時間を調整することで制御した。すなわち、ダミー基板に前記と同じ条件で一定時間成膜して、ダミー基板の成膜前との重量差を測定することによりAg合金の付着量を求め、この付着量を成膜面積、Agの理論密度、および成膜時間で割ることにより単位時間に成膜するAg合金膜厚(成膜速度)を算出し、成膜速度から所望の膜厚を形成する成膜時間を算出した。   The film thickness of the Ag alloy film was controlled by adjusting the film formation time based on the film formation speed. That is, a dummy substrate is formed for a certain period of time under the same conditions as described above, and an adhesion amount of the Ag alloy is obtained by measuring a weight difference from that before the formation of the dummy substrate. The Ag alloy film thickness (film formation speed) formed per unit time was calculated by dividing by the theoretical density and the film formation time, and the film formation time for forming a desired film thickness was calculated from the film formation speed.

(Ag合金膜の組成分析)
また、Ag合金膜の組成を分析するために、ソーダライムガラス基板上に前記と同様にしてAg合金膜を成膜した。このAg合金膜を硝酸で溶解後、溶解した硝酸の液を、ICP(誘導結合プラズマ)発光分光分析装置(ICPS−8000、島津製作所製)を用いて分析することにより、ソーダライムガラス基板に形成したAg合金膜の組成を求めた。得られたAg合金膜の組成を表1に示す。
(Composition analysis of Ag alloy film)
In order to analyze the composition of the Ag alloy film, an Ag alloy film was formed on the soda lime glass substrate in the same manner as described above. After this Ag alloy film is dissolved in nitric acid, the dissolved nitric acid solution is analyzed on an ICP (inductively coupled plasma) emission spectroscopic analyzer (ICPS-8000, manufactured by Shimadzu Corporation) to form a soda lime glass substrate. The composition of the obtained Ag alloy film was determined. Table 1 shows the composition of the obtained Ag alloy film.

〔測定、評価〕
得られたLED用リードフレームの試料について、下記の方法で、表面(Ag合金膜を形成した側の面、以下同じ)の二乗平均粗さRrmsおよび正反射率を測定し、耐熱性、耐硫化性、および耐湿性を評価した。結果を表1に示す。
[Measurement and evaluation]
With respect to the obtained lead frame sample for LED, the following methods were used to measure the root mean square roughness Rrms and regular reflectance of the surface (the surface on which the Ag alloy film was formed, the same applies hereinafter), and the heat resistance and sulfuration resistance. And moisture resistance were evaluated. The results are shown in Table 1.

(二乗平均粗さの測定)
原子間力顕微鏡(AFM)(SPI−4000、SII社製)を用いて、任意の3箇所の10μm角の領域について表面(Ag合金膜の表面、試料No.1は片面)の二乗平均粗さRrmsを測定し、得られた3つの値の平均を算出した。
(Measurement of root mean square roughness)
Using an atomic force microscope (AFM) (SPI-4000, manufactured by SII), the root mean square roughness of the surface (the surface of the Ag alloy film, sample No. 1 is one side) for any three 10 μm square regions Rrms was measured and the average of the three values obtained was calculated.

(正反射率の測定)
自動絶対反射率測定システム(日本分光株式会社製)を用いて、入射角5°、反射角5°の条件で、波長250〜850nmまでの分光反射率を測定することにより、正反射率を求めた。
(Measurement of regular reflectance)
Using an automatic absolute reflectance measurement system (manufactured by JASCO Corporation), the regular reflectance is obtained by measuring the spectral reflectance up to a wavelength of 250 to 850 nm under the conditions of an incident angle of 5 ° and a reflection angle of 5 °. It was.

(耐熱性評価)
耐熱試験として、試料を、恒温槽内で150℃で6時間加熱し、引き続き260℃で5分間加熱した。試験後、前記と同様の方法で表面の正反射率を測定し、耐熱試験による正反射率の低下が5ポイント未満のものを合格とした。
(Heat resistance evaluation)
As a heat resistance test, the sample was heated in a thermostatic bath at 150 ° C. for 6 hours and subsequently heated at 260 ° C. for 5 minutes. After the test, the regular reflectance of the surface was measured by the same method as described above, and a test piece with a decrease in regular reflectance by a heat resistance test of less than 5 points was accepted.

(耐硫化性評価)
硫化アンモニウムを水に溶解して、5wt%の硫化アンモニウム水溶液を調整した。この硫化アンモニウム水溶液の液面から3cmの高さ位置に表面が液面に対向するように試料を水平に載置し、耐硫化試験として、硫化アンモニウム水溶液から蒸発する硫化水素に10分間暴露した。試験後、前記と同様に正反射率を測定し、耐硫化試験による正反射率の低下が20ポイント以下のものを合格とした。
(Sulfuration resistance evaluation)
Ammonium sulfide was dissolved in water to prepare a 5 wt% ammonium sulfide aqueous solution. A sample was horizontally placed at a height of 3 cm from the liquid level of the aqueous ammonium sulfide solution so that the surface was opposed to the liquid level, and exposed to hydrogen sulfide evaporated from the aqueous ammonium sulfide solution for 10 minutes as a sulfidation resistance test. After the test, the regular reflectance was measured in the same manner as described above, and a test piece in which the decrease in regular reflectance by the sulfidation resistance test was 20 points or less was accepted.

