JP2010200578A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2010200578A
JP2010200578A JP2009045726A JP2009045726A JP2010200578A JP 2010200578 A JP2010200578 A JP 2010200578A JP 2009045726 A JP2009045726 A JP 2009045726A JP 2009045726 A JP2009045726 A JP 2009045726A JP 2010200578 A JP2010200578 A JP 2010200578A
Authority
JP
Japan
Prior art keywords
intake
rotor
wedge
cooling medium
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009045726A
Other languages
English (en)
Inventor
Shigeki Karashi
茂樹 唐司
Kengo Iwashige
健五 岩重
Ryuichiro Iwano
龍一郎 岩野
Kenichi Tsuzawa
健一 通澤
Yasunori Satake
恭典 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009045726A priority Critical patent/JP2010200578A/ja
Publication of JP2010200578A publication Critical patent/JP2010200578A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】ギャップピックアップ冷却方式回転子の冷却性能を確保しつつ、且つ、構造の簡略化を図り、製作性の向上、低コスト化を図り得るギャップピックアップ冷却方式の回転電機を提供する。
【解決手段】回転子3の界磁コイルとなる導体7に冷却媒体6が流通する通風流路8を設ける。界磁コイルを固定するために回転子の外周部に装着したウエッジ19には、回転子・固定子間のエアギャップ内の冷却媒体6を通風流路8に導く吸気孔10が設けてある。ウエッジ19の外表面には、冷却媒体を吸気孔10に導く吸気ガイド流路26が形成される。この吸気ガイド流路は、エアギャップの冷却媒体の流れを基準にして、回転子の周方向における吸気孔10の上流部に配置される。吸気ガイド流路26は、ウエッジの上流側から下流側の吸気孔10に向かって吸気孔に連通し、この吸気ガイド流路26の回転子軸方向の流路幅が下流側より上流側に向かって広がるように変化する。
【選択図】図1

Description

本発明は、タービン発電機などの回転子(ロータ)を冷却媒体で冷却する通風機構を備えた回転電機に関する。
一般にタービン発電機などの回転電機では、固定子(ステータ)や回転子に通風流路を設け、この通風流路に冷却媒体である空気や水素を循環させて、ジュール損や鉄損などによって発熱するコイルや鉄心(コア)などを冷却する構造が知られている。回転子の冷却方式には、冷却性能が高いことから、コイルを冷却媒体と接触させて冷却する直接冷却方式が広く用いられているが、大容量化と低コスト化の両立可能な構造が要求されている。大容量化に対しては、長軸化の傾向にある。
ここで、代表的な従来構造について、図12〜16を用いて説明する。
図12は、回転電機の一例として、大容量機に用いられるギャップピックアップ冷却方式の回転子を備えたタービン発電機の概略構成を示す縦断面である。
タービン発電機1は、回転子軸4に固定された回転子3及びその外側にエアギャップ9を介して配置された固定子2を備える。エアギャップ9は、固定子2の内周面と回転子3の外周面間に設けた間隙である。
固定子2は、固定子コア12と固定子コイル14を有する。
回転子3は、図15に示すように、回転子コア(回転子鉄心)30と、回転子コアの各スロット31に内挿されたプレートタイプの界磁コイル(積層導体)7と、界磁コイルを固定するためにスロット31の上部の組み込まれたウエッジ19を有する。界磁コイル7とウエッジ19との間には、両者を電気的に絶縁するためのクリページブロック20が配置されている。
界磁コイル7及びウエッジ19には、例えば空気或いは水素などの冷却媒体を流通させるための斜め流路8(8a,8b)が複数形成されている。すなわち、界磁コイル7は、斜め方向の複数の通風孔を有した導体を径方向に複数枚積層して構成され、各層導体の通風孔が連通することで、界磁コイル7内に通風流路となる斜め流路8が形成される構造となっている。
斜め流路8は、例えば、界磁コイル7の端面に設けた吸気孔8´から冷却媒体が流入して、ウエッジ19の外面に設けた排気孔11を介してエアギャップ9に放出される通風流路8aと、ウエッジ19(ウエッジは、図12では、図示省略され、図15に示してある)の外面に設けた吸気孔10から冷却媒体が流入してウエッジの外面に設けた排気孔11を介してエアギャップ9に放出されるV字形の通風流路8bとがある。
図13は、大容量機に用いられる界磁コイル7の積層導体の概略平面図である。また、図14は、界磁コイル7の各導体を積層して形成されるV字形の通風流路の縦断面を示した図で、(a)が径方向(R方向)−周方向(Θ方向)の2次元断面図、(b)が径方向(R方向)−軸方向(Z方向)の2次元断面図である。図14(b)では、ウエッジ19の吸気孔10及び排気孔11を介して界磁コイル7の積層導体内に形成されるV字形の通風流路8bの流路形状が分かりやすいように、1流路のみを白抜きで示した。ここでは、界磁コイル7の各積層導体に通風流路8となるべき通風孔が回転子3の周方向(Θ方向)に2列になって回転子の軸方向(Z方向)に複数配列される例を示した。なお、界磁コイル7の各導体に設ける2列の通風孔8とウエッジ19に設ける吸気孔10及び排気孔11は、孔同士が接するように配置される。
本例では、吸気孔10のグループと排気孔11のグループとが交互になって配置されている。図14に示すように、吸気孔10及び排気孔11に対応して、各V字形通風流路8bは、一方の列の吸気孔10から他方の列の排気孔11に通じるように形成されている。
一方、固定子2の固定子コア(固定子鉄心)12には、回転子の吸気孔10のグループと排気孔11のグループに対応して複数の固定子冷却ダクト13が固定子コアの径方向(R方向)に設けられている。これらの固定子冷却ダクト13によって、冷却媒体6が固定子冷却ダクト13内を径方向外向きに流れるフォワードゾーン18と、逆に径方向内向きに流れるリバースゾーン17が形成される。
回転子軸4の端部側の一部に、軸流ファン5が配置される。さらに、発電機1内には、各部位の冷却によって昇温した冷却媒体6を冷却するための主(第1)冷却器15と補助(第2)冷却器16とが内装されている。固定子2の周りを囲むように、リバースゾーン17及びフォワードゾーン18を区画する筒体34が設けられている。
冷却媒体(例えば水素、流れを矢印で表示)6は、軸流ファン5によってタービン発電機1の各部位に送風される。具体的には、軸流ファン5によって、冷却媒体の一部は、回転子コイル(積層導体)7の一端の吸気口8´から通風流路8aに送られる。冷却媒体6の残りは、固定子コイル14の端部を冷却した後、冷却媒体ダクト16aを介して補助冷却器15に流入する。補助冷却器16で再冷却された冷却媒体は、リバースゾーン17の各固定子冷却ダクト13に流入し、鉄心12や固定子コイル14を冷却し、エアギャップ10内に排出される。その冷却媒体6は、回転子3の外表面に設置した吸気孔10より斜め流路8(8b:通風流路)に導かれ、斜め内向きに流れて界磁コイル7を冷却する。その後、冷却媒体6は、界磁コイル7の底部で方向を変換し、通風流路8bを介して斜め外向きに流れて界磁コイル7を冷却し、排気孔11よりエアギャップ9内に排出される。エアギャップ9内に排出された冷却媒体6は、フォワードゾーン18の各固定子冷却ダクト13内に流入し、鉄心12や固定子コイル14を冷却した後、主冷却器15に流入して降温され、軸流ファン5に戻る一巡した流れを形成する。
図15は、ギャップピックアップ冷却方式回転子表面の吸排気孔が隣接する部位の従来例を示す鳥瞰図である。ウエッジ19は、回転子3のスロット31内に内挿した界磁コイル7が遠心力により動くことを防止するための固定材である。回転子3の回転により、回転子3の表面には、回転子の回転と相対的に冷却媒体6の流れが回転子の周方向に生じる。回転子3の外面には、回転子3の表面上に流れる冷却媒体6を吸気孔10に導くための吸気ガイド流路21が設けられている。この吸気ガイド流路21は、ウエッジ19表面に設けた通風溝(傾斜溝)22と回転子コア30の表面に設けた通風溝(傾斜溝)23とが結合することで形成される。すなわち、吸気ガイド流路21は、回転子3内にウエッジ19が設置されたときに形成される構造である。また、吸気ガイド流路21は、ウエッジ19に設けた吸気孔10と連通される。
図16は、図15におけるギャップピックアップ冷却方式回転子の吸気構造の縦断面図である。図16を用いて、ギャップピックアップによる冷却媒体6の吸気メカニズムについて説明する。
回転子3が回転すると、エアギャップ9内には、冷却媒体6の相対的な周方向(Θ方向)流れが発生する。エアギャップ9内に生じる冷却媒体6の流れは、回転子3の回転数と径に基づく周速相当の速度を有する。その周速度は、約100〜200m/sである。
従来構造では、このように速い速度を有する冷却媒体6を効率良く吸気孔10に導くために、回転子3表面に回転子周方向に向けた吸気ガイド流路21を設ける。吸気ガイド流路21の軸方向の開口幅は、図15に示すように、吸気孔10の径と同一で、周方向の流路長は、吸気孔10の径に対して約5倍の距離を有する。
エアギャップ9内の冷却媒体6の周方向流れに対し、吸気ガイド流路21の最上流部より、吸気ガイド流路21を介して吸気孔10に徐々に向かう流れを形成させる。しかし、回転子3表面の周速度が速いため慣性力が強く、吸気ガイド流路21の流路長が短いと、吸気孔10に向かう流れが形成され難い。
