JP2010261104A - 優れた機械的特性を有するNiCrMoNb合金 - Google Patents

優れた機械的特性を有するNiCrMoNb合金 Download PDF

Info

Publication number
JP2010261104A
JP2010261104A JP2010104702A JP2010104702A JP2010261104A JP 2010261104 A JP2010261104 A JP 2010261104A JP 2010104702 A JP2010104702 A JP 2010104702A JP 2010104702 A JP2010104702 A JP 2010104702A JP 2010261104 A JP2010261104 A JP 2010261104A
Authority
JP
Japan
Prior art keywords
alloy
bucket
turbine
approximately
cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104702A
Other languages
English (en)
Other versions
JP5596406B2 (ja
Inventor
Jeffrey Allen Hawk
ジェフリー・アレン・ホーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010261104A publication Critical patent/JP2010261104A/ja
Application granted granted Critical
Publication of JP5596406B2 publication Critical patent/JP5596406B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】タービンカバーバケットに特に適したニッケル−クロム−モリブデン−ニオブ(NiCrMoNb)合金を提供する。
【解決手段】約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルを含有する。合金は約538℃〜760℃で約100時間以下熱処理されている。
【選択図】なし

Description

本発明は、タービンカバーバケットに特に適した優れたニッケル−クロム−モリブデン−ニオブ(NiCrMoNb)合金に関する。
米国特許第5509784号、同第7270518号及び同第7344359号に、急傾斜角バケットカバーが開示されている。カバーはバケットの翼形部と一体であり、バケットはタービンホイールの周りに円周方向の列として取り付けられる。バケットカバーは、タービンロータの回転軸線にほぼ平行に延在しかつバケット翼形部の両側に位置する前方及び後方クリアランス表面を有する。クリアランス表面の中間には、接触表面及び湾曲部がある。なお、各バケットの両側の隣接カバーは、実質的に相補形のカバー縁部を有し、それによってタービン運転中に、クリアランス表面は互いに円周方向に離間され、接触表面は互いに接触する。隣接カバーの接触表面は締り嵌めになっており、運転中にカバー同士を連結し、連結を維持する。即ち、カバーは、隣接カバーの接触表面が互いに接触した状態に維持されるように付勢される。しかし、これによって応力がカバーに加わり、応力はカバーに沿って高サイクル疲労割れを引き起こす可能性がある。この潜在的な問題を分析すると、高サイクル疲労割れがカバーの接触表面の正圧側におけるフレッティング(擦過)疲労の関数であることが示された。割れは、かみ合う負圧側カバー接触表面が正圧側接触表面から離れる場合に、正圧側接触表面上で、クリアランス表面間の内側コーナ部半径に隣接する位置から始まる。
米国特許第3046108号及び同第3160500号に、有利な特性を有するニッケルクロム合金が開示されている。これらの合金を「合金625」という。合金625は、十分な降伏強さがないので高温用途には使用されない。
米国特許第3046108号明細書 米国特許第3160500号明細書 米国特許第5509784号明細書 米国特許第7270518号明細書 米国特許第7344359号明細書
本発明の実施形態は、約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金のタービンカバーバケットを提供する。
本発明の実施形態は、本質的に約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金のタービンカバーバケットを提供する。
本発明の実施形態は、タービンバケットカバーの製造方法も提供する。本方法は、約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金からタービンバケットカバーを熱機械的に成形する工程を含む。タービンバケットカバーを約538℃〜760℃で約100時間以下熱処理する。
上記その他の特徴は以下の詳細な説明で具体的に示す。
本発明の実施形態は、優れた降伏強さ、クリープ特性、応力緩和特性及び蒸気中で優れた耐食性を有する合金を提供し、一体化連結バケット(ICB=integrally coupled bucket)部品として使用される。厳密な化学組成及び特定の熱処理法により得られる合金が、変形微細組織の重要な特徴を保存し、γ″強化析出物を形成することを見出した。このようなγ″析出物は合金中で規則的なニッケルニオブ相となる。
