JP2007292010A - Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides - Google Patents

Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides Download PDF

Info

Publication number
JP2007292010A
JP2007292010A JP2006123070A JP2006123070A JP2007292010A JP 2007292010 A JP2007292010 A JP 2007292010A JP 2006123070 A JP2006123070 A JP 2006123070A JP 2006123070 A JP2006123070 A JP 2006123070A JP 2007292010 A JP2007292010 A JP 2007292010A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel cell
hydrogen
purification system
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006123070A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawai
博之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006123070A priority Critical patent/JP2007292010A/en
Priority to PCT/IB2007/001009 priority patent/WO2007125394A1/en
Priority to DE112007000948T priority patent/DE112007000948T5/en
Priority to CNA200780008024XA priority patent/CN101394914A/en
Priority to US12/297,353 priority patent/US20090084085A1/en
Publication of JP2007292010A publication Critical patent/JP2007292010A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0681Reactant purification by the use of electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To purify exhaust gas exhausted from an internal combustion engine and including nitrogen oxides without bringing reduction of energy efficiency and enlargement of a system in a system equipped with the internal combustion engine as a power source. <P>SOLUTION: The exhaust gas exhausted from the engine 10 and including the nitrogen oxides is supplied to a cathode of a fuel cell 20, hydrogen-rich gas generated by a hydrogen gas generating device 30 is supplied to an anode of the fuel cell 20, and electric power is generated by electrochemical reaction of hydrogen with the nitride oxides, and the nitride oxides are decomposed. A hydrogen separation type fuel cell operated at a temperature almost equivalent to a temperature of the exhaust gas exhausted from the engine 10 is applied to the fuel cell 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関から排気される窒素酸化物を含む排気ガスを浄化する技術に関するものである。   The present invention relates to a technology for purifying exhaust gas containing nitrogen oxides exhausted from an internal combustion engine.

従来、車両等の移動体の動力源として、内燃機関が用いられている。この内燃機関では、燃料が燃焼され、排気ガスが排気される。そして、この排気ガスには、窒素酸化物(NOx)が含まれる。この窒素酸化物は、大気汚染物質であるため、通常、吸着剤によって吸着除去されたり、NOx吸蔵還元触媒等の触媒や、プラズマ照射によって分解されたりする。   Conventionally, an internal combustion engine has been used as a power source for a moving body such as a vehicle. In this internal combustion engine, fuel is burned and exhaust gas is exhausted. The exhaust gas contains nitrogen oxides (NOx). Since this nitrogen oxide is an air pollutant, it is usually adsorbed and removed by an adsorbent, or decomposed by a catalyst such as a NOx storage reduction catalyst or plasma irradiation.

近年では、窒素酸化物を電気化学的に分解する技術も提案されている。例えば、下記特許文献1には、溶融炭酸塩型燃料電池を用いて、燃焼プラントから排出される排出ガスに含まれる窒素酸化物を電気化学的に分解する技術が記載されている。   In recent years, techniques for electrochemically decomposing nitrogen oxides have also been proposed. For example, Patent Document 1 listed below describes a technique for electrochemically decomposing nitrogen oxides contained in exhaust gas discharged from a combustion plant using a molten carbonate fuel cell.

特開2001−70748号公報JP 2001-70748 A

上記特許文献1に記載された技術を、内燃機関を動力源として用いる車両等の移動体に適用することも可能ではある。しかし、溶融炭酸塩型燃料電池の運転温度は、600〜700(℃)と非常に高温であるため、上記特許文献1に記載された技術を、内燃機関を動力源として用いる車両等の移動体に適用する場合、内燃機関の排気ガスを溶融炭酸塩型燃料電池の運転温度付近まで予熱する必要があり、内燃機関の排気ガスを予熱するための予熱装置を併せて搭載する必要があった。これは、内燃機関を備えるシステムのエネルギ効率の低下や、システムの大型化を招く。   It is also possible to apply the technique described in Patent Document 1 to a moving body such as a vehicle using an internal combustion engine as a power source. However, since the operating temperature of the molten carbonate fuel cell is as high as 600 to 700 (° C.), the technique described in Patent Document 1 described above is used as a moving body such as a vehicle using an internal combustion engine as a power source. When it is applied to the above, it is necessary to preheat the exhaust gas of the internal combustion engine to near the operating temperature of the molten carbonate fuel cell, and it is necessary to mount a preheating device for preheating the exhaust gas of the internal combustion engine. This leads to a decrease in energy efficiency of the system including the internal combustion engine and an increase in the size of the system.

本発明は、上述の課題を解決するためになされたものであり、内燃機関を動力源として備えるシステムにおいて、エネルギ効率の低下や、システムの大型化を招くことなく、内燃機関から排気される窒素酸化物を含む排気ガスを浄化する技術を提供することを目的とする。   The present invention has been made to solve the above-described problems, and in a system including an internal combustion engine as a power source, nitrogen exhausted from the internal combustion engine without causing a reduction in energy efficiency or an increase in the size of the system. An object of the present invention is to provide a technique for purifying exhaust gas containing oxides.

上述の課題の少なくとも一部を解決するため、本発明では、以下の構成を採用した。
本発明の排気ガス浄化システムは、
内燃機関から排気される窒素酸化物を含む排気ガスを浄化する排気ガス浄化システムであって、
前記排気ガスの温度を含む所定の温度範囲内で運転される燃料電池であって、所定の燃料ガスと、前記排気ガスに含まれる窒素酸化物との電気化学反応によって、前記窒素酸化物を分解するとともに、発電する燃料電池を備えることを要旨とする。
In order to solve at least a part of the above-described problems, the present invention employs the following configuration.
The exhaust gas purification system of the present invention comprises:
An exhaust gas purification system for purifying exhaust gas containing nitrogen oxides exhausted from an internal combustion engine,
The fuel cell is operated within a predetermined temperature range including the temperature of the exhaust gas, and the nitrogen oxide is decomposed by an electrochemical reaction between the predetermined fuel gas and the nitrogen oxide contained in the exhaust gas. In addition, the gist is to provide a fuel cell for generating electricity.

本発明では、燃料電池が、酸化剤ガスとして内燃機関から排気される排気ガスに含まれる窒素酸化物を利用し、燃料ガスとして水素を利用して、水素と窒素酸化物との電気化学反応によって発電する。この際、燃料電池のアノードでの反応は、H2→2H++2e-で表され、カソードでの反応は、(2/X)NOX+2H++2e-→(1/X)N2+H2Oで表される。そして、窒素酸化物は、2NOX+XH2→N2+XH2Oで表される反応によって分解される。また、本発明では、燃料電池は、内燃機関から排気される排気ガスの温度を含む所定の温度範囲内で運転される燃料電池であるので、内燃機関の排気ガスを予熱することなく、燃料電池のカソードに供給することができる。したがって、排気ガス浄化システムに、内燃機関の排気ガスを予熱するための予熱装置を設ける必要がなく、システムのエネルギ効率の向上、および、システムの小型化を図ることができる。つまり、本発明によって、エネルギ効率の低下や、システムの大型化を招くことなく、内燃機関から排気される窒素酸化物を含む排気ガスを浄化することができる。 In the present invention, the fuel cell uses nitrogen oxides contained in the exhaust gas exhausted from the internal combustion engine as the oxidant gas, uses hydrogen as the fuel gas, and performs an electrochemical reaction between hydrogen and nitrogen oxides. Generate electricity. At this time, the reaction at the anode of the fuel cell is represented by H 2 → 2H + + 2e , and the reaction at the cathode is (2 / X) NO x + 2H + + 2e → (1 / X) N 2 + H 2. Represented by O. Then, nitrogen oxide is decomposed by the reaction represented by 2NO X + XH 2 → N 2 + XH 2 O. In the present invention, since the fuel cell is a fuel cell operated within a predetermined temperature range including the temperature of the exhaust gas exhausted from the internal combustion engine, the fuel cell does not preheat the exhaust gas of the internal combustion engine. Can be supplied to the cathode. Therefore, it is not necessary to provide a preheating device for preheating the exhaust gas of the internal combustion engine in the exhaust gas purification system, so that the energy efficiency of the system can be improved and the system can be downsized. That is, according to the present invention, exhaust gas containing nitrogen oxides exhausted from an internal combustion engine can be purified without causing a decrease in energy efficiency and an increase in the size of the system.

上記排気ガス浄化システムにおいて、
前記燃料電池は、前記燃料ガスとしての水素を選択的に透過させる水素透過性金属層と、プロトン伝導性を有する電解質層とを積層させた電解質膜を備えるものとしてもよい。
In the exhaust gas purification system,
The fuel cell may include an electrolyte membrane in which a hydrogen-permeable metal layer that selectively transmits hydrogen as the fuel gas and an electrolyte layer having proton conductivity are stacked.

本発明では、燃料電池として、水素を選択的に透過させる水素透過性金属層と、プロトン伝導性を有する電解質層とを積層させた電解質膜を備える燃料電池、すなわち、いわゆる水素分離膜型燃料電池を用いる。この水素分離膜型燃料電池の運転温度は、400(℃)程度であり、一般的な内燃機関の排気ガスの温度と同程度であるので、本発明に適用するのに好適である。また、水素分離膜型燃料電池は、電解質膜が、比較的強度が高い水素透過性金属層を備えるため、電解質膜の強度を維持しつつ、プロトンが伝導する電解質層の厚さを比較的薄くすることができる。したがって、電解質層の膜抵抗を比較的低くすることができる。したがって、本発明に水素分離膜型燃料電池を適用することによって、効率よく窒素酸化物を分解しつつ、発電することができる。   In the present invention, as a fuel cell, a fuel cell including an electrolyte membrane in which a hydrogen-permeable metal layer that selectively permeates hydrogen and an electrolyte layer having proton conductivity is laminated, that is, a so-called hydrogen separation membrane fuel cell. Is used. The operating temperature of this hydrogen separation membrane fuel cell is about 400 (° C.), which is about the same as the temperature of exhaust gas of a general internal combustion engine, and is suitable for application to the present invention. In the hydrogen separation membrane fuel cell, since the electrolyte membrane includes a hydrogen-permeable metal layer having a relatively high strength, the thickness of the electrolyte layer through which protons are conducted is relatively thin while maintaining the strength of the electrolyte membrane. can do. Therefore, the membrane resistance of the electrolyte layer can be made relatively low. Therefore, by applying the hydrogen separation membrane fuel cell to the present invention, it is possible to generate power while efficiently decomposing nitrogen oxides.

