JP2010144215A - Noble metal powder for conductive paste and method for producing the same - Google Patents

Noble metal powder for conductive paste and method for producing the same Download PDF

Info

Publication number
JP2010144215A
JP2010144215A JP2008322537A JP2008322537A JP2010144215A JP 2010144215 A JP2010144215 A JP 2010144215A JP 2008322537 A JP2008322537 A JP 2008322537A JP 2008322537 A JP2008322537 A JP 2008322537A JP 2010144215 A JP2010144215 A JP 2010144215A
Authority
JP
Japan
Prior art keywords
powder
noble metal
platinum
mass
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008322537A
Other languages
Japanese (ja)
Other versions
JP5237781B2 (en
Inventor
Koki Sasaki
幸記 佐々木
Hideyuki Inotsume
秀幸 猪爪
Yuichi Baba
雄一 馬場
Takahiko Kokuda
孝彦 穀田
Mashiko Mikami
真詩子 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2008322537A priority Critical patent/JP5237781B2/en
Publication of JP2010144215A publication Critical patent/JP2010144215A/en
Application granted granted Critical
Publication of JP5237781B2 publication Critical patent/JP5237781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide noble metal powder for conductive paste giving a conductor circuit element, in which the electric resistance of a paste film is low, also, joinability with a ceramic substrate is not changed, and any defect is not generated upon firing. <P>SOLUTION: The noble metal powder for conductive paste has a density of at least 92% of theoretical density, and also has the average grain size of ≤6 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、セラミックス上への導電回路、発熱体回路、集電電極等の導体材料として利用することができる導電ペースト用貴金属粉末及びその製造方法に関する。   The present invention relates to a noble metal powder for conductive paste that can be used as a conductive material such as a conductive circuit, a heating element circuit, and a collecting electrode on ceramics, and a method for producing the same.

セラミックス上への導電回路、発熱体回路、集電電極等の形成には、通常、貴金属粉末を含有する焼付け用導電ペーストが使用される。   A conductive paste for baking containing a noble metal powder is usually used for forming a conductive circuit, a heating element circuit, a collecting electrode and the like on ceramics.

焼付け用導電ペーストは、一般に、貴金属粉末、基板との結合性を担う金属酸化物やガラス系フリットなどの無機酸化物及び有機ビヒクルからなり、セラミックスなどの絶縁基板や各種素子等にスクリーン印刷等の方法で塗布した後、焼成することにより導電膜または発熱体回路の形成が行なわれる。   A conductive paste for baking is generally composed of a noble metal powder, an inorganic oxide such as a metal oxide or glass-based frit that has a bonding property with a substrate, and an organic vehicle. After applying by the method, the conductive film or the heating element circuit is formed by baking.

特に、発熱体回路を形成する電子部品やセンサー部品分野では、高い精度や耐久性を有する貴金属発熱体が要求されている。   In particular, in the field of electronic parts and sensor parts forming a heating element circuit, a noble metal heating element having high accuracy and durability is required.

更に、近年では、より抵抗の低い発熱体回路を形成せしめることができるペーストが望まれている。   Furthermore, in recent years, a paste capable of forming a heating element circuit having a lower resistance has been desired.

かかる要望に応えるべく、従来より様々な貴金属ペーストの開発が行なわれている。例えば、特許文献1には、貴金属粉末の表面を有機酸金属塩で被覆し、次に不活性雰囲気中で熱処理して得られる高温焼成対応貴金属粉末及び当該貴金属粉末が有機ビヒクルに分散されてなる導体ペーストが開示されている。また、特許文献2には、Pt、Pd、Rh及びIrより選ばれる貴金属又は該貴金属の2種以上の合金からなる貴金属表面上に、貴金属粉末の質量を基準にして200〜3000ppmの金属酸化物が担持されている金属酸化物担持貴金属粉末について開示されている。しかし、特許文献1及び2に記載のような金属酸化物担持貴金属粉末は、金属酸化物の担持により、電気抵抗が高くなり、また、セラミック基板との結合性が変化し、焼成に際して歪みの発生源となる可能性があるなどの問題がある。   Various noble metal pastes have been developed to meet such demands. For example, Patent Document 1 discloses a noble metal powder for high-temperature firing obtained by coating the surface of a noble metal powder with an organic acid metal salt and then heat-treating in an inert atmosphere, and the noble metal powder is dispersed in an organic vehicle. A conductor paste is disclosed. Patent Document 2 discloses a metal oxide of 200 to 3000 ppm on the surface of a noble metal selected from Pt, Pd, Rh, and Ir or a noble metal surface made of two or more alloys of the noble metal based on the mass of the noble metal powder. A metal oxide-supported noble metal powder on which is supported is disclosed. However, the metal oxide-supported noble metal powders described in Patent Documents 1 and 2 have high electrical resistance due to the support of the metal oxide, and the bondability with the ceramic substrate is changed, and distortion occurs during firing. There are problems such as potential sources.

特許文献3には、Pd粉末と、酸易溶性化合物と、有機溶媒とを混練した後、有機溶媒を揮発除去し、得られるPd粉末と酸易溶性化合物との混合物を300℃以上で加熱処理し、次いで放冷し、酸で該化合物を溶解し、Pd粉末を回収する方法が記載されている。また、特許文献4には、白金粉末と、長周期表の3族乃至15族の何れかの金属元素の酸化物の少なくとも一種の粉末からなる添加剤とを混合する混合工程と、該混合工程で得られる混合粉末に所定温度の熱処理を施す熱処理工程と、該熱処理が施された混合粉末を酸又はアルカリで処理することにより該添加剤を溶解する溶解工程と、該添加剤が溶解された混合粉末に洗浄処理を施すことにより該添加剤を除去する除去工程からなる白金粉末の製造方法が開示されている。しかし、これらの方法は、貴金属粉末と酸易溶性化合物または金属酸化物粉末との混合であるため、貴金属粉末の表面を十分に覆うまでは至らず、熱処理を行ったときに貴金属粉末の凝集が起きるという問題がある。   In Patent Document 3, after kneading Pd powder, a readily acid-soluble compound, and an organic solvent, the organic solvent is volatilized and removed, and the resulting mixture of Pd powder and the easily acid-soluble compound is heated at 300 ° C. or higher. And then allowed to cool, dissolve the compound with acid and recover the Pd powder. Patent Document 4 discloses a mixing step of mixing platinum powder and an additive composed of at least one powder of an oxide of a metal element of any of Groups 3 to 15 of the long periodic table, and the mixing step. A heat treatment step of heat-treating the mixed powder obtained at a predetermined temperature, a dissolving step of dissolving the additive by treating the heat-treated mixed powder with an acid or an alkali, and the additive dissolved A method for producing platinum powder comprising a removal step of removing the additive by subjecting the mixed powder to a washing treatment is disclosed. However, since these methods are a mixture of a noble metal powder and a readily acid-soluble compound or metal oxide powder, the surface of the noble metal powder is not sufficiently covered, and aggregation of the noble metal powder occurs when heat treatment is performed. There is a problem of getting up.

特開平8−7644号公報JP-A-8-7644 特開2006−193796号公報JP 2006-193996 A 特開平8−176602号公報JP-A-8-176602 特開2006−299385号公報JP 2006-299385 A

湿式還元法により得られる貴金属粉末の表面に金属酸化物を担持させて熱処理することにより、該貴金属粉末の表面に付着している不純物を除去することができ、貴金属ペースト膜の膨張を抑えることができる。しかし、前述のとおり、貴金属粉末の表面に金属酸化物を担持させると、ペースト膜の電気抵抗が高くなり、また、セラミック基板との結合性が変化し、焼成に際して歪みの発生源となるなどの問題がある。近年、導電回路素子の複雑化、信頼性の向上及び精密化に伴い、このような結合性の変化が導電回路素子の欠陥を生じさせるという問題ある。   Impurities adhering to the surface of the noble metal powder can be removed by supporting the metal oxide on the surface of the noble metal powder obtained by the wet reduction method and performing heat treatment, thereby suppressing expansion of the noble metal paste film. it can. However, as described above, when a metal oxide is supported on the surface of the noble metal powder, the electrical resistance of the paste film is increased, the bonding property with the ceramic substrate is changed, and a strain is generated during firing. There's a problem. In recent years, with the complication of conductive circuit elements, improvement in reliability, and refinement, there is a problem that such a change in connectivity causes defects in the conductive circuit elements.

本発明の目的は、上記の如き問題を解決し、ペースト膜の電気抵抗が低く、且つセラミック基板との結合性が変化せず、焼成に際して何ら欠陥が生じることがない導体回路素子を与える導電ペースト用貴金属粉末を提供することである。   An object of the present invention is to provide a conductive paste that solves the above-described problems, provides a conductive circuit element in which the electrical resistance of the paste film is low, the connectivity with the ceramic substrate does not change, and no defects occur during firing. It is to provide precious metal powder for use.

本発明者等は、湿式還元法で得られる密度が理論密度より低い貴金属粉末の密度をより高め、且つ粉末の凝集を抑制することにより、上記の如き目的を達成することができることを見出し、本発明を完成するに至った。   The present inventors have found that the above-mentioned object can be achieved by further increasing the density of the noble metal powder whose density obtained by the wet reduction method is lower than the theoretical density and suppressing the aggregation of the powder. The invention has been completed.

かくして、本発明は、理論密度の少なくとも92%の密度を有し且つ平均粒径が6μm以下であることを特徴とする導電ペースト用貴金属粉末を提供するものである。   Thus, the present invention provides a noble metal powder for a conductive paste having a density of at least 92% of the theoretical density and an average particle size of 6 μm or less.

本発明は、また、貴金属以外の金属塩の水溶液に貴金属粉末を分散させ、該金属塩を不溶化処理して貴金属粉末の表面に該金属塩を析出担持させ、次いで該金属塩が担持された貴金属粉末を熱処理し、熱処理によって生成する金属酸化物を酸またはアルカリ水溶液を使用して除去することを特徴とする上記の貴金属粉末の製造方法を提供するものである。   The present invention also disperses the noble metal powder in an aqueous solution of a metal salt other than the noble metal, insolubilizes the metal salt, deposits and supports the metal salt on the surface of the noble metal powder, and then the noble metal on which the metal salt is supported. The present invention provides a method for producing the above-mentioned noble metal powder, characterized by heat-treating the powder and removing a metal oxide produced by the heat treatment using an acid or alkali aqueous solution.

金属酸化物を担持させ、熱処理した後、該金属酸化物を除去することにより得られる本発明の導電ペースト用貴金属粉末は、不純物量が極めて少なく、密度が高く、本発明の貴金属粉末を用いてなる導電ペーストは、ペースト膜の収縮特性において膨張する温度域が全くみられず、金属酸化物を担持してなる貴金属粉末を用いてなる導電ペーストに比べて、電気的特性に優れている。従って、本発明の貴金属粉末を用いてなる導電ペーストを使用することにより、欠陥のない導電回路を形成せしめることができるという顕著な効果が得られる。   The noble metal powder for a conductive paste of the present invention obtained by supporting a metal oxide, heat-treating and then removing the metal oxide has an extremely small amount of impurities and a high density, and the noble metal powder of the present invention is used. The conductive paste obtained does not show any expansion temperature range in the shrink characteristics of the paste film, and is excellent in electrical characteristics as compared with the conductive paste using the noble metal powder supporting the metal oxide. Therefore, by using the conductive paste using the noble metal powder of the present invention, a remarkable effect that a conductive circuit having no defect can be formed can be obtained.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の導電ペースト用貴金属粉末およびその製造方法について、さらに詳細に説明する。   Hereinafter, the noble metal powder for conductive paste of the present invention and the production method thereof will be described in more detail.

本発明の貴金属粉末は、従来の導電ペースト用貴金属粉末と同様に、Pt、Pd、Rh、Irまたはこれらの2種もしくはそれ以上の合金よりなることができる。その形状には特に制限はないが、一般に球状であることが好ましい。   The noble metal powder of the present invention can be made of Pt, Pd, Rh, Ir, or an alloy of two or more thereof, like the conventional noble metal powder for conductive paste. Although there is no restriction | limiting in particular in the shape, Generally it is preferable that it is spherical.

このような球状の貴金属粉末は、例えば、以下に述べる湿式還元法によって製造することができるが、その方法に限定されるものではない。   Such a spherical noble metal powder can be produced, for example, by the wet reduction method described below, but is not limited to this method.

湿式還元法において出発原料として使用される貴金属含有化合物としては、白金化合物として、例えば、塩化白金酸 H(PtCl)・6HO、塩化白金酸アンモニウム(NHPtCl、塩化白金酸カリウム K(PtCl)等が挙げられ、パラジウム化合物として、例えば、塩化パラジウム PdCl、ジクロロジアンミンパラジウム Pd(NHCl、テトラアンミンジクロロパラジウム Pd(NHCl・nHO等が挙げられ、ロジウム化合物として、例えば、塩化ロジウム RhCl・3HO等が挙げられ、イリジウム化合物として、例えば、塩化イリジウム酸 H(IrCl)・6HO等が挙げられる。これらの化合物は、それぞれ単独でまたは合金化すべき金属の種類及び比率に応じて2種もしくはそれ以上を組み合わせて使用することができる。 Examples of the noble metal-containing compound used as a starting material in the wet reduction method include platinum compounds such as chloroplatinic acid H 2 (PtCl 4 ) · 6H 2 O, ammonium chloroplatinate (NH 4 ) 2 PtCl 6 , and platinum chloride. potassium K 2 (PtCl 6), and the like, as the palladium compound, for example, palladium chloride PdCl 2, dichloro-diammine palladium Pd (NH 3) 2 Cl 2 , tetraammine dichloropalladium Pd (NH 3) 4 Cl 2 · nH 2 Examples of the rhodium compound include rhodium chloride RhCl 3 .3H 2 O. Examples of the iridium compound include iridium chloride H 2 (IrCl 6 ) .6H 2 O. These compounds can be used alone or in combination of two or more depending on the kind and ratio of the metal to be alloyed.

これらの貴金属化合物は、水性媒体中に溶解又縣濁させた状態で還元剤を加えて還元することにより貴金属にすることができる。還元に使用しうる還元剤としては、例えば、ヒドラジン水化物、塩酸ヒドラジン、硫酸ヒドラジン等のヒドラジン化合物を挙げることができる。その使用量は、反応における理論量より過剰であればよい。還元は、通常、25〜95℃の温度で行なうことができる。   These noble metal compounds can be converted into noble metals by adding a reducing agent in a dissolved or suspended state in an aqueous medium and reducing the compound. Examples of the reducing agent that can be used for the reduction include hydrazine compounds such as hydrazine hydrate, hydrazine hydrochloride, and hydrazine sulfate. The amount used may be excessive as long as the theoretical amount in the reaction. The reduction can usually be performed at a temperature of 25 to 95 ° C.

また、上記還元は、アンモニウム化合物を添加しつつ行なうことが望ましい。添加しうるアンモニウム化合物としては、例えば、水酸化アンモニウム、酢酸アンモニウム、炭酸アンモニウム、硼酸アンモニウム、塩化アンモニウム等が挙げられ、その添加量は、貴金属1molに対して、NH換算で通常5〜14mol、特に7〜12molの範囲内が好適であり、この範囲内で制御することにより、得られる貴金属粉末のSEM(走査型電子顕微鏡)の写真から測定される平均粒径を0.2〜3μm、好ましくは0.5〜2μmの範囲内にコントロールすることができ、目的とする粒径をもつ貴金属粉末を得ることができる。 The reduction is preferably performed while adding an ammonium compound. Examples of the ammonium compound that can be added include ammonium hydroxide, ammonium acetate, ammonium carbonate, ammonium borate, ammonium chloride, and the like, and the addition amount is usually 5 to 14 mol in terms of NH 3 with respect to 1 mol of noble metal, In particular, the range of 7 to 12 mol is suitable, and by controlling within this range, the average particle diameter measured from the SEM (scanning electron microscope) photograph of the noble metal powder obtained is preferably 0.2 to 3 μm. Can be controlled within a range of 0.5 to 2 μm, and a noble metal powder having a target particle size can be obtained.

このようにして湿式で製造される貴金属粉末の密度は一般に理論密度の90%未満である。この貴金属粉末の密度を理論密度の92%以上、特に94%以上とすることにより電気抵抗の低減化を図ることができる。   The density of the noble metal powder thus produced in a wet manner is generally less than 90% of the theoretical density. The electrical resistance can be reduced by setting the density of the noble metal powder to 92% or more, particularly 94% or more of the theoretical density.

貴金属粉末の密度は熱処理を行うことにより高めることができる。熱処理を行なう際、貴金属粉末の焼結を抑えるために、貴金属粉末の表面に金属塩が担持される。この金属塩は熱処理することにより金属酸化物となるが、この金属酸化物は熱処理後酸又はアルカリ水溶液で処理することにより除去されるので、使用される金属塩は、熱処理によって形成される金属酸化物を酸又はアルカリ水溶液により除去することができるものであることが望ましい。このような金属塩としては、例えば、マグネシウム、イットリウム、亜鉛、アルミニウム、ストロンチウム、カルシウム、バリウム、マンガン等の硝酸塩又は塩化物塩が挙げられる。これらのうち、貴金属粉末への担持性に優れているマグネシウム、イットリウム、亜鉛又はアルミニウムの金属塩が好適である。   The density of the noble metal powder can be increased by heat treatment. When heat treatment is performed, a metal salt is supported on the surface of the noble metal powder in order to suppress sintering of the noble metal powder. This metal salt is converted into a metal oxide by heat treatment, but this metal oxide is removed by treatment with an acid or alkaline aqueous solution after the heat treatment, so that the metal salt used is a metal oxide formed by the heat treatment. It is desirable that the product can be removed with an acid or alkaline aqueous solution. Examples of such metal salts include nitrates or chloride salts such as magnesium, yttrium, zinc, aluminum, strontium, calcium, barium, and manganese. Of these, metal salts of magnesium, yttrium, zinc or aluminum, which are excellent in supportability to noble metal powder, are preferred.

金属塩の担持は、例えば、金属塩を溶解した水溶液に貴金属粉末を分散させ、該金属塩を不溶化処理する、例えば、アンモニア、水酸化ナトリウムなどのアリカリ水溶液を添加して中和することによって行なうことができる。金属塩の担持量は、通常、貴金属粉末に対して、酸化物換算で40000〜60000ppmの範囲内、特に約50000ppmが好適であるが、それに制限されるものではなく、例えば、熱処理温度が低い場合には、少なくとも2000ppmの少ない担持量で熱処理することもでき、また、熱処理温度が高い場合には、約500000ppmまでの高い担持量とすることもできるが、それ以上多量に担持してもそれに伴うだけの効果はない。   The metal salt is supported, for example, by dispersing the noble metal powder in an aqueous solution in which the metal salt is dissolved and insolubilizing the metal salt, for example, by adding an aqueous solution of ant potassium such as ammonia or sodium hydroxide to neutralize the metal salt. be able to. The supported amount of the metal salt is usually within the range of 40,000 to 60,000 ppm in terms of oxide, particularly about 50000 ppm, based on the noble metal powder, but is not limited thereto, for example, when the heat treatment temperature is low Can be heat-treated with a small loading amount of at least 2000 ppm, and when the heat treatment temperature is high, a high loading amount of up to about 500,000 ppm can be obtained, but even if it is loaded in a larger amount, it accompanies it. There is no effect.

金属塩を担持させた貴金属粉末は、次いで、大気または不活性ガス中にて約550〜約1200℃の範囲内の温度で熱処理される。貴金属表面上に担持された金属塩が熱処理中の貴金属粉末の焼結凝集を抑え、貴金属粉末の密度を上げる。熱処理温度が約550℃未満では、粉末の密度が上がらず、反対に約1200℃を超えると、貴金属粉末が焼結凝集し、貴金属粉末の平均粒径が6μmを超えることがあり、それを用いて形成される焼成膜
の電気抵抗を下げる効果が得られない。
The noble metal powder loaded with the metal salt is then heat treated at a temperature in the range of about 550 to about 1200 ° C. in air or an inert gas. The metal salt supported on the surface of the noble metal suppresses the sintering aggregation of the noble metal powder during the heat treatment and increases the density of the noble metal powder. When the heat treatment temperature is less than about 550 ° C., the density of the powder does not increase. Conversely, when the temperature exceeds about 1200 ° C., the noble metal powder may sinter and agglomerate, and the average particle size of the noble metal powder may exceed 6 μm. The effect of lowering the electrical resistance of the fired film formed in this way cannot be obtained.

担持された金属塩は上記の熱処理により金属酸化物となるが、この金属酸化物は熱処理後に除去される。金属酸化物のうち、MgO及びYは酸水溶液、例えば、硝酸、塩酸、硫酸などで処理することにより溶解除去することができ、また、Alはアルカリ水溶液、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液などで処理することにより溶解除去することができ、さらに、ZnOは酸又はアルカリ水溶液の何れでも溶解除去することができる。 The supported metal salt becomes a metal oxide by the above heat treatment, and this metal oxide is removed after the heat treatment. Among the metal oxides, MgO and Y 2 O 3 can be dissolved and removed by treatment with an acid aqueous solution such as nitric acid, hydrochloric acid, sulfuric acid, etc., and Al 2 O 3 is an alkaline aqueous solution such as hydroxylated. It can be dissolved and removed by treatment with a sodium aqueous solution, a potassium hydroxide aqueous solution or the like, and ZnO can be dissolved and removed with either an acid or alkaline aqueous solution.

かくして本発明の貴金属粉末を得ることができる。   Thus, the noble metal powder of the present invention can be obtained.

本発明により提供される貴金属粉末は、電気伝導性に優れており、例えば、導体回路素子用の導電ペーストとして有利に使用することができる。   The noble metal powder provided by the present invention is excellent in electrical conductivity, and can be advantageously used as, for example, a conductive paste for a conductor circuit element.

本発明の貴金属粉末は、従来の導体ペーストの調製法と同様にして、フリットと共にビヒクル中に、例えば、3本ロールミルなどを用いて混合分散させることにより導電ペーストとすることができる。フリットは、セラミックス基体への貴金属膜の密着性の付与や貴金属膜の抵抗調整材及びヒーター使用時の貴金属導電膜中の貴金属の結晶粒の粗大化を抑制するなどの目的で使用されるものであり、本発明で使用されるフリットとしては、例えば、Al、ZrO、Y、CaO、MgO、V、SiOなどが挙げられ、これらは、基板成分、焼成温度、使用条件などに応じて、それぞれ単独で又は2種もしくはそれ以上を組み合わせて使用することができる。 The noble metal powder of the present invention can be made into a conductive paste by mixing and dispersing in a vehicle together with a frit using, for example, a three-roll mill in the same manner as in the conventional method for preparing a conductive paste. The frit is used for the purpose of imparting the adhesion of the noble metal film to the ceramic substrate and suppressing the coarsening of the noble metal crystal grains in the noble metal conductive film when the noble metal film resistance adjusting material and heater are used. Examples of the frit used in the present invention include Al 2 O 3 , ZrO 2 , Y 2 O 3 , CaO, MgO, V 2 O 5 , SiO 2, and the like. Depending on the temperature, use conditions, etc., each can be used alone or in combination of two or more.

ビヒクルとしては、例えば、エチルセルロース、アルキッド、ポリビニルプチラール、アクリル樹脂などをターピネオール、ブチルカルビトール、ブチルカルビトールアセテート、セルソルブなどの高沸点溶剤に溶解したものを使用することができる。   As the vehicle, for example, ethyl cellulose, alkyd, polyvinyl petital, acrylic resin or the like dissolved in a high boiling point solvent such as terpineol, butyl carbitol, butyl carbitol acetate, or cellosolve can be used.

導電ペーストの組成は、貴金属粉末の粒径及び量、フリットの種類、粒径及び量、ビヒクルの組成及び量、焼成条件、製品の用途などに応じて適宜変えることができるが、一般に、貴金属粉末は65〜85mass%、フリットは5〜15mass%、そしてビヒクルは10〜20mass%の範囲内が適当である。   The composition of the conductive paste can be appropriately changed according to the particle size and amount of the noble metal powder, the type and size of the frit, the particle size and amount, the composition and amount of the vehicle, the firing conditions, the use of the product, etc. Is suitable in the range of 65 to 85 mass%, frit in the range of 5 to 15 mass%, and vehicle in the range of 10 to 20 mass%.

以下、本発明を実施例により更に具体的に説明するが、本発明は下記実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited only to the following Example.

実施例1
白金換算で400gの塩化白金酸を含む水溶液2000mlを80℃に加熱し、予め調製し80℃に保持した80%ヒドラジン水和物200mlと、NH換算で280gの酢酸アンモニウムを含む水溶液3200mlを徐々に加えて反応させ、洗浄、ろ過、乾燥を行ない、平均粒径1μmの球形状白金粉末を得た。次いで、白金粉末の質量に対してY換算で50000ppmとなるように計量した硝酸イットリウムの水溶液に球形状白金粉末を分散させ後、室温以下に冷却し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上にイットリウム錯体を析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持されたイットリウム錯体を再度溶解し、ICPで分析したところ、白金粉末表面上に酸化イットリウム換算で49550ppmのイットリウム錯体が担持されていることがわかった。
Example 1
Heating 2000 ml of an aqueous solution containing 400 g of chloroplatinic acid in terms of platinum to 80 ° C., gradually preparing 200 ml of 80% hydrazine hydrate previously prepared and maintained at 80 ° C., and 3200 ml of an aqueous solution containing 280 g of ammonium acetate in terms of NH 3 In addition to the reaction, washing, filtration and drying were performed to obtain spherical platinum powder having an average particle diameter of 1 μm. Next, after dispersing the spherical platinum powder in an aqueous solution of yttrium nitrate measured so as to be 50000 ppm in terms of Y 2 O 3 with respect to the mass of the platinum powder, it is cooled to room temperature or lower and neutralized by adding an aqueous ammonia solution. As a result, a platinum powder in which an yttrium complex was deposited and supported on the surface of the spherical platinum powder was obtained. A part of the sample was collected, and the yttrium complex supported on the platinum powder was dissolved again and analyzed by ICP. As a result, it was found that 49550 ppm of yttrium complex was supported on the platinum powder surface in terms of yttrium oxide.

次いで、イットリウム錯体を析出担持した白金粉末を大気中1000℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which the yttrium complex was deposited and held at 1000 ° C. in the atmosphere for 2 hours.

熱処理にて白金粉末表面上に生成した酸化イットリウムを硝酸で溶解させて除去し、白金粉末を得た。得られた白金粉末の不純物分析を行ったところ、イットリウムの残存量は80ppmであった。   The yttrium oxide produced on the surface of the platinum powder by the heat treatment was dissolved and removed with nitric acid to obtain platinum powder. When the obtained platinum powder was analyzed for impurities, the residual amount of yttrium was 80 ppm.

該白金粉末、アルミナ粉末、及びエチルセルロースとターピネオール等とからなる有機ビヒクルを、白金粉末80mass%、アルミナ粉末8mass%及び有機ビヒクル12mass%の成分組成となるように計量し、一次混練した後、3本ロールミルにて仕上げ混練を行い、白金ペースト30gを得た。   The platinum powder, alumina powder, and an organic vehicle composed of ethyl cellulose and terpineol are weighed so as to have a component composition of 80 mass% platinum powder, 8 mass% alumina powder, and 12 mass% organic vehicle, and after primary kneading, three Finish kneading was performed with a roll mill to obtain 30 g of a platinum paste.

実施例2
実施例1と同様にして得られたイットリウム錯体を析出担持した白金粉末を大気中1200℃で2時間保持することにより熱処理を行った。
Example 2
Heat treatment was performed by holding the platinum powder deposited and supported by the yttrium complex obtained in the same manner as in Example 1 at 1200 ° C. for 2 hours in the atmosphere.

熱処理にて白金粉末表面上に生成した酸化イットリウムを硝酸で溶解させて除去し、白金粉末を得た。   The yttrium oxide produced on the surface of the platinum powder by the heat treatment was dissolved and removed with nitric acid to obtain platinum powder.

次いで、該白金粉末を実施例1と同様に処理して、白金ペースト30gを得た。   Next, the platinum powder was treated in the same manner as in Example 1 to obtain 30 g of a platinum paste.

実施例3
実施例1で得られた平均粒径1μmの球形状白金粉末の質量に対してY換算で5000ppmとなるように計量した硝酸イットリウムの水溶液に球形状白金粉末を分散させ後、室温以下に冷却し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上にイットリウム錯体を析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持されたイットリウム錯体を再度溶解し、ICPで分析したところ、白金粉末表面上に酸化イットリウム換算で4970ppmのイットリウム錯体が担持されていることがわかった。
Example 3
After dispersing the spherical platinum powder in an aqueous solution of yttrium nitrate weighed to 5000 ppm in terms of Y 2 O 3 with respect to the mass of the spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, the temperature is below room temperature. The mixture was neutralized by adding an aqueous ammonia solution to obtain platinum powder on which the yttrium complex was deposited and supported on the surface of the spherical platinum powder. A part of the sample was collected, and the yttrium complex supported on the platinum powder was dissolved again and analyzed by ICP. As a result, it was found that 4970 ppm of yttrium complex was supported on the platinum powder surface in terms of yttrium oxide.

次いで、イットリウム錯体を析出担持した白金粉末を大気中600℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which the yttrium complex was deposited and held at 600 ° C. in the atmosphere for 2 hours.

熱処理にて白金粉末表面上に生成した酸化イットリウムを硝酸で溶解させて除去し、白金粉末を得た。   The yttrium oxide produced on the surface of the platinum powder by the heat treatment was dissolved and removed with nitric acid to obtain platinum powder.

該白金粉末を実施例1と同様に処理して、白金ペースト30gを得た。   The platinum powder was treated in the same manner as in Example 1 to obtain 30 g of a platinum paste.

実施例4
実施例1で得られた平均粒径1μmの球形状白金粉末の質量に対してMgO換算で5000ppmとなるように計量した硝酸マグネシウムの水溶液に球形状白金粉末を分散させ後、60℃に加熱し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上に水酸化マグネシウムを析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持された水酸化マグネシウムを再度溶解し、ICPで分析したところ、白金粉末表面上に酸化マグネシウム換算で4960ppmの水酸化マグネシウムが担持されていた。
Example 4
The spherical platinum powder was dispersed in an aqueous solution of magnesium nitrate measured to be 5000 ppm in terms of MgO with respect to the mass of the spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, and then heated to 60 ° C. Then, an aqueous ammonia solution was added for neutralization to obtain platinum powder having magnesium hydroxide deposited and supported on the surface of the spherical platinum powder. A part of the sample was collected, and the magnesium hydroxide supported on the platinum powder was dissolved again and analyzed by ICP. As a result, 4960 ppm of magnesium hydroxide in terms of magnesium oxide was supported on the surface of the platinum powder.

次いで、水酸化マグネシウムを析出担持した白金粉末を大気中800℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which magnesium hydroxide was deposited and supported at 800 ° C. for 2 hours in the air.

熱処理にて白金粉末表面上に生成した酸化マグネシウムを硝酸で溶解させて除去し、白金粉末を得た。得られた白金粉末の不純物分析を行ったところ、マグネシウムの残存量は77ppmであった。   Magnesium oxide formed on the surface of the platinum powder by heat treatment was dissolved in nitric acid and removed to obtain platinum powder. As a result of impurity analysis of the obtained platinum powder, the residual amount of magnesium was 77 ppm.

該白金粉末を実施例1と同様に処理して、白金ペースト30gを得た。   The platinum powder was treated in the same manner as in Example 1 to obtain 30 g of a platinum paste.

実施例5
実施例1で得られた平均粒径1μmの球形状白金粉末の質量に対してZnO換算で5000ppmとなるように計量した硝酸亜鉛の水溶液に球形状白金粉末を分散させ後、60℃に加熱し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上に亜鉛錯体を析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持された亜鉛錯体を再度溶解し、ICPで分析したところ、白金粉末表面上に酸化亜鉛換算で4950ppmの亜鉛錯体が担持されていることがわかった。
Example 5
The spherical platinum powder was dispersed in an aqueous solution of zinc nitrate measured to be 5000 ppm in terms of ZnO with respect to the mass of the spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, and then heated to 60 ° C. Then, an aqueous ammonia solution was added for neutralization, and a platinum powder having a zinc complex deposited and supported on the surface of a spherical platinum powder was obtained. A part of the sample was collected, the zinc complex supported on the platinum powder was dissolved again, and analyzed by ICP. As a result, it was found that 4950 ppm of zinc complex in terms of zinc oxide was supported on the surface of the platinum powder.

次いで、亜鉛錯体を析出担持した白金粉末を大気中700℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which the zinc complex was deposited and held at 700 ° C. in the atmosphere for 2 hours.

熱処理にて白金粉末表面上に生成した酸化亜鉛を塩酸で溶解させて除去し、白金粉末を得た。得られた白金粉末の不純物分析を行ったところ、亜鉛の残存量は430ppmであった。   Zinc oxide formed on the surface of the platinum powder by heat treatment was removed by dissolving with hydrochloric acid to obtain platinum powder. When the obtained platinum powder was analyzed for impurities, the residual amount of zinc was 430 ppm.

該白金粉末を実施例1と同様に処理して、白金ペースト30gを得た。   The platinum powder was treated in the same manner as in Example 1 to obtain 30 g of a platinum paste.