その場合、回転子3内の界磁コイル7に冷却媒体6を導くことができなくなり、界磁コイル7の冷却性能が不十分となるおそれがある。従来構造では、ウエッジ19表面の通風溝22と回転子3表面の通風溝23とで吸気ガイド流路21の十分な流路長を確保している。また、通風溝22や23に径方向(R方向)内向きの傾斜を設け、徐々に径方向内向きの流れを生じさせ、冷却媒体6を安定して吸気孔10に導く構造となっている。
吸気孔10に導かれた冷却媒体6は、吸気孔10の下流内壁面に衝突する方向に流れ、内壁面に近づくに従い静圧が回復し、吸気孔10内には昇圧域24が発生する。すなわち、冷却媒体6の動圧が静圧に変換されることになる。そのため、吸気孔10に向かう冷却媒体6の速度が大きいほど、昇圧域24での静圧上昇も大きくなる。界磁コイル7内の冷却媒体6の流れは、吸気孔10の昇圧域24と排気孔11との圧力差によって形成される。そのため、界磁コイル7の冷却性能を向上させるためには、より多くの冷却媒体6を界磁コイル7内に導くことが重要となる。
従来構造では、回転子3とウエッジ19表面に設けた周方向に長い流路長を有する吸気ガイド流路21によって、エアギャップ9内の冷却媒体6を、より多く吸気孔10内に吸気させる構造となっている。
以上のような構造を有するギャップピックアップ冷却方式回転子によれば、エアギャップ9における冷却媒体6を界磁コイル7内に導き冷却するための吸排気構造を、軸方向に繰り返すことが可能になる。したがって、界磁コイル7の軸方向に対して同様な複数の冷却経路を実現でき、回転子3の長軸化が可能で、大容量化に対応できると言う利点がある。しかし、界磁コイル7内への冷却媒体6の流量を十分に確保するためには、回転子3表面に流路長の長い吸気ガイド流路21を設ける必要がある。そのため、ウエッジ19のみならず、回転子3表面の加工も必要となり、回転子3製作工数が多く、低コスト化が困難になるという問題があった。
また、界磁コイル7内への冷却媒体6の吸気流量を増大させる構造として、特開平10−178754号公報に記載されたものが公知である。図17にその概略を示す。図17において、(a)が吸気部の鳥瞰図、(b)が断面図である。この従来構造では、回転子3表面の吸気孔10の下流側に突起物25を設置したことを特徴とする。本構造によれば、回転子3より突き出させた突起物25の内表面に、エアギャップ9に流れる冷却媒体6を衝突させ、冷却媒体6を吸気孔10内に導くことが可能となる。突起物25の突起高さを利用し、より多くの冷却媒体6を吸気孔10内に導くことが可能となる。そのため、回転子3の外周部に設ける通風ガイド流路を短くしても界磁コイル7を冷却するに十分な冷却媒体6の吸気流量を確保できる可能性がある。これにより、回転子3の通風溝を排除し、その製作工数を削減できる可能性がある。
しかし、回転子3の表面に突起物25を設置するため、固定子2内に長い回転子3を挿入する際に、固定子2内表面への突起物25の接触による機器の損傷および組み立て工数の増大を招くおそれがある。
特開平10−178754号公報 特開2000−139050号公報
従来構造のギャップピックアップ冷却方式回転子は、その通風構造の複雑さにより製作工数が多く、コスト高になる傾向がある。本発明は、ギャップピックアップ冷却方式回転子の冷却性能を確保しつつ、且つ、構造の簡略化を図り、製作性の向上、低コスト化を図り得るギャップピックアップ冷却方式の回転電機を提供することにある。
上記目的を達成するために、本発明は、回転子の外周部に設置するウエッジ表面部の加工のみで冷却媒体を界磁コイル内に導くための吸気ガイド流路を構成する。さらに、この吸気ガイド流路は、固定子・回転子間のエアギャップの冷却媒体の流れを基準にして、回転子の周方向における吸気孔の上流部に配置され、且つウエッジの上流側から下流側の前記吸気孔に向かってこの吸気孔に連通する。さらに、この吸気ガイド流路の回転子軸方向の流路幅が下流側より上流側に向かって広がるように変化する構造を有していることを特徴とする。
本発明の吸気構造を備えた回転電機のギャプピックアップ冷却方式回転子によれば、回転子表面上(エアギャップ)で流れる冷却媒体を、広い領域から集中的に吸気孔内に取り込むことができる。それにより、回転子の周方向に短い吸気ガイド流路でもあっても、界磁コイルの冷却に十分な冷却媒体の吸気流量を確保できる。よって、その吸気ガイド流路をウエッジ表面部の加工のみで構成でき、従来技術に比べて、回転子の製作工数を削減でき、低コスト化が可能となる。
その結果、例えば、大容量の発電機に用いられるギャップピックアップ冷却方式回転子のコストを低減させるという目的を、界磁コイルの冷却性能を損なわずに実現できる。
本発明の実施例1における吸排気構造を示した鳥瞰図。 図2(a)は、実施例1の吸気構造のウエッジ部における断面図、図2(b)は、その吸気構造をウエッジ上面からみた部分上面図。 本発明の界磁コイルの積層導体の概略平面図 図4(a)は、本発明の通風流路を示した径方向(R方向)−周方向(Θ方向)の2次元断面図、図4(b)は、その径方向(R方向)−軸方向(Z方向)の2次元断面図。 実施例1の吸気構造をウエッジ上面からみた上面図であり、ウエッジの長さ方向の範囲を、図2(b)よりも広げて見た図。 本発明の実施例2を示すものであり、図6(a)はその吸気構造のウエッジ部における断面図、図6(b)は、その吸気構造をウエッジ上面からみた部分上面図。 本発明の実施例2の吸排気構造の鳥瞰図。 実施例2の変形例を示すウエッジの一部上面図。 本発明の実施例3における吸排気構造を示す鳥瞰図。 実施例3の吸排気構造の変形例を示す鳥瞰図。 本発明の実施例4の吸気構造を示すウエッジの部分上面図。 従来例のギャップピックアップ斜流冷却方式回転子を備えたタービン発電機の縦断面構造概略を示した説明図。 従来例の界磁コイルの積層導体の概略平面図 図14(a)は、上記従来例のV字形の通風流路を示した径方向(R方向)−周方向(Θ方向)の2次元断面図、図14(b)は、その径方向(R方向)−軸方向(Z方向)の2次元断面図。 上記従来例の吸排気構造を示す鳥瞰図。 上記従来例の吸気構造を示す断面図。 図17(a)は、上記従来例とは別の従来例の吸気構造を示す鳥瞰図、図17(b)はその断面図。
本発明の実施例1について、図1〜図4を用いて説明する。
図1は、実施例1のギャップピックアップ冷却方式回転子の吸排気部及び吸気ガイド流路構造を示す一部拡大の鳥瞰図である。図2(a)は、その吸気構造のウエッジ部における断面図、図2(b)は、その吸気構造をウエッジ上面からみた部分上面図である。図3は、本発明の実施例1を適用する界磁コイルの積層導体の概略平面図である。また、図4は、界磁コイルの各導体を積層して形成される通風流路の2次元断面を示した図で、(a)が径方向(R方向)−周方向(Θ方向)の2次元断面図、(b)が径方向(R方向)−軸方向(Z方向)の2次元断面図である。図4(b)では、ウエッジ19の吸気孔10及び排気孔11を介して界磁コイル7の積層導体内に形成される通風流路8の流路形状が分かりやすいように、1流路のみを白抜きで示した。ここでは、界磁コイルの各積層導体に通風流路となるべき通風孔が回転子の周方向(Θ方向)に1列になって回転子の軸方向(Z方向)に複数配列される例を示した。
本発明の実施例1は、回転子3内の通風流路8が、径方向一様に形成されるラジアルフロー冷却方式の回転電機に適用した例である。
本実施例におけるウエッジ19の外表面に設ける吸気孔10及び排気孔11は、互いに一つ置きで交互に配列されている。
さらに、吸気ガイド流路26の構成が、従来技術とは次のように相違する。
吸気ガイド流路26は、回転子3表面近傍の冷却媒体6を吸気孔10に導くために、ウエッジ19の外表面に回転子の周方向に向けて設けられている。
まず、吸気ガイド流路26は、ウエッジ19において、エアギャップを流れる冷却媒体6の回転子周方向の流れを基準にして、回転子3のスロット31壁と接する上流端側より吸気孔10に向かうにしたがい、その溝深さが変化する。すなわち、吸気ガイド流路26は、上流側より下流側に向かうにつれて、回転子3の径方向(R方向)内向きに傾斜を有するスロープ構造になっている。また、吸気ガイド流路26は、その上流端側より吸気孔10に向かうにしたがい、回転子軸方向(Z方向)の流路幅が徐々に変化する。
具体的には、ウエッジ19の上流側(回転子3と接触する側)ほど吸気孔10の径より広く、下流側(吸気孔10側)に向かうほど吸気孔10の径に合わせて狭くなり、最下流部で吸気孔10と連通する構造となっている。
図2(b)において、吸気ガイド流路26の上流端および下流端での流路幅(回転子の軸方向の幅)を、それぞれW1、W2で定義した。ここでは、上流端側の幅W1を取り得る最大とし、下流端側の幅W2を吸気孔10の径と同一とし、上流から下流に向かうほど流路幅が連続的に狭くなる構造を示したが、段階的に変化する構造も考えられる。ここで、上流端側の幅W1を取り得る最大について、図5を参照して説明する。
図5は、図2(b)同様に、吸気構造をウエッジ上面からみた上面図であり、ウエッジの長さ方向の範囲を、図2(b)よりも広げて見た図である。
本実施例のように吸気孔10及び排気孔11を交互に配置した場合には、図5に示すように、吸気ガイド流路26の上流端幅W1の取り得る最大は、吸気孔10と排気孔11のピッチをWPとした場合に、2WPとなる。このようにW1=2WP或いはW1≒2WP(ただしW1<2WP)のように設定した場合には、吸気孔10をウエッジ19の幅W3(回転子の周方向の幅)の中心に配置しても、吸気ガイド流路26の吸気ガイド壁26´の長さL1をウエッジ19内に充分に確保することができる(W3/2≪W1)。W1は、好ましくは、WP<W1≦2WPである。また、吸気ガイド壁26´の傾斜角αは、一例を挙げるとα=15〜30度程度が望ましい。
本発明の吸気構造を備えた回転子3が回転すると、従来構造と同様にエアギャップ内に相対的な冷却媒体6の周方向(Θ方向)流れが生じる。エアギャップ9内の冷却媒体6は、吸気ガイド流路26を介して、ウエッジ19に設けた吸気孔10に導かれ、回転子3内の界磁コイル7へと流通する。
本発明の構造によれば、吸気ガイド流路26の流路幅が回転子鉄心のスロット31の壁面と接触する上流端側でワイドに展開するため、回転子3表面近傍の冷却媒体6を広領域から吸気ガイド流路26に取り込むことができる。そのため、吸気ガイド流路26の周方向の流路距離が短くても、界磁コイル7の冷却に十分な冷却媒体6の流量を確保できる。また、吸気ガイド流路26は、下流側の吸気孔10に向かうほど径方向(R方向)内向きの傾斜を有し、軸方向の流路幅も吸気孔10の径に合わせて変化させた構造であるため、冷却媒体6を吸気ガイド流路26に導いた後、吸気孔10に集中する流れを形成できる。すなわち、回転子3表面近傍の広領域から取り込んだ冷却媒体6を効率良く吸気孔10に導くことがでる構造である。
以上のように本発明の実施例1によれば、吸気ガイド流路25の径方向流路長が短くても回転子3内の界磁コイル7を冷却するに十分な冷却媒体6の流量を確保できる。そのため、吸気ガイド流路26をウエッジ19のみの加工で構成でき、回転子3の製作工数を削減できる。これにより、回転子3のコスト低減の効果が期待できる。また、本構造で示した吸排気構造を軸方向に繰り返すことで発電機の長軸化にも容易に対応でき、大容量化にも適用できる。
ちなみに、図15の従来構造においては、通風流路8内の断面平均流速は、代表的な1例を挙げれば15〜25m/sであるのに対して、本実施例では、同等以上を確保できる。
本発明の実施例2について、図6及び図7を用いて説明する。
図7(a)はその吸気構造のウエッジ部における断面図、図7(b)は、その吸気構造をウエッジ上面からみた部分上面図である。
実施例2の構造は、吸気孔10の設置位置を、回転子の周方向(Θ方向)の下流端側に設けた点が、実施例1との相違点である。ウエッジ19内に設ける吸気孔10を周方向の下流端から中心位置に向けて貫通させて構成する場合、吸気孔10が径方向(R方向)内周部に向かうに従い傾斜を有する構造となる。ウエッジ19内の吸気孔10は、ドリルを用いた加工であるため、傾斜を有した構造でも製作性が困難になることや製作工数が増えることは無い。また、実施例1に比べて、吸気ガイド流路26から吸気孔10での冷却媒体6の曲りが大きくなり、流動抵抗が増大し、冷却媒体6の吸気流量減少が懸念される可能性がある。しかし、吸気孔10から排気孔11までの一連の通風流路内において、流動抵抗が支配的となる部位が他にあるため、その影響は小さい。流動抵抗が支配的なのは、例えば、通風流路の流路形状が大幅に変化する吸気孔10と界磁コイル7内の通風路8との接続部(図4参照)などである。
本発明の実施例2は、ウエッジ19の吸気孔10の設置位置を、回転子の周方向に対し、より下流側に設けることで、吸気ガイド流路26の流路長ΔL及びガイド壁長L1を実施例1に比べて長く確保できる構造を実現した。吸気ガイド流路26の周方向の流路長を実施例1よりも長くできるため、回転子3の表面近傍を周方向に流れる冷却媒体6を吸気ガイド流路26内に導く流れを形成しやすくなり、実施例1に比べて冷却媒体6の吸気流量を増大させることができ、界磁コイル7の冷却性能がさらに向上する。
図7は、本発明の実施例2の変形例である吸気部構造の鳥瞰図である。27は吸気ガイド流路26の最下流部に設けた切り欠き(開口部)であり、この点が前記した実施例2との相違点である。吸気ガイド流路26の切り欠き27によって、ウエッジ19を回転子3に固定した際に、その部位には、回転子3内のスロット31の内壁面が表われる。本実施例の構造によれば、吸気ガイド流路26内に導かれた冷却媒体6は、切り欠き27との接触部である回転子3のスロット内壁面に衝突し、その後、吸気孔10内に導かれることになる。すなわち、冷却媒体6を回転子3のスロット内壁面に衝突させ、冷却媒体6を吸気孔10に取り込む構造であり、これは、吸気孔10の下流側に突起物を設置した構造と等価の効果を得ることができる。
本実施例によれば、ウエッジ19の吸気孔10との接触部位を気にすることなく吸気ガイド流路26を加工できるため、その製作性がさらに向上する。
図8は、本実施例の変形例を示すウエッジの一部上面図である。
本実施例では、吸気ガイド流路26の上流端の流路幅W1(コイルスロットと接する位置)を、エアギャップの軸流の方向に合わせて、回転子軸方向の片側のみを長くし、他方は吸気孔10の回転子軸方向の径一端の位置と一致させたものである。吸気孔10の半径をR/2とし、吸気孔10と排気孔11間のピッチをWpとした場合、上流端流路幅W1は、Wp+R/2或いはその近辺値となる。本実施例によれば、既述した実施例1、2同様の効果を期待できるほかに、隣合う排気孔11との干渉も極力緩和させることができる。
本発明の実施例3について、図9及び図10を用いて説明する。
図9は、実施例3の吸気部構造の鳥瞰図である。本実施例の吸気ガイド流路28も、今まで述べた吸気ガイド流路26同様に、回転子3表面近傍の冷却媒体6を吸気孔10に導くためにウエッジ19表面にのみ設けられている。実施例3の吸気ガイド流路28は、回転子3と接するウエッジ19上流端側より吸気孔10に向かって溝深さ(流路深さ)が一定、すなわち平坦であることが実施例1との相違点である。そのため、本実施例の構造では、回転子3にウエッジ19を固定した際に、吸気ガイド流路28の最上流部と回転子3との接触部において、吸気ガイド流路28の溝深さに相当する段差ΔHが形成される。この段差が、回転子3の表面を流れる冷却媒体6を吸気ガイド流路28に導く流れの形成を阻害する恐れがある。しかし、本発明の構造では、吸気ガイド流路28の上流側で軸方向の流路幅が広く、回転子3の表面を流れる冷却媒体6を広領域から取り込むことができるため、段差ΔHによる冷却媒体6の吸気流量低減への影響は小さいと考えられる。
本発明によれば、ウエッジ19に設ける吸気ガイド流路28の構造が単純化され、その製作性が大幅に向上できる。
図10は、本発明の実施例3の変形例である吸気構造の鳥瞰図である。本例では、回転子3の回転子コア30における吸気ガイド流路28上流端との境界付近に切削面(傾斜面)29を設けたものであり、この点が前記した実施例3との相違点である。本構造によれば、回転子3にウエッジ19を固定した際に、回転子3に設けた傾斜面29によって、実施例3で形成された吸気ガイド流路28の最上流部と回転子3との接触部の段差を回避できる。
本発明によれば、回転子3に切削面29を設けるための製作工数が必要となるが、簡単な加工で対応できるため、それによるコスト増大は抑制できる。簡単な加工のみで吸気孔10への冷却媒体6の吸気流量を確保できる。
本発明の実施例4について、図11を用いて説明する。
図11は、実施例4の吸排気部構造の断面図である。32はウエッジ19の軸方向に吸気孔10を所定間隔で複数個配置させて構成した吸気ゾーン(吸気孔グループ)、33はウエッジ19の軸方向に排気孔11を所定間隔で複数個配置させて構成した排気ゾーン(排気グループ)である。本発明の実施例4は、従来技術に示したような、ウエッジ19の吸気孔10や排気孔11が、軸方向に複数個づつ配置される回転電機に適用した例である。
このように吸気孔10や排気孔11を軸方向に複数個づつ配置されている本実施例においては、複数個の吸気孔10は、軸方向に間隔Wpを有して配置される。この場合、吸気ガイド流路26の最上流部の流路幅W1は、最大でも吸気孔10の配置間隔Wpとなる。すなわち、吸気孔10を軸方向に連続して複数個配置する場合、吸気ガイド流路26における最上流部の流路幅W1の最大取り得る流路幅はW1=Wpとなる。吸気孔10の最大流路幅W1は、配置間隔Wpと同等もしくはそれ以下とし、下流側(吸気孔10側)に向かうほど吸気孔10の径に合わせて流路幅が狭まるように変化させ、最下流部で吸気孔10と連通する構造となる。流路幅W1の好ましい範囲は、WP/2<W1≦Wpである。
さらに、本実施例によれば、図11に示す吸気ゾーン32及び排気ゾーン33を形成することにより、固定子側の通風流路の流れが径方向内向きとなるリバースゾーンと、径方向外向きとなるフォワードゾーンを有する固定子に対し、リバースゾーンと回転子3の吸気ゾーン32を、フォワードゾーンと排気ゾーン33をそれぞれ対応させた流路構造を構成することができる。ウエッジ19に設ける吸気孔10や排気孔11の配置個数は、固定子のリバースゾーンやフォワードゾーンの軸方向長さに合わせて、任意に選定すれば良い。
本発明によれば、タービン発電機全体として、流動抵抗の少ない冷却媒体6の循環パターンを形成でき、内部を循環させる冷却媒体6の流量を確保でき、固定子など他部位の冷却性能の向上にも寄与できる。
固定子と回転子を備えた回転電機であれば、タービン発電機に限らず、回転子を本発明の吸気構造とすることにより、長軸化による大容量化と低コスト化を実現できる。
1…タービン発電機、2…固定子(ステータ)、3…回転子(ロータ)、4…回転子軸(シャフト)、5…軸流ファン、6…冷却媒体、7…界磁コイル、8…斜め流路(通風流路)、9…エアギャップ、10…吸気孔、11…排気孔、12…鉄心(コア)、13…固定子冷却ダクト、14…固定子コイル、15…主冷却器、16…補助冷却器、17…リバースゾーン、18…フォワードゾーン、19…ウエッジ、26…吸気ガイド流路、27…切り欠き、28…吸気ガイド流路、29…切削面、30…回転子コア、31…スロット、32…吸気ゾーン、33…排気ゾーン、34…筒体。

Claims (8)

  1. 冷却媒体が流通する回転子側の通風流路を有する界磁コイルを装着した回転子と、
    前記回転子の外周側にエアギャップを介して配置され、内部に冷却媒体が流通する固定子側の通風流路を有する固定子と、
    前記界磁コイルを固定するために回転子の外周部に装着されるウエッジと、
    前記界磁コイル内の前記回転子側の通風流路に連通するように前記ウエッジに配設された吸気孔及び排気孔と、を備え、前記エアギャップ内の前記冷却媒体を前記ウエッジの吸気孔より前記界磁コイル内に導き、前記ウエッジの排気孔より前記エアギャップ内に放出させる流れを形成して前記界磁コイルを冷却する回転電機において、
    前記ウエッジの外表面には、前記エアギャップ内で前記回転子の回転に対して相対的に流れる冷却媒体を前記吸気孔に導く吸気ガイド流路が形成され、
    この吸気ガイド流路は、前記エアギャップの冷却媒体の流れを基準にして、前記回転子の周方向における前記吸気孔の上流部に配置され、且つ前記ウエッジの上流側から下流側の前記吸気孔に向かってこの吸気孔に連通し、この吸気ガイド流路の回転子軸方向の流路幅が下流側より上流側に向かって広がるように変化する構造を有していることを特徴とする回転電機。
  2. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が変化するに加えて、前記エアギャップ内の前記冷却媒体の流れを基準にして、上流側より下流側に向かって流路を形成する溝の深さが深くなるように変化する傾斜を有している請求項1記載の回転電機。
  3. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が変化するに加えて、前記エアギャップ内の前記冷却媒体の流れを基準にして、上流側より下流側に向かって流路を形成する溝の深さが一定にしてある請求項1記載の回転電機。
  4. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記流路幅が上流側では前記吸気孔の径より広く、下流に向かうほど前記吸気孔の径に合わせて狭くなり、下流部で前記吸気孔と連通している請求項1ないし3のいずれか1項記載の回転電機。
  5. 前記ウエッジに設けた前記吸気孔は、前記エアギャップ内の前記冷却媒体の流れを基準にして、前記回転子の周方向で下流側の前記ウエッジの一端近くに配置されている請求項1ないし4のいずれか1項記載の回転電機。
  6. 前記ウエッジの外表面に設けた前記吸気ガイド流路は、前記エアギャップ内を流れる前記冷却媒体の流れを基準にして、下流側のウエッジ一端に切り欠き部が形成され、この切り欠き部が回転子鉄心に設けたスロットの壁面一部によりカバーされている請求項1ないし5のいずれか1項記載の回転電機。
  7. 前記エアギャップ内の前記冷却媒体の流れを基準にして、前記ウエッジの外表面に設けた前記吸気ガイド流路の上流側の端部に隣接する回転子外表面部位に、前記吸気ガイド流路に向けて上流側から下流側に傾斜する斜面が形成され、この斜面を介して前記回転子の外表面と前記吸気ガイド流路とが滑らかに接続している請求項1ないし6のいずれか1項記載の回転電機。
  8. 前記ウエッジに設けた前記吸気孔及び排気孔は、前記回転子の軸方向に一定の間隔を有して吸気孔同士及び排気孔同士が複数個づつ並んで配置され、前記ウエッジの外表面に設けた前記吸気ガイド流路も前記吸気孔の数に合わせて軸方向に複数個づつ配置され、前記吸気ガイド流路の流路幅が上流側では前記吸気孔の径より広く前記吸気孔の配置間隔よりも狭く、下流に向かうほど前記吸気孔の径に合わせて狭くなり、下流部で前記吸気孔と連通している請求項1から請求項7のいずれか1項記載の回転電機。
JP2009045726A 2009-02-27 2009-02-27 回転電機 Pending JP2010200578A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009045726A JP2010200578A (ja) 2009-02-27 2009-02-27 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045726A JP2010200578A (ja) 2009-02-27 2009-02-27 回転電機

Publications (1)

Publication Number Publication Date
JP2010200578A true JP2010200578A (ja) 2010-09-09

Family

ID=42824687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009045726A Pending JP2010200578A (ja) 2009-02-27 2009-02-27 回転電機

Country Status (1)

Country Link
JP (1) JP2010200578A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593991A (zh) * 2012-03-12 2012-07-18 无锡欧瑞京机电有限公司 铸铝转子通风道连接结构
AT12977U1 (de) * 2011-06-10 2013-03-15 Seewald Hansjoerg Ing Verschlusskeil
CN104871408A (zh) * 2012-12-19 2015-08-26 三菱电机株式会社 旋转电机
US20160020673A1 (en) * 2014-07-18 2016-01-21 Hamilton Sundstrand Corporation Rotor cooling
KR101680101B1 (ko) * 2015-03-20 2016-11-29 한국에너지기술연구원 로터의 냉각향상용 유로가 형성된 터보컴파운드용 발전기 로터
JPWO2016059700A1 (ja) * 2014-10-16 2017-04-27 三菱電機株式会社 回転電機
WO2019220779A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 回転子および回転電機

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT12977U1 (de) * 2011-06-10 2013-03-15 Seewald Hansjoerg Ing Verschlusskeil
WO2012167299A3 (de) * 2011-06-10 2013-07-18 Seewald Hansjoerg Verschlusskeil
CN102593991A (zh) * 2012-03-12 2012-07-18 无锡欧瑞京机电有限公司 铸铝转子通风道连接结构
CN104871408A (zh) * 2012-12-19 2015-08-26 三菱电机株式会社 旋转电机
CN104871408B (zh) * 2012-12-19 2017-05-10 三菱电机株式会社 旋转电机
US20160020673A1 (en) * 2014-07-18 2016-01-21 Hamilton Sundstrand Corporation Rotor cooling
JPWO2016059700A1 (ja) * 2014-10-16 2017-04-27 三菱電機株式会社 回転電機
KR101680101B1 (ko) * 2015-03-20 2016-11-29 한국에너지기술연구원 로터의 냉각향상용 유로가 형성된 터보컴파운드용 발전기 로터
WO2019220779A1 (ja) * 2018-05-14 2019-11-21 三菱電機株式会社 回転子および回転電機
JPWO2019220779A1 (ja) * 2018-05-14 2020-12-10 三菱電機株式会社 回転子および回転電機

Similar Documents

Publication Publication Date Title
JP2010200578A (ja) 回転電機
JP4486114B2 (ja) 回転電機
JP4682893B2 (ja) 回転電機の回転子
JP3721361B2 (ja) 発電機コイル端の冷却の向上
CN101490931B (zh) 用于电机的冷却装置
JP2008253015A (ja) 回転電機および回転電機の回転子
JP2010104225A (ja) 電動機械ロータの伝熱強化
US7342345B2 (en) Paddled rotor spaceblocks
EP3136550A1 (en) Rotor assembly having improved cooling path
US7541714B2 (en) Streamlined body wedge blocks and method for enhanced cooling of generator rotor
US8049379B2 (en) Dynamoelectric machine rotors having enhanced heat transfer and method therefor
KR101426622B1 (ko) 전동기의 회전자 구조
JP2009124806A (ja) 回転電機
US7816825B2 (en) Heat transfer enhancement of ventilation chimneys for dynamoelectric machine rotors
JP2006074866A (ja) 回転電機
JP2021065072A (ja) 回転電機の回転子
JP2010104202A (ja) 回転電機の回転子
CN111953107A (zh) 旋转电机的定子
JPH11146587A (ja) 回転電機の回転子
JP2019022257A (ja) 回転電機
US20090295239A1 (en) Heat transfer enhancement of ventilation chimneys for dynamoelectric machine rotors
WO2022266809A1 (en) Air duct assembly for rotor, associated rotor and electric machine
JP2018026925A (ja) 回転電機
JP2003189543A (ja) 回転電機の回転子
WO2019220779A1 (ja) 回転子および回転電機