本発明の実施形態で用いる合金の化学組成は、最大0.04重量%の炭素(C)、最大0.2重量%のマンガン(Mn)、最大0.25重量%のケイ素(Si)、最大0.015重量%のリン(P)、最大0.015重量%の硫黄(S)、約20.0〜23.0重量%のクロム(Cr)、約8.5〜9.5重量%のモリブデン(Mo)、約3.25〜4.00重量%のコロンビウム(ニオブともいう)(Nb)、最大0.05重量%のタンタル(Ta)、約0.0〜0.40重量%のチタン(Ti)、約0.15〜0.30重量%のアルミニウム(Al)、最大0.005重量%のホウ素(B)、約3.0〜4.5重量%の鉄(Fe)及び残部のニッケル(Ni)である(これらの範囲内にあるすべての下位範囲を含む)。本明細書では、この合金を合金625という。合金625の特性を向上するのに用いる時効熱処理では、物品を538℃(1000oF)〜760℃(1400oF)の温度で100時間以下処理する。好ましい熱処理では、物品を約677℃(1250oF)で約50時間処理する。
この熱処理法は、金属成形加工後に用いるが、棒、平板、シート又は鍛造製品に適用する。合金625を必要なバケット形状に熱機械加工(加工熱処理)した後、時効熱処理を行って熱処理合金625を製造する。この場合、合金625に低温アニール(954℃(1750oF)未満で1時間未満)を施すかアニール無しで、その後538℃(1000oF)〜760℃(1400oF)の範囲の温度で100時間以下の熱処理を行う。例えば丸棒の場合、熱処理操作には以下の工程:棒成形、次いで954℃(1750oF)で30分間のミルアニール、又は982℃(1800oF)未満の適当な温度及び時間の熱処理、又はミルアニール無し、その後677℃(1250oF)で50時間の熱処理を含むことができる。
合金625の熱処理は、転位構造(部品成形操作による)の保存及びγ″析出物発現により二次強度を付与するのに用いられる。合金625の組成は、AMS5666F(SAE標準)に定められている化学組成に類似しているが、さらに厳密である。この厳密に定義された化学組成範囲により合金625の製造のばらつきをなくす。
AMS5666Fは合金625の化学組成の範囲を定義する大枠を規定する。合金625の上述したような好ましい化学組成により、合金625は高圧/中圧(HP/IP)バケットに使用可能になる。熱処理合金625は蒸気の用途に適当であり、機械変形加工時に生成する転位構造の保存及びγ″強化析出物のため、熱処理合金625は付加的な降伏強さ及び応力緩和能力をもつ。
γ″強化析出物を出来るだけ多くするために、炭素レベルは0.04重量%未満にしなければならない。これに対して、AMS5666Fの炭素の上限は0.1重量%である。炭素レベルが0.04重量%を超えると、マトリックスの溶質、主にNb(ニオブ、コロンビウムともいう)を用いてカーバイドを形成することによりγ″の形成を妨げる。さらに、Nbはγ″(即ち、γNiマトリックスと整合性のある規則的な体心正方晶構造をもつNi3Nb)を形成するのに十分でなければならず、またAl及びTi(即ち、0.35〜0.70重量%:Al+Ti)は、両者がγ″析出物格子でNbと置き換わり得るので、十分な量存在しなければならない。
一体化カバーバケット(ICB)製造の前に降伏強さを増大させるために、時効熱処理を用いて蒸気タービン運転の前にマトリックス中にγ″を形成する。合金625は、特に時効硬化に適する合金というわけではないので、γ″を形成するのに用いられる熱処理温度は、平衡δ相(同じくNi3Nbであるが、斜方晶構造をもつ)を形成しないようにしながらγ″を核形成させて成長させるのに十分な時間をとれるようにしなければならない。さらに、γ″形成の温度は高温過ぎてはいけなく即ち760℃(1400oF)未満であり、γ″形成の時間は100時間超のように長すぎてはいけない。転位構造に悪影響(即ち、γNiマトリックス中の自由転位の減少)を及ぼすからである。649℃(1200oF)未満の運転温度では、時効熱処理によりγ″が形成されていれば、その相は長期間比較的安定であり、運転中に望ましくないδ相に戻ることはない。したがって、強度は、製造プロセスの最初から高く、ずっとこの高いレベルのままである。
1列のバケット間(接触点での)の接触力は運転中にバケットを所定の位置に保持する力であるので、ICB設計に使用する合金の応力緩和は非常に重要である。ICB用途には、100,000時間の寿命の間バケットを互いに接触した状態で維持するのに一定レベルの応力が必要である。10Cr鋼などの合金は、優れた降伏強さ及び良好な耐クリープ性をもつが、応力緩和について試験した場合、強度が急速に低下し、最初の1000時間以内の運転寿命でバケット同士の有効な接触を保つ応力レベルの閾値を下回る。10Cr鋼は600℃(1110oF)で強度を急速に失う。600℃という温度はICBの運転条件の1つである。ミルアニール(MA)後の合金625に応力緩和試験を行った。ミルアニール後の合金625とは、なんらかの成形方法を用いて合金625を棒に成形し、その後ミルアニール又は低温熱処理を施したものを意味する。性能は、10Cr鋼に比べはるかに優れていたが、バケット寿命の目標である100,000時間を満たすには十分ではなかった。既存のデータから外挿したバケットの寿命は約30,000時間である。