実施例6
パラジウム換算で50gのジクロロジアンミンパラジウム粉末と純水を50℃に加熱し、28%アンモニア水溶液160mlを加え、予め調製し45℃に保持した硫酸ヒドラジン水溶液3000mlを加え反応させ、洗浄、ろ過、乾燥を行ない、平均粒径1μmの球形状パラジウム粉末を得た。次いで、パラジウム粉末の質量に対してMgO換算で50000ppmとなるように計量した硝酸マグネシウムの水溶液に球形状パラジウム粉末を分散させ後、60℃に加熱して、アンモニア水溶液を添加して中和し、球形状パラジウム粉末表面上に水酸化マグネシウムを析出担持したパラジウム粉末を得た。その一部を採取し、パラジウム粉末に担持された水酸化マグネシウムを再度溶解させ、ICPで分析したところ、パラジウム粉末表面上に酸化マグネシウム換算で49520ppmの水酸化マグネシウムが担持されていることがわかった。
Example 6
Heat 50g of dichlorodiammine palladium powder and pure water to 50 ° C in terms of palladium, add 160ml of 28% ammonia aqueous solution, react with 3000ml of hydrazine sulfate aqueous solution prepared in advance and kept at 45 ° C, wash, filter and dry. Then, a spherical palladium powder having an average particle diameter of 1 μm was obtained. Next, after dispersing the spherical palladium powder in an aqueous solution of magnesium nitrate measured so as to be 50000 ppm in terms of MgO with respect to the mass of the palladium powder, it is heated to 60 ° C. and neutralized by adding an aqueous ammonia solution, A palladium powder having magnesium hydroxide deposited and supported on the surface of the spherical palladium powder was obtained. A part of the sample was collected, and the magnesium hydroxide supported on the palladium powder was dissolved again and analyzed by ICP. As a result, it was found that 49520 ppm magnesium hydroxide in terms of magnesium oxide was supported on the palladium powder surface. .

次いで、水酸化マグネシウムを析出担持したパラジウム粉末を不活性ガス中800℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the palladium powder on which magnesium hydroxide was deposited and supported at 800 ° C. for 2 hours in an inert gas.

熱処理にてパラジウム粉末表面上に生成した酸化マグネシウムとマグネシウムを硝酸で溶解させて除去し、パラジウム粉末を得た。   Magnesium oxide and magnesium produced on the surface of the palladium powder by heat treatment were dissolved and removed with nitric acid to obtain palladium powder.

該パラジウム粉末を実施例1と同様に処理して、パラジウムペースト30gを得た。   The palladium powder was treated in the same manner as in Example 1 to obtain 30 g of palladium paste.

実施例7
白金換算で45gの塩化白金酸を含む水溶液300mlとロジウム換算で5gの塩化ロジウム酸を含む水溶液25mlを混合し、その混合溶液を80℃に加熱し、予め調製し80℃に保持した80%ヒドラジン水和物20mlとNH換算で28gの酢酸アンモニウムを含む水溶液320mlを徐々に加え反応させ、洗浄、ろ過、乾燥を行ない、平均粒径1μmの球形状をした90mass%Pt−10mass%Rh合金粉末を得た。
Example 7
80% hydrazine prepared by mixing 300 ml of an aqueous solution containing 45 g of chloroplatinic acid in terms of platinum and 25 ml of an aqueous solution containing 5 g of chloroplatinic acid in terms of rhodium, heating the mixed solution to 80 ° C., and maintaining the mixture at 80 ° C. 90 mass% Pt-10 mass% Rh alloy powder having a spherical shape with an average particle diameter of 1 μm, which is reacted by gradually adding 20 ml of hydrate and 320 ml of an aqueous solution containing 28 g of ammonium acetate in terms of NH 3 , washing, filtering and drying. Got.

次いで、合金粉末の質量に対してY換算で20000ppmとなるように計量した硝酸イットリウムの水溶液に該合金粉末を分散させ後、室温以下に冷却し、アンモニア水溶液を添加して中和し、90mass%Pt−10mass%Rh合金粉末表面上にイットリウム錯体を析出担持した合金粉末を得た。その一部を採取し、該合金粉末に担持さ
れたイットリウム錯体を再度溶解し、ICPで分析したところ、該合金粉末表面上に酸化イットリウム換算で19850ppmのイットリウム錯体が担持されていることがわかった。
Next, the alloy powder is dispersed in an aqueous solution of yttrium nitrate measured to 20000 ppm in terms of Y 2 O 3 with respect to the mass of the alloy powder, cooled to room temperature or lower, and neutralized by adding an aqueous ammonia solution. , 90 mass% Pt-10 mass% Rh alloy powder on which the yttrium complex was deposited and supported was obtained. A part of the sample was collected, the yttrium complex supported on the alloy powder was dissolved again, and analyzed by ICP. As a result, it was found that 19850 ppm of yttrium complex was supported on the surface of the alloy powder in terms of yttrium oxide. .

次いで、イットリウム錯体を析出担持した90mass%−Pt10mass%Rh合金粉末を大気中1200℃で2時間保持する熱処理を行った。   Next, a heat treatment was performed in which 90 mass% -Pt 10 mass% Rh alloy powder on which yttrium complex was deposited and supported was held at 1200 ° C. for 2 hours in the atmosphere.

熱処理にて該合金粉末表面上に生成した酸化イットリウムを硝酸で溶解させて除去し、90mass%−Pt10mass%Rh合金粉末を得た。   The yttrium oxide produced on the surface of the alloy powder by heat treatment was removed by dissolving with nitric acid to obtain a 90 mass% -Pt10 mass% Rh alloy powder.

該合金粉末を実施例1と同様に処理して、90mass%−Pt10mass%Rh合金粉末ペースト30gを得た。   The alloy powder was treated in the same manner as in Example 1 to obtain 30 g of 90 mass% -Pt 10 mass% Rh alloy powder paste.

実施例8
白金換算で45gの塩化白金酸を含む水溶液300mlとパラジウム換算で5gの塩化パラジウム酸を含む水溶液25mlを混合し、その混合溶液を80℃に加熱し、予め調製し80℃に保持した80%ヒドラジン水和物20mlとNH換算で28gの酢酸アンモニウムを含む水溶液320mlを徐々に加え反応させ、洗浄、ろ過、乾燥を行ない、平均粒径1μmの球形状をした90mass%Pt−10mass%Pd合金粉末を得た。
Example 8
80% hydrazine prepared by mixing 300 ml of an aqueous solution containing 45 g of chloroplatinic acid in terms of platinum and 25 ml of an aqueous solution containing 5 g of chloropalladium acid in terms of palladium, heating the mixed solution to 80 ° C., and maintaining the mixture at 80 ° C. 90 mass% Pt-10 mass% Pd alloy powder having a spherical shape with an average particle diameter of 1 μm, which is made to react by gradually adding 20 ml of hydrate and 320 ml of an aqueous solution containing 28 g of ammonium acetate in terms of NH 3 , washing, filtering and drying. Got.

次いで、合金粉末の質量に対してAl換算で5000ppmとなるように計量した硝酸アルミニウムの水溶液に該合金粉末を分散させ後、60℃にて加熱して、アンモニア水溶液を添加して中和し、90mass%Pt−10mass%Pd合金粉末表面上にアルミニウム錯体を析出担持した合金粉末を得た。その一部を採取し、該合金粉末に担持されたアルミニウム錯体を再度溶解し、ICPで分析したところ、該合金粉末表面上に酸化アルミニウム換算で4960ppmのアルミニウム錯体が担持されていることがわかった。 Next, the alloy powder was dispersed in an aqueous solution of aluminum nitrate measured so as to be 5000 ppm in terms of Al 2 O 3 with respect to the mass of the alloy powder, and then heated at 60 ° C. The alloy powder which carried out precipitation carrying | support of the aluminum complex on the 90mass% Pt-10mass% Pd alloy powder surface was obtained. A part of the sample was collected, the aluminum complex supported on the alloy powder was dissolved again, and analyzed by ICP. As a result, it was found that 4960 ppm of aluminum complex in terms of aluminum oxide was supported on the surface of the alloy powder. .

次いで、アルミニウム錯体を析出担持した90mass%−Pt10mass%Pd合金粉末を大気中800℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the 90 mass% -Pt 10 mass% Pd alloy powder on which the aluminum complex was deposited and supported at 800 ° C. for 2 hours in the atmosphere.

熱処理にて該合金粉末表面上に生成した酸化アルミニウムを水酸化ナトリウム水溶液にて溶解させて除去し、90mass%−Pt10mass%Pd合金粉末を得た。得られた合金粉末の不純物分析を行ったところ、アルミニウムの残存量は40ppmであった。   Aluminum oxide formed on the surface of the alloy powder by heat treatment was dissolved and removed with an aqueous sodium hydroxide solution to obtain 90 mass% -Pt 10 mass% Pd alloy powder. When the impurity analysis of the obtained alloy powder was performed, the residual amount of aluminum was 40 ppm.

次いで、該合金粉末を実施例1と同様に処理して、90mass%Pt−10mass%Pd合金粉末ペースト30gを得た。   Next, the alloy powder was treated in the same manner as in Example 1 to obtain 30 g of 90 mass% Pt-10 mass% Pd alloy powder paste.

実施例9
白金45gを含む塩化白金酸水溶液300mlとイリジウム5gを含む塩化イリジウム酸溶液25ml混合した溶液を80℃に加熱し、予め調製し80℃に保持した80%ヒドラジン水和物20mlとNH換算で28gの酢酸アンモニウムを含む水溶液320mlを徐々に加え反応させ、洗浄、ろ過、乾燥を行ない、平均粒径0.7μmの球形状の90mass%−Pt10mass%Ir合金粉末を得た。次いで、該合金粉末の質量に対してMgO換算で3000ppmとなるように計量した硝酸マグネシウムの水溶液に該合金粉末を分散させ後、60℃に加熱し、アンモニア水溶液を添加して中和し、該合金粉末表面上に水酸化マグネシウムを析出担持した90mass%Pt−10mass%Ir合金粉末を得た。その一部を採取し、該合金粉末に担持された水酸化マグネシウムを再度溶解し、ICPで分析したところ、該合金粉末表面上に酸化マグネシウム換算で2975ppmの水酸化マグネシウムが担持されていることがわかった。
Example 9
A solution prepared by mixing 300 ml of an aqueous chloroplatinic acid solution containing 45 g of platinum and 25 ml of a chloroiridium acid solution containing 5 g of iridium was heated to 80 ° C., and was previously prepared and maintained at 80 ° C. 20 ml of 80% hydrazine hydrate and 28 g in terms of NH 3. After gradually adding 320 ml of an aqueous solution containing ammonium acetate, the mixture was reacted, washed, filtered and dried to obtain spherical 90 mass% -Pt 10 mass% Ir alloy powder having an average particle size of 0.7 μm. Next, the alloy powder is dispersed in an aqueous solution of magnesium nitrate measured to be 3000 ppm in terms of MgO with respect to the mass of the alloy powder, and then heated to 60 ° C., neutralized by adding an aqueous ammonia solution, A 90 mass% Pt-10 mass% Ir alloy powder in which magnesium hydroxide was deposited and supported on the surface of the alloy powder was obtained. A part of the sample was sampled and the magnesium hydroxide supported on the alloy powder was dissolved again and analyzed by ICP. As a result, it was found that 2975 ppm magnesium hydroxide in terms of magnesium oxide was supported on the surface of the alloy powder. all right.

次いで、水酸化マグネシウムを析出担持した90mass%Pt−10mass%Ir合金粉末を大気中1000℃で2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding 90 mass% Pt-10 mass% Ir alloy powder on which magnesium hydroxide was deposited and supported at 1000 ° C. for 2 hours in the atmosphere.

熱処理にて該合金粉末表面上に生成した酸化マグネシウムを硝酸溶解させて除去し、90mass%Pt−10mass%Ir合金粉末を得た。   Magnesium oxide formed on the surface of the alloy powder by heat treatment was removed by dissolving in nitric acid to obtain 90 mass% Pt-10 mass% Ir alloy powder.

次いで、該合金粉末を実施例1と同様に処理して、90mass%Pt−10mass%Ir合金粉末ペースト30gを得た。   Next, the alloy powder was treated in the same manner as in Example 1 to obtain 30 g of 90 mass% Pt-10 mass% Ir alloy powder paste.

比較例1
実施例1で得られた平均粒径1μmの熱処理していない球形状白金粉末を使用し、実施例1と同様にして、白金ペースト30gを得た。
Comparative Example 1
30 g of platinum paste was obtained in the same manner as in Example 1, using the non-heat treated spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1.

比較例2
実施例1で得られた平均粒径1μmの球形状白金粉末と、該白金粉末の質量に対してMgO換算で50000ppmとなるように計量した酸化マグネシウムとを混合し、次いで、大気中800℃で2時間保持することにより熱処理を行ない、白金粉末と酸化マグネシウムとの混合粉末を得た。
Comparative Example 2
The spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1 and magnesium oxide weighed so as to be 50000 ppm in terms of MgO with respect to the mass of the platinum powder were mixed, and then at 800 ° C. in the atmosphere. By maintaining for 2 hours, heat treatment was performed to obtain a mixed powder of platinum powder and magnesium oxide.

次いで、該混合粉末中の酸化マグネシウムを硝酸で溶解させて酸化マグネシウムを除去し、白金粉末を得た。   Subsequently, the magnesium oxide in the mixed powder was dissolved with nitric acid to remove the magnesium oxide to obtain a platinum powder.

次いで、該白金粉末を使用して実施例1と同様に処理して、白金ペースト30gを得た。   Next, the platinum powder was used in the same manner as in Example 1 to obtain 30 g of a platinum paste.

比較例3
実施例1で得られた平均粒径1μmの球形状白金粉末と、該白金粉末の質量に対してMgO換算で50000ppmとなるように計量した酸化マグネシウムと有機ビヒクルとを3本ロールミルで混合し、次いで140℃で乾燥してビヒクル成分を飛散させ、大気中で800℃にて2時間保持することにより熱処理を行ない、白金粉末と酸化マグネシウムとの混合粉末を得た。
Comparative Example 3
The spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, the magnesium oxide weighed so as to be 50000 ppm in terms of MgO with respect to the mass of the platinum powder, and an organic vehicle are mixed in a three roll mill, Next, it was dried at 140 ° C. to disperse the vehicle components, and heat treatment was carried out by holding at 800 ° C. for 2 hours in the air to obtain a mixed powder of platinum powder and magnesium oxide.

次いで、該混合粉末中の酸化マグネシウムを硝酸で溶解させて酸化マグネシウムを除去し、白金粉末を得た。   Subsequently, the magnesium oxide in the mixed powder was dissolved with nitric acid to remove the magnesium oxide to obtain a platinum powder.

次いで、該白金粉末を使用して実施例1と同様に処理して、白金ペースト30gを得た。   Next, the platinum powder was used in the same manner as in Example 1 to obtain 30 g of a platinum paste.

比較例4
実施例4で得られた酸化マグネシウムが白金粉末表面上に担持された熱処理していない白金粉末を使用して、実施例1と同様に処理して、白金ペースト30gを得た。
Comparative Example 4
Using the non-heat-treated platinum powder having the magnesium oxide obtained in Example 4 supported on the surface of the platinum powder, the same treatment as in Example 1 was performed to obtain 30 g of a platinum paste.

比較例5
実施例1で得られた平均粒径1μmの球形状白金粉末と、該白金粉末の質量に対してMgO換算で300000ppmとなるように計量した酸化マグネシウム粉末とを混合し、次いで、大気中で800℃にて2時間保持することにより熱処理を行ない、白金粉末と酸化マグネシウムとの混合粉末を得た。
Comparative Example 5
The spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1 and the magnesium oxide powder weighed so as to be 300,000 ppm in terms of MgO with respect to the mass of the platinum powder are mixed, and then 800 in the air. Heat treatment was performed by holding at 2 ° C. for 2 hours to obtain a mixed powder of platinum powder and magnesium oxide.

次いで、該混合粉末中の酸化マグネシウムを硝酸で溶解させて除去し、白金粉末を得た
Next, magnesium oxide in the mixed powder was removed by dissolving with nitric acid to obtain platinum powder.

該白金粉末を使用して実施例1と同様に処理して、白金ペースト30gを得た。   The platinum powder was used in the same manner as in Example 1 to obtain 30 g of platinum paste.

比較例6
実施例1で得られた平均粒径1μmの球形状白金粉末の質量に対してSrO換算で50000ppmとなるように計量した硝酸ストロンチウムの水溶液に該球形状白金粉末を分散させ後、60℃に加熱し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上にストロンチウム錯体を析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持されたストロンチウム錯体を再度溶解し、ICPで分析したところ、白金粉末表面上に酸化ストロンチウム換算で190ppmのストロンチウム錯体が担持されていた。
Comparative Example 6
The spherical platinum powder was dispersed in an aqueous solution of strontium nitrate measured so as to be 50000 ppm in terms of SrO with respect to the mass of the spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, and then heated to 60 ° C. Then, an aqueous ammonia solution was added for neutralization to obtain a platinum powder on which the strontium complex was deposited and supported on the surface of the spherical platinum powder. A part of the strontium complex supported on the platinum powder was dissolved again and analyzed by ICP. As a result, 190 ppm of strontium complex in terms of strontium oxide was supported on the surface of the platinum powder.

次いで、ストロンチウム錯体を析出担持した白金粉末を大気中で600℃にて2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which the strontium complex was deposited and supported at 600 ° C. for 2 hours in the air.

熱処理にて白金粉末表面上に生成した酸化ストロンチウムを硝酸で溶解して除去し、白金粉末を得た。   Strontium oxide formed on the surface of the platinum powder by heat treatment was removed by dissolving with nitric acid to obtain platinum powder.

該白金粉末を使用して実施例1と同様に処理して、白金ペースト30gを得た。   The platinum powder was used in the same manner as in Example 1 to obtain 30 g of platinum paste.

比較例7
実施例1で得られた平均粒径1μmの球形状白金粉末の質量に対して質量に対してCaO換算で50000ppmとなるように計量した硝酸カルシウムの水溶液に該球形状白金粉末を分散させ後、60℃に加熱し、アンモニア水溶液を添加して中和し、球形状白金粉末表面上にカルシウム錯体を析出担持した白金粉末を得た。その一部を採取し、白金粉末に担持されたカルシウム錯体を再度溶解し、ICPで分析したところ、白金粉末表面上に酸化カルシウム換算で175ppmの水酸化カルシウムが担持されていることがわかった。
Comparative Example 7
After dispersing the spherical platinum powder in an aqueous solution of calcium nitrate measured so as to be 50000 ppm in terms of CaO with respect to the mass with respect to the mass of the spherical platinum powder having an average particle diameter of 1 μm obtained in Example 1, The mixture was heated to 60 ° C. and neutralized by adding an aqueous ammonia solution to obtain platinum powder in which a calcium complex was deposited and supported on the surface of the spherical platinum powder. A part of the sample was collected, the calcium complex supported on the platinum powder was dissolved again, and analyzed by ICP. As a result, it was found that 175 ppm of calcium hydroxide in terms of calcium oxide was supported on the platinum powder surface.

次いで、カルシウム錯体を析出担持した白金粉末を大気中で600℃にて2時間保持することにより熱処理を行った。   Next, heat treatment was performed by holding the platinum powder on which the calcium complex was deposited and supported at 600 ° C. for 2 hours in the air.

次いで、熱処理にて白金粉末表面上に生成した酸化カルシウムを硝酸で溶解させて除去し、白金粉末を得た。   Next, calcium oxide produced on the surface of the platinum powder by heat treatment was dissolved and removed with nitric acid to obtain platinum powder.

次いで、該白金粉末を使用して実施例1と同様に処理して、白金ペースト30gを得た。   Next, the platinum powder was used in the same manner as in Example 1 to obtain 30 g of a platinum paste.

比較例8
実施例6で得られた平均粒径1μmの熱処理していない球形状パラジウム粉末を使用し、実施例6と同様にして、白金ペースト30gを得た。
Comparative Example 8
30 g of platinum paste was obtained in the same manner as in Example 6 by using the non-heat-treated spherical palladium powder obtained in Example 6 and having an average particle diameter of 1 μm.

比較例9
実施例7で得られた平均粒径1μmの熱処理していない球形状90mass%Pt−10mass%Rh合金粉末を使用し、実施例7と同様にして、白金ペースト30gを得た。
Comparative Example 9
Using the non-heat-treated spherical 90 mass% Pt-10 mass% Rh alloy powder having an average particle diameter of 1 μm obtained in Example 7, 30 g of platinum paste was obtained in the same manner as in Example 7.

比較例10
実施例8で得られた平均粒径1μmの熱処理していない球形状90mass%Pt−10mass%Pd合金粉末を使用し、実施例8と同様にして、白金ペースト30gを得た
Comparative Example 10
Using the non-heat-treated spherical 90 mass% Pt-10 mass% Pd alloy powder obtained in Example 8 and having an average particle diameter of 1 μm, 30 g of platinum paste was obtained in the same manner as in Example 8.

比較例11
実施例9で得られた平均粒径0.7μmの熱処理していない球形状90mass%−Pt10mass%Ir合金粉末を使用し、実施例9と同様にして、白金ペースト30gを得た。
Comparative Example 11
30 g of platinum paste was obtained in the same manner as in Example 9, using the non-heat-treated spherical 90 mass% -Pt 10 mass% Ir alloy powder obtained in Example 9 and having an average particle size of 0.7 μm.

以上の実施例及び比較例で得られた粉末について、比重瓶による真比重(粉末の密度)を測定した。その結果を表−1に示す。表−1において、○は粉末の密度が各貴金属粉末の理論密度の92%以上であることを示し、×は92%未満であることを示す。   About the powder obtained by the above Example and comparative example, true specific gravity (powder density) by a specific gravity bottle was measured. The results are shown in Table-1. In Table 1, o indicates that the density of the powder is 92% or more of the theoretical density of each noble metal powder, and X indicates that it is less than 92%.

また、実施例及び比較例で得られた粉末について、粉末の加熱減量を熱重量分析装置(TG−DTA)にて測定した。その結果も表−1に示す。表−1において、○は加熱減量が0.2%未満であることを示し、×は0.2%以上であることを示す。   Moreover, about the powder obtained by the Example and the comparative example, the heat loss of the powder was measured with the thermogravimetric analyzer (TG-DTA). The results are also shown in Table-1. In Table 1, o indicates that the loss on heating is less than 0.2%, and x indicates 0.2% or more.

さらに、実施例及び比較例で得られた粉末について、沈降法による平均粒径を測定した。その結果も表−1に示す。表−1において、○は粉末の平均粒径が6μm以下であることを表し、×は6μm超であることを表す。   Furthermore, the average particle diameter by the sedimentation method was measured about the powder obtained by the Example and the comparative example. The results are also shown in Table-1. In Table 1, ◯ represents that the average particle diameter of the powder is 6 μm or less, and x represents that it is more than 6 μm.

他方、実施例及び比較例で得られたペーストをスクリーン印刷し、乾燥したペースト膜を基板より剥がし、丸めたペースト膜を作製し、このペースト膜を加熱した時の収縮特性を熱機械分析装置(TMA)にて測定した。収縮特性で白金膜が膨張する温度領域が観察されるものを×(0.1%以上)とし、膨張が見られなかったものを○(0.1%未満)とし、その結果を表−1に併せて示す。   On the other hand, the pastes obtained in Examples and Comparative Examples were screen-printed, the dried paste film was peeled off from the substrate, a rounded paste film was produced, and the shrinkage characteristics when this paste film was heated were analyzed by a thermomechanical analyzer ( TMA). Those in which the temperature range in which the platinum film expands due to shrinkage characteristics are observed are indicated as x (0.1% or more), and those where no expansion is observed are indicated as ○ (less than 0.1%). It shows together with.

また、実施例及び比較例で得られたペーストをアルミナ基体にスクリーン印刷した後、100℃で20分間乾燥後、1500℃で60分間保持焼成して導電膜を形成した。得られた導電膜について、マルチテスター及び表面粗さ計を用いて比抵抗値を求めた。その結果も表−1に示す。   The pastes obtained in Examples and Comparative Examples were screen-printed on an alumina substrate, dried at 100 ° C. for 20 minutes, and held and fired at 1500 ° C. for 60 minutes to form a conductive film. About the obtained electrically conductive film, the specific resistance value was calculated | required using the multi tester and the surface roughness meter. The results are also shown in Table-1.

上記表−1に示すとおり、貴金属粉末上に金属塩を担持し熱処理を行い、次いで生成する金属酸化物を除去することによって、白金粉末の対理論密度比は86.4%(比較例1
)から95.6%(実施例1)に増加し、白金ペースト導電膜の比抵抗は23.8μΩcm(比較例1)から21.9μΩcm(実施例1)に低減した。また、加熱減量は0.65%(比較例1)から0.17%(実施例1)に低下し、白金粉末に付着している不純物が取り除かれ、ペースト膜の熱膨張も1.7%(比較例1)から0.017%(実施例1)と著しく低下した。
As shown in Table 1, the theoretical density ratio of the platinum powder is 86.4% (Comparative Example 1) by supporting the metal salt on the noble metal powder, performing heat treatment, and then removing the metal oxide to be formed.
) To 95.6% (Example 1), and the specific resistance of the platinum paste conductive film was reduced from 23.8 μΩcm (Comparative Example 1) to 21.9 μΩcm (Example 1). Further, the heat loss is reduced from 0.65% (Comparative Example 1) to 0.17% (Example 1), impurities adhering to the platinum powder are removed, and the thermal expansion of the paste film is 1.7%. From (Comparative Example 1), it was significantly reduced to 0.017% (Example 1).

上記表−1から明らかなとおり、本発明に従う実施例1〜9の貴金属粉末は密度が高く、貴金属ペースト導電膜の比抵抗が低く、膨張もないという優れた特性を有する。   As is clear from Table 1 above, the noble metal powders of Examples 1 to 9 according to the present invention have excellent properties such as high density, low specific resistance of the noble metal paste conductive film, and no expansion.

これに対し、熱処理を行っていない比較例1、比較例8、比較例9、比較例10及び比較例11の貴金属粉末は、それに付着している不純物によって、ペースト膜の膨張がおこり、また、貴金属粉末の密度が対理論密度比90%未満であり、貴金属ペースト導電膜の比抵抗も高い。   In contrast, the noble metal powders of Comparative Example 1, Comparative Example 8, Comparative Example 9, Comparative Example 10, Comparative Example 10 and Comparative Example 11 that were not heat-treated caused the paste film to expand due to impurities adhering thereto, The density of the noble metal powder is less than 90% of the theoretical density ratio, and the specific resistance of the noble metal paste conductive film is high.

金属酸化物との混合による熱処理が行われている比較例2、比較例3及び比較例5の白金粉末の平均粒径は大きく、白金膜の比抵抗も大きい。比較例3では、白金粉末の焼結による凝集体が3本ロールミルの混合で崩すことができず、ペースト化することができなかった。   The average particle size of the platinum powders of Comparative Example 2, Comparative Example 3 and Comparative Example 5 in which heat treatment is performed by mixing with metal oxide is large, and the specific resistance of the platinum film is also large. In Comparative Example 3, the aggregate formed by sintering the platinum powder could not be broken by mixing with a three-roll mill and could not be made into a paste.

金属塩としてストロンチウム塩又はカルシウム塩を用いた比較例6及び比較例7の白金粉末では、白金粉末上に担持させた酸化ストロンチウム又は酸化カルシウムの担持量が低く、そのため、熱処理で白金粉末の焼結が生じて白金粉末の平均粒径が増加し、白金ペースト導電膜の比抵抗が増加した。   In the platinum powders of Comparative Example 6 and Comparative Example 7 using strontium salt or calcium salt as the metal salt, the supported amount of strontium oxide or calcium oxide supported on the platinum powder is low, and therefore the platinum powder is sintered by heat treatment. As a result, the average particle size of the platinum powder increased, and the specific resistance of the platinum paste conductive film increased.

実施例1の白金ペースト及び比較例1の白金ペーストから形成されたペースト膜を加熱した時の収縮特性を熱機械分析装置(TMA)にて測定した結果を示すチャートである。It is a chart which shows the result of having measured the shrinkage | contraction characteristic when the paste film formed from the platinum paste of Example 1 and the platinum paste of the comparative example 1 was heated with the thermomechanical analyzer (TMA).

Claims (4)

理論密度の少なくとも92%の密度を有し且つ平均粒径が6μm以下であることを特徴とする導電ペースト用貴金属粉末。   A noble metal powder for a conductive paste having a density of at least 92% of a theoretical density and an average particle diameter of 6 μm or less. Pt、Pd、Rh、Irまたはこれらの2種もしくはそれ以上の合金の粉末である請求項1に記載の貴金属粉末。   The noble metal powder according to claim 1, which is a powder of Pt, Pd, Rh, Ir, or an alloy of two or more thereof. 貴金属以外の金属塩の水溶液に貴金属粉末を分散させ、該金属塩を不溶化処理して貴金属粉末の表面に該金属塩を析出担持させ、次いで該金属塩が担持された貴金属粉末を熱処理し、熱処理によって生成する金属酸化物を酸またはアルカリ水溶液を使用して除去することを特徴とする請求項1または2に記載の貴金属粉末の製造方法。   Disperse the noble metal powder in an aqueous solution of a metal salt other than the noble metal, insolubilize the metal salt to deposit and carry the metal salt on the surface of the noble metal powder, and then heat treat the noble metal powder carrying the metal salt. 3. The method for producing a noble metal powder according to claim 1, wherein the metal oxide produced by the step is removed using an acid or alkali aqueous solution. 貴金属以外の金属塩がマグネシウム、イットリウム、亜鉛またはアルミニウムである請求項3に記載の方法。   The method according to claim 3, wherein the metal salt other than the noble metal is magnesium, yttrium, zinc or aluminum.
JP2008322537A 2008-12-18 2008-12-18 Method for producing noble metal powder for conductive paste Expired - Fee Related JP5237781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008322537A JP5237781B2 (en) 2008-12-18 2008-12-18 Method for producing noble metal powder for conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008322537A JP5237781B2 (en) 2008-12-18 2008-12-18 Method for producing noble metal powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2010144215A true JP2010144215A (en) 2010-07-01
JP5237781B2 JP5237781B2 (en) 2013-07-17

Family

ID=42564934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008322537A Expired - Fee Related JP5237781B2 (en) 2008-12-18 2008-12-18 Method for producing noble metal powder for conductive paste

Country Status (1)

Country Link
JP (1) JP5237781B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140226254A1 (en) * 2013-02-13 2014-08-14 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition, multilayer ceramic capacitor using the same, and method of manufacturing multilayer ceramic capacitor using the same
JP2015117387A (en) * 2013-12-16 2015-06-25 住友金属鉱山株式会社 Method for producing high-purity platinum powder
JP2017115217A (en) * 2015-12-25 2017-06-29 石福金属興業株式会社 Manufacturing method of platinum palladium rhodium alloy powder
JP6462932B1 (en) * 2018-03-30 2019-01-30 田中貴金属工業株式会社 Metal powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7002299B2 (en) 2017-11-14 2022-01-20 西部電機株式会社 Machine tool and origin return method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040401A (en) * 1999-07-29 2001-02-13 Dowa Mining Co Ltd Treatment of metal powder
JP2001059107A (en) * 1999-08-24 2001-03-06 Sumitomo Metal Mining Co Ltd Modifying method for metal or alloy powder, metal or alloy powder obtained by the modifying method and electronic material or parts using the metal or alloy powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040401A (en) * 1999-07-29 2001-02-13 Dowa Mining Co Ltd Treatment of metal powder
JP2001059107A (en) * 1999-08-24 2001-03-06 Sumitomo Metal Mining Co Ltd Modifying method for metal or alloy powder, metal or alloy powder obtained by the modifying method and electronic material or parts using the metal or alloy powder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140226254A1 (en) * 2013-02-13 2014-08-14 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition, multilayer ceramic capacitor using the same, and method of manufacturing multilayer ceramic capacitor using the same
JP2015117387A (en) * 2013-12-16 2015-06-25 住友金属鉱山株式会社 Method for producing high-purity platinum powder
JP2017115217A (en) * 2015-12-25 2017-06-29 石福金属興業株式会社 Manufacturing method of platinum palladium rhodium alloy powder
JP6462932B1 (en) * 2018-03-30 2019-01-30 田中貴金属工業株式会社 Metal powder
WO2019189511A1 (en) * 2018-03-30 2019-10-03 田中貴金属工業株式会社 Metal powder
KR20200119292A (en) * 2018-03-30 2020-10-19 다나카 기킨조쿠 고교 가부시키가이샤 Metal powder
CN111918735A (en) * 2018-03-30 2020-11-10 田中贵金属工业株式会社 Metal powder
EP3778070A4 (en) * 2018-03-30 2021-02-17 Tanaka Kikinzoku Kogyo K.K. Metal powder
KR102354069B1 (en) 2018-03-30 2022-01-24 다나카 기킨조쿠 고교 가부시키가이샤 metal powder

Also Published As

Publication number Publication date
JP5237781B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP2006193796A (en) Noble metal powder for electrically conductive paste and its production method
JP3957444B2 (en) Nickel powder, manufacturing method thereof, and paste for forming electronic component electrodes
JP5237781B2 (en) Method for producing noble metal powder for conductive paste
KR102423400B1 (en) Silver powder, manufacturing method thereof, and conductive paste
JP2006265585A (en) Method for producing copper powder and copper powder
KR102059426B1 (en) Method of manufacturing precious metal powder
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP6131773B2 (en) Nickel powder, method for producing the same, and nickel paste using the same
JP6997444B2 (en) Platinum paste
TWI695897B (en) mineral powder
JP6491595B2 (en) Method for producing platinum palladium rhodium alloy powder
JP2003034801A (en) Metal powder and manufacturing method therefor
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
JP2014091862A (en) Nickel powder and its manufacturing method
JP2007302498A (en) Ruthenium oxide powder and its production method
WO2020203076A1 (en) Silver-palladium alloy powder and use thereof
JP3339225B2 (en) Method for producing palladium powder for paste
JPH07130573A (en) Ceramic powder coated with conductive metal
JP6174445B2 (en) Method for producing platinum powder
JP2020084275A (en) Nickel powder
JP2007302497A (en) Ruthenium oxide powder and its production method
JP2020105626A (en) Platinum paste
JPH0748444B2 (en) Method for manufacturing substrate with electrode layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees