JP2011007047A - Internal combustion engine having hydrogen generation device and internal combustion engine system - Google Patents

Internal combustion engine having hydrogen generation device and internal combustion engine system Download PDF

Info

Publication number
JP2011007047A
JP2011007047A JP2009148186A JP2009148186A JP2011007047A JP 2011007047 A JP2011007047 A JP 2011007047A JP 2009148186 A JP2009148186 A JP 2009148186A JP 2009148186 A JP2009148186 A JP 2009148186A JP 2011007047 A JP2011007047 A JP 2011007047A
Authority
JP
Japan
Prior art keywords
hydrogen
internal combustion
combustion engine
reforming catalyst
hydrogen production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009148186A
Other languages
Japanese (ja)
Inventor
Yasuo Yoshii
泰雄 吉井
Takao Ishikawa
敬郎 石川
Atsushi Shimada
敦史 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009148186A priority Critical patent/JP2011007047A/en
Publication of JP2011007047A publication Critical patent/JP2011007047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain hydrogen generating reaction efficiency of steam reforming reaction caused by a reforming catalyst.SOLUTION: In an internal combustion engine having a hydrogen generation device for generating hydrogen from organic compound and using hydrogen, generated by the hydrogen generation device, as a part of fuel, the reforming catalyst for improving performance of steam reforming reaction for generating hydrogen by reacting organic compound and steam is disposed in the hydrogen generation device. Supply means for hydrogen containing gas is disposed upstream of the reforming catalyst.

Description

本発明は、改質触媒と、該触媒を用いた水素製造装置を有する内燃機関に関する。   The present invention relates to an internal combustion engine having a reforming catalyst and a hydrogen production apparatus using the catalyst.

二酸化炭素などによる地球温暖化が深刻になる中で、化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。また、エネルギーを有効活用してCO2排出を削減する省エネルギー化を推進するため、発電設備のコージェネ化が注目されている。水素を燃料として発電を行う燃料電池は次世代の発電技術として開発が精力的に進められている。燃料電池には固体高分子型燃料電池(Polymer Electrolyte Fuel Cell、以下PEFCと略す)とメタノール燃料電池(Direct Methanol Fuel Cell、以下DMFCと略す)がある。PEFCは家庭用定置型発電システム,燃料電池自動車用として、またDMFCとはポータブル電源用分野で現状のLiイオン二次電池に代わる新電源として、携帯電話,PDA(Personal Digital Assistance)やノートPC等の携帯情報機器用として開発されている。 As global warming due to carbon dioxide and the like becomes serious, hydrogen is attracting attention as an energy source for the next generation instead of fossil fuels. In addition, cogeneration of power generation facilities has attracted attention in order to promote energy saving by effectively using energy and reducing CO 2 emissions. Development of a fuel cell that generates power using hydrogen as a fuel is being vigorously developed as a next-generation power generation technology. Fuel cells include a polymer electrolyte fuel cell (hereinafter abbreviated as PEFC) and a methanol fuel cell (hereinafter abbreviated as DMFC). PEFC is a stationary power generation system for homes, fuel cell vehicles, and DMFC is a new power source that replaces the current Li-ion secondary battery in the field of portable power sources, such as mobile phones, PDAs (Personal Digital Assistance) and notebook PCs. Developed for portable information devices.

このような燃料電池の本体の開発も重要である一方、水素を燃料として用いるために不可欠な水素の輸送,貯蔵,供給システムが大きな課題となっている。水素は常温で気体であるため、液体や固体に比べて、貯蔵や輸送が難しい。しかも、水素は可燃性物質であるので、空気と所定の混合比になると、爆発の危険性がある。   While the development of such a fuel cell main body is important, a hydrogen transportation, storage and supply system essential for using hydrogen as a fuel has become a major issue. Since hydrogen is a gas at room temperature, it is difficult to store and transport compared to liquids and solids. In addition, since hydrogen is a flammable substance, there is a risk of explosion when it reaches a predetermined mixing ratio with air.

このような問題を解決する技術に、特許文献1に開示されるように、炭化水素燃料と水蒸気を触媒上で反応させて水素を発生させ、この水素を水素吸蔵合金に貯蔵し、起動時に放出させて炭化水素燃料に添加して水添脱硫して燃料電池に供給する発電システムが示されている。   As disclosed in Patent Document 1, hydrogen is generated by reacting a hydrocarbon fuel and water vapor on a catalyst, and this hydrogen is stored in a hydrogen storage alloy and released at start-up. A power generation system is shown which is added to a hydrocarbon fuel, hydrodesulfurized and supplied to a fuel cell.

また、近年、安全性,運搬性及び貯蔵能力に優れた水素貯蔵方法として、シクロヘキサンやデカリンのような炭化水素を用いた有機ハイドライドシステムが注目されている。これらの炭化水素は、常温で液体であるため、運搬性に優れている。   In recent years, organic hydride systems using hydrocarbons such as cyclohexane and decalin have attracted attention as a hydrogen storage method that is excellent in safety, transportability, and storage capacity. Since these hydrocarbons are liquid at room temperature, they are excellent in transportability.

例えば、トルエンと1−メチルシクロヘキサンは同じ炭素数を有する環状炭化水素であるが、トルエンは炭素同士の結合が二重結合である不飽和炭化水素であるのに対し、1−メチルシクロヘキサンは二重結合を持たない飽和炭化水素である。(1)式に示すように、1−メチルシクロヘキサンの脱水素反応によりトルエンが得られ、トルエンの水素付加反応により1−メチルシクロヘキサンが得られる。すなわち、これらの炭化水素の脱水素と水素付加反応を利用することにより、水素の供給と貯蔵が可能となる。しかし、シクロヘキサンの反応に代表される脱水素反応では、転化率が低く水素量に限界があるという課題があった。   For example, toluene and 1-methylcyclohexane are cyclic hydrocarbons having the same carbon number, while toluene is an unsaturated hydrocarbon in which the bond between carbons is a double bond, whereas 1-methylcyclohexane is a double hydrocarbon. It is a saturated hydrocarbon without a bond. As shown in the formula (1), toluene is obtained by dehydrogenation of 1-methylcyclohexane, and 1-methylcyclohexane is obtained by hydrogenation of toluene. That is, hydrogen can be supplied and stored by utilizing the dehydrogenation and hydrogenation reaction of these hydrocarbons. However, the dehydrogenation reaction represented by the reaction of cyclohexane has a problem that the conversion rate is low and the amount of hydrogen is limited.