(耐湿性評価)
試料から4cm×5cmの試験片(基板面積約18cm2)を切り出し、耐湿試験として、恒温恒湿試験機内で、50℃、95RH%の雰囲気に500時間暴露した。試験後、試験片の表面を目視観察して白点の数を計測した。白点の数が5個以下のものを合格とした。
(Moisture resistance evaluation)
A 4 cm × 5 cm test piece (substrate area: about 18 cm 2 ) was cut out from the sample and exposed to an atmosphere of 50 ° C. and 95 RH% for 500 hours in a constant temperature and humidity tester as a moisture resistance test. After the test, the surface of the test piece was visually observed to count the number of white spots. A sample having 5 or less white spots was accepted.

ここで、耐湿試験で発生する白点は、大気中に浮遊している飛来塩分や塵芥に付着している塩素が、試験片表面に付着して湿潤雰囲気中で試験片表面に生じた水膜に溶解して、試験片のAgと反応することによって形成された、Ag凝集によるものである。したがって、この耐湿試験は、ハロゲンイオンによるAg凝集の試験(耐ハロゲン化試験)に代わるものである。   Here, the white spot generated in the moisture resistance test is a water film formed on the surface of the test piece in a humid atmosphere due to the salt attached to the air and chlorine adhering to the dust in the atmosphere. This is due to Ag agglomeration formed by dissolving in Ag and reacting with Ag of the test piece. Therefore, this moisture resistance test is an alternative to the test of Ag aggregation by halogen ions (halogenation resistance test).

Figure 2011023704
Figure 2011023704

(Ag合金膜被覆による評価)
表1に示すように、Agめっき膜のみを備えた比較例の試料No.1は、初期の正反射率は良好であるが、耐熱性、耐硫化性、および耐湿性(耐ハロゲン化性)のいずれの耐久性も劣るものであった。これに対して、試料No.1と同じ膜厚3μmのAgめっき膜の上に本発明の範囲のAg合金膜を備えた実施例に該当する試料No.7〜10は、前記耐久性のいずれも良好であった。
(Evaluation by Ag alloy film coating)
As shown in Table 1, the sample No. of the comparative example provided only with the Ag plating film. No. 1 had good initial reflectivity but was inferior in all of heat resistance, sulfidation resistance, and moisture resistance (halogenation resistance). In contrast, sample no. Sample No. 1 corresponding to an example in which an Ag alloy film within the scope of the present invention is provided on an Ag plating film having a thickness of 3 μm, which is the same as that of No. 1. As for 7-10, all of the said durability were favorable.

(Ag合金膜の組成による評価)
一方、試料No.5,12は、Ag合金膜のGeの含有率が不足したため、耐硫化性が十分に得られず、特にGeが無添加である試料No.5は、耐硫化試験で表面が黒褐色に変色して反射率の劣化が大きかった。試料No.13はAg合金膜のBiの含有率が不足したため、耐湿性が十分に得られなかった。反対に、試料No.11はAg合金膜のGeの含有率が、試料No.14はAg合金膜のBiの含有率が、それぞれ過剰なため、耐久性は良好であるものの、表面(Ag合金膜)外観が黄色味を帯びて反射率が低下し、二乗平均粗さRrmsが同程度の他の試料と比較して正反射率も低かった。
(Evaluation by composition of Ag alloy film)
On the other hand, sample No. Samples Nos. 5 and 12 cannot obtain sufficient sulfidation resistance due to insufficient Ge content in the Ag alloy film. In No. 5, the surface was discolored to blackish brown in the sulfidation resistance test, and the reflectance was greatly deteriorated. Sample No. No. 13 was insufficient in moisture resistance because the Bi content of the Ag alloy film was insufficient. On the contrary, sample No. No. 11 shows that the Ge content of the Ag alloy film is the sample No. No. 14, the Bi content of the Ag alloy film is excessive, so the durability is good, but the surface (Ag alloy film) has a yellowish appearance and the reflectance is reduced, and the root mean square roughness Rrms is The regular reflectance was also low compared to other samples of the same degree.