上記の熱処理合金625を試験した。熱処理合金625の応力緩和性能はICBに有効な約100,000時間の寿命を実現した。まとめると、10Cr鋼は、約600℃でのICBバケット用途では応力緩和が急速すぎる。合金625は、10C鋼にくらべて優れた性能を与えるが、ICBの目標寿命を満たすのに十分でない。熱処理合金625はバケットの目標寿命である100,000時間を実現する。
理論に束縛されるものではないが、熱処理合金625は、最初の成形操作で形成した転位構造の保存及びγ″析出によって、ICB部品の100,000時間の寿命を満たすのに適当な応力緩和能力を得ることで問題を解決していると考えられる。γ″の析出及び製造プロセスで形成した高密度の転位の保存により、製造時のバケット挿入に適当な降伏強さと蒸気タービン運転時の応力緩和能力とを確保して、ICB部品の設計要求を満たす。
合金625によりICBバケットは、高温(582〜649℃の蒸気温度)蒸気タービンと低温(応力緩和能力に加え耐食性)蒸気タービン製品の両方で使用可能になり、同時にタービンの全体効率を向上することができる。熱処理合金625は、通常運転状況下のこれらの蒸気タービン中でICB部品の100,000時間の運転寿命を実現する。
従来のバケット設計では、ピーニングしたバケットカバーを用いていた。新しいICB設計では、隣り合うバケット間の接触力(締り嵌め)を利用して蒸気タービンのバケット列を保つ。利用者に一層魅力的な蒸気タービンにするのに効率向上が望ましいのであるならばカバーへのピーニングは選択できない。熱処理合金625を使用することにより、HP/IP蒸気タービンの最初の2〜3列のバケットにICBバケットを582℃を超える温度で長い運転時間用いることが可能となる。熱処理合金625は、低圧列や、造水・発電(IWPP=Integrated Water and Power Product)にも用いることができる。
熱処理条件範囲は538〜760℃で100時間以下である。538℃未満又は760℃超の温度で合金625を処理すると、低温条件では長時間の熱処理(100時間超)が必要になり、一方高温条件では非常に短時間の熱処理(10時間未満)が必要になるが、ICB用途に必要な90ksiより大きな降伏強さを達成するという保証はない。これらの熱処理プロセスでは、高温(760℃超)ではγ″とδ(望ましくない平衡相)の二相構造を形成し、低い時効温度(538℃未満)ではγ″を形成しないことが問題である。538℃未満の温度では同等な強度を得るのに長い時効時間を必要とし、一方760℃超の温度ではδ形成により複雑化される。
γ″形成及び転位保存は本発明に極めて重要である。化学組成は、AMS5666Fの公称範囲内であるが、強度に有効なγ″を十分に確保するのに重要な元素C、Nb、Al及びTiについての範囲を狭くしてある。熱処理条件範囲は、転位の減少による強度の低下を伴わないγ″形成の余裕度を与える。
合金625に4種類の熱処理を施した。合金は、4つの異なる供給元から入手した。4つのサンプルA〜Dの組成を、本発明の実施形態の合金625中の元素の最小量及び最大量とともに、表1に示す。
Figure 2010261104
入手したままの(即ち、ミルアニール後、熱処理前)合金及び677℃で50時間の特定熱処理を施した材料の引張強さ、クリープ強度及び応力緩和を測定した。各熱処理合金625を降伏強さ、クリープ寿命及び応力緩和応答について評価した。熱処理合金(サンプルA〜D)の室温降伏強さ(平均)は99ksiであり、低固溶化アニール合金625の公称最小値60ksiをかなり上回った。1000MW蒸気タービンの運転温度(600℃)で、4つのサンプルの0.25%ひずみでの応力緩和は、ICBに100,000時間の寿命を与えるのに十分であった。熱処理無しのサンプルは、600℃、0.25%ひずみで十分な寿命を与えなかった。熱処理合金625のクリープ強度は、熱処理無し合金625にくらべて優れていた。
4つのテストサンプルのうち、化学組成の主な差は、サンプルDの炭素レベルが最大閾値の0.04重量%を超えていることである。炭素レベルが0.04重量%以下、好ましくは0.03%以下であることが必要である。炭素レベルが0.03%を超えると、特に0.04%を超えると、炭素は、強化析出物に使用されるよりむしろ溶質元素とカーバイドを形成する傾向がある。
ここで用いる用語「第1」、「第2」などは、順序、数量又は重要性を表すものではなく、ある要素を他の要素と区別するのに使用する。ここで用いる単数表現は、数量を限定するものではなく、記載要素が少なくとも1つ存在することを表す。数量にともなう修飾語「約」は、表示値を含み、文脈で示された意味を持つ(例えば特定の数量の測定にともなう誤差を含む)。本明細書で記載した範囲は上限と下限を含み、独立に組合せることができる。(例えば、「約25重量%以下、特定すると約5重量%〜約20重量%」の範囲は上下限値及び「約5重量%〜約25重量%」の範囲のすべての中間値及び下位範囲を含む)。
種々の実施形態を説明したが、当業者が構成要素の種々の組合せ、変更又は改善を行うことができ、それらが本発明の要旨に入ることは本明細書から明らかである。さらに、本発明の要旨から逸脱することなく、個別の状況や材料を本発明に適合させる多くの変更が可能である。したがって、本発明はこの発明を実施するうえで考えられる最良の形態として上述した特定の実施形態に限定されず、本発明は特許請求の範囲に入る全ての実施形態を包含する。

Claims (10)

  1. 約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金を含有する、タービンカバーバケット。
  2. 合金が90ksi超の室温降伏強さを有する、請求項1記載のタービンカバーバケット。
  3. 合金が約677℃で約50時間熱処理されている、請求項1又は請求項2記載のタービンカバーバケット。
  4. 合金がトリニッケル−ニオブ(Ni3Nb)のγ″相析出物を含有する、請求項1乃至請求項3のいずれか1項記載のタービンカバーバケット。
  5. 合金が538℃〜760℃で100時間以下熱処理されている、請求項1乃至請求項4のいずれか1項記載のタービンカバーバケット。
  6. 本質的に約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金を含有する、タービンカバーバケット。
  7. 合金が約677℃で約50時間熱処理されている、請求項6記載のタービンカバーバケット。
  8. 合金が538℃〜760℃で100時間以下熱処理されている、請求項6記載のタービンカバーバケット。
  9. タービンバケットカバーを製造する方法であって、
    約0.04重量%未満の炭素、約0.0〜0.2重量%のマンガン、約0.0〜0.25重量%のケイ素、約0.0〜0.015重量%のリン、約0.0〜0.015重量%の硫黄、約20.0〜23.0重量%のクロム、約8.5〜9.5重量%のモリブデン、約3.25〜4重量%のニオブ、約0.0〜0.05重量%のタンタル、約0.2〜0.4重量%のチタン、約0.15〜0.3重量%のアルミニウム、約3.0〜4.5重量%の鉄及び残部のニッケルからなる合金からタービンバケットカバーを熱機械的に成形する工程と、
    タービンバケットカバーを約538℃〜760℃で約100時間以下熱処理する工程と
    を含む方法。
  10. タービンバケットカバーを約677℃で約50時間熱処理する、請求項9記載の方法。
JP2010104702A 2009-05-06 2010-04-30 優れた機械的特性を有するNiCrMoNb合金 Active JP5596406B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/436,194 2009-05-06
US12/436,194 US8101122B2 (en) 2009-05-06 2009-05-06 NiCrMoCb alloy with improved mechanical properties

Publications (2)

Publication Number Publication Date
JP2010261104A true JP2010261104A (ja) 2010-11-18
JP5596406B2 JP5596406B2 (ja) 2014-09-24

Family

ID=43062420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104702A Active JP5596406B2 (ja) 2009-05-06 2010-04-30 優れた機械的特性を有するNiCrMoNb合金

Country Status (2)

Country Link
US (1) US8101122B2 (ja)
JP (1) JP5596406B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070276A (ja) * 2012-10-02 2014-04-21 Hitachi Ltd ニッケル基合金からなる大型鋳造部材およびその製造方法
US9121907B2 (en) 2012-03-01 2015-09-01 Gs Yuasa International Ltd. Switch failure detection device, battery pack including the same, and method of detecting failure of electronic switch
JP2019052349A (ja) * 2017-09-14 2019-04-04 日本冶金工業株式会社 ニッケル基合金
JP2020117813A (ja) * 2017-09-14 2020-08-06 日本冶金工業株式会社 ニッケル基合金

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE406850T1 (de) 2004-06-17 2008-09-15 Cadent Ltd Verfahren und gerät zur farbbildformung einer dreidimensionalen struktur
US9266191B2 (en) 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
US9511445B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US8632850B2 (en) 2005-09-26 2014-01-21 Schultz-Creehan Holdings, Inc. Friction fabrication tools
US9511446B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation In-situ interlocking of metals using additive friction stir processing
US20110036471A1 (en) * 2009-05-06 2011-02-17 General Electric Company NiCrMoNb ALLOY WITH IMPROVED MECHANICAL PROPERTIES
US9828658B2 (en) 2013-08-13 2017-11-28 Rolls-Royce Corporation Composite niobium-bearing superalloys
US9938610B2 (en) 2013-09-20 2018-04-10 Rolls-Royce Corporation High temperature niobium-bearing superalloys
RU2017134765A (ru) * 2016-11-29 2019-04-05 Зульцер Мэнэджмент Аг Литейный сплав на основе никеля, отливка и способ изготовления лопастного колеса ротационной машины
CN109680184A (zh) * 2017-10-19 2019-04-26 丹阳宏图激光科技有限公司 一种镍基合金粉末材料及该材料的3d打印成型方法
AU2018359514C1 (en) 2017-10-31 2021-05-27 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039620A (ja) * 1973-08-13 1975-04-11
JPS63134642A (ja) * 1986-11-04 1988-06-07 クリーシブル マテリアルス コーポレイシヨン ニツケル系粉末冶金合金物体
JPH07197159A (ja) * 1993-12-28 1995-08-01 Mitsubishi Materials Corp Ni基合金とそれを用いた半導体製造装置用部材及び液晶製造装置用部材
JPH10272593A (ja) * 1997-03-28 1998-10-13 Sanyo Special Steel Co Ltd 耐熱疲労特性に優れた肉盛合金
JP2007332412A (ja) * 2006-06-13 2007-12-27 Daido Steel Co Ltd 低熱膨張Ni基超合金

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1250642B (ja) 1958-11-13 1967-09-21
US3160500A (en) 1962-01-24 1964-12-08 Int Nickel Co Matrix-stiffened alloy
US4818301A (en) * 1986-06-27 1989-04-04 National Forge Company Process for producing large section, large mass forged sleeves from large diameter ingots of alloy 625 and from hot isostatically pressed preforms of alloy 625 powder
US5509784A (en) 1994-07-27 1996-04-23 General Electric Co. Turbine bucket and wheel assembly with integral bucket shroud
US6531002B1 (en) * 2001-04-24 2003-03-11 General Electric Company Nickel-base superalloys and articles formed therefrom
US7270518B2 (en) 2005-05-19 2007-09-18 General Electric Company Steep angle turbine cover buckets having relief grooves
US7344359B2 (en) 2005-06-02 2008-03-18 General Electric Company Methods and systems for assembling shrouded turbine bucket and tangential entry dovetail

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039620A (ja) * 1973-08-13 1975-04-11
JPS63134642A (ja) * 1986-11-04 1988-06-07 クリーシブル マテリアルス コーポレイシヨン ニツケル系粉末冶金合金物体
JPH07197159A (ja) * 1993-12-28 1995-08-01 Mitsubishi Materials Corp Ni基合金とそれを用いた半導体製造装置用部材及び液晶製造装置用部材
JPH10272593A (ja) * 1997-03-28 1998-10-13 Sanyo Special Steel Co Ltd 耐熱疲労特性に優れた肉盛合金
JP2007332412A (ja) * 2006-06-13 2007-12-27 Daido Steel Co Ltd 低熱膨張Ni基超合金

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121907B2 (en) 2012-03-01 2015-09-01 Gs Yuasa International Ltd. Switch failure detection device, battery pack including the same, and method of detecting failure of electronic switch
JP2014070276A (ja) * 2012-10-02 2014-04-21 Hitachi Ltd ニッケル基合金からなる大型鋳造部材およびその製造方法
JP2019052349A (ja) * 2017-09-14 2019-04-04 日本冶金工業株式会社 ニッケル基合金
JP2020117813A (ja) * 2017-09-14 2020-08-06 日本冶金工業株式会社 ニッケル基合金

Also Published As

Publication number Publication date
US20100284850A1 (en) 2010-11-11
US8101122B2 (en) 2012-01-24
JP5596406B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5596406B2 (ja) 優れた機械的特性を有するNiCrMoNb合金
EP2826877B1 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
JP4037929B2 (ja) 低熱膨張Ni基超耐熱合金およびその製造方法
JP5696995B2 (ja) 耐熱超合金
US9062362B2 (en) Precipitate hardening stainless steel and long blade using same for steam turbine
JP6839401B1 (ja) Ni基超耐熱合金及びNi基超耐熱合金の製造方法
US9816161B2 (en) Ni-based single crystal superalloy
JP5502575B2 (ja) 析出硬化型マルテンサイト系ステンレス鋼及び蒸気タービン動翼
JP6315320B2 (ja) Fe−Ni基超耐熱合金の製造方法
EP2334837A2 (en) Solution heat treatment and overage heat treatment for titanium components
CN102517507B (zh) 超超临界火电机组汽轮机叶片用钢及制造方法
JP3559681B2 (ja) 蒸気タービン翼およびその製造方法
JP5395516B2 (ja) 蒸気タービンのタービンロータ用ニッケル基合金及び蒸気タービンのタービンロータ
CN102517508A (zh) 超超临界火电机组汽轮机叶片用铁素体耐热钢及制造方法
US20020015656A1 (en) Low thermal expansion NI-base superalloy
EP2439297A1 (en) NiCrMoNb alloy with improved mechanical properties
KR101618649B1 (ko) Ni기 단결정 초합금
JP2010520372A (ja) Z相により強化されたマルテンサイト系耐クリープ鋼
EP2423342B1 (en) Forged alloy for steam turbine and steam turbine rotor using the same
JP5932622B2 (ja) オーステナイト系耐熱鋼およびタービン部品
JP2004256840A (ja) 複合強化型Ni基超合金とその製造方法
JP2004107777A (ja) オーステナイト系耐熱合金とその製造方法および蒸気タービン部品
JP2002317252A (ja) フェライト系耐熱鋼とその製造方法
JP2008144202A (ja) 耐熱ばね及びその製造方法
EP3243922A1 (en) Austenite-based heat-resistant steel, and turbine component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350