なお、水素透過性金属層としては、パラジウム(Pd)、パラジウム合金などの貴金属や、VA族元素、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などを用いることができる。電解質層としては、固体酸化物、例えば、BaCeO3、SrCeO3系のセラミックスなど、種々の電解質を用いることができる。 As the hydrogen permeable metal layer, a noble metal such as palladium (Pd) or a palladium alloy, or a VA group element such as vanadium (V), niobium (Nb), or tantalum (Ta) can be used. As the electrolyte layer, various electrolytes such as solid oxides such as BaCeO 3 and SrCeO 3 ceramics can be used.

上記いずれかの排気ガス浄化システムにおいて、
前記燃料電池のカソードは、前記電気化学反応を促進するための白金系の触媒を備えるようにすることが好ましい。
In any of the above exhaust gas purification systems,
It is preferable that the cathode of the fuel cell includes a platinum-based catalyst for promoting the electrochemical reaction.

ここで、「白金系の触媒」としては、例えば、白金や、白金・ルテニウム合金等が挙げられる。   Here, examples of the “platinum-based catalyst” include platinum and platinum / ruthenium alloys.

燃料電池のカソードに白金系の触媒を用いることによって、他の触媒を用いるよりも効率よく窒素酸化物を分解することができる。   By using a platinum-based catalyst for the cathode of the fuel cell, nitrogen oxides can be decomposed more efficiently than using other catalysts.

上記いずれかの排気ガス浄化システムにおいて、
さらに、前記燃料電池によって発電された電力を蓄電する二次電池を備えるようにしてもよい。
In any of the above exhaust gas purification systems,
Furthermore, a secondary battery that stores electric power generated by the fuel cell may be provided.

こうすることによって、燃料電池によって発電された電力を、一時的に、二次電池に蓄電しておき、必要に応じて利用することができる。   In this way, the electric power generated by the fuel cell can be temporarily stored in the secondary battery and used as necessary.

本発明は、上述の排気ガス浄化システムとしての構成の他、排気ガスの浄化方法の発明として構成することもできる。また、本発明は、上述の排気ガス浄化システムを搭載した移動体の発明として構成することもできる。なお、それぞれの態様において、先に示した種々の付加的要素を適用することが可能である。   The present invention can be configured as an invention of an exhaust gas purification method in addition to the above-described configuration as an exhaust gas purification system. In addition, the present invention can also be configured as an invention of a moving body equipped with the exhaust gas purification system described above. In addition, in each aspect, it is possible to apply the various additional elements shown above.

以下、本発明の実施の形態について、実施例に基づき以下の順序で説明する。
A.排気ガス浄化システムの構成:
B.燃料電池の構成:
C.変形例:
Hereinafter, embodiments of the present invention will be described in the following order based on examples.
A. Configuration of exhaust gas purification system:
B. Fuel cell configuration:
C. Variation:

A.排気ガス浄化システムの構成:
図1は、本発明の一実施例としての排気ガス浄化システム100の概略構成を示す説明図である。本実施例の排気ガス浄化システム100は、内燃機関を動力源とする車両等の移動体に搭載される。
A. Configuration of exhaust gas purification system:
FIG. 1 is an explanatory diagram showing a schematic configuration of an exhaust gas purification system 100 as an embodiment of the present invention. The exhaust gas purification system 100 of this embodiment is mounted on a moving body such as a vehicle that uses an internal combustion engine as a power source.

図示するように、排気ガス浄化システム100は、エンジン10と、燃料電池20と、水素ガス生成装置30と、バッテリ40とを備えている。   As shown in the figure, the exhaust gas purification system 100 includes an engine 10, a fuel cell 20, a hydrogen gas generation device 30, and a battery 40.

エンジン10は、図示しないガソリンタンクから供給されたガソリンを燃焼し、排気ガスを排気する。なお、この排気ガスの温度は、約400(℃)である。また、排気ガスには、窒素酸化物(NOx)が含まれる。この窒素酸化物は、後述するように、燃料電池20によって電気化学的に分解される。   The engine 10 burns gasoline supplied from a gasoline tank (not shown) and exhausts exhaust gas. The temperature of the exhaust gas is about 400 (° C.). Further, the exhaust gas contains nitrogen oxide (NOx). The nitrogen oxide is electrochemically decomposed by the fuel cell 20 as will be described later.

水素ガス生成装置30は、ガソリンと、水と、空気(酸素)を利用して、改質反応や、シフト反応等を行い、水素を主成分とする水素リッチガスを生成する。炭化水素の混合物であるガソリンの改質反応は、次式(1),(2)で表される。この改質反応では、ガソリンと水蒸気との反応によって、さらに、ガソリンと酸素との反応によって、水素と一酸化炭素とが生成される。また、シフト反応は、改質反応で生成された一酸化炭素を、水蒸気を利用して酸化させ、水素を生成する反応であり、次式(3)で表される。このシフト反応では、水素と、二酸化炭素とが生成される。なお、水素ガス生成装置30によって生成される水素リッチガスの温度は、約400(℃)である。   The hydrogen gas generation device 30 performs a reforming reaction, a shift reaction, or the like using gasoline, water, and air (oxygen) to generate a hydrogen rich gas mainly containing hydrogen. The reforming reaction of gasoline, which is a mixture of hydrocarbons, is expressed by the following formulas (1) and (2). In this reforming reaction, hydrogen and carbon monoxide are generated by the reaction between gasoline and steam, and further by the reaction between gasoline and oxygen. The shift reaction is a reaction in which carbon monoxide generated in the reforming reaction is oxidized using steam to generate hydrogen, and is represented by the following formula (3). In this shift reaction, hydrogen and carbon dioxide are generated. In addition, the temperature of the hydrogen rich gas produced | generated by the hydrogen gas production | generation apparatus 30 is about 400 (degreeC).

nm+nH2O →nCO+(n+m/2)H2 …(1);
nm+n/2O2 →nCO+m/2H2 …(2);
CO+H2O→H2+CO2 …(3);
C n H m + nH 2 O → nCO + (n + m / 2) H 2 (1);
C n H m + n / 2O 2 → nCO + m / 2H 2 (2);
CO + H 2 O → H 2 + CO 2 (3);

本実施例における燃料電池20は、後述するように、水素を選択的に透過させる水素透過性金属層と、プロトン伝導性を有する電解質層とを積層させた電解質膜を備える、いわゆる水素分離膜型燃料電池であり、アノードに供給された燃料ガスと、カソードに供給された酸化剤ガスとの電気化学反応によって発電する。なお、この水素分離膜型燃料電池の運転温度は、約400(℃)である。燃料電池20の構成については、後から詳述する。   As will be described later, the fuel cell 20 in the present embodiment includes a so-called hydrogen separation membrane type that includes an electrolyte membrane in which a hydrogen-permeable metal layer that selectively transmits hydrogen and an electrolyte layer having proton conductivity are stacked. A fuel cell, which generates electric power by an electrochemical reaction between a fuel gas supplied to an anode and an oxidant gas supplied to a cathode. The operating temperature of this hydrogen separation membrane fuel cell is about 400 (° C.). The configuration of the fuel cell 20 will be described in detail later.

燃料電池20のカソードには、エンジン10から排気された窒素酸化物を含む排気ガスが、配管52を介して供給され、排気ガスに含まれる窒素酸化物が、酸化剤ガスとして利用される。燃料電池20のカソードから排出されるカソードオフガスは、配管54を介して外部に排気される。   Exhaust gas containing nitrogen oxides exhausted from the engine 10 is supplied to the cathode of the fuel cell 20 via the pipe 52, and nitrogen oxides contained in the exhaust gas are used as oxidant gas. Cathode off-gas discharged from the cathode of the fuel cell 20 is exhausted to the outside through the pipe 54.

燃料電池20のアノードには、水素ガス生成装置30によって生成された水素リッチガスが、配管56を介して供給され、水素リッチガスに含まれる水素が、燃料ガスとして利用される。燃料電池20のアノードから排出されるアノードオフガスは、配管58を介して外部に排気される。アノードオフガスに含まれる発電で未消費の水素を配管56に再循環させるようにしてもよい。   A hydrogen rich gas generated by the hydrogen gas generator 30 is supplied to the anode of the fuel cell 20 via a pipe 56, and hydrogen contained in the hydrogen rich gas is used as a fuel gas. The anode off gas discharged from the anode of the fuel cell 20 is exhausted to the outside through the pipe 58. Hydrogen that is not consumed by power generation contained in the anode off-gas may be recycled to the pipe 56.

なお、燃料電池20では、アノード、および、カソードにおいて、次式(4)、(5)で表される反応によって、発電が行われる。そして、この発電時には、次式(6)で表される反応によって、窒素酸化物(NOx)が電気化学的に窒素と水に分解される。こうすることによって、エンジン10から排気される窒素酸化物を含む排気ガスを、燃料電池20によって浄化するとともに、発電することができる。   In the fuel cell 20, power generation is performed by the reactions represented by the following formulas (4) and (5) at the anode and the cathode. During power generation, nitrogen oxide (NOx) is electrochemically decomposed into nitrogen and water by the reaction represented by the following formula (6). By doing so, the exhaust gas containing nitrogen oxides exhausted from the engine 10 can be purified by the fuel cell 20 and can be generated.

アノード:H2→2H++2e- …(4);
カソード:(2/X)NOX+2H++2e-→(1/X)N2+H2O …(5);
2NOX+XH2→N2+XH2O …(6);
Anode: H 2 → 2H + + 2e (4);
Cathode: (2 / X) NO x + 2H + + 2e → (1 / X) N 2 + H 2 O (5);
2NO x + XH 2 → N 2 + XH 2 O (6);

バッテリ40は、燃料電池20によって発電された電力を、一時的に蓄電する。こうすることによって、バッテリ40に蓄電した電力を必要に応じて利用することができる。   The battery 40 temporarily stores the power generated by the fuel cell 20. By doing so, the electric power stored in the battery 40 can be used as needed.