(Agめっき膜、Ag合金膜の膜厚による評価)
試料No.4は、本発明の範囲の組成のAg合金膜であるが、膜厚が不足してAgめっき膜を完全には被覆できず、その効果が十分に得られなかった。一方、試料No.2は、Ag合金膜の膜厚は本発明の範囲であるが、Agめっき膜の膜厚が薄く、Ag合金膜との合計の厚さが不足しているため、耐熱試験により基板のCuが表面に拡散して酸化し、表面が変色して反射率が劣化した。また、Agめっき膜の膜厚が薄いため、基板表面のRrmsに対して試料表面のRrmsが十分に小さくならなかったことにより、初期の正反射率が高くならなかった。これに対して、試料No.3,6〜10,15,16は、Ag合金膜の膜厚、さらにAgめっき膜との合計の厚さが本発明の範囲の実施例であるため、良好な耐久性が得られ、特に試料No.6〜10,15,16は、Agめっき膜の膜厚が十分に厚く好ましい範囲であるため、表面のRrmsが十分に小さく、高い正反射率が得られた。
(Evaluation by film thickness of Ag plating film and Ag alloy film)
Sample No. No. 4 is an Ag alloy film having a composition within the range of the present invention, but the film thickness was insufficient and the Ag plating film could not be completely covered, and the effect could not be sufficiently obtained. On the other hand, sample No. 2, the film thickness of the Ag alloy film is within the range of the present invention, but the film thickness of the Ag plating film is thin and the total thickness with the Ag alloy film is insufficient. It diffused and oxidized on the surface, the surface was discolored and the reflectance was deteriorated. Further, since the thickness of the Ag plating film was thin, the initial regular reflectance did not increase because the Rrms of the sample surface did not become sufficiently smaller than the Rrms of the substrate surface. In contrast, sample no. 3, 6 to 10, 15 and 16 are examples in which the film thickness of the Ag alloy film and the total thickness with the Ag plating film are within the scope of the present invention, so that good durability is obtained. No. Nos. 6 to 10, 15, and 16 are in a preferable range where the thickness of the Ag plating film is sufficiently thick, so that the surface Rrms is sufficiently small and high regular reflectance is obtained.

下記のようにして、LED素子実装体を備える図5に示す構造の第2実施形態の変形例に係るLED用リードフレーム10Dの試料を製造し、LED素子実装体におけるAg合金膜の効果を比較した。なお、リード部材1a,1bの構成(基板形状および断面構造)は、図3(b)、(c)に示す第2実施形態の変形例に係るLED用リードフレーム10Cと同様とした。   A sample of the LED lead frame 10D according to the modification of the second embodiment having the structure shown in FIG. 5 including the LED element mounting body is manufactured as follows, and the effect of the Ag alloy film in the LED element mounting body is compared. did. The lead members 1a and 1b have the same configuration (substrate shape and cross-sectional structure) as the LED lead frame 10C according to the modification of the second embodiment shown in FIGS. 3B and 3C.

〔試料作製〕
(基板の作製およびAgめっき膜の形成)
実施例1に適用したものと同様の基板(図3(a)参照)を作製し、その表面に、実施例1と同様の方法で膜厚3μmのAgめっき膜を形成した。
[Sample preparation]
(Preparation of substrate and formation of Ag plating film)
A substrate similar to that applied to Example 1 (see FIG. 3A) was prepared, and an Ag plating film having a thickness of 3 μm was formed on the surface thereof in the same manner as in Example 1.

(樹脂成形体の形成)
耐熱性ポリアミド樹脂(ジェネスタTA112、クラレ製)を射出成形(インサート成形)して、図5(a)、(b)に示すように、凹状の素子実装部22に切込みを有するLED素子実装体2Aの樹脂成形体21を、Agめっき膜12を形成された基板11Aの一対のリード部材1a,1bのそれぞれが貫通するように作製した。なお、樹脂成形体21は、素子実装部22の底面22a(平面22e)がインナーリード部15a,15bのAgめっき膜12の表面とほぼ面一となるように成形して、インナーリード部15a,15b間に、前記樹脂が存在する(充填された)ようにした。
(Formation of resin molding)
LED element mounting body 2A having a notch in concave element mounting portion 22 as shown in FIGS. 5 (a) and 5 (b) by injection molding (insert molding) a heat-resistant polyamide resin (Genesta TA112, manufactured by Kuraray). The resin molded body 21 was prepared so that each of the pair of lead members 1a and 1b of the substrate 11A on which the Ag plating film 12 was formed penetrated. The resin molded body 21 is molded such that the bottom surface 22a (plane 22e) of the element mounting portion 22 is substantially flush with the surface of the Ag plating film 12 of the inner lead portions 15a and 15b. The resin was present (filled) between 15b.

(Ag合金膜の成膜)
図5(b)に示すように、厚さ0.1mmの銅板からなるマスク34を、樹脂成形体21の素子実装部22の切込みに、下端が平面22e(インナーリード部15a,15b間に充填された樹脂の表面)に接するように嵌装した。また、樹脂成形体21の外側の長辺方向の側面にもマスクを設けた。このマスク34を嵌装した試料をスパッタリング装置のチャンバー内に設置し、表2に示す組成のターゲットを用いて、Ag合金膜またはAg膜を、インナーリード部15a,15bのAgめっき膜12の上の膜厚が300nmになるように成膜した。これによって、図5(a)、(b)に示す構造(断面は図3(c)に示す構造)を有するLED用リードフレーム10Dの試料(試料No.17,18)を得た。試料No.17のAg合金膜の組成を実施例1と同様に分析して、表2に示す。
(Formation of Ag alloy film)
As shown in FIG. 5B, a mask 34 made of a copper plate with a thickness of 0.1 mm is filled into the notch of the element mounting portion 22 of the resin molded body 21 and the lower end is filled with a flat surface 22e (between the inner lead portions 15a and 15b). It was fitted so as to be in contact with the surface of the resin. A mask was also provided on the side surface in the long side direction outside the resin molded body 21. A sample fitted with the mask 34 is placed in a chamber of a sputtering apparatus, and an Ag alloy film or an Ag film is formed on the Ag plating film 12 of the inner lead portions 15a and 15b using a target having the composition shown in Table 2. The film was formed so as to have a film thickness of 300 nm. As a result, samples (sample Nos. 17 and 18) of the LED lead frame 10D having the structure shown in FIGS. 5A and 5B (the cross-section is the structure shown in FIG. 3C) were obtained. Sample No. The composition of 17 Ag alloy films was analyzed in the same manner as in Example 1 and shown in Table 2.

得られた試料No.17のLED用リードフレーム10Dの1個分を切り出して(図3(b)、(c)の太破線参照)、インナーリード部15aとインナーリード部15bとの間の電気導通性をテスターで検査した結果、導通はなく、絶縁されていることを確認できた。   The obtained sample No. One LED lead frame 10D is cut out (see thick broken lines in FIGS. 3B and 3C), and the electrical continuity between the inner lead portion 15a and the inner lead portion 15b is inspected with a tester. As a result, it was confirmed that there was no conduction and insulation.

〔測定、評価〕
(素子実装部の表面のAg合金膜の膜厚と二乗平均粗さの測定)
試料の樹脂部分(LED素子実装体2)を、内側の表面(素子実装部22の側面22b)と直交する面で切断して、切断面をFE−SEM(日立製作所製SU−70)にて加速電圧2kVで5万倍の倍率で観察することにより、素子実装部の表面のAg合金膜(Ag膜)の膜厚を測定した。また、同Ag合金膜(Ag膜)について、実施例1と同様の方法で表面の二乗平均粗さRrmsを測定した。これらの結果を表2に示す。
[Measurement and evaluation]
(Measurement of the film thickness and root mean square roughness of the Ag alloy film on the surface of the element mounting portion)
The resin part (LED element mounting body 2) of the sample is cut along a surface perpendicular to the inner surface (side surface 22b of the element mounting portion 22), and the cut surface is cut with FE-SEM (Hitachi, Ltd. SU-70). The film thickness of the Ag alloy film (Ag film) on the surface of the element mounting portion was measured by observing at an acceleration voltage of 2 kV and a magnification of 50,000 times. Further, the root mean square roughness Rrms of the Ag alloy film (Ag film) was measured in the same manner as in Example 1. These results are shown in Table 2.

(耐硫化性評価)
得られた試料について、実施例1と同様に耐硫化試験を行った。なお、素子実装部22の底面22aおよびインナーリード部15a,15bを硫化アンモニウム水溶液の液面に対向させて載置した。試験後にLED素子実装体の内側(素子実装部22)の表面を目視で観察し、変色の見られないものを耐硫化性が良好であるとして「○」、変色したものを耐硫化性が不良であるとして「×」で評価し、表2に示す。
(Sulfuration resistance evaluation)
The obtained sample was subjected to a sulfuration resistance test in the same manner as in Example 1. The bottom surface 22a of the element mounting portion 22 and the inner lead portions 15a and 15b were placed facing the liquid surface of the aqueous ammonium sulfide solution. After the test, the inside surface of the LED element mounting body (element mounting portion 22) was visually observed. If no discoloration was observed, “◯” indicates that the resistance to sulfidation was good. As shown in Table 2, it was evaluated as “x”.

(耐湿性評価)
得られた試料について、実施例1と同様に耐湿試験を行った。試験後にLED素子実装体を切断して、内側(素子実装部22)の表面が外部から観察できるようにし、素子実装部22のAg合金膜(Ag膜)の表面を、光学顕微鏡で50倍に拡大して観察した。白点のないものを耐湿性が良好であるとして「○」、白点が発生したものを耐湿性が不良であるとして「×」で評価し、表2に示す。
(Moisture resistance evaluation)
The obtained sample was subjected to a moisture resistance test in the same manner as in Example 1. After the test, the LED element mounting body is cut so that the inner surface (element mounting portion 22) can be observed from the outside, and the surface of the Ag alloy film (Ag film) of the element mounting portion 22 is magnified 50 times with an optical microscope. Magnified and observed. Those with no white spots are evaluated as “◯” as having good moisture resistance, and those having white spots are evaluated as “×” as having poor moisture resistance.

Figure 2011023704
Figure 2011023704

本発明の第2実施形態に係るLED用リードフレームにおいて、LED素子実装体を構成する樹脂(樹脂成形体)の表面に形成されるAg合金膜は、リード部材(インナーリード部)のAgめっき膜上のAg合金膜と一体に成膜することができた。そして、本発明の範囲の組成のAg合金膜(試料No.17)は、耐硫化試験および耐湿試験において表面外観に変化が認められず、LED用リードフレームのLED素子実装体を構成する樹脂の表面に形成されても耐久性が高いことがわかった。これに対してAg膜(試料No.18)は、耐硫化試験で表面が黒褐色に変色し、耐湿試験でAgが凝集して表面に多数の白点が認められた。   In the LED lead frame according to the second embodiment of the present invention, the Ag alloy film formed on the surface of the resin (resin molded body) constituting the LED element mounting body is an Ag plating film of a lead member (inner lead portion). It was possible to form a film integrally with the above Ag alloy film. In the Ag alloy film (sample No. 17) having a composition within the range of the present invention, no change was observed in the surface appearance in the sulfidation resistance test and the moisture resistance test, and the resin constituting the LED element mounting body of the LED lead frame was not changed. It was found that even when formed on the surface, the durability was high. On the other hand, the surface of the Ag film (sample No. 18) turned black brown in the sulfidation resistance test, Ag aggregated in the moisture resistance test, and many white spots were observed on the surface.

実施例1と同様に、基板上にAgめっき膜およびAg合金膜を成膜して、その上にさらに金属酸化膜を成分および膜厚を変化させて形成してLED用リードフレームの試料を作製し、金属酸化膜による効果を実施例1と比較した。   As in Example 1, an Ag plating film and an Ag alloy film are formed on a substrate, and a metal oxide film is further formed on the substrate with varying components and film thickness to produce a sample of an LED lead frame. The effect of the metal oxide film was compared with Example 1.

〔試料作製〕
実施例1に適用したものと同様の基板(図3(a)参照)を作製し、実施例1と同様に、基板の表面に膜厚3μmのAgめっき膜を形成した後、スパッタリング装置で、表3に示す組成のAg合金からなるターゲットを用いて、Agめっき膜の上の膜厚が300nmとなるようにAg合金膜を成膜した。次に、表3に示す金属酸化膜用の金属ターゲット(前記Ag合金ターゲットと同形状)をスパッタリング装置の電極に設置し、再び、真空ポンプでチャンバー内圧力が1.3×10-3Pa以下となるように真空排気した後、Arガスをチャンバー内に導入してチャンバー内圧力を0.27Paに調整した。この状態で、前記金属ターゲットに直流電圧(出力100W)を印加してスパッタリングを行い、Ag合金膜の上に膜厚を変化させて金属膜を成膜し、チャンバーから取り出して大気中で金属膜を酸化させて金属酸化膜として、LED用リードフレーム10Aの試料(試料No.19〜24)を作製した。また、Ag合金膜については、それぞれの組成のターゲットを用いてソーダライムガラス基板上に成膜して、実施例1と同様の方法で組成を求めた。得られた組成を表3に示す。
[Sample preparation]
A substrate similar to that applied to Example 1 (see FIG. 3A) was prepared, and an Ag plating film having a film thickness of 3 μm was formed on the surface of the substrate in the same manner as in Example 1. Using a target made of an Ag alloy having the composition shown in Table 3, an Ag alloy film was formed so that the film thickness on the Ag plating film was 300 nm. Next, a metal target for the metal oxide film shown in Table 3 (same shape as the Ag alloy target) was placed on the electrode of the sputtering apparatus, and the chamber internal pressure was again 1.3 × 10 −3 Pa or less with a vacuum pump. After vacuum evacuation, Ar gas was introduced into the chamber to adjust the pressure in the chamber to 0.27 Pa. In this state, sputtering is performed by applying a DC voltage (output 100 W) to the metal target, and a metal film is formed on the Ag alloy film by changing the film thickness. As a metal oxide film, an LED lead frame 10A sample (sample Nos. 19 to 24) was produced. Moreover, about the Ag alloy film, it formed into a film on the soda-lime glass substrate using the target of each composition, and calculated | required the composition by the method similar to Example 1. FIG. The resulting composition is shown in Table 3.

