JP2004303394A - Method for evaluating fine particle dispersion state in non-aqueous paint - Google Patents

Method for evaluating fine particle dispersion state in non-aqueous paint Download PDF

Info

Publication number
JP2004303394A
JP2004303394A JP2003428594A JP2003428594A JP2004303394A JP 2004303394 A JP2004303394 A JP 2004303394A JP 2003428594 A JP2003428594 A JP 2003428594A JP 2003428594 A JP2003428594 A JP 2003428594A JP 2004303394 A JP2004303394 A JP 2004303394A
Authority
JP
Japan
Prior art keywords
zeta potential
paint
dispersion
evaluating
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003428594A
Other languages
Japanese (ja)
Inventor
Toru Nagai
透 永井
Hitoshi Watanabe
仁 渡辺
Takao Sakata
孝雄 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003428594A priority Critical patent/JP2004303394A/en
Publication of JP2004303394A publication Critical patent/JP2004303394A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating a fine particle dispersion state in a non-aqueous paint, capable of evaluating a fine particle dispersion state, and establishing optimal dispersion conditions. <P>SOLUTION: The method comprises the measuring step of using an additive-containing paint as a sample to be measured and measuring the zeta potential of the sample, the evaluating step of evaluating the dispersion of the paint by estimating the adsorption state of the additive based on the zeta potential measured in the measuring step, and the dispersion condition deciding step of setting the zeta potential when the dispersion is evaluated to be good in the evaluating step as a target value, and deciding conditions regarding fine particle dispersion in which the zeta potential becomes the target value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は微粒子の非水系中での分散状態を評価する方法に係り、例えば塗布型磁気記録媒体を構成する各層用の磁気塗料中の微粒子分散性評価方法に関する。   The present invention relates to a method for evaluating a dispersion state of fine particles in a non-aqueous system, and for example, to a method for evaluating fine particles dispersibility in a magnetic paint for each layer constituting a coating type magnetic recording medium.

近年微粒子分散非水系塗料を薄膜均一塗布するためのニーズが高まりつつあるが、非水系塗料では水系に比べて評価手段が限定されているのが現状である。塗料中の微粒子分散状態を評価する方法として、例えば下記非特許文献1に記載されているような、該当粒子の粒度分布を測定する方法が知られている。
北原等編、「“ゼータ電位”微粒子界面の物理化学」、サイエンティスト社、1995年 大島広行著、「ゼータ電位の測定と評価・工業的応用」、2002年5月“ゆうぽうと”での講習会資料、p.26 A.S.Dukhin and P.J.Goetz、“Ultrasound for Characterizing Colloids Particle Sizing,Zeta Potential,Rheology”、Elservier社、2002年9月。また特にレーザー光散乱法を用いた方法が普及しつつあり、例えば日機装、堀場製作所、大塚電子などから評価装置が市販されている。但し、レーザー光散乱法では濃厚系塗料での測定で所望の精度が取れない問題点がある。
In recent years, there has been an increasing need for uniform application of a fine particle-dispersed non-aqueous paint to a thin film. However, in the present situation, non-aqueous paints are limited in evaluation means as compared with aqueous paints. As a method for evaluating the dispersion state of fine particles in a paint, for example, a method for measuring the particle size distribution of relevant particles as described in Non-Patent Document 1 below is known.
Kitahara et al., "Zeta Potential" Physical Chemistry at Fine Particle Interface, Scientist, 1995 Hiroyuki Oshima, "Measurement and Evaluation of Zeta Potential / Industrial Application", May 2002, "Yupitto" workshop material, p. 26 A. S. Dukhin and P.S. J. Goetz, "Ultrasound for Characterizing Colloids Particle Sizing, Zeta Potential, Rheology", Elservier, September 2002. In particular, a method using a laser light scattering method is becoming widespread, and evaluation devices are commercially available from, for example, Nikkiso, Horiba, and Otsuka Electronics. However, in the laser light scattering method, there is a problem that a desired accuracy cannot be obtained in a measurement using a concentrated paint.

前記欠点を補うために近年超音波分光方式による粒度分布測定が提唱されており、Colloidal Science社、Dispersion Technology社などから評価装置が市販されている。   In recent years, a particle size distribution measurement by an ultrasonic spectroscopic method has been proposed to compensate for the above-mentioned disadvantage, and evaluation devices are commercially available from Colloidal Science, Dispersion Technology, and the like.

これにより濃厚系非水塗料中の粒子分散状態はかなり明らかにされつつあるが、濃厚系塗料での粒度分布に関する情報はある程度得られるにしても構成粒子間の相互作用に関する情報は十分に得られない。   Although the state of dispersion of particles in the concentrated non-aqueous paint is being clarified considerably by this, sufficient information on the interaction between constituent particles can be obtained even if information on the particle size distribution in the concentrated paint is obtained to some extent. Absent.

また微粒子化されるに従い粒子間相互作用が粒子分散に及ぼす影響が大きくなるので、大粒径粒子を分散するために従来使用してきた混練機、分散機が必ずしも有用であるとは限らない。   Further, the influence of the interaction between particles on the particle dispersion increases as the particles are made finer, so that the kneaders and dispersers conventionally used for dispersing large-diameter particles are not always useful.

また当該粒子を一次粒子まで分散するために必要な因子を見出す必要があるが、特に有機溶剤系ではその関係の報告は皆無に近い。   In addition, it is necessary to find a factor necessary for dispersing the particles to primary particles, but there is almost no report on the relationship especially in an organic solvent system.

本発明は上記の点に鑑みてなされたものでその目的は、微粒子分散状態を評価することができるとともに、最適な分散条件を確立することができる非水系塗料中の微粒子分散状態評価方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method for evaluating the state of dispersion of fine particles in a non-aqueous paint, which can evaluate the state of dispersion of fine particles and can establish optimal dispersion conditions. Is to do.

本発明者等は検討の結果、当該粒子の当該有機溶剤中におけるゼータ電位がその目的にかなうことを見出した。また、分散操作における当該粒子のゼータ電位を最大に近い状態を維持することが微粒子化及び分散安定化につながり、そのために必要な分散機器の選定もできることを見出した。   As a result of the study, the present inventors have found that the zeta potential of the particles in the organic solvent meets the purpose. Further, it has been found that maintaining the zeta potential of the particles in the dispersion operation near the maximum leads to micronization and dispersion stabilization, and it is also possible to select a necessary dispersion device for that purpose.

すなわち本発明は、非水系塗料中の微粒子分散状態を評価する方法であって、添加剤を含有した塗料を測定試料とし、該試料のゼータ電位を測定する測定段階と、前記測定段階で測定されたゼータ電位に基づいて前記塗料の特性を評価する評価段階とを備えたことを特徴としている。   That is, the present invention is a method for evaluating the dispersion state of fine particles in a non-aqueous paint, a paint containing the additive as a measurement sample, a measurement step of measuring the zeta potential of the sample, and measured in the measurement step And evaluating the properties of the paint based on the zeta potential.

また前記評価段階によって、特性が良好であると評価されたときのゼータ電位を目標値とし、ゼータ電位が前記目標値となる微粒子分散に関する条件を決定する分散条件決定段階を備えたことを特徴としている。   Further, by the evaluation step, the zeta potential when the characteristic is evaluated as good as a target value, the zeta potential is provided with a dispersion condition determining step of determining a condition relating to fine particle dispersion to be the target value, characterized by comprising I have.

前記評価段階は、前記測定されたゼータ電位に基づいて前記添加剤の吸着状態を推測することによって評価を行うことを特徴としている。   The evaluation is performed by estimating the state of adsorption of the additive based on the measured zeta potential.

また前記評価段階は、前記測定されたゼータ電位に基づいて、低表面エネルギー塗膜への濡れ性を推測することによって評価を行うことを特徴としている。   Further, in the evaluation step, the evaluation is performed by estimating wettability to a low surface energy coating film based on the measured zeta potential.

また前記評価段階は、前記測定されたゼータ電位に基づいて、分散剤の脱離状態を推測することによって評価を行うことを特徴としている。   Further, the evaluation step is characterized in that the evaluation is performed by estimating the desorbed state of the dispersant based on the measured zeta potential.

また前記塗料は磁気塗料であることを特徴としている。   The paint is a magnetic paint.

(1)本発明によれば、現在のニュービジネス関係で要求される粒径50nm以下、例えば10−20nm程度の超微粒子の分散技術確立に寄与し、微粒子分散、表面性制御に関する対応が可能となる。
(2)微粒子分散に適した設備の選定及びその分散条件を確立することができる。
(3)現在の塗布型磁気塗料で一次粒子分散が困難な酸化鉄、小径アルミナ、小径シリカ、微粒子カーボン等の分散条件確立に寄与する(概ね粒径100nm以下の粒子に適用可能。)。
(4)次世代塗布型磁気塗料に使用される上記微粒子粉分散のための指針提供をすることができる(30-100nm程度の粒子の分散に適用可能。)。
(5)将来技術導入が必要な10nm以下超微粒子粉分散のための指針を提供することができる(ニュービジネス及び次々世代塗布型磁気塗料中の粒子分散に適用可能。)。
(6)分散剤とバインダーの投入順序と最適添加量を粒子表面状態からの決定が可能となる。また酸化チタン表面に吸着しやすさから分散剤のスクリーニングをすることが可能となる。分散剤の粒子吸着状態(単層吸着か多層吸着か)の判定が可能になる。
(7)異なる混合機で塗料を試作する場合の粒子表面状態まで合わせた塗料試作条件を設定できる。
(8)特に大容量のデータストレージ用テープの下層、上層塗料に対して本発明をそのまま適用することができる。例えば下層塗料では数十nm酸化鉄の一次粒子分散系に対して定量的な情報提供が可能となる。
(9)塗料中の微粒子の粒径が更に微小化されると粒子表面がより活性化されることが教科書などでも指摘されているが、そうしたものに対しても塗料開発指針を提供できる。
(10)微粒子分散で最も困難とされているカーボン分散に対する情報を表面電位に関して提供可能となる。
(1) According to the present invention, it is possible to contribute to the establishment of a dispersion technology for ultra-fine particles having a particle size of 50 nm or less, for example, about 10 to 20 nm, which is required in the current new business, and to cope with fine particle dispersion and surface property control. Become.
(2) Equipment suitable for fine particle dispersion can be selected and its dispersion conditions can be established.
(3) Contributes to the establishment of dispersion conditions for iron oxide, small-diameter alumina, small-diameter silica, fine-particle carbon, etc., for which primary particles are difficult to disperse with current coating type magnetic paints (approximately applicable to particles having a particle size of 100 nm or less).
(4) It is possible to provide a guideline for dispersing the fine particle powder used in the next-generation coating type magnetic paint (applicable to dispersion of particles of about 30 to 100 nm).
(5) It can provide a guideline for dispersion of ultra-fine particle powder of 10 nm or less that requires the introduction of technology in the future (applicable to particle dispersion in new business and next-generation coating magnetic paints).
(6) It becomes possible to determine the dispensing order of the dispersant and the binder and the optimum addition amount from the particle surface state. In addition, it becomes possible to screen for a dispersant because of its ease of adsorption on the titanium oxide surface. It becomes possible to determine the particle adsorption state of the dispersant (single-layer adsorption or multi-layer adsorption).
(7) It is possible to set paint trial production conditions that match the particle surface state when a paint is trial produced with a different mixer.
(8) In particular, the present invention can be directly applied to the lower layer and upper layer paint of a large-capacity data storage tape. For example, in the case of the lower layer paint, quantitative information can be provided for the primary particle dispersion system of iron oxide of several tens nm.
(9) It has been pointed out in textbooks and the like that the surface of the particles is more activated when the particle diameter of the fine particles in the paint is further reduced, but a paint development guideline can be provided for such a material.
(10) Information on carbon dispersion, which is considered to be the most difficult in fine particle dispersion, can be provided with respect to surface potential.

以下、本発明の実施の形態を説明する。まず本発明におけるゼータ電位測定は、例えば非特許文献2、非特許文献3に記載されている超音波減衰式分光法によるDT社製DT−1200により行うが、これに限定されるものではない。   Hereinafter, embodiments of the present invention will be described. First, the zeta potential measurement in the present invention is performed by DT-1200 manufactured by DT by ultrasonic attenuation spectroscopy described in Non-Patent Documents 2 and 3, for example, but is not limited thereto.

まず本発明で用いる粒径および濃度に関する用語を説明する。   First, terms relating to particle size and concentration used in the present invention will be described.

(D10、D50,D90)
粉体粒子を小さい方から並べた時に粒子全体積の小さい方から10%、50%、90%に相当する粒径を示す。特にD50を平均粒子径という。レーザー光散乱式でも超音波減衰式の粒度分布計でも同じ定義であるが、但し、超音波式の粒度分布計では対数正規分布を仮定しているため、平均粒径から1σ大きい粒径をD84として表示している。D90は1.2σに相当する。
(D10, D50, D90)
When the powder particles are arranged from the smaller side, the particle diameters correspond to 10%, 50%, and 90% from the smaller total volume of the particles. In particular, D50 is called an average particle diameter. The same definition applies to both the laser light scattering type and the ultrasonic attenuation type particle size distribution analyzer. However, since the ultrasonic type particle size distribution analyzer assumes a logarithmic normal distribution, the particle size that is 1σ larger than the average particle size is D84. It is displayed as. D90 corresponds to 1.2σ.

(Loading Index)
レーザー光散乱方式における、散乱光強度から粒度計として認識される試料濃度のことを言う。実際の試料濃度に加えて試料の不均一の程度が散乱光として重畳される。そのため分散が進んで試料が均一になるに従いLoading Indexの値は小さくなる。試料としてみると同じ組成のものでも分散が進むと塗料が澄んで見え、同時にLoading Indexも小さくなってくる。試料中の微粒子の分散性がある程度進んだ段階ではD90の減少とLoading Indexの減少の相関性が見られるようになる。分散完了した試料ではLoading Indexの変化の方がD90の変化よりも大きくなる場合もあるため、塗料の状態を示すもう一つのパラメータとして最近注目されている。
(Loading Index)
In the laser light scattering method, it refers to the sample concentration recognized as a particle size analyzer from the scattered light intensity. In addition to the actual sample concentration, the degree of sample non-uniformity is superimposed as scattered light. Therefore, as the dispersion progresses and the sample becomes uniform, the value of the Loading Index decreases. As a sample, even with the same composition, as the dispersion progresses, the paint looks clear, and at the same time, the Loading Index decreases. At a stage where the dispersibility of the fine particles in the sample has advanced to some extent, a correlation between a decrease in D90 and a decrease in Loading Index can be seen. Since the change in the loading index may be larger than the change in D90 in the sample after the dispersion is completed, it is recently attracting attention as another parameter indicating the state of the paint.

(実施形態例1)
メタル粉に各種添加剤を吸着させたときのゼータ電位の変化を調べた。メタル粉(長軸長60nm)を用い、粉体単体のゼータ電位測定を行った。溶剤は、MEK/TOL/ANON 5/3/2にし、粒子濃度を20%とした。
(Embodiment 1)
The change of zeta potential when various additives were adsorbed on metal powder was examined. The zeta potential of the powder alone was measured using metal powder (major axis length 60 nm). The solvent was MEK / TOL / ANON 5/3/2, and the particle concentration was 20%.

その結果D50 43.3nm 、ゼータ電位 0.34mvという値を得た。メタル粉表面にある活性点はケトン系溶剤を縮重合する触媒作用があることが知られているが、それをつぶすために通常は4HBA(4ヒドロキシ安息香酸)(OH)C64(COOH)を所定量添加する(ロボミックス撹拌で塗料化する際は撹拌時間が30分程度しかないため使用していない)。 As a result, a value of D50 43.3 nm and a zeta potential of 0.34 mv were obtained. It is known that the active point on the surface of the metal powder has a catalytic action of polycondensing a ketone solvent, but usually 4HBA (4-hydroxybenzoic acid) (OH) C 6 H 4 (COOH ) Is added in a predetermined amount (not used because the stirring time is only about 30 minutes when forming a paint by robomix stirring).

メタル粉(長軸長60nm)の粒子濃度を20%にして4HBA添加量を変化させたときの粒径及びゼータ電位への影響を調べるための検討を行った。結果を次の表1に示す。   A study was conducted to examine the effects on the particle size and zeta potential when the amount of 4HBA added was changed with the particle concentration of the metal powder (major axis length 60 nm) being 20%. The results are shown in Table 1 below.

Figure 2004303394
Figure 2004303394

表1において、メタル粉(長軸長60nm)に何も吸着していないときには表面電位が+であるが、4HBAがある程度以上添加されると−に変化する。このことは4HBAが吸着することで表面が−になったことを意味するが、添加量が少ないときには恐らく活性点に優先的に吸着するために粒子表面状態は余り変わらないものと推測される。   In Table 1, the surface potential is + when nothing is adsorbed on the metal powder (long axis length: 60 nm), but changes to-when 4HBA is added to a certain degree or more. This means that the surface became negative due to the adsorption of 4HBA. However, when the amount of addition was small, it is presumed that the particle surface state would not change much because it probably adsorbed preferentially to active sites.

次に塩ビバインダーMR104をP/B比4添加した場合を考える。4HBA添加量を変えて同時添加したときには表2のような結果を得た。   Next, the case where the PVC binder MR104 is added at a P / B ratio of 4 will be considered. When the amount of 4HBA was changed and added simultaneously, the results shown in Table 2 were obtained.

Figure 2004303394
Figure 2004303394

表2において平均粒径D50が表1よりも小さくなるのはMR104を添加したことで粒子の分散が進んだためであり、4HBA添加量を変えても粒子の分散性にはそれほど影響がない。   In Table 2, the average particle size D50 is smaller than that in Table 1 because the addition of MR104 promoted the dispersion of the particles, and changing the amount of 4HBA did not significantly affect the dispersibility of the particles.

4HBAがない場合にゼータ電位が2mv程度になっており表1に比べて1.6mv程度値が高くなっているが、これはMR104を添加することで粒子表面が+になったことを意味する。即ちこの系でのゼータ電位を+にするのはMR104によっているものと考えて良い。   In the absence of 4HBA, the zeta potential was about 2 mv, which was about 1.6 mv higher than in Table 1, which means that the addition of MR104 made the particle surface +. . That is, it can be considered that the zeta potential in this system is set to + by the MR 104.

但し、H分子量が小さいために表面電位を変えるのに効果があり、添加量を増やすとメタル表面を−にする。但し、この組成系でも4HBAを3PHP添加するまではゼータ電位の変化が殆ど無く、この間は活性点に優先的に4HBAが吸着するものと思われる。   However, since the H molecular weight is small, it is effective in changing the surface potential. When the added amount is increased, the metal surface becomes negative. However, even in this composition system, there is almost no change in the zeta potential until 4HBA is added to 3PHP, and during this time, it seems that 4HBA is preferentially adsorbed to the active site.

4HBAの添加量が3PHP以上になるとゼータ電位は−になっていくが、MR104が吸着している分+から−になるために必要な4HBAの量が2PHP程度増えている。またMR104がないときに比べて値の変化が少ないが、これはMR104との競争吸着が起こるためであると思われる。   When the added amount of 4HBA becomes 3PHP or more, the zeta potential becomes-, but the amount of 4HBA required to change from + to-due to the adsorption of MR104 is increased by about 2PHP. Further, the change in the value is smaller than when the MR 104 is not provided, which is considered to be due to competitive adsorption with the MR 104.

上記考え方を確認するために、MR104と4HBAの添加順序を変えたときの平均粒径とゼータ電位について測定した。MR104の添加量を一定にし、4HBA添加量を3PHPと5PHPの2点について試料を作製した。先入れ添加物を添加後ロボミックスで10分間撹拌し、その後後入れ添加物を添加後20分間撹拌して評価試料を作製した。DT-1200での評価結果を表3に示す。   In order to confirm the above concept, the average particle size and the zeta potential when the order of adding MR104 and 4HBA were changed were measured. Samples were prepared for two points of 3PHP and 5PHP with the addition amount of MR104 being constant and the addition amount of 4HBA. After adding the first additive, the mixture was stirred with Robomix for 10 minutes, and then the last additive was added, followed by stirring for 20 minutes to prepare an evaluation sample. Table 3 shows the evaluation results of DT-1200.

Figure 2004303394
Figure 2004303394

いずれの場合も4HBAを先に投入した場合の分散性が一番良い結果となった。これは添加した4HBAがメタル粉(長軸長60nm)の活性点に吸着するためと考えられる。   In each case, the best dispersibility was obtained when 4HBA was introduced first. It is considered that this is because the added 4HBA is adsorbed to the active site of the metal powder (long axis length: 60 nm).

同時投入した場合はMR104との競争吸着となるためメタル表面の活性点が完全に4HBAで被覆されないためと推測される。ゼータ電位に関しては4HBA先入れと同時投入の値が近くなったが、これは4HBAの方が低分子で動きやすいために活性点に到達しやすいことを意味しているように思われる。   It is presumed that when they are simultaneously supplied, the active sites on the metal surface are not completely covered with 4HBA because of competitive adsorption with MR104. Regarding the zeta potential, the values of 4HBA first-in and simultaneous-injection were close to each other, which seems to mean that 4HBA is easier to reach an active site because it is a small molecule and easily movable.

このようにゼータ電位の結果を活用することでメタル粉表面への添加物の吸着状態をある程度推測することが可能となる。   By utilizing the result of the zeta potential as described above, it is possible to estimate the adsorption state of the additive on the metal powder surface to some extent.

(実施形態例2)
直径20nmの酸化チタン粒子(比重4.17)にドデシルベンゼンスルフォン酸ナトリム(以下DBSと称する)を添加し、粒子濃度4%にしてMIBK(メチルイソブチルケトン)溶液中で塗料を試作した。塗料は小型ボールミルにて数日間攪拌した。DBSを酸化チタン粒子100重量部に対して20重量部、30重量部、40重量部と添加量を変化させた試料を試作した。
(Embodiment 2)
Sodium dodecylbenzenesulfonate (hereinafter referred to as DBS) was added to titanium oxide particles having a diameter of 20 nm (specific gravity: 4.17) to make a particle concentration of 4%, and a paint was prepared in a MIBK (methyl isobutyl ketone) solution. The paint was stirred for several days in a small ball mill. Samples in which the amount of DBS added was changed to 20 parts by weight, 30 parts by weight, and 40 parts by weight with respect to 100 parts by weight of titanium oxide particles were produced as trials.

これら試料のゼータ電位をDT社製DT-1200にて測定した。それぞれのゼータ電位は次の通りで、添加量によらずほぼ一定になった。   The zeta potential of these samples was measured with DT-1200 manufactured by DT. The respective zeta potentials were as follows, and became almost constant irrespective of the amount added.

DBS 20重量部添加 34.91mv、30重量部添加 34.95mv、40重量部添加 34.93mv。   DBS 20 parts by weight added 34.91 mv, 30 parts by weight added 34.95 mv, 40 parts by weight added 34.93 mv.

(実施形態例3)
同上の酸化チタン粒子100gに含まれる直径20nm(2×10-6cm)の球の個数を試算すると5.71×1018個となり、粒子1個の比表面積は1.26×10-11cm2となる。DBSNaは単分子膜を形成するとし、スルフォン酸基1個の占有断面積を30A2とすると酸化チタン粒子1個当たりに4200個のDBSが吸着できることが試算される。
(Embodiment 3)
A trial calculation of the number of spheres having a diameter of 20 nm (2 × 10 −6 cm) contained in 100 g of the above titanium oxide particles yields 5.71 × 10 18 , and the specific surface area of one particle is 1.26 × 10 −11 cm 2 . DBSNa is to form a monomolecular film, 4200 pieces of DBS to 1 per titanium oxide particles to one occupied cross-sectional area sulfonic acid group and 30A 2 is estimated to be able to adsorb.

DBS20重量部添加すると酸化チタン粒子1個あたり6060個、30重量部添加で9090個、40重量部で12120個のDBSがある計算になり、いずれも単分子膜を形成するのに十分な量のDBSが添加されていることになる。   When 20 parts by weight of DBS is added, 6060 particles per titanium oxide particle, 9090 when 30 parts by weight is added, and 12120 when 40 parts by weight are added, all of which are sufficient to form a monomolecular film. This means that DBS has been added.

このことから実施形態例1では酸化チタン粉上にDBSが飽和吸着していることが示唆される。その結果、実施形態例1でのゼータ電位34.9mvは酸化チタン粉上にDBSが飽和吸着している時の値であると考えることができる。   This indicates that DBS is saturatedly adsorbed on the titanium oxide powder in the first embodiment. As a result, the zeta potential of 34.9 mv in the first embodiment can be considered to be a value when DBS is saturatedly adsorbed on the titanium oxide powder.

(実施形態例4)
酸化チタン100重量部、DBS20重量部をMIBK中に粒子濃度4%にした試料を各種混合機器により試作した。試作塗料を粒度分布及びゼータ電位測定により評価した。結果を表4に示す。
(Embodiment 4)
Samples in which 100 parts by weight of titanium oxide and 20 parts by weight of DBS had a particle concentration of 4% in MIBK were prototyped by various mixing devices. The prototype paint was evaluated by particle size distribution and zeta potential measurements. Table 4 shows the results.

Figure 2004303394
Figure 2004303394

表4の結果から次のことが明らかになった。
1.表4のA,Dのように、アジターとしんとう機で処理することにより処理後の酸化チタン粉粒径が小さくなり(一次粒子に近づく)、ゼータ電位が、DBSが飽和吸着している34.9mvに近い値となった。
2.表4のB,Cのように、ニーダー処理は酸化チタン粉分散向上には殆ど寄与しない。ゼータミル処理も同様に酸化チタン粉分散には前記1に比べて効果がない。
3.表4のA,Dのように、平均粒径が小さいものではゼータ電位が高く、DBSが飽和吸着している時に近い値になっていた。このことはDBSが飽和吸着することで分散安定し、さらなる微粒子化が起こることが示唆される。
4.表4のE〜Gのように、しんとう機での分散処理時間を延ばすとゼータ電位があまり変わらずに粒径が小さくなった。このことは分散進行に伴い新たに発生した酸化チタン粉表面にDBSが吸着して分散が進むものと推測される。
5.表4のH〜Jのように、しんとう機のビーズ量を変えて塗料試作するとビーズ量が減るほど粒径が小さくならず、ゼータ電位も下がり気味になることが判明した。
6.表4のA,K,Lのように、アジター攪拌において粒子濃度を変えて塗料試作した。その結果粒子濃度を16%にすると粒径が大きめに留まり、ゼータ電位が22mvと低くなる。途中から粒子濃度を下げるとゼータ電位が高まり、粒径も小さくなるが最初から4%にした時ほどにはならない。
From the results in Table 4, the following became clear.
1. As shown in A and D in Table 4, the particle diameter of the titanium oxide powder after the treatment becomes smaller (approaching to the primary particles) by the treatment with an agitator and a mill, and the zeta potential becomes 34.9 mv at which DBS is saturated and adsorbed. It became a value close to.
2. As shown by B and C in Table 4, the kneader treatment hardly contributes to the improvement in dispersion of the titanium oxide powder. Similarly, the zetamill treatment has no effect on the dispersion of the titanium oxide powder as compared with the above-mentioned 1.
3. As shown in A and D in Table 4, when the average particle size was small, the zeta potential was high, and the value was close to that when DBS was saturated and adsorbed. This suggests that DBS is saturated and adsorbed, stabilizes the dispersion, and further micronization occurs.
4. As shown in E to G in Table 4, when the dispersion treatment time in a stirrer was extended, the particle size was reduced without much change in zeta potential. This is presumed to be due to the fact that DBS is adsorbed on the surface of the newly generated titanium oxide powder as the dispersion progresses and the dispersion proceeds.
5. As shown by H to J in Table 4, when the paint amount was experimentally manufactured by changing the bead amount of the stirrer, it was found that as the bead amount was reduced, the particle size was not reduced, and the zeta potential was slightly lowered.
6. As shown in Table 4, A, K, and L, a paint trial was produced by changing the particle concentration in agitator stirring. As a result, when the particle concentration is set to 16%, the particle diameter remains relatively large, and the zeta potential decreases to 22 mv. If the particle concentration is reduced in the middle, the zeta potential increases and the particle size also decreases, but not as much as when it is 4% from the beginning.

以上の結果から、ゼータ電位を測定することにより混合処理による粒子分散性の推移を予測できる。また目的に合った分散機の選定及びそこでの混合最適条件の確立もできることが見出された。   From the above results, the transition of particle dispersibility due to the mixing treatment can be predicted by measuring the zeta potential. It has also been found that a disperser suitable for the purpose can be selected and the optimum mixing conditions can be established.

そこで本発明では、添加剤を含有した塗料を測定試料とし、該試料のゼータ電位を測定し、前記測定段階で測定されたゼータ電位に基づいて、例えば前記添加剤の吸着状態を推測して前記塗料の分散性を評価し、前記評価段階によって、分散性が良好であると評価されたときのゼータ電位を目標値とし、ゼータ電位が前記目標値となる微粒子分散に関する条件(分散機器の選定、混合条件、各種処理の条件等)を決定する。   Therefore, in the present invention, a paint containing an additive as a measurement sample, the zeta potential of the sample is measured, based on the zeta potential measured in the measurement step, for example, by estimating the adsorption state of the additive, the Evaluate the dispersibility of the paint, by the evaluation step, the zeta potential when the dispersibility is evaluated as good as the target value, the conditions regarding the fine particle dispersion where the zeta potential is the target value (selection of dispersing equipment, Mixing conditions, various processing conditions, etc.) are determined.

すなわち、微粒子の非水系中での分散状態を当該粒子のゼータ電位により判定する。また当該微粒子の非水系溶剤中での分散操作で、当該粒子のゼータ電位を高目に保持できる分散機器および/又は混合機器を選定する。また当該微粒子上に分散剤または界面活性剤を一層吸着させた時のゼータ電位を測定し、その電位に近い値を保持して分散処理を続けることにより、一次粒子にいたるまでの微粒子化を短時間で達成できる。   That is, the dispersion state of the fine particles in the non-aqueous system is determined by the zeta potential of the particles. In addition, a dispersing device and / or a mixing device capable of maintaining a high zeta potential of the particles by a dispersion operation of the particles in a non-aqueous solvent are selected. Further, the zeta potential when a dispersant or a surfactant is further adsorbed on the fine particles is measured, and the dispersion treatment is continued while maintaining a value close to the potential, thereby shortening the fine particles down to the primary particles. Can be achieved in time.

そして、上記内容を磁気塗料の難分散顔料にも適用することにより、当該顔料の分散性を従来品より高めることが可能になる。また次世代超微粒子の分散にも本方法は応用できる。   Then, by applying the above description to a pigment that is difficult to disperse in a magnetic paint, it becomes possible to enhance the dispersibility of the pigment compared to conventional products. The method can also be applied to the dispersion of next-generation ultrafine particles.

(実施形態例5) 塗料組成と塗料試作方法
直径20nmの酸化チタン粒子(比重4.17)をMIBK(メチル イソブチル ケトン)中に粒子濃度16−22%となるように添加する。これに主成分の分子量が480と788のポリオキシエチレンオレイルリン酸系分散剤(以下リン酸エステル系分散剤とする)と主成分の分子量1000のポリエステル系ウレタンオリゴマーを所定量添加する。分散剤及びウレタンオリゴマーは同時またはどちらかを先に添加し、残りを後で添加することで評価用試料を試作した。
(Embodiment 5) Paint composition and paint trial manufacturing method Titanium oxide particles having a diameter of 20 nm (specific gravity: 4.17) are added to MIBK (methyl isobutyl ketone) so as to have a particle concentration of 16 to 22%. To this are added predetermined amounts of a polyoxyethylene oleyl phosphate dispersant having a molecular weight of 480 and 788 (hereinafter referred to as a phosphate ester dispersant) and a polyester urethane oligomer having a molecular weight of 1000 as a main component. A sample for evaluation was prepared by adding the dispersant and the urethane oligomer simultaneously or one of them first, and then adding the rest later.

また分散剤として分子量348のDBS(ドデシルベンゼンスルフォン酸ナトリウム)も使用した。試料の試作はしんとう機により行い、ポリビン中に酸化チタン粒子の10倍量のジルコニアビーズを添加し、それに塗料組成物を添加した。尚アジターやビーズミルで処理した塗料についても比較検討した。   DBS (sodium dodecylbenzenesulfonate) having a molecular weight of 348 was also used as a dispersant. Trial production of a sample was performed using a stirrer, and zirconia beads in an amount 10 times as large as the titanium oxide particles were added to the polybin, and the coating composition was added thereto. In addition, paints treated with agitators and bead mills were also compared and studied.

(実施形態例6) 塗料評価装置
塗料評価は超音波減衰式測定装置で粒度分布及びゼータ電位を測定した。また比較のためにレーザー光散乱方式の粒度分布測定装置によるLoading Index(試料濃度)の測定も行った。
(Embodiment 6) Paint Evaluation Apparatus In the evaluation of paint, the particle size distribution and the zeta potential were measured by an ultrasonic attenuation type measuring apparatus. For comparison, the loading index (sample concentration) was also measured by a laser light scattering type particle size distribution analyzer.

(実施形態例7) リン酸エステル系分散剤とウレタンオリゴマーの酸化チタン粒子表面吸着速度
分散剤(7.5PHP)とウレタンオリゴマー(9.15PHP)を下記表5〜表7の方法で添加し、塗料化した(1PHPとは粒子100に対して分散剤やウレタンオリゴマーを1重量部添加することを示している)。
(Embodiment 7) Phosphate ester-based dispersant and urethane oligomer surface adsorption rate of titanium oxide particles Dispersant (7.5PHP) and urethane oligomer (9.15PHP) are added by the methods shown in Tables 5 to 7 below. It was made into a paint (1PHP means that 1 part by weight of a dispersant or a urethane oligomer was added to 100 particles).

Figure 2004303394
Figure 2004303394

Figure 2004303394
Figure 2004303394

Figure 2004303394
Figure 2004303394

通常は分散剤とウレタンオリゴマーを同時に添加して塗料化するが、それは表7に結果を示した。処理時間により塗料のD50,D90が低下し、塗料分散性は向上する。それと同時にLoading Indexの値も小さくなり、塗料均一性が高まる。   Usually, a dispersant and a urethane oligomer are simultaneously added to form a coating, and the results are shown in Table 7. Depending on the treatment time, D50 and D90 of the paint are reduced, and the dispersibility of the paint is improved. At the same time, the value of the Loading Index decreases, and the paint uniformity increases.

これに対して分散剤やウレタンオリゴマーだけを先に添加した場合には一緒に添加した場合と異なった挙動をとる。処理時間が1日、2日経過したもので塗料の分散状態を比較すると表5の分散剤先入れの場合に一番分散性が向上していることがD50,D90、Loading Indexを比較することにより明らかになる(表6のウレタンオリゴマー先入れが一番分散性は劣る結果となる)。   On the other hand, when only the dispersant and the urethane oligomer are added first, the behavior is different from that when they are added together. Comparing the dispersion state of the paints after one day and two days of processing time, the dispersibility is the most improved in the case of the first dispersant shown in Table 5. Compare D50, D90 and Loading Index. (The first urethane oligomer in Table 6 results in the poorest dispersibility).

ところが処理時間が120分以内を比較すると見かけ上の分散性は必ずしも表5の分散剤先入れが向上しているとは言えない。それに対する答えがゼータ電位測定結果に見いだされる。   However, when the processing time is compared within 120 minutes, the apparent dispersibility does not necessarily mean that the dispersing agent shown in Table 5 is improved. The answer can be found in the zeta potential measurements.

酸化チタン表面のゼータ電位は何も吸着しない場合には-2.06mvであった。また十分な量(20PHP)の分散剤だけを添加して2日間分散処理した場合の塗料のゼータ電位は28mv、十分な量のウレタンオリゴマー(36.6PHP)を添加して2日間分散処理した場合の塗料のゼータ電位は7.5mvであった。このことからリン酸エステル系分散剤やウレタンオリゴマーが吸着するとゼータ電位が増加することから、これらが酸化チタン粒子表面に吸着する程度を知ることができる。   The zeta potential on the surface of the titanium oxide was -2.06 mv when nothing was adsorbed. When a sufficient amount (20PHP) of a dispersant alone is added and the dispersion treatment is performed for 2 days, the zeta potential of the paint is 28 mv, and when a sufficient amount of the urethane oligomer (36.6PHP) is added and the dispersion treatment is performed for 2 days. The paint had a zeta potential of 7.5 mv. From this, the zeta potential increases when the phosphate ester-based dispersant or urethane oligomer is adsorbed, so that the extent to which these are adsorbed on the surface of the titanium oxide particles can be known.

2日間処理した場合には塗料のゼータ電位が11〜14mv程度であるから、この値と処理時間が短い時の値とを比較することによりリン酸エステル系分散剤では数時間程度で吸着が完了することが分かる。一方ウレタンオリゴマーではその速度がもっと遅いことが判明する。ところがそこに分散剤またはウレタンオリゴマーを添加すると塗料分散が一気に進むことから、それらの相互作用により塗料分散が促進されていることが分かる。   When the paint is treated for 2 days, the zeta potential of the paint is about 11 to 14 mv. By comparing this value with the value when the treatment time is short, the adsorption is completed in about several hours with the phosphate ester dispersant. You can see that On the other hand, the urethane oligomer is found to have a lower rate. However, when a dispersant or a urethane oligomer is added thereto, the dispersion of the paint proceeds at a stretch, and it can be seen that the dispersion of the paint is promoted by their interaction.

表7の両者を一括投入した場合には短時間処理でも分散が進み、ゼータ電位も高くなる。ところが表5の分散剤先入れの場合には表7の両者一括投入に比べてゼータ電位の上がり傾向が持続し、180分以降ではゼータ電位が高くなる。分散剤が吸着していた方が塗料分散には良いため、最終的には塗料としての分散性は表5の分散剤先入れが一番良好になる。   When both of Table 7 are supplied at once, the dispersion proceeds even in a short time processing, and the zeta potential also increases. However, in the case of the first dispersant shown in Table 5, the rising tendency of the zeta potential is maintained as compared with the batch charging of both in Table 7, and the zeta potential becomes higher after 180 minutes. Since the adsorbing of the dispersant is better for the dispersion of the paint, the dispersibility of the paint finally becomes best when the dispersant is first introduced in Table 5.

このように、D50,D90やLoading Indexは測定時の酸化チタン粒子分散に関する情報を提供するが、ゼータ電位はそれに加えて塗料の将来の分散状態を示唆する情報を提供する。そして粒径やLoading Indexだけでは現象の説明しかできないが、ゼータ電位測定を併用することで分散性が向上する理由付け及び条件最適化をすることが可能になる。   Thus, while D50, D90 and Loading Index provide information about the titanium oxide particle dispersion at the time of measurement, the zeta potential additionally provides information indicating the future state of dispersion of the paint. Although the phenomena can be explained only by the particle size and the loading index, it is possible to improve the dispersibility and to optimize the conditions by using the zeta potential measurement together.

(実施形態例8) 分散剤添加量を変化させた時の塗料分散性とゼータ電位
MIBK中に粒径公称値20nmの酸化チタン粒子濃度を16%にし、これにウレタンオリゴマーを18.3PHP添加した。分散処理時間は2日間である。分散剤としてはDBSを用いDBS添加量と塗料分散及びゼータ電位の関係を求め、その結果を表8に示す。
(Embodiment 8) Paint dispersibility and zeta potential when dispersant addition amount is changed
The concentration of titanium oxide particles having a nominal particle size of 20 nm was adjusted to 16% in MIBK, and 18.3 PHP of a urethane oligomer was added thereto. The dispersion processing time is two days. Using DBS as a dispersant, the relationship between the amount of DBS added and the dispersion of the paint and zeta potential was determined, and the results are shown in Table 8.

Figure 2004303394
Figure 2004303394

酸化チタン表面には主として分散剤DBSが吸着するが、添加量5PHP以上ではD50,D84がほぼ一定になる。これに呼応する形でゼータ電位も漸増し、7.5PHP以上ではほぼ一定となる。   Although the dispersant DBS is mainly adsorbed on the titanium oxide surface, D50 and D84 become almost constant when the added amount is 5 PHP or more. In response to this, the zeta potential also increases gradually, and becomes almost constant above 7.5 PHP.

このことからこれ以上の添加量ではDBS吸着量がほぼ一定となることが示唆される。そこで塗料分散性だけをみるとDBSは7.5PHP添加すれば良いことが粒度分布測定の結果から示される。   From this, it is suggested that the DBS adsorption amount becomes almost constant when the addition amount is larger. Therefore, looking only at the dispersibility of the paint, the results of the particle size distribution measurement show that it is sufficient to add 7.5 PHP to DBS.

ここでBS塗膜における高表面エネルギー塗膜の表面エネルギーは24dyn/cmであるが、低表面エネルギー塗膜(表面エネルギー15dyn/cm)表面を濡らすのに必要な条件を調べた。そのために本実施形態例では、この塗料を低エネルギー塗膜に滴下した時の濡れ性を評価した。   Here, the surface energy of the high surface energy coating film in the BS coating film was 24 dyn / cm, but the conditions necessary for wetting the surface of the low surface energy coating film (surface energy 15 dyn / cm) were examined. Therefore, in this embodiment, the wettability when this paint was dropped on a low energy coating film was evaluated.

1秒で完全に濡らす場合を丸印(○)、30秒で完全に濡らす場合を白三角印(△)、30秒で一部を濡らす場合を黒三角印とし、それ以下の場合を×とした。結果は表8に示すとおりである。   A circle (○) indicates complete wetting in 1 second, a white triangle (△) indicates complete wetting in 30 seconds, and a black triangle indicates partial wetting in 30 seconds. did. The results are as shown in Table 8.

DBSが酸化チタン粒子表面を1層吸着するのに必要な量は10.5PHPと試算されるが、それ以上の量を添加すると濡れるようになる。それとゼータ電位の値とがほぼ対応しており、18mv以上のときに濡れることが判明した。   The amount required for DBS to adsorb one layer of the titanium oxide particle surface is estimated to be 10.5 PHP, but if it is added more, it becomes wet. It almost corresponded to the value of the zeta potential, and it was found that the film was wet when it was 18 mv or more.

このようにゼータ電位を測定することにより必要な添加量を数値により示すことが可能となる。濡れ性に関しては塗料の分散性だけでは解釈できないため、こうしたゼータ電位による指標を導入することが非常に有用である。   By measuring the zeta potential in this way, the required amount of addition can be indicated by a numerical value. Since the wettability cannot be interpreted only by the dispersibility of the paint, it is very useful to introduce such an index based on zeta potential.

(実施形態例9) 異なる混合機間で試作した塗料評価1
酸化チタン微粒子を分散する混合機としては1バッチの塗料の量が数100ccのしんとう機のほかに、50cc規模のアジターや数〜数十リットルのビーズミル等が考えられるが、それらで試作した塗料評価を行った。
(Embodiment 9) Evaluation of paint 1 prototyped between different mixers
As a mixer for dispersing the titanium oxide fine particles, in addition to a stirrer in which the amount of paint in one batch is several hundred cc, an agitator of 50 cc scale or a bead mill of several to several tens of liters can be considered. Was done.

溶剤としてMIBKを使用し、酸化チタンの粒子濃度16%、分散剤としてDBSを20PHP、ウレタンオリゴマーを18.3PHP添加した組成でのレーザー光散乱方式による粒度分布及び超音波減衰方式でのゼータ電位の比較を行った。塗料試作に要する時間はアジター1日、しんとう機2日、ビーズミル2時間である。その結果を表9に示した。   The particle size distribution by the laser light scattering method and the zeta potential of the ultrasonic attenuation method in a composition using MIBK as a solvent, a particle concentration of titanium oxide of 16%, DBS of 20 PHP as a dispersing agent, and a urethane oligomer of 18.3 PHP are added. A comparison was made. The time required for the trial production of the paint is 1 day for Agiter, 2 days for Shinto Machine and 2 hours for Bead Mill. Table 9 shows the results.

Figure 2004303394
Figure 2004303394

この表から粒度分布及びゼータ電位での差が殆どないことが示された。このことからこれらの塗料では粒度分布がほぼ同じであるだけでなく、酸化チタン粒子表面に吸着している分散剤やウレタンオリゴマーの量がほぼ同じであることが判明した。   This table shows that there is almost no difference in particle size distribution and zeta potential. From these facts, it was found that not only the particle size distribution of these paints was almost the same, but also the amounts of the dispersant and urethane oligomer adsorbed on the surface of the titanium oxide particles were almost the same.

実際にこれらを塗布した場合に塗布特性に殆ど差がないことが見出されていることから、これらの塗料を粒度分布だけでなく、分散性などの吸着状態を示すゼータ電位測定による比較をすることで塗料のスケールアップができているかどうかの一つの指標となる。   Since it has been found that there is almost no difference in the application properties when these are actually applied, these paints are compared not only with the particle size distribution but also by zeta potential measurement indicating the adsorption state such as dispersibility. This is an indicator of whether paint has been scaled up.

そして異なる混合機で試作した塗料のゼータ電位がすべて略同一であることから、ゼータ電位測定情報は信頼できるものであると言える。   Since the zeta potentials of the paints prototyped with different mixers are all substantially the same, it can be said that the zeta potential measurement information is reliable.

(実施形態例10) 異なる混合機間で試作した塗料評価2
塗料の粒度分布が近くても塗料特性が異なる例を次に示す。MIBK中に酸化チタン粒子濃度を22%にし、リン酸エステル系分散剤添加量を7.5及び10PHP、ウレタンオリゴマー添加量を4.57及び9.15PHPにした場合の塗料をしんとう機(2日)及びアジター(1日)で試作した。本例における測定結果を表10に示す。
(Embodiment 10) Evaluation of paint 2 prototyped between different mixers
An example in which the paint characteristics are different even when the particle size distribution of the paint is close will be described below. When the concentration of titanium oxide particles in MIBK is 22%, the addition amount of phosphate ester-based dispersant is 7.5 and 10 PHP, and the addition amount of urethane oligomer is 4.57 and 9.15 PHP, the paint is removed with a stirrer (2 days) and agitator (1 day). Table 10 shows the measurement results in this example.

Figure 2004303394
Figure 2004303394

表10において、アジターとしんとう機で試作した塗料を比較すると24時間処理時でも粒径はほぼ同じになるが、しんとう機製塗料ではゼータ電位が高くなっている。一方低表面エネルギーを有する塗膜への濡れ性を比較するとアジター試作塗料では濡れ性がよい(1秒以内に濡れるのを○とした)のに対して、しんとう機試作塗料では濡れ性が余りよくない(30秒以内に濡れるのを△とした)かまたは濡れない(30秒以内に濡れないのを×とした)ことが判明した。しんとう機試作塗料を48時間処理したものについてはいずれの塗料でも濡れることが判明した。   In Table 10, when the paints produced by the agitator and the peeling machine are compared, the particle diameters are almost the same even after the treatment for 24 hours. On the other hand, when comparing the wettability to a coating film having a low surface energy, the wettability of the agitator trial paint was good (wet within 1 second was marked as good), whereas the wettability of the Shintoki prototype paint was very good It was found that there was no (wet within 30 seconds) and no wetting (no wetting within 30 seconds was x). It was found that all the paints that were treated with the prototype paint for 48 hours were wetted.

しんとう機試作塗料では処理時間と共にゼータ電位が低下し、それにより濡れ性が変化する。このことからしんとう機での処理時間を長くすることによりリン酸エステル系分散剤が酸化チタン表面から脱離することが考えられる。その間塗料の分散状態は殆ど変化していないため、粒径の変化を見てもどこから濡れるかの情報は得られない。そこで濡れ性に関してはゼータ電位測定の情報が重要となることが判明した。   In the prototype paint for a new machine, the zeta potential decreases with the treatment time, and the wettability changes accordingly. From this, it can be considered that the phosphate ester dispersant is detached from the titanium oxide surface by increasing the treatment time in a stirrer. During this time, the dispersion state of the paint has hardly changed, so that information on where to get wet cannot be obtained from the change in particle size. Then, it turned out that the information of the zeta potential measurement is important for the wettability.

(実施形態例11) 分散剤の酸化チタン表面からの脱離のし易さの判定
リン酸エステル系分散剤及びDBS分散剤とウレタンオリゴマー添加系についてアジター処理速度を変化させて試作した塗料の粒度分布及びゼータ電位を測定し、低エネルギー塗膜表面への濡れ性の検討をした。酸化チタン濃度16%にしてMIBK溶媒で塗料を作製。攪拌時間は20時間である。その結果は次の表11のとおりである。
(Embodiment Example 11) Judgment of easiness of detachment of dispersant from titanium oxide surface Particle size of paint made as a trial product by changing agitator treatment rate for phosphate ester dispersant, DBS dispersant and urethane oligomer added system The distribution and zeta potential were measured, and the wettability to the low energy coating surface was examined. Paint was made with MIBK solvent with titanium oxide concentration of 16%. The stirring time is 20 hours. The results are as shown in Table 11 below.

Figure 2004303394
Figure 2004303394

これらの結果を見ると塗料の粒径関係は殆ど差が見られないので、塗料分散性には大きな違いは見いだされない。ところが濡れ性は違いがあるので、塗料表面状態が異なることをこの結果は示している。こうした問題に対してはゼータ電位測定による評価しか数値化したデータは得られない。   Looking at these results, there is almost no difference in the particle size relationship between the paints, so that no significant difference is found in the paint dispersibility. However, the results show that the wettability is different and the paint surface condition is different. For such a problem, numerical data can be obtained only by evaluation by zeta potential measurement.

DBS分散剤では処理速度による濡れ性が変らないが、ゼータ電位の変化も少ないために脱離が少ないものと推測される。その理由はスルフォン酸ナトリウム塩の吸着力が大きいためと考えられる。一方リン酸エステル系分散剤では高速にするとゼータ電位が低下し、殆どウレタンオリゴマーと同じ程度に低下する。濡れ性も同様に悪くなる。このようにゼータ電位を測定することで使用している分散剤が酸化チタン表面から脱離しやすいか否かの判定をすることが可能となり、これにより分散剤の種類をスクリーニングすることが可能となる。   Although the DBS dispersant does not change the wettability depending on the treatment speed, it is supposed that the desorption is small because the change in zeta potential is small. It is considered that the reason is that the adsorption power of sodium sulfonate is large. On the other hand, when the phosphate ester dispersant is used at a high speed, the zeta potential decreases, and the zeta potential decreases almost to the same extent as the urethane oligomer. The wettability also worsens. By measuring the zeta potential in this way, it is possible to determine whether the dispersant used is easily detached from the titanium oxide surface, and thereby it is possible to screen the type of dispersant. .

(実施形態例12) 分散剤の粒子表面吸着状態の推定
ウレタンオリゴマーは添加せずにリン酸エステル系分散剤またはDBS分散剤を添加してその濃度を変化させた時の酸化チタン、MIBK溶剤塗料での粒度分布及びゼータ電位測定を行った。粒子濃度は16%にした。測定結果は次の表12となった。
(Embodiment 12) Estimation of adsorption state of particle surface of dispersant Titanium oxide and MIBK solvent paint when phosphate ester dispersant or DBS dispersant is added and the concentration is changed without adding urethane oligomer Was measured for particle size distribution and zeta potential. The particle concentration was 16%. The measurement results are shown in Table 12 below.

Figure 2004303394
Figure 2004303394

リン酸エステル系分散剤の1層吸着に必要な量は24.7PHPである。添加量が1層吸着量以下では添加量を増加させることで塗料の分散性は向上し、同時にゼータ電位も高くなる(吸着量が増加することを示唆している)。   The amount required for one-layer adsorption of the phosphate ester dispersant is 24.7 PHP. When the amount added is less than the one-layer adsorption amount, the dispersibility of the coating is improved by increasing the amount added, and at the same time, the zeta potential is increased (which suggests that the amount of adsorption increases).

1層吸着量以上に分散剤濃度を増やしても粒径変化は殆どなく、ゼータ電位の変化もそれ程大きくない。従ってこの場合には一次粒子径に近い分散が達成されていると考えられる。そのためリン酸エステル分散剤は1層吸着し、余分な分散剤はMIBK中に溶解しているものと推察される。   Even if the dispersant concentration is increased beyond the one-layer adsorption amount, there is almost no change in particle size, and the change in zeta potential is not so large. Therefore, in this case, it is considered that dispersion close to the primary particle diameter has been achieved. Therefore, it is presumed that the phosphate ester dispersant was adsorbed in one layer, and the excess dispersant was dissolved in MIBK.

次にDBS分散剤であるが、1層吸着に必要な量は10.5PHPである。1層吸着よりも添加量が少ない場合は塗料凝集が見られるが、1層吸着に近い10PHP添加した場合は塗料分散性が向上する。。但しそれ以上添加すると塗料は凝集状態になり、過剰なDBSが塗料分散性を阻害していることが示唆される。   Next is DBS dispersant, the amount required for one layer adsorption is 10.5 PHP. When the amount of addition is smaller than that in one-layer adsorption, paint aggregation is observed, but when 10PHP is added, which is close to one-layer adsorption, paint dispersibility is improved. . However, if added more, the paint will be in an agglomerated state, suggesting that excess DBS is obstructing the dispersibility of the paint.

塗料凝集は添加量を更に増やすと改善されるが、ゼータ電位も低下することから、粒子表面に吸着する分散剤層が厚くなったものと考えられる。即ちDBSでは多層吸着する事がこの結果から推測される。この例から示されたように、ゼータ電位測定により、塗料が凝集した場合の原因究明ができることを示しており、粒度分布測定の結果と併用することで新しい知見を得ることができる。   Coating agglomeration is improved by further increasing the addition amount, but the zeta potential is also reduced, and it is considered that the dispersant layer adsorbed on the particle surface is thickened. That is, it is inferred from this result that multi-layer adsorption occurs in DBS. As shown in this example, it is shown that the cause of the aggregation of the paint can be investigated by measuring the zeta potential, and new knowledge can be obtained by using this together with the result of the particle size distribution measurement.

尚本発明は、磁気塗料以外の塗料に適用しても良い。
The present invention may be applied to paints other than magnetic paints.

Claims (10)

非水系塗料中の微粒子分散状態を評価する方法であって、
添加剤を含有した塗料を測定試料とし、該試料のゼータ電位を測定する測定段階と、
前記測定段階で測定されたゼータ電位に基づいて前記塗料の特性を評価する評価段階と
を備えたことを特徴とする非水系塗料中の微粒子分散状態評価方法。
A method for evaluating the dispersion state of fine particles in a non-aqueous paint,
A measurement step of measuring the zeta potential of the paint containing the additive as a measurement sample,
An evaluation step of evaluating characteristics of the paint based on the zeta potential measured in the measurement step.
前記評価段階によって、特性が良好であると評価されたときのゼータ電位を目標値とし、ゼータ電位が前記目標値となる微粒子分散に関する条件を決定する分散条件決定段階を備えたことを特徴とする請求項1に記載の非水系塗料中の微粒子分散状態評価方法。 The evaluation step includes, as a target value, a zeta potential when the characteristic is evaluated as being good, and a dispersion condition determining step of determining a condition regarding fine particle dispersion in which the zeta potential is the target value. The method for evaluating the dispersion state of fine particles in a non-aqueous paint according to claim 1. 前記評価段階は、前記測定されたゼータ電位に基づいて前記添加剤の吸着状態を推測することによって評価を行うことを特徴とする請求項1に記載の非水系塗料中の微粒子分散状態評価方法。 The method for evaluating the state of dispersion of fine particles in a non-aqueous paint according to claim 1, wherein in the evaluation step, the evaluation is performed by estimating an adsorption state of the additive based on the measured zeta potential. 前記評価段階は、前記測定されたゼータ電位に基づいて前記添加剤の吸着状態を推測することによって評価を行うことを特徴とする請求項2に記載の非水系塗料中の微粒子分散状態評価方法。 The method for evaluating the state of dispersion of fine particles in a non-aqueous paint according to claim 2, wherein in the evaluation step, the evaluation is performed by estimating an adsorption state of the additive based on the measured zeta potential. 前記評価段階は、前記測定されたゼータ電位に基づいて、低表面エネルギー塗膜への濡れ性を推測することによって評価を行うことを特徴とする請求項1に記載の非水系塗料中の微粒子分散状態評価方法。 The fine particle dispersion in a non-aqueous paint according to claim 1, wherein the evaluation step is performed by estimating wettability to a low surface energy coating film based on the measured zeta potential. Condition evaluation method. 前記評価段階は、前記測定されたゼータ電位に基づいて、低表面エネルギー塗膜への濡れ性を推測することによって評価を行うことを特徴とする請求項2に記載の非水系塗料中の微粒子分散状態評価方法。 The fine particle dispersion in a non-aqueous paint according to claim 2, wherein the evaluation step is performed by estimating wettability to a low surface energy coating film based on the measured zeta potential. Condition evaluation method. 前記評価段階は、前記測定されたゼータ電位に基づいて、分散剤の脱離状態を推測することによって評価を行うことを特徴とする請求項1に記載の非水系塗料中の微粒子分散状態評価方法。 The method for evaluating the state of dispersion of fine particles in a non-aqueous paint according to claim 1, wherein the evaluation step is performed by estimating a desorbed state of the dispersant based on the measured zeta potential. . 前記評価段階は、前記測定されたゼータ電位に基づいて、分散剤の脱離状態を推測することによって評価を行うことを特徴とする請求項2に記載の非水系塗料中の微粒子分散状態評価方法。 The method for evaluating the dispersion state of fine particles in a non-aqueous paint according to claim 2, wherein the evaluation step is performed by estimating a desorbed state of the dispersant based on the measured zeta potential. . 前記塗料は磁気塗料であることを特徴とする請求項1に記載の非水系塗料中の微粒子分散状態評価方法。 The method according to claim 1, wherein the paint is a magnetic paint. 前記塗料は磁気塗料であることを特徴とする請求項2に記載の非水系塗料中の微粒子分散状態評価方法。 The method according to claim 2, wherein the paint is a magnetic paint.
JP2003428594A 2003-03-14 2003-12-25 Method for evaluating fine particle dispersion state in non-aqueous paint Pending JP2004303394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003428594A JP2004303394A (en) 2003-03-14 2003-12-25 Method for evaluating fine particle dispersion state in non-aqueous paint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003069611 2003-03-14
JP2003428594A JP2004303394A (en) 2003-03-14 2003-12-25 Method for evaluating fine particle dispersion state in non-aqueous paint

Publications (1)

Publication Number Publication Date
JP2004303394A true JP2004303394A (en) 2004-10-28

Family

ID=33421668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428594A Pending JP2004303394A (en) 2003-03-14 2003-12-25 Method for evaluating fine particle dispersion state in non-aqueous paint

Country Status (1)

Country Link
JP (1) JP2004303394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139341A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Method for analyzing ti-based precipitate in welding part of steel member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139341A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Method for analyzing ti-based precipitate in welding part of steel member

Similar Documents

Publication Publication Date Title
JP4611176B2 (en) Method for producing resin-coated metal pigment
TWI277469B (en) Silver particle powder and its production method
JP5576799B2 (en) Composite particle and method for producing the same, hollow particle, method for producing the same and use
KR101711590B1 (en) Ferrite carrier core material for electrophotographic developers, ferrite carrier, and manufacturing processes for both, and electrophotographic developers using the ferrite carrier
JP2017133017A (en) Architectural coating agent composition
KR101097506B1 (en) Dispersion comprising cerium oxide and colloidal silicon dioxide
CN105555884B (en) Carbon black for water paint
JP2012500764A (en) Liquid suspensions and powders of cerium oxide particles, methods for their production and their use in polishing
CN104412316B (en) Chemically mechanical polishing (CMP) composition of aromatic compounds comprising nonionic surfactant and containing at least one acid groups
DE102006061891A1 (en) Composition for polishing surfaces, especially of semiconductors, comprises a lanthanide oxide abrasive, a polymeric dispersant, a polysaccharide gelling agent and water
JP2014511262A (en) Method for preparing suspension of nanoparticles and suspension of nanoparticles
JP2007154175A (en) Polishing liquid for polishing organic film and method for polishing organic film
CN109641449A (en) Dispersion and jettable compositions containing cesium tungsten oxide nanoparticle and amphoteric ion type stabilizer
KR101735980B1 (en) Method for producing aluminum flake paste
JP2004303394A (en) Method for evaluating fine particle dispersion state in non-aqueous paint
CN104755200A (en) Method for manufacturing metal nanoparticles and method for manufacturing metal nanoparticle ink by same
JP2006161128A (en) Nickel slurry, production method therefor, and nickel paste or nickel ink using the nickel slurry
Cosgrove et al. Using low-field NMR relaxation to optimise particulate dispersions
JPH06295099A (en) Toner, production of the toner and developing device using the toner
US20170066942A1 (en) Magnetic actuated-milled pigment dispersions and process for making thereof
Chiu et al. Preparation, particle characterizations and application of nano-pigment suspension
JP5297068B2 (en) Method for producing conductive powder and conductive powder
JP2014029017A (en) Method for producing metal fine particle composition
Venkataronappa et al. Enhancing dispersion stability and recyclability of ceria slurry with polyacrylic acid for improved glass polishing performance
JP4525899B2 (en) Charge control material and charge control paint using the charge control material