B.燃料電池の構成:
図2は、燃料電池20の概略構成を示す説明図である。ここでは、燃料電池20を構成する単セル200の断面構造を模式的に示した。この単セル200は、膜電極接合体210の両面を、セパレータ220で挟持することによって構成されている。
B. Fuel cell configuration:
FIG. 2 is an explanatory diagram showing a schematic configuration of the fuel cell 20. Here, the cross-sectional structure of the unit cell 200 constituting the fuel cell 20 is schematically shown. The single cell 200 is configured by sandwiching both surfaces of a membrane electrode assembly 210 with a separator 220.

セパレータ220は、図示するように、凹凸形状を有しており、膜電極接合体210のアノード側、および、カソード側に、それぞれ燃料ガスとしての水素、および、酸化ガスとしてのエンジン10の排気ガスを流すための流路を形成する。セパレータ220の材料としては、カーボンや、金属など、導電性を有する種々の材料を適用可能である。   As shown in the figure, the separator 220 has a concavo-convex shape, and hydrogen as a fuel gas and exhaust gas of the engine 10 as an oxidant gas on the anode side and the cathode side of the membrane electrode assembly 210, respectively. A flow path for flowing the water is formed. As a material of the separator 220, various conductive materials such as carbon and metal can be used.

膜電極接合体210は、水素を選択的に透過する水素透過性金属層212と、プロトン伝導性を有する電解質層214と、カソード216とを、この順序で積層することによって構成されている。水素透過性金属層212は、アノードとしての機能も有している。これらの各層は、物理蒸着等、種々の手法によって、形成することができる。   The membrane electrode assembly 210 is configured by laminating a hydrogen permeable metal layer 212 that selectively permeates hydrogen, an electrolyte layer 214 having proton conductivity, and a cathode 216 in this order. The hydrogen permeable metal layer 212 also has a function as an anode. Each of these layers can be formed by various methods such as physical vapor deposition.

本実施例では、水素透過性金属層212として、パラジウム膜を用いるものとした。また、電解質層214として、ペロブスカイト型の固体電解質を用いるものとした。また、カソード216として、電気化学反応を促進する触媒能を有する白金を用いるものとした。これらの材質および膜厚は、任意に選択、設定可能である。   In this embodiment, a palladium film is used as the hydrogen permeable metal layer 212. In addition, as the electrolyte layer 214, a perovskite solid electrolyte is used. As the cathode 216, platinum having a catalytic ability to promote an electrochemical reaction is used. These materials and film thicknesses can be arbitrarily selected and set.

なお、本実施例における燃料電池20は、上述したように、いわゆる水素分離膜型燃料電池である。この水素分離膜型燃料電池は、膜電極接合体210が、比較的強度が高い水素透過性金属層212を備えるため、膜電極接合体210の強度を維持しつつ、プロトン伝導性を有する電解質層214の厚さを比較的薄くすることができる。したがって、電解質層214の膜抵抗を比較的低くすることができる。したがって、燃料電池20として水素分離膜型燃料電池を用いることによって、効率よく窒素酸化物を分解しつつ、発電することができる。   The fuel cell 20 in this embodiment is a so-called hydrogen separation membrane fuel cell as described above. In this hydrogen separation membrane fuel cell, since the membrane electrode assembly 210 includes the hydrogen permeable metal layer 212 having a relatively high strength, the electrolyte layer has proton conductivity while maintaining the strength of the membrane electrode assembly 210. The thickness of 214 can be made relatively thin. Therefore, the membrane resistance of the electrolyte layer 214 can be made relatively low. Therefore, by using a hydrogen separation membrane fuel cell as the fuel cell 20, it is possible to generate power while efficiently decomposing nitrogen oxides.

以上説明した排気ガス浄化システム100によれば、燃料電池20が、酸化剤ガスとしてエンジン10から排気される排気ガスに含まれる窒素酸化物を利用し、燃料ガスとして水素を利用して、水素と窒素酸化物との電気化学反応によって発電する。このとき、窒素酸化物は、先に示した式(6)で表される反応によって分解される。また、燃料電池20は、エンジン10から排気される排気ガスの温度とほぼ等しい温度で運転される水素分離型燃料電池であるので、エンジン10の排気ガスを予熱することなく、燃料電池20のカソードに供給することができる。したがって、排気ガス浄化システム100に、エンジン10の排気ガスを予熱するための予熱装置を設ける必要がなく、システムのエネルギ効率の向上、および、システムの小型化を図ることができる。つまり、本実施例の排気ガス浄化システム100によって、エネルギ効率の低下や、システムの大型化を招くことなく、エンジン10から排気される窒素酸化物を含む排気ガスを浄化することができる。   According to the exhaust gas purification system 100 described above, the fuel cell 20 uses nitrogen oxides contained in the exhaust gas exhausted from the engine 10 as the oxidant gas, uses hydrogen as the fuel gas, Power is generated by an electrochemical reaction with nitrogen oxides. At this time, the nitrogen oxide is decomposed by the reaction represented by the above-described formula (6). Further, since the fuel cell 20 is a hydrogen separation type fuel cell that is operated at a temperature substantially equal to the temperature of the exhaust gas exhausted from the engine 10, the cathode of the fuel cell 20 is not heated without preheating the exhaust gas of the engine 10. Can be supplied to. Therefore, it is not necessary to provide the exhaust gas purification system 100 with a preheating device for preheating the exhaust gas of the engine 10, and the energy efficiency of the system can be improved and the system can be downsized. That is, the exhaust gas purification system 100 of the present embodiment can purify exhaust gas containing nitrogen oxides exhausted from the engine 10 without reducing energy efficiency and increasing the size of the system.

C.変形例:
以上、本発明の実施の形態について説明したが、本発明はこのような実施の形態になんら限定されるものではなく、その要旨を逸脱しない範囲内において種々なる態様での実施が可能である。例えば、以下のような変形が可能である。
C. Variation:
Although the embodiments of the present invention have been described above, the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the scope of the present invention. For example, the following modifications are possible.

C1.変形例1:
上記実施例では、燃料電池20のアノードに水素ガス生成装置30によって生成された水素リッチガスを供給するものとしたが、これに限られない。例えば、水素ガス生成装置30の代わりに水素タンクを備えるようにし、この水素タンクから水素を供給するようにしてもよい。
C1. Modification 1:
In the above embodiment, the hydrogen-rich gas generated by the hydrogen gas generator 30 is supplied to the anode of the fuel cell 20, but the present invention is not limited to this. For example, a hydrogen tank may be provided instead of the hydrogen gas generation device 30, and hydrogen may be supplied from this hydrogen tank.

C2.変形例2:
上記実施例では、排気ガス浄化システム100は、バッテリ40を備えるものとしたが、バッテリ40を備えないようにしてもよい。この場合、燃料電池20によって発電された電力を順次利用するようにすればよい。
C2. Modification 2:
In the above embodiment, the exhaust gas purification system 100 includes the battery 40. However, the exhaust gas purification system 100 may not include the battery 40. In this case, the power generated by the fuel cell 20 may be used sequentially.

C3.変形例3:
上記実施例では、カソード216として、白金を用いるものとしたが、これに限られない。ただし、カソード216として白金系の触媒を用いることによって、他の触媒を用いるよりも効率よく窒素酸化物を分解するとともに、発電することができる。
C3. Modification 3:
In the above embodiment, platinum is used as the cathode 216, but the present invention is not limited to this. However, by using a platinum-based catalyst as the cathode 216, nitrogen oxides can be decomposed more efficiently and power can be generated than when other catalysts are used.

C4.変形例4:
上記実施例では、エンジン10の排気ガスの温度が約400(℃)であるから、燃料電池20として、約400(℃)で運転する、いわゆる水素分離膜型燃料電池を用いるものとしたが、これに限られない。一般に、内燃機関から排気される排気ガスの温度を含む所定の温度範囲内で運転される燃料電池を用いるようにすればよい。
C4. Modification 4:
In the above embodiment, since the exhaust gas temperature of the engine 10 is about 400 (° C.), a so-called hydrogen separation membrane fuel cell that operates at about 400 (° C.) is used as the fuel cell 20. It is not limited to this. In general, a fuel cell operated within a predetermined temperature range including the temperature of exhaust gas exhausted from the internal combustion engine may be used.

本発明の一実施例としての排気ガス浄化システム100の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the exhaust-gas purification system 100 as one Example of this invention. 燃料電池20の概略構成を示す説明図である。2 is an explanatory diagram showing a schematic configuration of a fuel cell 20. FIG.

符号の説明Explanation of symbols

100…排気ガス浄化システム
10…エンジン
20…燃料電池
200…単セル
210…膜電極接合体
212…水素透過性金属層
214…電解質層
216…カソード
220…セパレータ
30…水素ガス生成装置
40…バッテリ
52,54,56,58…配管
DESCRIPTION OF SYMBOLS 100 ... Exhaust gas purification system 10 ... Engine 20 ... Fuel cell 200 ... Single cell 210 ... Membrane electrode assembly 212 ... Hydrogen permeable metal layer 214 ... Electrolyte layer 216 ... Cathode 220 ... Separator 30 ... Hydrogen gas generation device 40 ... Battery 52 , 54, 56, 58 ... piping

Claims (5)

内燃機関から排気される窒素酸化物を含む排気ガスを浄化する排気ガス浄化システムであって、
前記排気ガスの温度を含む所定の温度範囲内で運転される燃料電池であって、所定の燃料ガスと、前記排気ガスに含まれる窒素酸化物との電気化学反応によって、前記窒素酸化物を分解するとともに、発電する燃料電池を備える排気ガス浄化システム。
An exhaust gas purification system for purifying exhaust gas containing nitrogen oxides exhausted from an internal combustion engine,
The fuel cell is operated within a predetermined temperature range including the temperature of the exhaust gas, and the nitrogen oxide is decomposed by an electrochemical reaction between the predetermined fuel gas and the nitrogen oxide contained in the exhaust gas. And an exhaust gas purification system comprising a fuel cell for generating electricity.
請求項1に記載の排気ガス浄化システムであって、
前記燃料電池は、前記燃料ガスとしての水素を選択的に透過させる水素透過性金属層と、プロトン伝導性を有する電解質層とを積層させた電解質膜を備える、
排気ガス浄化システム。
The exhaust gas purification system according to claim 1,
The fuel cell includes an electrolyte membrane in which a hydrogen permeable metal layer that selectively permeates hydrogen as the fuel gas and an electrolyte layer having proton conductivity are stacked.
Exhaust gas purification system.
請求項1または2記載の排気ガス浄化システムであって、
前記燃料電池のカソードは、前記電気化学反応を促進するための白金系の触媒を備える、
排気ガス浄化システム。
The exhaust gas purification system according to claim 1 or 2,
The cathode of the fuel cell includes a platinum-based catalyst for promoting the electrochemical reaction.
Exhaust gas purification system.
請求項1ないし3のいずれかに記載の排気ガス浄化システムであって、
さらに、前記燃料電池によって発電された電力を蓄電する二次電池を備える、
排気ガス浄化システム。
An exhaust gas purification system according to any one of claims 1 to 3,
Furthermore, a secondary battery that stores electric power generated by the fuel cell is provided.
Exhaust gas purification system.
内燃機関から排気される窒素酸化物を含む排気ガスの浄化方法であって、
前記排気ガスの温度を含む所定の温度範囲内で運転される燃料電池であって、所定の燃料ガスと、前記排気ガスに含まれる窒素酸化物との電気化学反応によって発電する燃料電池を用意する工程と、
前記燃料ガスを前記燃料電池のアノードに供給するとともに、前記排気ガスを前記燃料電池のカソードに供給し、前記電気化学反応によって、前記窒素酸化物を分解するとともに、発電する工程と、
を備える浄化方法。
A method for purifying exhaust gas containing nitrogen oxides exhausted from an internal combustion engine,
A fuel cell that is operated within a predetermined temperature range including the temperature of the exhaust gas, and that generates power by an electrochemical reaction between the predetermined fuel gas and nitrogen oxides contained in the exhaust gas is prepared. Process,
Supplying the fuel gas to the anode of the fuel cell, supplying the exhaust gas to the cathode of the fuel cell, decomposing the nitrogen oxides by the electrochemical reaction, and generating power;
A purification method comprising:
JP2006123070A 2006-04-27 2006-04-27 Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides Pending JP2007292010A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006123070A JP2007292010A (en) 2006-04-27 2006-04-27 Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides
PCT/IB2007/001009 WO2007125394A1 (en) 2006-04-27 2007-04-19 Exhaust gas purification system and method for purifying exhaust gas
DE112007000948T DE112007000948T5 (en) 2006-04-27 2007-04-19 Exhaust gas purification system and method for purifying exhaust gases
CNA200780008024XA CN101394914A (en) 2006-04-27 2007-04-19 Exhaust gas purification system and method for purifying exhaust gas
US12/297,353 US20090084085A1 (en) 2006-04-27 2007-04-19 Exhaust gas purification system and method for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123070A JP2007292010A (en) 2006-04-27 2006-04-27 Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides

Publications (1)

Publication Number Publication Date
JP2007292010A true JP2007292010A (en) 2007-11-08

Family

ID=38362810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123070A Pending JP2007292010A (en) 2006-04-27 2006-04-27 Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides

Country Status (5)

Country Link
US (1) US20090084085A1 (en)
JP (1) JP2007292010A (en)
CN (1) CN101394914A (en)
DE (1) DE112007000948T5 (en)
WO (1) WO2007125394A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185261A (en) * 2010-03-04 2011-09-22 Univ Qinghua Electrochemical and catalyst converter for controlling discharge of exhaust gas
KR101290022B1 (en) 2010-10-29 2013-07-30 내셔널 칭화 유니버시티 Electrochemical-catalytic converter for exhaust emission control
CN109589792A (en) * 2018-12-29 2019-04-09 北京博奇电力科技有限公司 A kind of device and method of low temperature wet flue gas denitration
KR20200095963A (en) * 2019-02-01 2020-08-11 한국화학연구원 An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012059B4 (en) 2007-03-13 2009-03-05 Forschungszentrum Jülich GmbH Fuel cell system and method for operating the fuel cell system
JP2009138522A (en) * 2007-12-03 2009-06-25 Toyota Industries Corp Exhaust emission control device
CN102335552A (en) * 2010-07-16 2012-02-01 国立清华大学 Electrochemical-catalytic converter controlling exhaust emission and generating electricity
CN102485326A (en) * 2010-12-06 2012-06-06 黄大仁 Electrochemical catalyst converter
CN102188902B (en) * 2011-05-06 2013-04-24 中国科学院广州能源研究所 Method for treating organic gas by combining photocatalytic fuel cell photoelectrocatalysis and phase transfer
TWI422422B (en) * 2011-11-09 2014-01-11 Nat Univ Tsing Hua Electrocatalytic converter for exhaust emission control
EP2724768B1 (en) * 2012-10-24 2014-12-10 Ta-Jen Huang Electro-catalytic honeycomb for exhaust emissions control
US9186624B2 (en) * 2013-06-28 2015-11-17 Nuvera Fuel Cells, Inc. Methods of producing and providing purified gas using an electrochemical cell
EP2835171A1 (en) 2013-08-08 2015-02-11 Technical University of Denmark Method and system for the purification of exhaust gas with an electrochemical cell
JP6373389B2 (en) * 2014-01-08 2018-08-15 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Rechargeable metal nitric oxide gas battery system
US9461349B2 (en) 2014-01-08 2016-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Rechargeable metal NxOy gas battery system
US9331369B2 (en) 2014-01-08 2016-05-03 Toyota Motor Engineering & Manufacturing North America, Inc. Rechargeable metal nitric oxide gas battery
US9368847B2 (en) 2014-01-08 2016-06-14 Toyota Motor Engineering & Manufacturing North America, Inc. Rechargeable metal nitric oxide gas battery
CN104934621B (en) * 2015-05-15 2017-12-29 广州中国科学院先进技术研究所 A kind of Tailgas purifier of engine
WO2017184848A1 (en) 2016-04-21 2017-10-26 Fuelcell Energy, Inc. Molten carbonate fuel cell anode exhaust post-processing for carbon dioxide capture
CA3022534C (en) 2016-04-29 2021-01-26 Fuelcell Energy, Inc. Methanation of anode exhaust gas to enhance carbon dioxide capture.
CN108514816A (en) * 2018-05-03 2018-09-11 哈尔滨工程大学 One kind being used for boat diesel engine exhaust-gas treatment and waste heat recycling system
JP6996432B2 (en) * 2018-06-20 2022-02-04 トヨタ自動車株式会社 CO2 separation system for mounting on vehicles that use an internal combustion engine as power
CN109772165B (en) * 2018-12-14 2021-09-14 深圳大学 Tail gas purification reactor, preparation method thereof and tail gas purification reactor
WO2020204393A1 (en) * 2019-03-29 2020-10-08 울산과학기술원 Exhaust gas purification system for reducing fine dust

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766330B1 (en) * 1989-12-27 2002-06-05 The Standard Oil Company Components for use in electrochemical cells and their use in oxygen separation
DE69311832T2 (en) * 1992-04-14 1997-10-16 Toyoda Chuo Kenkyusho Kk Process for the reduction of nitrogen oxides
US6592782B2 (en) * 1993-12-08 2003-07-15 Eltron Research, Inc. Materials and methods for the separation of oxygen from air
DE19713633C1 (en) * 1997-04-02 1999-01-28 Dornier Gmbh Process for NO removal from engine exhaust gases
US6878354B1 (en) * 1999-09-03 2005-04-12 Mitsubishi Denki Kabushiki Kaisha Catalyst and process for exhaust purification
JP3649962B2 (en) * 1999-09-08 2005-05-18 財団法人電力中央研究所 Method and apparatus for removing nitrogen oxides and sulfur compounds in gas
JP4217457B2 (en) * 2002-10-23 2009-02-04 三菱電機株式会社 Nitrogen oxide decomposing element and nitrogen oxide decomposing apparatus provided with the same
JP5014797B2 (en) * 2003-12-01 2012-08-29 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method of operating a compression ignition internal combustion engine combined with a catalytic reformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185261A (en) * 2010-03-04 2011-09-22 Univ Qinghua Electrochemical and catalyst converter for controlling discharge of exhaust gas
KR101290022B1 (en) 2010-10-29 2013-07-30 내셔널 칭화 유니버시티 Electrochemical-catalytic converter for exhaust emission control
CN109589792A (en) * 2018-12-29 2019-04-09 北京博奇电力科技有限公司 A kind of device and method of low temperature wet flue gas denitration
KR20200095963A (en) * 2019-02-01 2020-08-11 한국화학연구원 An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides
KR102179532B1 (en) * 2019-02-01 2020-11-16 한국화학연구원 An electrolytic apparatus for removing nitrogen oxides, and a method for removing nitrogen oxides

Also Published As

Publication number Publication date
US20090084085A1 (en) 2009-04-02
DE112007000948T5 (en) 2009-02-26
CN101394914A (en) 2009-03-25
WO2007125394A1 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP2007292010A (en) Purification of exhaust gas exhausted from internal combustion engine and including nitrogen oxides
JP4664709B2 (en) Hydrogen generator and fuel cell system
JP2006012817A (en) Reformer for fuel cell and fuel cell system comprising the same
JP2009059668A (en) Fuel cell system, and operation method thereof
JP2005272856A (en) Ammonia synthesizer, ammonia synthesis method and system including combustion apparatus
JP4008051B2 (en) Power generation method
JP4507955B2 (en) Hydrogen generator and fuel cell system
JP6637724B2 (en) Engine system and method of operating engine system
JP3625487B2 (en) Fuel cell system
JP4416503B2 (en) Apparatus and method for supplying hydrogen to a fuel cell and use of the fuel cell for electrically driving a vehicle
JP7197374B2 (en) Hydrogen production system
JP2004265802A (en) Fuel gas generation system for fuel cell
JP4506429B2 (en) Method for recovering activity of carbon monoxide removal catalyst, method for operating fuel cell power generator, and method for operating hydrogen generator
JP2001167784A (en) Fuel cell system
JP2001313059A (en) Fuel cell device and mobile structure equipped with above
JP2004277275A (en) Hydrogen extraction apparatus
JP2003331898A (en) Fuel cell system
JP2006282458A (en) Hydrogen generating device and fuel cell system
JP2003178790A (en) Fuel cell power generation system
JP2003109638A (en) Sofc fuel recycle system
JP2006156088A (en) Hydrogen separation film module system
JPH08321321A (en) Fuel cell
JP2004099369A (en) Fuel reforming apparatus
JP2005166305A (en) Fuel cell system
JP2004107175A (en) Hydrogen generating apparatus