〔測定、評価〕
得られたLED用リードフレームの試料について、下記の通り、X線光電子分光分析(XPS)を行って、Ag合金膜上の金属酸化膜の膜厚を測定した。また実施例1と同様に、表面の正反射率を測定し、耐熱性、耐硫化性、および耐湿性を評価した。さらに試料No.19,20,21について、下記の通り、ワイヤボンディング試験を行った。結果を表3に示す(評価を行わなかった試料は、その欄に「−」で示す)。
[Measurement and evaluation]
The obtained lead frame sample for LED was subjected to X-ray photoelectron spectroscopy (XPS) as described below, and the thickness of the metal oxide film on the Ag alloy film was measured. Further, in the same manner as in Example 1, the regular reflectance of the surface was measured to evaluate heat resistance, sulfidation resistance, and moisture resistance. Furthermore, sample no. About 19, 20, and 21, the wire bonding test was done as follows. The results are shown in Table 3 (samples that were not evaluated are indicated by “−” in the column).

(金属酸化膜の膜厚の測定)
試料の表面(Ag合金膜および金属酸化膜を形成した側)について、全自動走行型X線光電子分光分析装置(Physical Electronics社製Quantera SXM)を用いて、表3に示す金属酸化膜に含まれる金属元素および酸素元素O、ならびにAgの各濃度を、表面から深さ方向へ測定した。測定条件は、X線源:単色化Al−Kα、X線出力:43.7W、X線ビーム径:200μm、光電子取出し角:45°、Ar+スパッタ速度:SiO2換算で約0.6nm/分とした。金属酸化膜に含まれる金属元素の濃度が、最高濃度の1/2まで減少した深さを金属酸化膜の膜厚とした。
(Measurement of metal oxide film thickness)
The surface of the sample (the side on which the Ag alloy film and the metal oxide film are formed) is included in the metal oxide film shown in Table 3 using a fully automatic traveling X-ray photoelectron spectrometer (Quantera SXM manufactured by Physical Electronics). The concentrations of metal element, oxygen element O, and Ag were measured from the surface in the depth direction. Measurement conditions were as follows: X-ray source: monochromatic Al—Kα, X-ray output: 43.7 W, X-ray beam diameter: 200 μm, photoelectron extraction angle: 45 °, Ar + sputtering rate: about 0.6 nm / in terms of SiO 2 Minutes. The depth at which the concentration of the metal element contained in the metal oxide film was reduced to ½ of the maximum concentration was taken as the film thickness of the metal oxide film.

(ワイヤボンディング試験)
試料の表面(上面)を、インナーリード部15a,15b(図3(b)参照)間にて、金線(線径:φ25μm)でワイヤボンディングした後、光学顕微鏡で観察しながら金線の中央をピンセットで掴んで引っ張ることにより試験を行った。その結果、試料のボンディング箇所に剥離がなく、金線を切ることができた場合をワイヤボンディング性が良好であるとして「○」、少なくとも一方のボンディング箇所(金線とLED用リードフレームとの界面)から金線が剥がれた場合を不良であるとして「×」で評価した。
(Wire bonding test)
The surface (upper surface) of the sample is wire-bonded with a gold wire (wire diameter: φ25 μm) between the inner lead portions 15a and 15b (see FIG. 3B), and then the center of the gold wire is observed with an optical microscope. The test was carried out by grasping and pulling with tweezers. As a result, when the bonding part of the sample was not peeled off and the gold wire was able to be cut, it was determined that the wire bonding property was good, “◯”, and at least one bonding part (the interface between the gold wire and the LED lead frame) ), The case where the gold wire peeled off was evaluated as “x” as being defective.

Figure 2011023704
Figure 2011023704

表3に示すように、試料No.19〜24は、本発明の範囲の金属酸化膜をAg合金膜上に備えることで、同程度のGeを含有するAg合金膜上に金属酸化膜を設けない実施例1の試料No.6,9,10,15,16(表1参照)と比較して耐硫化性が向上し、また耐熱性および耐湿性も良好で、特に優れた耐久性を示した。また、Ag合金膜上に金属酸化膜を設けても、高い正反射率および良好なボンディング性が保持された。   As shown in Table 3, Sample No. Nos. 19 to 24 are provided with the metal oxide film within the scope of the present invention on the Ag alloy film, so that the metal oxide film is not provided on the Ag alloy film containing the same degree of Ge. Compared with 6, 9, 10, 15, 16 (see Table 1), the resistance to sulfidation was improved, and the heat resistance and moisture resistance were also good, showing particularly excellent durability. Further, even when a metal oxide film was provided on the Ag alloy film, high regular reflectance and good bonding properties were maintained.

10,10A,10B,10C,10D LED用リードフレーム
1,1A リード部材
11,11A 基板
12 Agめっき膜
13 Ag合金膜
1a,1b リード部材
15a,15b インナーリード部
16a,16b アウターリード部
2 LED素子実装体
21 樹脂成形体(基体)
22 素子実装部
22a 底面
22b,22c 側面
22e 平面
23 Ag合金膜
28 離間領域
33,34 マスク
10, 10A, 10B, 10C, 10D LED lead frame 1, 1A Lead member 11, 11A Substrate 12 Ag plating film 13 Ag alloy film 1a, 1b Lead member 15a, 15b Inner lead portion 16a, 16b Outer lead portion 2 LED element Mounting body 21 Molded resin (base)
22 element mounting portion 22a bottom surface 22b, 22c side surface 22e plane 23 Ag alloy film 28 separation region 33, 34 mask

Claims (5)

銅または銅合金からなる基板と、この基板上の少なくとも片面側に形成された膜厚10μm以下のAgめっき膜と、このAgめっき膜上に形成された膜厚20nm以上500nm以下のAg合金膜と、を備えるLED用リードフレームであって、
前記Agめっき膜と前記Ag合金膜の膜厚の合計は0.6μm以上であり、
前記Ag合金膜は、スパッタリング法で形成され、Ge:0.06〜0.5at%、およびBi:0.02〜0.2at%を含有することを特徴とするLED用リードフレーム。
A substrate made of copper or a copper alloy, an Ag plating film having a thickness of 10 μm or less formed on at least one side of the substrate, and an Ag alloy film having a thickness of 20 nm or more and 500 nm or less formed on the Ag plating film; An LED lead frame comprising:
The total film thickness of the Ag plating film and the Ag alloy film is 0.6 μm or more,
The lead alloy for LEDs, wherein the Ag alloy film is formed by a sputtering method and contains Ge: 0.06 to 0.5 at% and Bi: 0.02 to 0.2 at%.
上方に開口した凹状の素子実装部が形成されたLED素子実装体と、このLED素子実装体に支持された一対のリード部材と、を備えるLED用リードフレームであって、
前記一対のリード部材は、前記素子実装部の底面に互いに離間領域を隔てて配設されて、それぞれが当該素子実装部から前記LED素子実装体の外側に延出し、
前記リード部材は、銅または銅合金からなる基板と、前記素子実装部の内側において前記基板上に形成された膜厚10μm以下のAgめっき膜と、このAgめっき膜上に形成された膜厚20nm以上500nm以下のAg合金膜と、を備え、前記Agめっき膜と前記Ag合金膜の膜厚の合計は0.6μm以上であり、
前記LED素子実装体は、絶縁材料からなる基体と、前記離間領域を除く領域において前記素子実装部の表面に形成された膜厚70nm以上500nm以下のAg合金膜と、を備え、
前記リード部材および前記LED素子実装体のそれぞれが備えるAg合金膜は、スパッタリング法で形成され、Ge:0.06〜0.5at%、およびBi:0.02〜0.2at%を含有することを特徴とするLED用リードフレーム。
An LED lead frame comprising an LED element mounting body in which a concave element mounting portion opened upward is formed, and a pair of lead members supported by the LED element mounting body,
The pair of lead members are disposed on the bottom surface of the element mounting portion with a separation area therebetween, each extending from the element mounting portion to the outside of the LED element mounting body,
The lead member includes a substrate made of copper or a copper alloy, an Ag plating film having a thickness of 10 μm or less formed on the substrate inside the element mounting portion, and a film thickness of 20 nm formed on the Ag plating film. More than 500 nm Ag alloy film, the total thickness of the Ag plating film and the Ag alloy film is 0.6 μm or more,
The LED element mounting body includes a base made of an insulating material, and an Ag alloy film having a thickness of 70 nm or more and 500 nm or less formed on the surface of the element mounting portion in a region excluding the separation region,
The Ag alloy film included in each of the lead member and the LED element mounting body is formed by a sputtering method, and contains Ge: 0.06 to 0.5 at% and Bi: 0.02 to 0.2 at%. LED lead frame characterized by the above.
前記Ag合金膜が、さらにAu:0.5〜5at%を含有することを特徴とする請求項1または請求項2に記載のLED用リードフレーム。   The lead frame for LED according to claim 1, wherein the Ag alloy film further contains Au: 0.5 to 5 at%. 前記Ag合金膜は、その表面の二乗平均粗さが30nm以下であることを特徴とする請求項1ないし請求項3のいずれか一項に記載のLED用リードフレーム。   4. The lead frame for an LED according to claim 1, wherein the Ag alloy film has a root mean square roughness of 30 nm or less. 5. 前記Ag合金膜上に、Ti,V,Cr,Zr,Nb,Mo,Hf,Ta,Wから選択される1種の金属の金属酸化膜または2種以上からなる合金の金属酸化膜を膜厚0.1nm以上5nm以下で備えることを特徴とする請求項1ないし請求項4のいずれか一項に記載のLED用リードフレーム。   On the Ag alloy film, a metal oxide film of one kind of metal selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W or a metal oxide film of an alloy composed of two or more kinds is formed. 5. The LED lead frame according to claim 1, wherein the LED lead frame is provided in a range of 0.1 nm to 5 nm.
JP2010094492A 2009-06-16 2010-04-15 LED lead frame Expired - Fee Related JP5525315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094492A JP5525315B2 (en) 2009-06-16 2010-04-15 LED lead frame