611−CH3 ⇔ C65−CH3+3H2 ・・・(1) C 6 H 11 —CH 3 ⇔ C 6 H 5 —CH 3 + 3H 2 (1)

また、1−メチルシクロヘキサンに代表される脱水素反応用触媒としては、特許文献2において開示されているように、活性成分は貴金属の中でも最も高価な白金が主に使用されている。よって水素製造装置のコストを低減するためには、白金以外の金属を活性成分とすることが今後、重要となる。また従来調製法で作製した触媒では、高価な白金を活性成分として用いても、その性能には限界があるため、同種類の金属を用いても、これまでとは異なる特性を発現する高機能触媒を適用する必要があった。   Moreover, as a catalyst for dehydrogenation reaction represented by 1-methylcyclohexane, as disclosed in Patent Document 2, platinum, which is the most expensive among noble metals, is mainly used. Therefore, in order to reduce the cost of the hydrogen production apparatus, it will be important in the future to use a metal other than platinum as an active component. In addition, the catalyst prepared by the conventional preparation method has limited performance even if expensive platinum is used as the active ingredient. It was necessary to apply a catalyst.

これに対して、固体高分子型燃料電池(以下、PEFCと略す。)システムでは天然ガス(LNG)等の燃料を水素製造装置内の改質触媒において、水蒸気と反応することによりH2に転換し、これを燃料電池の燃料として利用する。以下に燃料がLNGである時の水蒸気改質反応の反応式を示す。(2)式に示す改質反応では、H2は数十%、またCOは数%程度発生する。この反応は通常、650〜800℃の高温下で実施する。 On the other hand, in a polymer electrolyte fuel cell (hereinafter abbreviated as PEFC) system, a fuel such as natural gas (LNG) is converted to H 2 by reacting with water vapor in a reforming catalyst in a hydrogen production apparatus. This is used as fuel for the fuel cell. The reaction formula of the steam reforming reaction when the fuel is LNG is shown below. In the reforming reaction represented by the formula (2), H 2 is generated in the order of several tens of percent and CO is generated in the order of several percent. This reaction is usually carried out at a high temperature of 650 to 800 ° C.

CH4+H2O → CO+3H2 ・・・(2) CH 4 + H 2 O → CO + 3H 2 (2)

上記のPEFC用に開発した改質触媒の活性成分は、特許文献3で開示したように、非貴金属系のNi−Laを主成分とする触媒であり、反応温度500℃以上で水素平衡到達率は100%に達し、水蒸気改質反応の転化率は非常に高い。また触媒構造はハニカム型であるため、燃焼ガス中のダストが活性点上に堆積して触媒性能が低下することが少ない。   As disclosed in Patent Document 3, the active component of the reforming catalyst developed for PEFC is a catalyst mainly composed of non-noble metal-based Ni-La, and reaches a hydrogen equilibrium at a reaction temperature of 500 ° C. or higher. Reaches 100% and the conversion of the steam reforming reaction is very high. Further, since the catalyst structure is a honeycomb type, the dust in the combustion gas is rarely deposited on the active point and the catalyst performance is not lowered.

よって、以上のような燃料電池用水素製造装置用に開発してきた改質触媒を内燃機関用の水素発生装置に適用することが効果的と予想される。PEFCでの燃料は低級炭化水素のCH4であるが、内燃機関ではCH4より炭化水素量が多い、C818(ノルマルオクタン)程度の炭化水素類を改質する必要があるが、エンジンシリンダ内部の温度は約1000℃と高くなるため、より水蒸気改質反応は進行し易く、高い改質性能が期待可能である。 Therefore, it is expected to be effective to apply the reforming catalyst developed for the fuel cell hydrogen production apparatus as described above to the hydrogen generation apparatus for the internal combustion engine. The fuel in PEFC is CH 4 which is a lower hydrocarbon, but in an internal combustion engine, it is necessary to reform hydrocarbons having a higher hydrocarbon content than CH 4 and about C 8 H 18 (normal octane). Since the temperature inside the cylinder is as high as about 1000 ° C., the steam reforming reaction is more likely to proceed, and high reforming performance can be expected.

そこで、本発明ではこれまで燃料電池用水素製造装置の改質触媒で開発した、主にNi−La/Al23触媒を内燃機関用の水素製造装置適用する方式を提案した。しかし、Ni−La/Al23触媒は起動時に空気が流入した場合、活性成分であるNi,Laが酸化されて性能が低下する場合がある。よってNi−La/Al23触媒を内燃機関用の水素製造装置適用する場合は、システムに一旦停止して、再起動する時に、酸化された金属に水素を含有するガスを通気することにより、金属を還元状態にすることで性能を回復する必要がある。本発明では以上の還元手段を備えた水素製造装置を備えた内燃機関および内燃機関システムを提供することにある。 In view of this, the present invention has proposed a method in which a Ni-La / Al 2 O 3 catalyst, which has been developed as a reforming catalyst for a fuel cell hydrogen production apparatus, is mainly applied to an internal combustion engine hydrogen production apparatus. However, when air flows into the Ni-La / Al 2 O 3 catalyst at the time of startup, Ni and La, which are active components, may be oxidized and the performance may deteriorate. Therefore, when the Ni-La / Al 2 O 3 catalyst is applied to a hydrogen production apparatus for an internal combustion engine, when the system is temporarily stopped and restarted, a gas containing hydrogen is passed through the oxidized metal. It is necessary to restore the performance by bringing the metal into a reduced state. It is an object of the present invention to provide an internal combustion engine and an internal combustion engine system including a hydrogen production apparatus including the above reducing means.

特開平7−192746号公報JP 7-192746 A 特開平2002−274801号公報Japanese Patent Laid-Open No. 2002-274801 特開2005−262070号公報JP 2005-262070 A

本発明の目的は、改質触媒による水蒸気改質反応の水素生成反応効率を維持することにある。   An object of the present invention is to maintain the hydrogen generation reaction efficiency of the steam reforming reaction by the reforming catalyst.

すなわち、本発明は、有機化合物から水素を生成する水素製造装置を備え、前記水素製造装置で生成した水素を燃料の一部とする内燃機関において、前記水素製造装置内に前記有機化合物と水蒸気を反応させて水素を生成する水蒸気改質反応の性能を向上するための改質触媒が設置され、前記改質触媒の上流に水素を含有ガスの供給手段を設けたことを特徴とする。   That is, the present invention includes a hydrogen production device that produces hydrogen from an organic compound, and in an internal combustion engine that uses hydrogen produced by the hydrogen production device as a part of fuel, the organic compound and water vapor are contained in the hydrogen production device. A reforming catalyst for improving the performance of a steam reforming reaction for generating hydrogen by reacting is installed, and a means for supplying a gas containing hydrogen is provided upstream of the reforming catalyst.

本発明によれば、高い効率を長期間にわたり維持することができる。   According to the present invention, high efficiency can be maintained over a long period of time.

改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle. 改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例。An example of the system which applied the reforming catalyst to the hydrogen engine combustion of a motor vehicle.

以下、本発明を実施例で具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples.

(実施例1)
図1に実施例1において作製した改質触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本発明の効果は、エンジンシリンダ6内部での燃焼において、燃料の一部を改質触媒1上で改質することにより水素を多量に含んだ改質ガスを生成し、燃焼時に適用な量の改質ガスを供給することで、燃焼効率を向上させ、かつ排ガス中の未燃分を低減することができるため、自動車エンジン等の燃費を向上することが可能となる。改質触媒1へは燃料15が燃料供給ノズル5から供給され、例えば改質触媒1の成分がNi−La/Al23である場合は、活性金属Ni,La上で(3)式で示すように、燃料15の一成分であるC818(ノルマルオクタン)が排気ガス中の水蒸気と反応することで、水素と一酸化炭素を生成する。この反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。発生した水素を含有する改質ガスを改質ガス導入管16を通過して、水素用インジェクタ7から吸気弁11の上流位置に噴射することで、水素の添加効果により効率良く燃焼することができる。ここで、エンジンでの燃焼を停止した時は、排気管8から空気が流入してしまい、改質触媒1中の活性成分Ni,Laが酸化され、(3)式で示すような改質反応性能が低下してしまう。そこで、再度、エンジン燃焼を開始する時は、水素用インジェクタ入口弁4を閉じ、還元用ガス用入口弁3を開けることにより、水素を含む改質ガスをエンジンシリンダ6内部へ供給せずに、改質触媒上流位置へ供給することで、改質触媒1中の酸化されたNiO及びLa23を水素により還元し、触媒活性が高いNi,Laへ変換することで改質性能を回復させることが可能となる。
Example 1
FIG. 1 shows an embodiment of a system in which the reforming catalyst produced in Embodiment 1 is applied to combustion of an automobile hydrogen engine. The effect of the present invention is that, in the combustion in the engine cylinder 6, a reformed gas containing a large amount of hydrogen is generated by reforming a part of the fuel on the reforming catalyst 1. By supplying the reformed gas, the combustion efficiency can be improved and the unburned content in the exhaust gas can be reduced, so that the fuel efficiency of an automobile engine or the like can be improved. The fuel 15 is supplied to the reforming catalyst 1 from the fuel supply nozzle 5. For example, when the component of the reforming catalyst 1 is Ni—La / Al 2 O 3 , the active metal Ni, La is expressed by the equation (3). As shown, C 8 H 18 (normal octane), which is one component of the fuel 15, reacts with water vapor in the exhaust gas to generate hydrogen and carbon monoxide. In order for this reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. For this purpose, the reforming catalyst 1 is placed at the outlet of the engine cylinder 6 as much as possible. Install in close proximity. The reformed gas containing the generated hydrogen passes through the reformed gas introduction pipe 16 and is injected from the hydrogen injector 7 to the upstream position of the intake valve 11 so that it can be efficiently burned by the effect of adding hydrogen. . Here, when the combustion in the engine is stopped, air flows in from the exhaust pipe 8, and the active components Ni and La in the reforming catalyst 1 are oxidized, and a reforming reaction as shown in the equation (3). Performance will be degraded. Therefore, when the engine combustion is started again, the hydrogen injector inlet valve 4 is closed and the reducing gas inlet valve 3 is opened, so that the reformed gas containing hydrogen is not supplied into the engine cylinder 6. By supplying to the upstream position of the reforming catalyst, the oxidized NiO and La 2 O 3 in the reforming catalyst 1 are reduced with hydrogen, and the reforming performance is recovered by converting to Ni and La having high catalytic activity. It becomes possible.

818+8H2O → 17H2+8CO−1303kJ ・・・(3) C 8 H 18 + 8H 2 O → 17H 2 + 8CO-1303 kJ (3)

(実施例2)
本実施例ではハニカム型改質触媒の作製方法について説明する。アルミナ,アルミナゾル(アルミナと有機性化合物の混合溶液)と蒸留水の混合物からなるアルミナスラリーを容積が13.5ccのコージェライト製ハニカム基材に含浸し、120℃で乾燥後、600℃で1時間焼成した。この工程を数回繰り返してコージェライト製ハニカム基材容積当たりのアルミナ量が155g/Lになるようにした。次に硝酸ニッケル六水和物1.4gと硝酸ランタン六水和物0.2gを蒸留水1.4gに溶解した触媒原料溶液を上記のアルミナをコーティングしたコージェライト製ハニカムに含浸し、120℃で乾燥後、700℃で1時間焼成し、触媒Aを得た。触媒活性成分であるNi元素は金属酸化物であるNiOに換算して、その担持量は15重量%、La元素は金属酸化物であるLa23に換算して、その担持量は3重量%である。
(Example 2)
In this example, a method for producing a honeycomb type reforming catalyst will be described. A cordierite honeycomb substrate having a volume of 13.5 cc is impregnated with an alumina slurry made of a mixture of alumina, alumina sol (mixed solution of alumina and organic compound) and distilled water, dried at 120 ° C, and then at 600 ° C for 1 hour. Baked. This process was repeated several times so that the alumina amount per volume of the cordierite honeycomb substrate volume was 155 g / L. Next, a cordierite honeycomb coated with the above alumina was impregnated with a catalyst raw material solution prepared by dissolving 1.4 g of nickel nitrate hexahydrate and 0.2 g of lanthanum nitrate hexahydrate in 1.4 g of distilled water. And dried at 700 ° C. for 1 hour to obtain Catalyst A. Ni element which is a catalytic active component is converted to NiO which is a metal oxide, its loading is 15% by weight, La element is converted to La 2 O 3 which is a metal oxide, and its loading is 3%. %.

NiO担持量が15重量%、La23担持量が6重量%の触媒を作製する時は、触媒原料溶液として硝酸ニッケル六水和物1.5gと硝酸ランタン六水和物0.4gを蒸留水1.3gに溶解したものを用いる以外は、実施例1と同様の手順で調製し、触媒を作製した。 When preparing a catalyst having a NiO loading of 15% by weight and a La 2 O 3 loading of 6% by weight, 1.5 g of nickel nitrate hexahydrate and 0.4 g of lanthanum nitrate hexahydrate were used as catalyst raw material solutions. A catalyst was prepared in the same manner as in Example 1 except that one dissolved in 1.3 g of distilled water was used.

NiO担持量は24重量%、La23担持量は3重量%を作製する時は、触媒原料溶液として硝酸ニッケル六水和物2.6gと硝酸ランタン六水和物0.2gを蒸留水1.0gに溶解したものを用いる以外は、実施例1と同様の手順で調製し、触媒を作製した。 When preparing 24% by weight of NiO and 3 % by weight of La 2 O 3, 2.6 g of nickel nitrate hexahydrate and 0.2 g of lanthanum nitrate hexahydrate were distilled water as catalyst raw material solutions. A catalyst was prepared in the same manner as in Example 1 except that the material dissolved in 1.0 g was used.

(実施例3)
図2に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本実施例では触媒保持用円筒22が排気ガス14の流れに対して直交するように配置されているため、水蒸気を含んだ排気ガス14が、燃焼排ガス取込み孔21から取り込まれ易くなり、その結果、(3)式に示す水蒸気改質反応が進行し易くなる。
(Example 3)
FIG. 2 shows an embodiment of a system in which the Ni—La-based honeycomb catalyst manufactured in Embodiment 2 is applied to automobile hydrogen engine combustion. In the present embodiment, the catalyst holding cylinder 22 is arranged so as to be orthogonal to the flow of the exhaust gas 14, so that the exhaust gas 14 containing water vapor is easily taken in from the combustion exhaust gas intake hole 21, and as a result. The steam reforming reaction represented by the formula (3) is likely to proceed.

改質触媒1は触媒保持用円筒22内部に設置してあり、またこの触媒保持用円筒22には水蒸気を含有した燃焼排ガスを取り込むための複数の燃焼排ガス取込み孔21が設けてある。燃料15は燃料用ポンプ20により触媒保持用円筒22内部へ供給され、また水蒸気を含んだ排気ガス14は複数の燃焼排ガス取込み孔21から触媒保持用円筒22内部へ流入し、ここで燃料15と水蒸気を含んだ排気ガス14は予め混合される。均一となった混合物は改質触媒1へ供給され、改質触媒1上では、(3)式に示す水蒸気改質反応が効率的に進行して、水素を多量に含む改質ガスを生成する。この反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。エンジン燃焼時は主に燃焼用燃料供給ノズル19からガソリン等の液体燃料15を供給して、エンジンシリンダ6内部で燃焼するが、これに加えて、還元用ガス入口弁3を閉じて、水素用インジェクタ入口弁4を開くことで、水素を含有するガスを水素用インジェクタ7からエンジンシリンダ6内部へ供給することにより、燃焼速度が非常に高い水素の添加効果により、エンジン内部の燃焼が効率的に進行するようにする。   The reforming catalyst 1 is installed inside the catalyst holding cylinder 22, and the catalyst holding cylinder 22 is provided with a plurality of combustion exhaust gas intake holes 21 for taking in the combustion exhaust gas containing water vapor. The fuel 15 is supplied to the inside of the catalyst holding cylinder 22 by the fuel pump 20, and the exhaust gas 14 containing water vapor flows into the catalyst holding cylinder 22 from the plurality of combustion exhaust gas intake holes 21. The exhaust gas 14 containing water vapor is mixed in advance. The homogenized mixture is supplied to the reforming catalyst 1, and the steam reforming reaction shown in the formula (3) efficiently proceeds on the reforming catalyst 1 to generate a reformed gas containing a large amount of hydrogen. . In order for this reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. For this purpose, the reforming catalyst 1 is placed at the outlet of the engine cylinder 6 as much as possible. Install in close proximity. During engine combustion, liquid fuel 15 such as gasoline is mainly supplied from the combustion fuel supply nozzle 19 and burns in the engine cylinder 6. In addition to this, the reducing gas inlet valve 3 is closed to generate hydrogen. By opening the injector inlet valve 4, gas containing hydrogen is supplied from the hydrogen injector 7 into the engine cylinder 6, so that the combustion inside the engine is efficiently performed due to the addition effect of hydrogen having a very high combustion speed. Let it progress.

エンジン停止時では、排気管8から空気が逆流して流入するため、改質触媒1中の活性点となるNi及びLaが酸化されるが、再起動時には水素用インジェクタ入口弁4を閉じ、還元用ガス入口弁3を開くことで、水素を含有する排気ガスを改質ガス導入管16を通じて、改質触媒1内部へ導入して、改質触媒1中の酸化されたNi,La成分を還元して、活性なNi、及びLaに転換することで改質性能を回復させることが可能となる。   When the engine is stopped, air flows backward from the exhaust pipe 8, so that Ni and La that are active points in the reforming catalyst 1 are oxidized. However, when restarting, the hydrogen injector inlet valve 4 is closed and reduced. By opening the industrial gas inlet valve 3, exhaust gas containing hydrogen is introduced into the reforming catalyst 1 through the reformed gas introduction pipe 16, and the oxidized Ni and La components in the reforming catalyst 1 are reduced. Thus, the reforming performance can be recovered by converting to active Ni and La.

(実施例4)
図3に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。改質触媒1はエンジンシリンダ6内部に設置してあるので、改質触媒1の温度は約1000℃以上と高くなるので、(3)式に示す改質反応は速やかに進行する。本実施例でもエンジンを停止した時は、排気管8から流入する空気で触媒中のNi及びLaが酸化されるが、その時は水素用インジェクタ入口弁4を閉じて、還元用ガス入口弁3を開けることで、改質触媒を還元して活性なNi、及びLaに転換し、改質性能を回復させることが可能となる。還元処理する時は、燃料供給ノズル先端部23が燃焼排ガス取込み孔21よりも改質触媒1に近いため、ここから噴出される水素含有ガスは、燃焼排ガス取込み孔21からはエンジンシリンダ6内部へ流出せずに、改質触媒1の内部により多く流入するので還元反応がより効果的に進行する。
Example 4
FIG. 3 shows an embodiment of a system in which the Ni—La-based honeycomb catalyst manufactured in Embodiment 2 is applied to automobile hydrogen engine combustion. Since the reforming catalyst 1 is installed inside the engine cylinder 6, the temperature of the reforming catalyst 1 becomes as high as about 1000 ° C. or higher, so that the reforming reaction shown in the equation (3) proceeds promptly. Also in this embodiment, when the engine is stopped, Ni and La in the catalyst are oxidized by the air flowing in from the exhaust pipe 8, but at this time, the hydrogen injector inlet valve 4 is closed and the reducing gas inlet valve 3 is opened. By opening, the reforming catalyst is reduced and converted into active Ni and La, and the reforming performance can be recovered. At the time of the reduction process, the fuel supply nozzle tip 23 is closer to the reforming catalyst 1 than the combustion exhaust gas intake hole 21, so that the hydrogen-containing gas ejected from here flows into the engine cylinder 6 from the combustion exhaust gas intake hole 21. Since it flows more into the interior of the reforming catalyst 1 without flowing out, the reduction reaction proceeds more effectively.

(実施例5)
図4に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本実施例は図2に示す実施例3を改良した例である。
(Example 5)
FIG. 4 shows an embodiment of a system in which the Ni-La-based honeycomb catalyst manufactured in Embodiment 2 is applied to combustion of a hydrogen engine in an automobile. The present embodiment is an example in which the third embodiment shown in FIG. 2 is improved.

改質触媒1を設置した触媒保持用円筒22は排気ガス14の流れ方向に対して長く設定されており、その結果、燃料供給ノズル先端部23から噴出される燃料15と燃焼排ガス取込み孔21から導入される水蒸気を含有した排気ガス14は、改質触媒1へ流入するまでの接触時間がより長く設定されるため、燃料15と排気ガス14の混合はより均一な状態で改質触媒1へ供給される、その結果、改質触媒1内部では適切な水蒸気と燃料の比率(以下、S/Cと略す)で、(3)式に示す水蒸気改質反応が効率的に進行し、S/C低下によるカーボン析出等は起こらない。   The catalyst holding cylinder 22 provided with the reforming catalyst 1 is set to be long with respect to the flow direction of the exhaust gas 14, and as a result, from the fuel 15 ejected from the fuel supply nozzle tip 23 and the combustion exhaust gas intake hole 21. The contact time until the introduced exhaust gas 14 containing water vapor flows into the reforming catalyst 1 is set to be longer, so that the fuel 15 and the exhaust gas 14 are mixed in a more uniform state to the reforming catalyst 1. As a result, the steam reforming reaction shown in the equation (3) efficiently proceeds at an appropriate steam / fuel ratio (hereinafter abbreviated as S / C) inside the reforming catalyst 1, and S / Carbon precipitation or the like due to C lowering does not occur.

水蒸気改質反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。   In order for the steam reforming reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. Install near the exit.

エンジン停止時では、排気管8から空気が逆流して流入するため、改質触媒1中の活性点となるNi及びLaが酸化されるが、再起動時には水素用インジェクタ入口弁4を閉じ、還元用ガス入口弁3を開くことで、水素を含有する排気ガスを改質ガス導入管16、次に燃料供給ノズル5を通過させることで改質触媒1内部へ導入し、改質触媒1中の酸化されたNi,La成分を還元して、活性なNi、及びLaに転換することで改質性能を回復させることが可能となる。   When the engine is stopped, air flows backward from the exhaust pipe 8, so that Ni and La that are active points in the reforming catalyst 1 are oxidized. However, when restarting, the hydrogen injector inlet valve 4 is closed and reduced. By opening the working gas inlet valve 3, exhaust gas containing hydrogen is introduced into the reforming catalyst 1 by passing through the reformed gas introduction pipe 16 and then the fuel supply nozzle 5. It is possible to recover the reforming performance by reducing the oxidized Ni and La components and converting them to active Ni and La.

(実施例6)
図5に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本実施例は図4に示す実施例5の変形例である。触媒保持用円筒22の先端は閉止されているため、改質触媒1から排出される水素を含有したガスは全て、還元用ガス入口弁3,水素用インジェクタ入口弁4の空き閉めにより、水素用インジェクタ7または燃料供給ノズル5へ導入させることができる。
(Example 6)
FIG. 5 shows an embodiment of a system in which the Ni-La-based honeycomb catalyst produced in Embodiment 2 is applied to automobile hydrogen engine combustion. This embodiment is a modification of the fifth embodiment shown in FIG. Since the tip of the catalyst holding cylinder 22 is closed, all of the gas containing hydrogen discharged from the reforming catalyst 1 is used for hydrogen by closing the reducing gas inlet valve 3 and the hydrogen injector inlet valve 4 open. It can be introduced into the injector 7 or the fuel supply nozzle 5.

エンジン停止時では、排気管8から空気が逆流して流入するため、改質触媒1中の活性点となるNi及びLaが酸化されるが、再起動時には水素用インジェクタ入口弁4を閉じ、還元用ガス入口弁3を開くことで、水素を含有する排気ガスを改質ガス導入管16、次に燃料供給ノズル5を通過させることで改質触媒1内部へ導入し、改質触媒1中の酸化されたNi,La成分を還元して、活性なNi、及びLaに転換することで改質性能を回復させることが可能となる。本実施例においても水蒸気改質反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。   When the engine is stopped, air flows backward from the exhaust pipe 8, so that Ni and La that are active points in the reforming catalyst 1 are oxidized. However, when restarting, the hydrogen injector inlet valve 4 is closed and reduced. By opening the working gas inlet valve 3, exhaust gas containing hydrogen is introduced into the reforming catalyst 1 by passing through the reformed gas introduction pipe 16 and then the fuel supply nozzle 5. It is possible to recover the reforming performance by reducing the oxidized Ni and La components and converting them to active Ni and La. Also in this embodiment, in order for the steam reforming reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. Installed at a position near the outlet of the engine cylinder 6.

(実施例7)
図6に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本実施例は図4に示す実施例5の変形例である。触媒保持用円筒22の先端は閉止されているため、改質触媒1から排出される水素を含有したガスは全て、還元用ガス入口弁3,水素用インジェクタ入口弁4の空き閉めにより、水素用インジェクタ7または燃料供給ノズル5へ導入させることができる。また本実施例では触媒保持用円筒22が排気ガス14の流れに対して直交するように配置されているため、水蒸気を含んだ排気ガス14が、燃焼排ガス取込み孔21から取り込まれ易くなり、その結果、(3)式に示す水蒸気改質反応が進行し易くなる。触媒保持用円筒22の先端は閉止されており、この出口は改質ガス導入管16に連結されている。本実施例においても水蒸気改質反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。
(Example 7)
FIG. 6 shows an embodiment of a system in which the Ni—La-based honeycomb catalyst manufactured in the embodiment 2 is applied to automobile hydrogen engine combustion. This embodiment is a modification of the fifth embodiment shown in FIG. Since the tip of the catalyst holding cylinder 22 is closed, all of the gas containing hydrogen discharged from the reforming catalyst 1 is used for hydrogen by closing the reducing gas inlet valve 3 and the hydrogen injector inlet valve 4 open. It can be introduced into the injector 7 or the fuel supply nozzle 5. Further, in this embodiment, the catalyst holding cylinder 22 is arranged so as to be orthogonal to the flow of the exhaust gas 14, so that the exhaust gas 14 containing water vapor is easily taken in from the combustion exhaust gas intake hole 21. As a result, the steam reforming reaction represented by the formula (3) is likely to proceed. The tip of the catalyst holding cylinder 22 is closed, and its outlet is connected to the reformed gas introduction pipe 16. Also in this embodiment, in order for the steam reforming reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. Installed at a position near the outlet of the engine cylinder 6.

エンジン停止時では、排気管8から空気が逆流して流入するため、改質触媒1中の活性点となるNi及びLaが酸化されるが、再起動時には水素用インジェクタ入口弁4を閉じ、還元用ガス入口弁3を開くことで、水素を含有する排気ガスを改質ガス導入管16、次に燃料供給ノズル5を通過させることで改質触媒1内部へ導入し、改質触媒1中の酸化されたNi,La成分を還元して、活性なNi、及びLaに転換することで改質性能を回復させることが可能となる。   When the engine is stopped, air flows backward from the exhaust pipe 8, so that Ni and La that are active points in the reforming catalyst 1 are oxidized. However, when restarting, the hydrogen injector inlet valve 4 is closed and reduced. By opening the working gas inlet valve 3, exhaust gas containing hydrogen is introduced into the reforming catalyst 1 by passing through the reformed gas introduction pipe 16 and then the fuel supply nozzle 5. It is possible to recover the reforming performance by reducing the oxidized Ni and La components and converting them to active Ni and La.

(実施例8)
図7に実施例2において作製したNi−La系ハニカム触媒を自動車の水素エンジン燃焼に適用したシステムの一実施例を示す。本実施例ではエンジン停止時に改質触媒1に空気が流入しないように改質触媒1の後流位置に燃焼排ガス取込み孔21が設置してある。エンジン停止時は燃焼排ガス取込み孔21を閉じ、またエンジンを起動する時は燃焼排ガス取込み孔21を開ける。本実施例においても水蒸気改質反応を改質触媒1において効率良く進行させるには、改質触媒1の温度をできるだけ高く維持することが必要であり、そのためには改質触媒1は可能な限り、エンジンシリンダ6の出口に近い位置に設置する。
(Example 8)
FIG. 7 shows an example of a system in which the Ni—La-based honeycomb catalyst manufactured in Example 2 is applied to hydrogen engine combustion of an automobile. In this embodiment, a combustion exhaust gas intake hole 21 is provided at a downstream position of the reforming catalyst 1 so that air does not flow into the reforming catalyst 1 when the engine is stopped. The combustion exhaust gas intake hole 21 is closed when the engine is stopped, and the combustion exhaust gas intake hole 21 is opened when the engine is started. Also in this embodiment, in order for the steam reforming reaction to proceed efficiently in the reforming catalyst 1, it is necessary to maintain the temperature of the reforming catalyst 1 as high as possible. Installed at a position near the outlet of the engine cylinder 6.

1 改質触媒
2 還元用ガスノズル
3 還元用ガス入口弁
4 水素用インジェクタ入口弁
5 燃料供給ノズル
6 エンジンシリンダ
7 水素用インジェクタ
8 排気管
9 点火プラグ
10 ピストン
11 吸気弁
12 排気弁
13 吸気ガス
14 排気ガス
15 燃料
16 改質ガス導入管
17 燃料タンク
18 燃料導入管
19 燃焼用燃料供給ノズル
20 燃料用ポンプ
21 燃焼排ガス取込み孔
22 触媒保持用円筒
23 燃料供給ノズル先端部
24 可動閉止弁
1 reforming catalyst 2 reducing gas nozzle 3 reducing gas inlet valve 4 hydrogen injector inlet valve 5 fuel supply nozzle 6 engine cylinder 7 hydrogen injector 8 exhaust pipe 9 spark plug 10 piston 11 intake valve 12 exhaust valve 13 intake gas 14 exhaust Gas 15 Fuel 16 Reformed gas introduction pipe 17 Fuel tank 18 Fuel introduction pipe 19 Combustion fuel supply nozzle 20 Fuel pump 21 Combustion exhaust gas intake hole 22 Catalyst holding cylinder 23 Fuel supply nozzle tip 24 Movable shut-off valve

Claims (6)

有機化合物から水素を生成する水素製造装置を備え、前記水素製造装置で生成した水素と前記有機化合物の両者を燃料とする内燃機関において、
前記水素製造装置内に前記有機化合物と水蒸気を反応させて水素を生成する水蒸気改質反応の性能を向上するための改質触媒が設置され、前記改質触媒の上流に前記改質触媒により前記燃料と水蒸気を反応させて生成した水素を含むガスの供給手段を設けたことを特徴とする水素製造装置を備えた内燃機関。
In an internal combustion engine comprising a hydrogen production device that produces hydrogen from an organic compound, and using both the hydrogen produced by the hydrogen production device and the organic compound as fuel,
A reforming catalyst for improving the performance of a steam reforming reaction for generating hydrogen by reacting the organic compound with steam in the hydrogen production apparatus is installed, and the reforming catalyst upstream of the reforming catalyst An internal combustion engine provided with a hydrogen production apparatus, characterized in that a supply means for supplying a gas containing hydrogen generated by reacting fuel and water vapor is provided.
請求項1に記載された水素製造装置を備えた内燃機関において、前記改質触媒はニッケル,ランタン,金,タングステン,銅,コバルト,鉄,マンガン,パラジウム,レニウム,オスニウム,イリジウム,ロジウム,ルテニウム及び白金から選ばれる少なくとも1種を含有することを特徴とする水素製造装置を備えた内燃機関。   2. The internal combustion engine having the hydrogen production apparatus according to claim 1, wherein the reforming catalyst is nickel, lanthanum, gold, tungsten, copper, cobalt, iron, manganese, palladium, rhenium, osnium, iridium, rhodium, ruthenium and An internal combustion engine equipped with a hydrogen production apparatus, comprising at least one selected from platinum. 請求項1に記載された水素製造装置を備えた内燃機関において、前記燃料である有機化合物と内燃機関からの燃焼排気ガスを前記改質触媒へ供給する前に、前記燃料である有機化合物と前記燃焼排気ガスとを均一に混合させる手段を設けたことを特徴とする水素製造装置を備えた内燃機関。   The internal combustion engine comprising the hydrogen production apparatus according to claim 1, wherein the organic compound that is the fuel and the organic compound that is the fuel are supplied before the combustion exhaust gas from the internal combustion engine is supplied to the reforming catalyst. An internal combustion engine provided with a hydrogen production apparatus, characterized in that means for uniformly mixing combustion exhaust gas is provided. 請求項1に記載された水素製造装置を備えた内燃機関において、前記内燃機関が有するエンジンシリンダ内部から、燃焼後の排出ガスが通過する排気管内部に前記改質触媒が設置されたことを特徴とする水素製造装置を備えた内燃機関。   2. An internal combustion engine comprising the hydrogen production apparatus according to claim 1, wherein the reforming catalyst is installed in an exhaust pipe through which exhaust gas after combustion passes from inside an engine cylinder of the internal combustion engine. An internal combustion engine equipped with a hydrogen production apparatus. 有機化合物から水素を生成する水素製造装置を備え、前記水素製造装置で生成した水素を燃料の一部とする内燃機関において、
前記水素製造装置内に前記有機化合物と水蒸気を反応させて水素を生成する水蒸気改質反応の性能を向上するための改質触媒が設置され、前記改質触媒の後流に前記改質触媒への空気の流入を防止するための可動弁を設置したことを特徴とする水素製造装置を備えた内燃機関。
In an internal combustion engine comprising a hydrogen production device that produces hydrogen from an organic compound, wherein the hydrogen produced by the hydrogen production device is part of the fuel,
A reforming catalyst for improving the performance of a steam reforming reaction for generating hydrogen by reacting the organic compound with steam is installed in the hydrogen production apparatus, and the reforming catalyst is provided downstream of the reforming catalyst. An internal combustion engine equipped with a hydrogen production device, wherein a movable valve for preventing the inflow of air is installed.
請求項1乃至5のいずれか1項に記載された水素製造装置を備えた内燃機関から構成されることを特徴とする自動車等の移動体または発電機器などの内燃機関システム。   An internal combustion engine system such as a moving body such as an automobile or a power generation device, comprising an internal combustion engine including the hydrogen production apparatus according to any one of claims 1 to 5.
JP2009148186A 2009-06-23 2009-06-23 Internal combustion engine having hydrogen generation device and internal combustion engine system Pending JP2011007047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148186A JP2011007047A (en) 2009-06-23 2009-06-23 Internal combustion engine having hydrogen generation device and internal combustion engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148186A JP2011007047A (en) 2009-06-23 2009-06-23 Internal combustion engine having hydrogen generation device and internal combustion engine system

Publications (1)

Publication Number Publication Date
JP2011007047A true JP2011007047A (en) 2011-01-13

Family

ID=43563985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148186A Pending JP2011007047A (en) 2009-06-23 2009-06-23 Internal combustion engine having hydrogen generation device and internal combustion engine system

Country Status (1)

Country Link
JP (1) JP2011007047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542375A (en) * 2010-11-11 2013-11-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel reformer
JP2020020332A (en) * 2018-08-03 2020-02-06 株式会社Subaru Internal combustion engine
WO2020026597A1 (en) * 2018-08-03 2020-02-06 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264732A (en) * 1993-03-11 1994-09-20 Toyota Motor Corp Exhaust gas purifying catalyst overheating preventing device of internal combustion engine
JP2002221098A (en) * 2000-11-27 2002-08-09 Yanmar Diesel Engine Co Ltd Gas engine
JP2003293867A (en) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd Fuel reforming gas engine
JP2005105909A (en) * 2003-09-30 2005-04-21 Toyota Central Res & Dev Lab Inc Engine system
JP2006037879A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Internal combustion engine and operation control device of internal combustion engine
JP2008038739A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264732A (en) * 1993-03-11 1994-09-20 Toyota Motor Corp Exhaust gas purifying catalyst overheating preventing device of internal combustion engine
JP2002221098A (en) * 2000-11-27 2002-08-09 Yanmar Diesel Engine Co Ltd Gas engine
JP2003293867A (en) * 2002-04-01 2003-10-15 Nissan Motor Co Ltd Fuel reforming gas engine
JP2005105909A (en) * 2003-09-30 2005-04-21 Toyota Central Res & Dev Lab Inc Engine system
JP2006037879A (en) * 2004-07-28 2006-02-09 Toyota Motor Corp Internal combustion engine and operation control device of internal combustion engine
JP2008038739A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542375A (en) * 2010-11-11 2013-11-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Fuel reformer
JP2020020332A (en) * 2018-08-03 2020-02-06 株式会社Subaru Internal combustion engine
WO2020026597A1 (en) * 2018-08-03 2020-02-06 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst
JPWO2020026597A1 (en) * 2018-08-03 2021-08-02 株式会社ルネッサンス・エナジー・リサーチ Steam reforming catalyst
JP7280021B2 (en) 2018-08-03 2023-05-23 株式会社Subaru internal combustion engine
US11819831B2 (en) 2018-08-03 2023-11-21 Renaissance Energy Research Corporation Steam reforming catalyst

Similar Documents

Publication Publication Date Title
JP6263256B2 (en) Flex fuel hydrogen generator
Pettersson et al. State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs
Pei et al. Key technologies for polymer electrolyte membrane fuel cell systems fueled impure hydrogen
Farrauto Introduction to solid polymer membrane fuel cells and reforming natural gas for production of hydrogen
JP2007292010A (en) Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides
Shi et al. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability
JP2005147124A (en) Internal combustion engine utilizing hydrogen
JP2010282755A (en) Fuel cell system using ammonia for fuel
Prigent On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques
JP2011007047A (en) Internal combustion engine having hydrogen generation device and internal combustion engine system
US20080138679A1 (en) Hydrogen Generation Device and Fuel Cell System Including Same
WO2017051610A1 (en) Internal combustion engine
WO2005097317A1 (en) Catalyst for steam reforming, method for steam reforming, apparatus for producing hydrogen and fuel cell system
JP2002337999A (en) Fuel feeding system
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
JP2004251196A (en) Apparatus for producing reformed gas, method for producing reformed gas employing this apparatus and exhaust emission control system
JP2004255264A (en) Water decomposition composite medium and hydrogen-feed system for fuel cell using it
CN104220558B (en) Combine for being delivered to the non-catalyzing manufacturing of hydrogen technique of hydrodesulfurizationunit unit and the solid oxide fuel battery system for auxiliary power unit application
Grimaldo Guerrero et al. A review of history, production and storage of hydrogen
JP2010030843A (en) Catalyst for hydrogen generation and hydrogen generating apparatus using the same
JP2008105924A (en) Method for producing hydrogen
Farrauto 3 From the internal combustion engine to the fuel cell: Moving towards the hydrogen economy
JP2007169116A (en) Hydrogen generation unit and fuel cell system
JP7253670B2 (en) fuel production equipment
JP2007137721A (en) Fuel reforming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023