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009143753 2009-06-16
JP2009143753 2009-06-16
JP2010094492A JP5525315B2 (en) 2009-06-16 2010-04-15 LED lead frame

Publications (2)

Publication Number Publication Date
JP2011023704A true JP2011023704A (en) 2011-02-03
JP5525315B2 JP5525315B2 (en) 2014-06-18

Family

ID=43633473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094492A Expired - Fee Related JP5525315B2 (en) 2009-06-16 2010-04-15 LED lead frame

Country Status (1)

Country Link
JP (1) JP5525315B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212850A (en) * 2011-03-18 2012-11-01 Kobe Steel Ltd Lead frame for led and manufacturing method therefor
WO2013161934A1 (en) * 2012-04-27 2013-10-31 株式会社ニコン Light-source unit and electronic device
US10121948B2 (en) 2015-12-22 2018-11-06 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
JP2019046938A (en) * 2017-08-31 2019-03-22 日亜化学工業株式会社 Method for manufacturing package, and method for manufacturing light-emitting device
JP2019201232A (en) * 2019-08-30 2019-11-21 日亜化学工業株式会社 Light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595747B (en) * 2014-11-28 2016-08-24 宁波市柯玛士太阳能科技有限公司 A kind of LED lamp tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285899A (en) * 2004-03-29 2005-10-13 Kawaguchiko Seimitsu Co Ltd Package structure of light emitting diode
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode
JP2009105033A (en) * 2007-10-05 2009-05-14 Kobe Steel Ltd Reflective film, led, organic el display, and organic el lighting fixture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285899A (en) * 2004-03-29 2005-10-13 Kawaguchiko Seimitsu Co Ltd Package structure of light emitting diode
JP2005332557A (en) * 2004-04-21 2005-12-02 Kobe Steel Ltd Translucent reflective film and reflective film for optical information recording medium, optical information recording medium and sputtering target
JP2005347375A (en) * 2004-06-01 2005-12-15 Shinko Electric Ind Co Ltd Stem for light-emitting element, and optical semiconductor device
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode
JP2009105033A (en) * 2007-10-05 2009-05-14 Kobe Steel Ltd Reflective film, led, organic el display, and organic el lighting fixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212850A (en) * 2011-03-18 2012-11-01 Kobe Steel Ltd Lead frame for led and manufacturing method therefor
WO2013161934A1 (en) * 2012-04-27 2013-10-31 株式会社ニコン Light-source unit and electronic device
US10121948B2 (en) 2015-12-22 2018-11-06 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
US10431725B2 (en) 2015-12-22 2019-10-01 Nichia Corporation Light emitting device including different shapes of light emitting element having higher light extraction efficiency
JP2019046938A (en) * 2017-08-31 2019-03-22 日亜化学工業株式会社 Method for manufacturing package, and method for manufacturing light-emitting device
JP7116881B2 (en) 2017-08-31 2022-08-12 日亜化学工業株式会社 Method for manufacturing package and method for manufacturing light-emitting device
JP2019201232A (en) * 2019-08-30 2019-11-21 日亜化学工業株式会社 Light-emitting device
JP7057512B2 (en) 2019-08-30 2022-04-20 日亜化学工業株式会社 Light emitting device

Also Published As

Publication number Publication date
JP5525315B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5503388B2 (en) LED lead frame
JP5602578B2 (en) LED lead frame
JP5695841B2 (en) LED lead frame
TWI479704B (en) A lead frame for an optical semiconductor device, a method for manufacturing the same, and an optical semiconductor device
JP4763094B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
TWI496325B (en) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
JP5525315B2 (en) LED lead frame
JP5771124B2 (en) LED lead frame and manufacturing method thereof
WO2010150824A1 (en) Lead frame for optical semiconductor device, process for manufacturing lead frame for optical semiconductor device, and optical semiconductor device
TWI536616B (en) A lead frame for an optical semiconductor device, a manufacturing method of a lead frame for an optical semiconductor device, and an optical semiconductor device
JP5089795B2 (en) Optical semiconductor device lead frame, optical semiconductor device lead frame manufacturing method, and optical semiconductor device
JP5578960B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP5767577B2 (en) LED lead frame and manufacturing method thereof
JP5767521B2 (en) Lead frame for optical semiconductor device and manufacturing method thereof
JP2012151289A (en) Optical semiconductor mounting board, manufacturing method of the same and optical semiconductor device
JP2011129658A (en) Lead frame for optical semiconductor device, method for manufacturing the same, and optical semiconductor device
JP6635152B2 (en) Lead frame, light emitting device package, light emitting device, and method of manufacturing light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees