JP2010098260A - 発光装置、受光システム及び撮像システム - Google Patents

発光装置、受光システム及び撮像システム Download PDF

Info

Publication number
JP2010098260A
JP2010098260A JP2008270225A JP2008270225A JP2010098260A JP 2010098260 A JP2010098260 A JP 2010098260A JP 2008270225 A JP2008270225 A JP 2008270225A JP 2008270225 A JP2008270225 A JP 2008270225A JP 2010098260 A JP2010098260 A JP 2010098260A
Authority
JP
Japan
Prior art keywords
light
capacitor
period
switching element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008270225A
Other languages
English (en)
Inventor
Tomoyuki Kamiyama
智幸 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008270225A priority Critical patent/JP2010098260A/ja
Priority to US13/124,891 priority patent/US8558473B2/en
Priority to PCT/JP2009/067721 priority patent/WO2010047247A1/ja
Publication of JP2010098260A publication Critical patent/JP2010098260A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Optical Distance (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】発熱及び消費電力の抑制、信号光のS/N比の向上等を実現することができ、発光を用いた様々なアプリケーションに適用させることができる発光装置を提供する。
【解決手段】複数の半導体レーザバー12が配列された分散光源14と、分散光源14に対して少なくとも1つの駆動パルスを供給することにより、分散光源14から少なくとも1つのパルス光を出射させる駆動回路16とを有する。分散光源14は、基台18上に、複数の半導体レーザバー12が配列され、さらに、複数の半導体レーザバー12の間にそれぞれ放熱板24が介在されて構成されている。そして、分散光源14から出射されるパルス光のパルス幅が1フェムト秒より長く、且つ、0.25秒未満であり、単一のパルス光のエネルギーが66.8μ[J]未満である。
【選択図】図1

Description

本発明は、発光を用いた様々なアプリケーションに対応することができる発光装置と、該発光装置を用いた受光システム及び撮像システムに関する。
例えば発光を用いたアプリケーションとしては、光空間伝送システムや測距システム等が挙げられる。
例えば測距システムとしては、対象物への距離を非接触に測定する測距システムがあり、これは、タイム・オブ・フライト(TOF)法を用いたものが知られている。TOF法は、対象物に対して光を放射し、光が放射されてから対象物に当たってはねかえって来るまでの時間を測定し、この時間と光速に基づいて対象物までの距離を測定する(特許文献1、2、非特許文献1及び2参照)。
非特許文献1では、測距システムにおけるパルス光の放射タイミングや2つの受光素子の動作タイミングが具体的に説明されている。すなわち、パルス光の放射と放射停止を同じ長さ(発光素子の駆動デューティが50%)で繰り返すと共に、パルス光の放射と放射停止に同期させて、交互に2つの方向に電荷を転送させる(非特許文献1の図1参照)。そして、2つの出力電圧の相違に基づき、パルス光が対象物で反射して戻って来るまでの時間を判定する。
また、非特許文献2には、(背景光と変調光)成分の光電荷と背景光成分の光電荷とをそれぞれ対応するフローティング・ディフュージョンに振り分ける光変調検波方式のイメージセンサが記載され、特に、拡散キャリアの影響と残留電荷の影響を抑制する技術が開示されている。
そして、上述した測距システムや光空間伝送システムにおいて、発光素子(光源)として発光ダイオードを用いる場合があるが、高速な伝送や高精度の測距を行うために、発光素子として、半導体レーザを用いる場合もある。
半導体レーザを用いる場合は、発熱や消費電力の問題等を考慮する必要があることから、点光源からの連続光による一定期間の照射を考えた場合、半導体レーザの出力パワーを抑える必要がある。
ところで、被写体の反射光には、レーザ光の反射による信号光成分のほかに、太陽光によるノイズや太陽光のショットノイズ(環境光のノイズ成分)が含まれ、上述のように、半導体レーザの出力パワーを抑えると、信号光成分に対して環境光のノイズ成分が大きく、S/N比が低下するという問題がある。また、所定期間(例えば1フレーム期間)にわたって連続光を照射することから、照射時の輝度値の取得と未照射時の輝度値の取得との間に、上述した所定時間分の長さがどうしても必要になり、照射時の輝度値と未照射時の輝度値の取得にかかる同時性を向上させることができない。そのため、発光素子として単に半導体レーザを用いても、発光を用いた様々なアプリケーションに適用させることが難しいという問題がある。
特開2001−281336号公報 特開平08−313215号公報 宮川良平、金出武雄、「CCD−Based Range−Finding Sensor」、IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 10、1997年10月、p.1648〜1652 山本幸司、大屋雄、香川景一郎、太田淳、布下正宏、渡辺國寛「変調光検波方式イメージセンサにおける変調光画像の階調性の改善」社団法人映像情報メディア学会技術報告 vol.27, No.25、2003年3月28日、pp.9〜12
本発明は、このような課題を考慮してなされたものであり、発熱及び消費電力の抑制、信号光のS/N比の向上等を実現することができ、発光を用いた様々なアプリケーションに適用させることができる発光装置を提供することを目的とする。
また、本発明の他の目的は、上述の発光装置を用いることで、S/N比の向上、環境光のノイズ成分の影響の低減、照射時の輝度値と未照射時の輝度値の取得にかかる同時性の向上を図ることができる受光システム及び撮像システムを提供することにある。
第1の本発明に係る発光装置は、発光面の最長の辺の長さが1.5mm以上となっている分散光源と、一定の周期に従って入力される発光指示に基づいて前記分散光源に対して駆動パルスを供給することにより、前記分散光源から2つ以上のパルス状の光を間欠的に出射させる駆動回路とを有する発光装置であって、前記分散光源は、発光領域を一直線状に設けた半導体レーザバーを複数有し、且つ、複数の前記半導体レーザバーが積層された構成を有し、複数の前記半導体レーザバーの間にそれぞれ放熱板が介在され、一方の端部に位置する半導体レーザバーにアノード端子板が設置され、他方の端部に位置する半導体レーザバーにカソード端子板が設置され、前記分散光源から出射される前記パルス状の光のパルス幅が1ナノ秒より長く、且つ、0.25秒未満であり、単一の前記パルス状の光のエネルギーが66.8μ[J]未満であり、前記一定の周期が18μsecを超え、2つ以上の前記パルス状の光を有するパルス光列の平均エネルギーが3.75μ[J]未満であり、平均パワーが74.0m[W]未満であり、前記一定の周期に対する前記パルス光のデューティ比が1%以下であることを特徴とする。
これにより、パルス幅の短いパルス光を得ることができることから、発熱及び消費電力の抑制、信号光のS/N比の向上等を実現することができ、発光(パルス光列)を用いた様々なアプリケーションに適用させることができる。
また、パルス光列に含まれる各パルス光のパワーを連続光よりも高くすることが可能となり、各パルス幅での環境光(ノイズ)に対するパルス光(信号)のS/N比を大幅に向上させることができる。
複数の半導体レーザバーから同時にパルス光が出射されることから、1つの点光源からの光を光拡散部材で拡散させた場合よりも、光強度がほぼ均一とされたパルス光の束を出射させることができ、環境光(ノイズ)に対するパルス光(信号)のS/N比を高めることができる。もちろん、複数の半導体レーザバーを有することから、発熱の問題が懸念されるが、連続光を出射させるのではなく、パルス光を出射させることと、パルス光列の場合には、パルス光の周期を18μsecよりも長い時間に設定しているため、パルス光が出射されていない期間において十分に放熱させることができる。
また、前記分散光源は、各半導体レーザバーが金属板で挟まれた形態となることから、分散光源の放熱性が高まり、パルス光列の長時間の出射による蓄熱の問題を解決することができる。
そして、第1の本発明において、前記分散光源は、その光出射面側に、少なくとも光の照射範囲及び/又は該発光装置から出射される光の輝点面積を制御するための光拡散部材が設置されていてもよい。この場合、前記光拡散部材は、ホログラムパターンが形成された拡散板であってもよい。光拡散部材を設置することで、分散光源から出射されるパルス光の被写体に対する照射範囲、光空間伝送に必要な照射範囲、分散光源を見たときの視角等を変化させることが可能となり、発光装置の用途や設置位置等に応じて最適な照射範囲、輝点面積に設定することができる。
次に、第2の本発明に係る受光システムは、被写体に対して光を照射する上述した第1の本発明に係る発光装置と、前記被写体からの反射光を受光する受光装置と、前記発光装置及び前記受光装置を制御する制御装置とを有する受光システムであって、前記受光装置は、前記反射光を検知して光電子に変換する光電変換素子と、前記光電変換素子からの前記光電子を蓄積する第1キャパシタ及び第2キャパシタと、前記光電変換素子からの前記光電子を排出する光電子排出部と、前記光電変換素子からの前記光電子を、前記発光装置の駆動に同期して、前記第1キャパシタ、前記第2キャパシタ及び前記光電子排出部に選択的に振り分ける第1スイッチング素子、第2スイッチング素子及び第3スイッチング素子とを具備し、前記制御装置は、前記発光装置から前記パルス状の光が出射されていない期間のうちの第1期間に、前記第1スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記第1キャパシタに転送し、前記発光装置から前記パルス状の光が出射されている期間のうちの第2期間に、前記第2スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記第2キャパシタに転送し、前記第1期間及び前記第2期間以外の期間に、前記第3スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記光電子排出部に排出するように制御し、前記第1キャパシタに転送された電荷量と前記第2キャパシタに転送された電荷量との差に基づいて、環境光に依存しない前記反射光の輝度情報を得ることを特徴とする。
これにより、上述した第1の本発明に係る発光装置を用いることで、S/N比の向上を図ることができ、しかも、環境光のノイズ成分の影響をなくすことができ、また、照射時の輝度値と未照射時の輝度値の取得にかかる同時性の向上を図ることができる。
そして、第2の本発明において、前記第1期間と前記第2期間の組み合わせが、間欠的に複数回繰り返すように設定され、複数回の前記第1期間に、前記光電変換素子からの前記光電子を、前記第1キャパシタに転送蓄積し、複数回の前記第2期間に、前記光電変換素子からの前記光電子を、前記第2キャパシタに転送蓄積し、前記第1キャパシタに転送蓄積された電荷量と前記第2キャパシタに転送蓄積された電荷量との差に基づいて、環境光に依存しない前記反射光の輝度情報を得るようにしてもよい。
発光装置では、パルス幅の短いパルス光を出射することから、被写体にパルス光を照射した期間における光電子の取り込み(照射時の輝度値の取得)と、パルス光を照射しない期間における光電子の取り込み(未照射時の輝度値の取得)を、短時間に切り換えるという操作を複数回繰り返すことが可能となり、照射時の輝度値と未照射時の輝度値の取得にかかる同時性を格段に向上させることができる。しかも、受光システムでは、照射時の輝度値の取得及び未照射時の輝度値の取得以外の期間において光電子を排出することから、太陽光等の環境光の影響を低減することができる。
また、第2の本発明において、前記光電変換素子は、フォトダイオード、埋込型フォトダイオード又はフォトゲートであってもよい。
また、第2の本発明において、前記第1キャパシタ及び前記第2キャパシタは、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量を利用するようにしてもよい。
また、第2の本発明において、少なくとも前記第1スイッチング素子〜第3スイッチング素子並びに前記第1キャパシタ及び第2キャパシタは、遮光された領域に形成されていてもよい。
また、第2の本発明において、前記第1キャパシタ及び前記第2キャパシタの電位をリセット電位にするための電源とリセットスイッチを有するようにしてもよい。
また、第2の本発明において、前記第1キャパシタに蓄積された電荷量に基づく電位が印加される第1ゲート端子を有し、該第1ゲート端子に印加された前記電位を電圧信号に変換する第1アンプと、前記第2キャパシタに蓄積された電荷量に基づく第2電位が印加される第2ゲート端子を有し、該第2ゲート端子に印加された前記電位を電圧信号に変換する第2アンプとを有するようにしてもよい。
次に、第3の本発明に係る撮像システムは、上述した第1の本発明に係る発光装置と、多数の画素が配列されたラインセンサアレイ又は二次元イメージセンサアレイとを有する撮像システムにおいて、上述した第2の本発明に係る受光システムの受光装置における少なくとも前記光電変換素子、前記第1キャパシタ、前記第2キャパシタ、前記第1スイッチング素子、前記第2スイッチング素子を有する1つのユニットが前記ラインセンサアレイ又は前記二次元イメージセンサアレイの1画素分の構成要素を構成していることを特徴とする。
この場合、前記受光装置にて受光される光の波長が700nm以上、1050nm未満であってもよい。近赤外光を使用すれば、暗視撮像システムを実現させることができる。
以上説明したように、本発明に係る発光装置によれば、発熱及び消費電力の抑制、信号光のS/N比の向上等を実現することができ、発光を用いた様々なアプリケーションに適用させることができる。
本発明に係る受光システム及び撮像システムによれば、上述の発光装置を用いることで、S/N比の向上、環境光のノイズ成分の影響の低減、照射時の輝度値と未照射時の輝度値の取得にかかる同時性の向上を図ることができる。
以下、本発明に係る発光装置、受光システム及び撮像システムの実施の形態例を図1〜図14を参照しながら説明する。
[発光装置]
先ず、本実施の形態に係る発光装置10は、図1に示すように、複数の半導体レーザバー12が配列された分散光源14と、発光指示Scの入力に基づいて分散光源14に対して1つの駆動パルスPd(図2参照)を供給することにより、分散光源14から1つのパルス状の光を出射させる駆動回路16とを有する。図1の例では、5つの半導体レーザバー12が配列され、全てのレーザ光の出射面が、同じ面(発光面)に露出するように配列されている。
分散光源14は、複数の半導体レーザバー12が、それぞれ長軸方向が横方向になるように揃えられ、且つ、長軸方向と直交する方向に積層されるか、又は、それぞれ長軸方向が縦方向になるように揃えられ、且つ、長軸方向と直交する方向に並べられて構成されている。
また、分散光源14は、複数の半導体レーザバー12の間にそれぞれ放熱板24(薄板状のヒートシンク)が介在され、一方の端部に位置する半導体レーザバー12にアノード端子φaを構成するアノード端子板26が設置され、他方の端部に位置する半導体レーザバー12にカソード端子φkを構成するカソード端子板28が設置されている。
一方、駆動回路16は、図2に示すように、アノード端子φaに接続される駆動電源30(+電源)と、カソード端子φkに接続され、且つ、駆動パルスPdが供給されるスイッチング素子32と、該スイッチング素子32と接地(又は−電源)間に接続された定電流源34と、発光指示Scの入力に基づいて駆動パルスPdをスイッチング素子32に供給する駆動パルス発生回路36とを有する。スイッチング素子32としては、nチャネル型MOSトランジスタ等を使用することができ、この場合、トランジスタのドレイン端子に分散光源14のカソード端子φkが接続され、トランジスタのソース端子に定電流源34が接続される。この定電流源34は、分散光源14が、アノード端子φaとカソード端子φk間に複数の半導体レーザバー12が直列に接続された回路構成なっていることから、各半導体レーザバー12に安定に電流を流すために接続されている。
そして、駆動回路16のスイッチング素子32に、駆動パルスPdが供給されて、該スイッチング素子Pdがオンとなった期間だけ、分散光源14のアノード端子φaとカソード端子φkに電流が流れ、複数の半導体レーザバー12から同時に光が出射されることとなる。これらの光が1つの束となって、所定の輝点面積を有する1つのパルス光Lpとして出射されることになる。この場合、輝点面積としては、最も外側に配置された半導体レーザバー12にて囲まれた領域(正方形あるいは長方形)の面積が相当する。
従って、駆動パルス発生回路36への発光指示Scが一定周期に入力されて、駆動パルスPdが一定周期でスイッチング素子32に供給されることで、分散光源14から駆動パルスPdの供給タイミングに対応してパルス光Lpが出射されることになる。つまり、パルス光列として出射されることとなる。この場合、上述した一定周期がパルス光列のパルス周期となる。
ここで、本実施の形態に係る分散光源14の各種パラメータの範囲について以下に説明する。
(1) 最も外側に配置された半導体レーザバー12にて囲まれた領域(正方形あるいは長方形)の各辺のうち、最長の辺の長さは1.5mm以上となっている。つまり、分散光源14とみなされる。
(2) 分散光源14から出射される光の波長は700nm以上、1050nm未満である。
(3) パルス光列のパルス周期は、18μsecを超えた長さとなっている。
(4) パルス光Lpのパルス幅は、1ナノ秒より長く、且つ、0.25秒未満である。
(5) 一定の周期(パルス周期)に対するパルス光のデューティ比が1%以下である。好ましくは、0.1%以下である。
また、本実施の形態に係る分散光源14の単一のパルス光Lpのエネルギー、パルス光列内の平均エネルギー(連続光にした場合のエネルギー)、平均パワー(パルス光Lpが休止している期間を含む)の上限を求めるために、光源の大きさd=10mm、光の波長λ=1050nm、最大視角αmax=100m[rad]、最小視角αmin=1.5m[rad]、100秒内のパルス数N=100k[個]とした。
上述のエネルギーは、下記に定義される算出方法にて測定距離rを算出し、該測定距離rに設置した直径7mmの円形開口絞りを通過するレーザ放射を受け入れ角100m[rad]に制限して集光して測定した。
(測定距離rの算出)
r=100×[(α×0.46mrad)/αmax][mm]
方形、又は線状の光源の縦及び横の2つの視角の算術平均で求める。
視角α=d/100mm[rad]
なお、視角α>αmaxのときは、r=100mmとする。
<単一のパルス光Lpのエネルギー>
単一のパルス光Lpのエネルギー(AELsingl)は次式(1)にて求めることができる。
AELsingl=2×10-7×C4×C6 ……(1)
ここで、C4は赤外線波長依存係数(波長依存)、C6は分散光源緩和定数(視角依存)であり、下記式にて求めることができる。
C4=100.002×(λ−700)
=100.002×(1050−700)
=5.01
C6=α/αmin
=(10mm/100mm)[rad]/1.5m[rad]
=66.7
従って、単一のパルス光Lpのエネルギーの上限は、(1)式より、AELsingl=66.8μ[J]であり、本実施の形態では、単一のパルス光Lpのエネルギーを66.8μ[J]未満とする。
<パルス光列内の平均エネルギー>
パルス光列内の平均エネルギー(AELav.)は次式(2)にて求めることができる。
AELav.=AELsingl×C5 ……(2)
ここで、C5は下記式にて求めることができる。
C5=N-0.25
=100k[個]-0.25
=0.0562
従って、パルス光列内の平均エネルギーの上限は、(2)式より、AELav.=3.75μ[J]であり、本実施の形態では、パルス光列内の平均エネルギーを3.75μ[J]未満とする。
<平均パワー>
平均パワー(AEL)は次式(3)にて求めることができる。
AEL=7×10-4×C4×C6×T2-0.25 ……(3)
ここで、T2は視角依存時間(視角依存)であり、下記式にて求めることができる。
T2=10×10CA
(CA=[(α−αmin)/98.5])
T2=100
従って、平均パワーの上限は、(3)式より、AEL=74.0m[W]であり、本実施の形態では、平均パワーを74.0m[W]未満とする。
本実施の形態に係る発光装置10では、上述のように構成したので、パルス幅の短いパルス光Lpを得ることができることから、発熱及び消費電力の抑制、信号光のS/N比の向上等を実現することができ、発光(単一のパルス光Lpやパルス光列)を用いた様々なアプリケーションに適用させることができる。
また、一定の周期(パルス光列のパルス周期)に対するパルス光Lpのデューティ比を1%以下、好ましくは0.1%以下としたので、パルス光列に含まれる各パルス光Lpのパワーを連続光よりも高くすることが可能となり、各パルス幅での環境光(ノイズ)に対するパルス光Lp(信号)のS/N比を大幅に向上させることができる。
また、上述の実施の形態において、分散光源14の光出射面側に、少なくとも光の照射範囲及び/又は該発光装置10から出射される光の輝点面積を制御するための光拡散部材(図示せず)を設置するようにしてもよい。この場合、光拡散部材は、ホログラムパターンが形成された拡散板が好ましい。光拡散部材を設置することで、分散光源14から出射されるパルス光Lpの被写体に対する照射範囲、光空間伝送に必要な照射範囲、分散光源を見たときの視角等を変化させることが可能となり、発光装置10の用途や設置位置等に応じて最適な照射範囲、輝点面積に設定することができる。
また、本実施の形態に係る分散光源14では、複数の半導体レーザバー12から同時にパルス光Lpが出射されることから、1つの点光源からの光を光拡散部材で拡散させた場合よりも、光強度がほぼ均一とされたパルス光の束を出射させることができ、環境光(ノイズ)に対するパルス光Lp(信号)のS/N比を高めることができる。もちろん、複数の半導体レーザバー12を有することから、発熱の問題が懸念されるが、連続光を出射させるのではなく、パルス光Lpを出射させることと、パルス光列の場合には、パルス周期を18μsecよりも長い時間に設定し、パルス周期に対するパルス光Lpのデューティ比が1%以下としているため、パルス光Lpが出射されていない期間において十分に放熱させることができる。
また、本実施の形態では、複数の半導体レーザバー12の間にそれぞれ放熱板24を介在させ、一方の端部に位置する半導体レーザバー12にアノード端子板26を設置し、他方の端部に位置する半導体レーザバー12にカソード端子板28を設置するようにしているため、各半導体レーザバー12が金属板で挟まれた形態となり、これにより、分散光源14の放熱性が高まり、パルス光列の長時間の出射による蓄熱の問題を解決することができる。
[受光システム100]
次に、上述した発光装置10を利用した受光システム100について図3〜図14を参照しながら説明する。
本実施の形態に係る受光システム100は、図3に示すように、上述した発光装置10と、受光装置102と、制御装置104と、演算装置105と、これら発光装置10、受光装置102、制御装置104及び演算装置105に所定の電源電圧を供給する電源回路106とを有する。なお、簡単のため、図3において、電源回路106から各装置への電源線の表示を省略する。
この受光システム100では、発光装置10の分散光源14から出射されたパルス光Lpが被写体Wで反射し、受光装置102に入射する。受光装置102には、太陽光等の環境光Lsも入射する。なお、説明の便宜のため、発光装置10から被写体Wまでのパルス光Lpを放射光Leと、被写体Wから受光装置102までのパルス光Lpを反射光Lrと呼ぶ。
制御装置104は、受光装置102で受光された光から環境光Lsの成分を除去して被写体Wからの反射光Lrの成分を取得するように制御する。
ここで、環境光Lsの影響を低減する基本原理、特に、連続光を用いた場合の基本原理について、図4〜図6を参照しながら説明する。
先ず、図4に示すように、最初の1フレーム期間F1において、被写体Wに連続光を照射しないときの光電子を取り込み、該光電子から未照射時の輝度値を得、次の2フレーム期間F2において、被写体Wに連続光を照射したときの光電子を取り込み、該光電子から照射時の輝度値を得、これらの輝度値の差を取得することで、環境光Ls(主に太陽光成分)の影響を低減することができる。この場合、第1フレーム期間F1と第2フレーム期間F2の組み合わせを1サイクルとした場合、1サイクルに対する連続光のデューティ比は50%となる。また、1つのフレーム期間としては、撮像装置による撮影期間である例えば1/60[秒]が用いられる。
そして、最初の1フレーム期間F1においては、連続光を出射せずに受光し、続く第2フレーム期間F2において、該第2フレーム期間F2にわたって連続光を出射させながら受光することから、この第1フレーム期間F1から第2フレーム期間F2にわたって、環境光によるノイズ成分も取り込まれることになる。
従って、図5に示すように、第2フレーム期間F2の輝度値(信号光成分+太陽光成分)から第1フレーム期間F1の輝度値(太陽光成分)を差し引くことによって、理想的には太陽光成分による影響が除去され、信号光成分のみが得られることになる。
しかし、太陽光のような強い環境光が存在する環境では、光ショットノイズの影響があり、しかも、光ショットノイズは、ランダム性を有することから、上述した輝度値の差を演算するだけでは、環境光の影響の除去は十分ではないことがわかる。すなわち、図6に示すように、第1フレーム期間F1で発生した光ショットノイズ成分と、第2フレーム期間F2で発生した光ショットノイズ成分が異なる場合、その差分が信号光成分に重畳されることになる。
また、太陽光のような強い環境光が存在する環境では、例えば図5に示すように、信号光成分よりも太陽光成分が大きいことから(信号光成分のS/N比が低い)、信号光成分の入力ダイナミックレンジが小さくなるという問題がある。そこで、1フレーム期間F1と2フレーム期間F2の組み合わせを複数回繰り返して信号光成分を蓄積することによって、信号光成分のS/N比を向上させることが考えられる。しかし、各フレーム期間において、ランダムな光ショットノイズが入り込み、しかも、差演算においても、一部残存することから、上述のように、信号光成分の蓄積と共に、残存するノイズ成分も蓄積することになり、差演算後のS/N比が低くなるという問題がある。
信号光成分のS/N比を向上させるためには、連続光のパワーを高めることが考えられる。しかし、1つのフレーム期間にわたって連続光を出射させることから、発熱や消費電力が増加するという新たな問題が生じる。発熱に対しては例えば冷却機構を別途用意することで対応できるが、受光システムの製造コスト、ランニングコストが高くなり、サイズも大きくなるという問題がある。従って、連続光のパワーを上げることには限界がある。
一方、上述した本実施の形態に係る発光装置10では、分散光源14からパルス幅の短いパルス光Lpを出射することから、該発光装置10を用いた受光システム100では、上述したような連続光による各種問題を解決することができる。
[受光システム100の詳細]
ここで、本実施の形態に係る発光装置10を用いた受光システム100の詳細について図7〜図14を参照しながら説明する。
<受光装置102>
図3に示すように、受光装置102は、レンズ108と、受光部110とを有する。レンズ108を通過した反射光Lr及び環境光Lsは、受光部110に集光される。
(i)受光部110
図7に示すように、受光部110は、1つの光電変換素子112と、第1電荷蓄積部114a及び第2電荷蓄積部114bと、第1アンプ部116a及び第2アンプ部116bと、光電子排出部118と、リセット部120と、ゲート駆動回路122とを備える。
(ii)光電変換素子112
光電変換素子112は、例えば埋込型フォトダイオード(pinned photodiode)にて構成され、反射光Lrの光量に応じた光電子を発生する。光電変換素子112は、埋込型以外のフォトダイオードやフォトゲート等の別の光電変換素子であってもよい。
(iii)第1電荷蓄積部114a、第2電荷蓄積部114b
第1電荷蓄積部114aは、第1スイッチング素子SW1と第1キャパシタC1とを有する。第2電荷蓄積部114bは、第2スイッチング素子SW2と第2キャパシタC2とを有する。これら第1スイッチング素子SW1及び第2スイッチング素子SW2は、それぞれ例えばnチャネル型MOSトランジスタにて構成することができる。
第1スイッチング素子SW1及び第2スイッチング素子SW2は、光電変換素子112で発生した光電子を第1電荷蓄積部114a及び第2電荷蓄積部114bのいずれに供給するかを選択する。すなわち、第1スイッチング素子SW1は、ソースが光電変換素子112に接続され、ドレインが第1キャパシタC1に接続され、ゲートがゲート駆動回路122に接続されている。同様に、第2スイッチング素子SW2は、ソースが光電変換素子112に接続され、ドレインが第2キャパシタC2に接続され、ゲートがゲート駆動回路122に接続されている。従って、各ゲートに対するゲート駆動回路122からのゲート駆動信号(第1読取信号Sg1及び第2読取信号Sg2)に応じて第1スイッチング素子SW1及び第2スイッチング素子SW2のオン・オフを選択的に制御することにより、光電変換素子112で発生した光電子が、第1電荷蓄積部114a及び第2電荷蓄積部114bのいずれかに振り分けられる。例えば、第1スイッチング素子SW1をオンにしたとき、第1電荷蓄積部114aに光電子が移動される。なお、後述するように、本実施の形態では、第1スイッチング素子SW1及び第2スイッチング素子SW2の全てがオフの場合、光電変換素子112で発生した不要な光電子は、光電子排出部118を介して排出される。
第1キャパシタC1は、第1スイッチング素子SW1がオンのとき、光電変換素子112で発生した光電子を蓄積する。同様に、第2キャパシタC2は、第2スイッチング素子SW2がオンのとき、光電変換素子112で発生した光電子を蓄積する。
これら第1キャパシタC1及び第2キャパシタC2は、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量を利用することができる。
(iv)第1アンプ部116a、第2アンプ部116b
第1アンプ部116aは、例えばnチャネル型MOSトランジスタにて構成された第1出力素子124aを有する。第1出力素子124aのゲートには、第1スイッチング素子SW1と第1キャパシタC1との接点a1が接続され、第1出力素子124aのドレインには電源電圧VDDが供給され、第1出力素子124aのソースと接地(又は−電源)間に第1電流源126aが接続され、第1出力素子124aのソースに接続された第1出力端子φo1から第1出力電圧Vout1が取り出されるようになっている。従って、第1キャパシタC1に蓄積された光電子(電荷量Q1)に応じた電圧が第1出力素子124aにて増幅されて第1出力電圧Vout1として取り出されることになる。
同様に、第2アンプ部116bは、例えばnチャネル型MOSトランジスタにて構成された第2出力素子124bを有する。第2出力素子124bのゲートには、第2スイッチング素子SW2と第2キャパシタC2との接点a2が接続され、第2出力素子124bのドレインには電源電圧VDDが供給され、第2出力素子124bのソースと接地(又は−電源)間に第2電流源126bが接続され、第2出力素子124bのソースに接続された第1出力端子φo2から第2出力電圧Vout2が取り出されるようになっている。従って、第2キャパシタC2に蓄積された電荷量(電荷量Q2)に応じた電圧が第2出力素子124bにて増幅されて第2出力電圧Vout2として取り出されることになる。
(v)光電子排出部118
光電子排出部118は、光電子排出用の第3スイッチング素子SW3を有する。第3スイッチング素子SW3は、第1スイッチング素子SW1及び第2スイッチング素子SW2の全てがオフにされているとき(すなわち、光電変換素子112で発生した光電子を第1電荷蓄積部114a及び第2電荷蓄積部114bに振り分けないとき)に当該光電子を排出する。すなわち、第3スイッチング素子SW3のソースには光電変換素子112が接続され、ドレインにはリセット電圧Vrefが供給され、ゲートにはゲート駆動回路122が接続されている。このため、ゲート駆動回路122からゲートにゲート駆動信号(光電子排出信号Se)を供給すること(ゲートに供給される電圧を高レベルにすること)により、ゲートをオンにし、光電変換素子112で発生した光電子を、第1電荷蓄積部114a及び第2電荷蓄積部114bに振り分けることなく、排出することができる。これにより、第1電荷蓄積部114a及び第2電荷蓄積部114bには、第1スイッチング素子SW1及び第2スイッチング素子SW2のいずれかのゲートがオンしている期間に光電変換素子112で発生した光電子のみを振り分けることが可能となる。
(vi)リセット部120
リセット部120は、例えばnチャネル型MOSトランジスタにて構成された第4スイッチング素子SW4及び第5スイッチング素子SW5を有する。これら第4スイッチング素子SW4及び第5スイッチング素子SW5は、連動して動作することにより、第1キャパシタC1及び第2キャパシタC2に蓄積されている光電子を排出し、第1キャパシタC1及び第2キャパシタC2の電位を一定のリセット電位にする。すなわち、第1キャパシタC1及び第2キャパシタC2をリセットする。
具体的には、第4スイッチング素子SW4のソースには、第1スイッチング素子SW1と第1キャパシタC1との接点a1が接続され、第5スイッチング素子SW5のソースには、第2スイッチング素子SW2と第2キャパシタC2との接点a2が接続され、第4スイッチング素子SW4及び第5スイッチング素子SW5の各ドレインには、リセット電圧Vrefが供給され、第4スイッチング素子SW4及び第5スイッチング素子SW5の各ゲートには、ゲート駆動回路122が接続されている。このため、各ゲートに対するゲート駆動回路122からのゲート駆動信号(リセット信号Sr)によって第4スイッチング素子SW4及び第5スイッチング素子SW5を共にオンにすることにより、第1キャパシタC1及び第2キャパシタC2に蓄積されている光電子を排出ことができる。すなわち、第1キャパシタC1及び第2キャパシタC2をリセットすることができる。
(vii)光電変換素子112の構成例
図8は、埋込型フォトダイオードを用いた光電変換素子112とその周辺構造の一部縦断面図が示されている。
光電変換素子112とその周辺構造は、図8に示すように、第1導電型(例えばP型)の基板128と、高濃度のP型の第1半導体領域130と、第2導電型(例えばN型)の第2半導体領域132と、N型の第3半導体領域134と、ポリシリコン層からなる転送ゲート136と、金属層等による遮光部138とを有する。
第1半導体領域130の上面全体は、外部に露出し、反射光Lr及び環境光Lsが入射可能である。本実施の形態では、第1半導体領域130と第2半導体領域132とで光電変換素子112を構成する。
また、基板128と、第2半導体領域132と、第3半導体領域134と、転送ゲート136とで、第1スイッチング素子SW1を構成する(第2スイッチング素子SW2については図示を省略してある)。さらに、第3半導体領域134は、フローティング・ディフュージョンとしても機能し、本実施の形態の第1キャパシタC1を構成する(第2キャパシタC2についても図示を省略してある)。
遮光部138は、第3半導体領域134の上面と転送ゲート136とを覆うように配置される。これにより、第3半導体領域134及び転送ゲート136に対する反射光Lr及び環境光Lsが遮られる。
<受光システム100の動作>
次に、本実施の形態に係る受光システム100の動作について図9及び図10を参照しながら説明する。
図9に示すように、発光装置10からのパルス光Lpの発光時間はWLである。また、第1スイッチング素子SW1がオンしている期間と第2スイッチング素子SW2がオンしている期間は共に同一でWDである。
第1スイッチング素子SW1及び第2スイッチング素子SW2は、光電変換素子112にて光電変換して得られた光電子を第1キャパシタC1及び第2キャパシタC2に振り分ける。すなわち、第1キャパシタC1に転送された光電子は、入射した環境光Lsを光電変換して得られた光電子(電荷量Q1)であり、第2キャパシタC2に転送された光電子は、入射した環境光Lsと反射光Lr(パルス光Lpが被写体Wに反射したことによる反射光)を光電変換して得られた光電子(電荷量Q2)である。
従って、下記式(4)に示すように、これら電荷量Q1及びQ2の差をとることによって、環境光に依存しない反射光強度の情報を取得することができる。
反射光強度=Q2−Q1 ……(4)
なお、第1スイッチング素子SW1及び第2スイッチング素子SW2が共にオンとなっていない(共にオフとなっている)場合に光電変換された光電子は、不要な光電子であるため、この不要な光電子を第3スイッチング素子SW3をオンにしてドレインに掃き出す。
ここで、受光システム100の具体的な動作タイミングについて図9及び図10を参照しながら説明する。
最初に、受光システム100の初期設定として、時点t0において、第3スイッチング素子SW3〜第5スイッチング素子SW5を全てオンにし、第1スイッチング素子SW1及び第2スイッチング素子SW2を共にオフにする。これにより、光電変換素子112に蓄積されている不要な光電子が排出されると共に、第1キャパシタC1及び第2キャパシタC2の電位がリセット電位に設定される。
初期設定が終了した後、反射光強度を取得するためのサイクルが1回のみ、あるいは複数回繰り返されることになる。
このサイクルは、先ず、図9に示すように、パルス光Lpが出射されていない任意の時点t1から第1読取期間Tr1にわたり第1スイッチング素子SW1をオン(第2スイッチング素子SW2はオフのまま)にする。これによって、環境光Lsを光電変換して得られた光電子(電荷量Q1)が第1キャパシタC1に転送される。この第1読取期間Tr1の開始時点t1から第1キャパシタC1がリセットされるまでの期間において、第1アンプ部116aの第1出力端子φo1からは、第1キャパシタC1に蓄積された光電子(電荷量Q1)に応じた電圧が第1出力素子124aにて増幅されて第1出力電圧Vout1として出力されることになる。
第1読取期間Tr1が経過した時点t2から第1排出期間Td1にわたり第1スイッチング素子SW1をオフにすると同時に、第3スイッチング素子SW3をオンにする。これによって、第1排出期間Td1において光電変換素子112に発生した不要な光電子が排出される。
第1排出期間Td1が経過した時点、すなわち、時点t3にて、制御装置104から発光装置10の駆動パルス発生回路36(図2参照)に対して発光指示Scが出力され、これにより、発光装置10の分散光源14から1つのパルス光Lpが出射されることになる。従って、時点t3で第3スイッチング素子SW3をオフにし、該時点t3から第2読取期間Tr2にわたり第2スイッチング素子SW2をオン(第1スイッチング素子SW1はオフのまま)にする。これによって、環境光Lsと反射光Lrを光電変換して得られた光電子(電荷量Q2)が第2キャパシタC2に転送される。第2読取期間Tr2が経過した時点t4で第2スイッチング素子SW2をオフにする。この第2読取期間Tr2の開始時点t3から第2キャパシタC2がリセットされるまでの期間において、第2アンプ部116bの第2出力端子φo2からは、第2キャパシタC2に蓄積された光電子(電荷量Q2)に応じた電圧が第2出力素子124bにて増幅されて第2出力電圧Vout2として出力されることになる。
その後、第2読取期間Tr2が経過した時点t4からサイクルの終了時点t5の第2排出期間Td2にかけて第3スイッチング素子SW3をオンにする。これによって、該第2排出期間Td2において光電変換素子112に発生した不要な光電子が排出される。この第2排出期間Td2が終了した時点t5で1つのサイクルが終了する。
そして、上述したサイクルを1回のみとした場合は、時点t1から1フレーム期間が経過した時点で1つのサイクルが終了するようにしてもよい。この場合、例えば第1読取期間Tr1が経過した時点t2以降の任意の時点で第1出力電圧Vout1を読み出して第1数値データD1とし、第2読取期間Tr2が経過した時点t4以降の任意の時点で第2出力電圧Vout2を読み出して第2数値データD2とし、下記式(5)を演算することによって、反射光強度データDrを得ることができる。
Dr=D2−D1 ………(5)
もちろん、第2読取期間Tr2が経過した時点t4以降の任意の時点で第1出力電圧Vout1及び第2出力電圧Vout2を同時に読み出してそれぞれ第1数値データD1及び第2数値データD2とし、上記式(5)を演算することによって、反射光強度データDrを得るようにしてもよい。
その後、少なくとも第2出力電圧Vout2を読み出した後の任意の時点trから第4スイッチング素子SW4及び第5スイッチング素子SW5を共にオンにして、第1キャパシタC1及び第2キャパシタC2に蓄積されている電荷量Q1及びQ2を排出する。
また、上述した発光装置10は、パルス光Lpのパルス幅を1ナノ秒より長く、且つ、0.25秒未満としているため、上述したサイクルを1回のみとした場合は、パルス光Lpのパルス幅を1フレーム期間の1%以下、例えば0.1%以下の時間的長さに設定することが可能である。つまり、パルス幅を大幅に短く設定することができることから、1つのパルス光Lpのパワーを高くすることができ、環境光成分に対する反射光成分(信号光)のS/N比を大幅に向上させることができる。第2読取期間Tr2もパルス光Lpのパルス幅に合わせて短く設定することができ、しかも、環境光Lsのみを読み取る第1読取期間Tr1を上述した第2読取期間Tr2と同じ時間的長さにできる等、読取時間を短くすることができるため、環境光Lsの入射光量を低減でき、環境光Lsに起因する光ショットノイズ成分を低減することができる。
また、第1読取期間Tr1と第2読取期間Tr2に挟まれる第1排出期間Td1の時間的長さは、1つの光電変換素子112に発生した不要な光電子を排出する程度の非常に短い時間的長さ、例えば第1読取期間Tr1程度の時間的長さに設定することができる。つまり、被写体Wにパルス光Lpを照射しない期間(第1読取期間Tr1)における光電子の取り込み(未照射時の輝度値の取得)と、パルス光Lpを照射した期間(第2読取期間Tr2)における光電子の取り込み(照射時の輝度値の取得)を、短時間に切り換えることが可能となり、未照射時の輝度値と照射時の輝度値の取得にかかる同時性を格段に向上させることができる。
一方、上述したサイクルを複数回繰り返す場合は、図10に示すように、サイクル1、サイクル2、・・・サイクルnの各サイクルにおいて、図9に示すタイミングに準じて動作が行われる。そして、各サイクルの各時点t3において、制御装置104から発光装置10の駆動パルス発生回路36に対して発光指示Scが出力されることになるが、この発光指示Scの出力周期が発光装置10から出力されるパルス光列のパルス周期となる。また、この場合、最終のサイクルnにおいてのみ、上述の第1出力電圧Vout1及び第2出力電圧Vout2を読み出せばよい。これにより、第1キャパシタC1及び第2キャパシタC2に蓄積される光電子の量を増やすことができる。
この場合においても、パルス光列のパルス周期に対するパルス光Lpのデューティ比が1%以下(例えば0.1%以下)に設定されることから、パルス光列に含まれる各パルス光Lpのパワーを連続光よりも高くすることが可能となり、各パルス幅での環境光Ls(ノイズ成分)に対する反射光Lr(信号光成分)のS/N比を大幅に向上させることができる。しかも、複数サイクルにわたって第1キャパシタC1及び第2キャパシタC2にそれぞれ光電子を蓄積することから、信号光成分を増やすことができ、その後の信号処理の精度を高めることが可能となる。また、各サイクルにおいて、第1読取期間Tr1における光電子の取り込み(未照射時の輝度値の取得)と、第2読取期間Tr2における光電子の取り込み(照射時の輝度値の取得)を、短時間に切り換えることができるため、未照射時の輝度値と照射時の輝度値の取得にかかる同時性を格段に向上させることができる。
上述した実施の形態では、光電変換素子112として埋込型フォトダイオード(図8参照)を用いたが、これに限られず、埋込型フォトダイオード以外のフォトダイオードやフォトゲート等その他の光電変換素子を用いることもできる。
図11には、フォトゲートFGを用いた光電変換素子112とその周辺構造の一部縦断面図が示されている。
光電変換素子112とその周辺構造は、図11に示すように、P型の基板140と、フォトゲートFGと、N型の半導体領域142と、ポリシリコン層からなる転送ゲート144と、例えば金属層からなる遮光部146とを有する。フォトゲートFGが光電変換素子112を構成する。図11には図示しないが、フォトゲートFGにはゲート駆動回路122が接続されている。従って、フォトゲートFGに対するゲート駆動回路122からのゲート駆動信号Sfgに応じてフォトゲートFGのオン・オフを選択的に制御することにより、光電変換素子112の光電子を蓄積する場所(ポテンシャル井戸)を上下に動かせるようになっている。すなわち、フォトゲートFGがオンとされた場合は、ポテンシャル井戸が下方に移動し、光電子を蓄積しやすい状態にする。反対に、フォトゲートFGがオフとされた場合は、ポテンシャル井戸が上方に移動し、蓄積されていた光電子をすべて別の領域(例えば第1キャパシタC1)に転送できるようになっている。
また、基板140と、フォトゲートFGと、半導体領域142と、転送ゲート144とで、第1スイッチング素子SW1を構成する(第2スイッチング素子SW2については省略してある)。さらに、半導体領域142は、フローティング・ディフュージョンとしても機能し、第1キャパシタC1を構成する(第2キャパシタC2については省略してある)。
遮光部146は、半導体領域142と転送ゲート144とを覆うように配置される。これにより、半導体領域142及び転送ゲート144に対する反射光Lr及び環境光Lsが遮られる。
図12には、光電変換素子112としてフォトゲートFGを用いた場合の受光システム100の動作を示す。この図12のタイミングチャートは、フォトゲートFGのタイミングを除き、図9のタイミングチャートと同様である。
図12では、フォトゲートFGが第1読取期間Tr1の開始時点t1でオンとされ、該第1読取期間Tr1の終了時点t2よりも前の時点taでオフとされる。そのため、フォトゲートFGにおいて光電変換した環境光Lsによる光電子を高速に半導体領域142(第1キャパシタC1)に転送することができる。同様に、フォトゲートFGが第2読取期間Tr2の開始時点t3でオンとされ、該第2読取期間Tr2の終了時点t4よりも前の時点tbでオフとされる。そのため、フォトゲートFGにおいて光電変換した環境光Lsと反射光Lrによる光電子を高速に別の半導体領域(第2キャパシタC2)に転送することができる。これは、不要な光電子を排出する場合も同様であり、第1排出期間Td1及び第2排出期間Td2の各開始時点t2及びt4でフォトゲートFGをオンとし、各終了時点t3及びt5(t1)よりも前の時点tc及びtdでフォトゲートFGをオフにすることから、不要な光電子を高速に排出することができる。
<撮像システム>
上述した受光システム100における受光装置102の受光部110として、1つの光電変換素子112を設けた例を示したが、その他、受光部110として、光電変換素子112が一次元的に配列されたラインセンサアレイや二次元的に配列されたイメージセンサアレイを用いるようにしてもよい。すなわち、受光部110として、光電変換素子112が一次元的に配列されたラインセンサアレイや二次元的に配列されたイメージセンサアレイを用いた撮像システムとしてもよい。
図13に、イメージセンサアレイを用いた受光部110の構成例を示す。受光部110は、マトリックス状に画素150が配置された前記イメージセンサアレイ152と、ゲート駆動回路122と、垂直選択回路154と、サンプルホールド回路155と、水平選択回路156と、出力バッファ157と、A/Dコンバータ158とを有する。
各画素150は、図14に示すように、上述した光電変換素子112と、第1電荷蓄積部114a及び第2電荷蓄積部114bと、第1アンプ部116a及び第2アンプ部116bと、光電子排出部118と、リセット部120と、第1出力線160a及び第2出力線160bとを備える。このうち、光電変換素子112と、第1電荷蓄積部114a及び第2電荷蓄積部114bと、光電子排出部118と、リセット部120の構成は上述した受光システム100における受光部110(図7参照)の構成と同様である。第1アンプ部116aは、第1出力素子124aと、該第1出力素子124aのソースと第1出力線160aとの間に接続された例えばnチャネル型MOSトランジスタによる第6スイッチング素子SW6とを有し、第2アンプ部116bは、第2出力素子124bと、該第2出力素子124bのソースと第2出力線160bとの間に接続された例えばnチャネル型MOSトランジスタによる第7スイッチング素子SW7とを有する。また、各第1信号線160aと接地(又は−電源)間にそれぞれ第1電流源126aが接続され、各第2信号線160bと接地(又は−電源)間にそれぞれ第2電流源126bが接続され、これにより、各第1信号線160aからそれぞれ第1出力電圧Vout1が取り出され、各第2信号線160bからそれぞれ第2出力電圧Vout2が取り出されるようになっている。
イメージセンサアレイ152は、各画素150が受光した反射光Lrの光量に応じた第1蓄積電荷信号Sc1及び第2蓄積電荷信号Sc2を、サンプルホールド回路155と、水平選択回路156と、出力バッファ157と、A/Dコンバータ158とを介して出力する。
具体的には、ゲート駆動回路122は、ゲート駆動信号(第1読取信号Sg1及び第2読取信号Sg2、リセット信号Sr及び光電子排出信号Seの総称)を出力することにより、イメージセンサアレイ152の第1スイッチング素子SW1〜第5スイッチング素子SW5を選択的にオン・オフ制御する。垂直選択回路154は、マルチプレクサ(図示せず)を有し、読出しを行う画素150が属する行に対して選択的に第1取出信号Ss1及び第2取出信号Ss2を出力し、当該画素150から第1蓄積電荷信号Sc1(第1出力電圧Vout1)及び第2蓄積電荷信号Sc2(第2出力電圧Vout2)を出力させる。水平選択回路156は、別のマルチプレクサ(図示せず)を有し、読出しを行う画素150が属する列を選択し、当該画素150からの第1蓄積電荷信号Sc1(第1出力電圧Vout1)及び第2蓄積電荷信号Sc2(第2出力電圧Vout2)を、サンプルホールド回路155と、水平選択回路156と、出力バッファ157と、A/Dコンバータ158とを介して演算装置105に出力する。第1蓄積電荷信号Sc1及び第2電荷蓄積信号Sc2を受信した演算装置105は、第1蓄積電荷信号Sc1及び第2電荷蓄積信号Sc2から反射光強度を求める。
この撮像システムでは、S/N比の向上、環境光によるノイズ成分の影響を低減することができると共に、照射時の輝度値と未照射時の輝度値の取得にかかる同時性を向上させることができ、発光を用いた様々なアプリケーションに適用させることができる。
なお、上述の撮像システムは、発光装置から出射される光の波長を700nm以上、1050nm未満としているため、近赤外光を使用すれば、暗視撮像システムとして実現させることができる。
本実施の形態に係る発光装置を示す構成図である。 本実施の形態に係る発光装置の構成を示す回路図である。 本実施の形態に係る受光システムを示す構成図である。 環境光の影響を低減する手法の基本原理を示すタイミングチャートである。 環境光の影響を低減する手法の基本原理を示す説明図である。 太陽光の光ショットノイズによる影響を示す説明図である。 1つの光電変換素子を有する受光部の構成を示す回路図である。 光電変換素子を埋込型フォトダイオードとした場合の構成を示す断面図である。 本実施の形態に係る受光システムの動作(サイクルを1回のみとした場合の動作)を示すタイミングチャートである。 本実施の形態に係る受光システムの動作(サイクルを複数回繰り返す場合の動作)を示すタイミングチャートである。 光電変換素子をフォトゲートとした場合の構成を示す断面図である。 光電変換素子をフォトゲートとした場合の受光システムの動作(サイクルを1回のみとした場合の動作)を示すタイミングチャートである。 イメージセンサアレイを有する受光部の構成図である。 イメージセンサアレイの各画素の構成を示す回路図である。
符号の説明
10…発光装置 12…半導体レーザバー
14…分散光源 16…駆動回路
24…放熱板 36…駆動パルス発生回路
100…受光システム 102…受光装置
104…制御装置 110…受光部
112…光電変換素子 114a…第1電荷蓄積部
114b…第2電荷蓄積部 116a…第1アンプ部
116b…第2アンプ部 118…光電子排出部
120…リセット部 122…ゲート駆動回路
150…画素 152…イメージセンサアレイ
154…垂直選択回路 156…水平選択回路
Lp…パルス光 Lr…反射光
Ls…環境光

Claims (12)

  1. 発光面の最長の辺の長さが1.5mm以上となっている分散光源と、
    一定の周期に従って入力される発光指示に基づいて前記分散光源に対して駆動パルスを供給することにより、前記分散光源から2つ以上のパルス状の光を間欠的に出射させる駆動回路とを有する発光装置であって、
    前記分散光源は、発光領域を一直線状に設けた半導体レーザバーを複数有し、且つ、複数の前記半導体レーザバーが積層された構成を有し、
    複数の前記半導体レーザバーの間にそれぞれ放熱板が介在され、一方の端部に位置する半導体レーザバーにアノード端子板が設置され、他方の端部に位置する半導体レーザバーにカソード端子板が設置され、
    前記分散光源から出射される前記パルス状の光のパルス幅が1ナノ秒より長く、且つ、0.25秒未満であり、
    単一の前記パルス状の光のエネルギーが66.8μ[J]未満であり、
    前記一定の周期が18μsecを超え、
    2つ以上の前記パルス状の光を有するパルス光列の平均エネルギーが3.75μ[J]未満であり、
    平均パワーが74.0m[W]未満であり、
    前記一定の周期に対する前記パルス光のデューティ比が1%以下であることを特徴とする発光装置。
  2. 請求項1記載の発光装置において、
    前記分散光源は、その光出射面側に、少なくとも光の照射範囲及び/又は該発光装置から出射される光の輝点面積を制御するための光拡散部材が設置されていることを特徴とする発光装置。
  3. 請求項2記載の発光装置において、
    前記光拡散部材は、ホログラムパターンが形成された拡散板であることを特徴とする発光装置。
  4. 被写体に対して光を照射する請求項1〜3のいずれか1項に記載の発光装置と、
    前記被写体からの反射光を受光する受光装置と、
    前記発光装置及び前記受光装置を制御する制御装置とを有する受光システムであって、
    前記受光装置は、
    前記反射光を検知して光電子に変換する光電変換素子と、
    前記光電変換素子からの前記光電子を蓄積する第1キャパシタ及び第2キャパシタと、
    前記光電変換素子からの前記光電子を排出する光電子排出部と、
    前記光電変換素子からの前記光電子を、前記発光装置の駆動に同期して、前記第1キャパシタ、前記第2キャパシタ及び前記光電子排出部に選択的に振り分ける第1スイッチング素子、第2スイッチング素子及び第3スイッチング素子とを具備し、
    前記制御装置は、
    前記発光装置から前記パルス状の光が出射されていない期間のうちの第1期間に、前記第1スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記第1キャパシタに転送し、
    前記発光装置から前記パルス状の光が出射されている期間のうちの第2期間に、前記第2スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記第2キャパシタに転送し、
    前記第1期間及び前記第2期間以外の期間に、前記第3スイッチング素子をオン制御して、前記光電変換素子からの前記光電子を、前記光電子排出部に排出するように制御し、
    前記第1キャパシタに転送された電荷量と前記第2キャパシタに転送された電荷量との差に基づいて、環境光に依存しない前記反射光の輝度情報を得ることを特徴とする受光システム。
  5. 請求項4記載の受光システムにおいて、
    前記第1期間と前記第2期間の組み合わせが、間欠的に複数回繰り返すように設定され、
    複数回の前記第1期間に、前記光電変換素子からの前記光電子を、前記第1キャパシタに転送蓄積し、
    複数回の前記第2期間に、前記光電変換素子からの前記光電子を、前記第2キャパシタに転送蓄積し、
    前記第1キャパシタに転送蓄積された電荷量と前記第2キャパシタに転送蓄積された電荷量との差に基づいて、環境光に依存しない前記反射光の輝度情報を得ることを特徴とする受光システム。
  6. 請求項4又は5記載の受光システムにおいて、
    前記光電変換素子は、フォトダイオード、埋込型フォトダイオード又はフォトゲートであることを特徴とする受光システム。
  7. 請求項4〜6のいずれか1項に記載の受光システムにおいて、
    前記第1キャパシタ及び前記第2キャパシタは、MIMキャパシタ、MOSキャパシタ、埋込型フォトダイオード構造又はpn接合の寄生容量を利用することを特徴とする受光システム。
  8. 請求項4〜7のいずれか1項に記載の受光システムにおいて、
    少なくとも前記第1スイッチング素子〜第3スイッチング素子並びに前記第1キャパシタ及び第2キャパシタは、遮光された領域に形成されていることを特徴とする受光システム。
  9. 請求項4〜8のいずれか1項に記載の受光システムにおいて、
    前記第1キャパシタ及び前記第2キャパシタの電位をリセット電位にするための電源とリセットスイッチを有することを特徴とする受光システム。
  10. 請求項4〜9のいずれか1項に記載の受光システムにおいて、
    前記第1キャパシタに蓄積された電荷量に基づく電位が印加される第1ゲート端子を有し、該第1ゲート端子に印加された前記電位を電圧信号に変換する第1アンプと、
    前記第2キャパシタに蓄積された電荷量に基づく第2電位が印加される第2ゲート端子を有し、該第2ゲート端子に印加された前記電位を電圧信号に変換する第2アンプとを有することを特徴とする受光システム。
  11. 請求項1〜3のいずれか1項に記載の発光装置と、
    多数の画素が配列されたラインセンサアレイ又は二次元イメージセンサアレイとを有する撮像システムにおいて、
    請求項4〜10のいずれか1項に記載の受光システムの受光装置における少なくとも前記光電変換素子、前記第1キャパシタ、前記第2キャパシタ、前記第1スイッチング素子、前記第2スイッチング素子を有する1つのユニットが前記ラインセンサアレイ又は前記二次元イメージセンサアレイの1画素分の構成要素を構成していることを特徴とする撮像システム。
  12. 請求項11記載の撮像システムにおいて、
    前記受光装置にて受光される光の波長が700nm以上、1050nm未満であることを特徴とする撮像システム。
JP2008270225A 2008-10-20 2008-10-20 発光装置、受光システム及び撮像システム Pending JP2010098260A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008270225A JP2010098260A (ja) 2008-10-20 2008-10-20 発光装置、受光システム及び撮像システム
US13/124,891 US8558473B2 (en) 2008-10-20 2009-10-13 Light emitting device, light receiving system and image pickup system
PCT/JP2009/067721 WO2010047247A1 (ja) 2008-10-20 2009-10-13 発光装置、受光システム及び撮像システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270225A JP2010098260A (ja) 2008-10-20 2008-10-20 発光装置、受光システム及び撮像システム

Publications (1)

Publication Number Publication Date
JP2010098260A true JP2010098260A (ja) 2010-04-30

Family

ID=42119288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270225A Pending JP2010098260A (ja) 2008-10-20 2008-10-20 発光装置、受光システム及び撮像システム

Country Status (3)

Country Link
US (1) US8558473B2 (ja)
JP (1) JP2010098260A (ja)
WO (1) WO2010047247A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247965A (ja) * 2010-05-24 2011-12-08 Olympus Imaging Corp ステレオ撮影対応型の交換レンズ、撮像装置本体、および撮像装置
JP2013083510A (ja) * 2011-10-07 2013-05-09 Toshiba Corp レーザレーダ装置およびレーザレーダ装置による撮像目標選択方法
JP2014145744A (ja) * 2013-01-30 2014-08-14 Ricoh Co Ltd 物体検出装置
WO2017010176A1 (ja) * 2015-07-14 2017-01-19 コニカミノルタ株式会社 レーザレーダ装置
JP2017026523A (ja) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 レーザレーダ装置及びその制御方法
JP2017187471A (ja) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 撮像装置
JP2021177667A (ja) * 2014-07-11 2021-11-11 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846554B2 (ja) * 2011-07-29 2016-01-20 国立大学法人静岡大学 固体撮像装置、及び画素
JP5831901B2 (ja) * 2011-11-28 2015-12-09 国立大学法人大阪大学 誘導ラマン散乱顕微鏡
WO2019197717A1 (en) 2018-04-09 2019-10-17 Oulun Yliopisto Range imaging apparatus and method
JP7273565B2 (ja) * 2019-03-19 2023-05-15 株式会社東芝 受光装置及び距離測定装置
CN113126111B (zh) * 2019-12-30 2024-02-09 Oppo广东移动通信有限公司 飞行时间模组和电子设备
US10904456B1 (en) * 2020-03-18 2021-01-26 Sony Semiconductor Solutions Corporation Imaging with ambient light subtraction
US20210297617A1 (en) * 2020-03-18 2021-09-23 Sony Semiconductor Solutions Corporation Imaging with ambient light subtraction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002239773A (ja) * 2000-12-11 2002-08-28 Matsushita Electric Ind Co Ltd 半導体レーザー加工装置および半導体レーザー加工方法
JP2002540640A (ja) * 1999-03-29 2002-11-26 カッティング エッジ オプトロニクス, インコーポレイテッド レーザーダイオードのパッケージング
JP2004031433A (ja) * 2002-06-21 2004-01-29 Hamamatsu Photonics Kk 集光レンズアレイの製造方法
JP2004146456A (ja) * 2002-10-22 2004-05-20 Hamamatsu Photonics Kk 半導体レーザ装置
JP2004294420A (ja) * 2003-02-03 2004-10-21 Shoji Kawahito 距離画像センサ
JP2005208333A (ja) * 2004-01-22 2005-08-04 Sharp Corp フラッシュ装置、フラッシュ装置を備えるカメラ、および半導体レーザ装置とその製造方法
JP2007507748A (ja) * 2003-09-30 2007-03-29 テクストロン・システムズ・コーポレイション 交互配置された光学板を用いたビーム合成

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08313215A (ja) * 1995-05-23 1996-11-29 Olympus Optical Co Ltd 2次元距離センサ
EP0985952A4 (en) 1998-03-26 2004-07-14 Mitsubishi Electric Corp IMAGE DISPLAY AND LIGHT EMITTING DEVICE
JP2001281336A (ja) 2000-03-31 2001-10-10 Olympus Optical Co Ltd 距離画像撮像装置
JP4854860B2 (ja) 2001-02-19 2012-01-18 中央精機株式会社 溶接線の倣い判定装置と倣い制御装置
WO2004100331A1 (ja) 2003-05-09 2004-11-18 Hamamatsu Photonics K.K. 半導体レーザ装置
JP2008226948A (ja) 2007-03-09 2008-09-25 Seiko Epson Corp レーザ光源装置、照明装置、モニタ装置、プロジェクタ、及びレーザ光源の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540640A (ja) * 1999-03-29 2002-11-26 カッティング エッジ オプトロニクス, インコーポレイテッド レーザーダイオードのパッケージング
JP2002239773A (ja) * 2000-12-11 2002-08-28 Matsushita Electric Ind Co Ltd 半導体レーザー加工装置および半導体レーザー加工方法
JP2004031433A (ja) * 2002-06-21 2004-01-29 Hamamatsu Photonics Kk 集光レンズアレイの製造方法
JP2004146456A (ja) * 2002-10-22 2004-05-20 Hamamatsu Photonics Kk 半導体レーザ装置
JP2004294420A (ja) * 2003-02-03 2004-10-21 Shoji Kawahito 距離画像センサ
JP2007507748A (ja) * 2003-09-30 2007-03-29 テクストロン・システムズ・コーポレイション 交互配置された光学板を用いたビーム合成
JP2005208333A (ja) * 2004-01-22 2005-08-04 Sharp Corp フラッシュ装置、フラッシュ装置を備えるカメラ、および半導体レーザ装置とその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247965A (ja) * 2010-05-24 2011-12-08 Olympus Imaging Corp ステレオ撮影対応型の交換レンズ、撮像装置本体、および撮像装置
JP2013083510A (ja) * 2011-10-07 2013-05-09 Toshiba Corp レーザレーダ装置およびレーザレーダ装置による撮像目標選択方法
JP2014145744A (ja) * 2013-01-30 2014-08-14 Ricoh Co Ltd 物体検出装置
JP2021177667A (ja) * 2014-07-11 2021-11-11 株式会社半導体エネルギー研究所 半導体装置
US11882376B2 (en) 2014-07-11 2024-01-23 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device and electronic device
JP7466016B2 (ja) 2014-07-11 2024-04-11 株式会社半導体エネルギー研究所 半導体装置
WO2017010176A1 (ja) * 2015-07-14 2017-01-19 コニカミノルタ株式会社 レーザレーダ装置
JP2017026523A (ja) * 2015-07-24 2017-02-02 コニカミノルタ株式会社 レーザレーダ装置及びその制御方法
JP2017187471A (ja) * 2016-03-31 2017-10-12 パナソニックIpマネジメント株式会社 撮像装置

Also Published As

Publication number Publication date
WO2010047247A1 (ja) 2010-04-29
US20110199002A1 (en) 2011-08-18
US8558473B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
JP2010098260A (ja) 発光装置、受光システム及び撮像システム
JP5635937B2 (ja) 固体撮像装置
US8537218B2 (en) Distance image sensor and method for generating image signal by time-of-flight method
US11513199B2 (en) System and method for determining a distance to an object
Guerrieri et al. Two-dimensional SPAD imaging camera for photon counting
KR101543664B1 (ko) 픽셀 어레이 및 이를 포함하는 입체 영상 센서
US9025139B2 (en) Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device
US8947645B2 (en) Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device
JP5576851B2 (ja) 測距システム及び測距方法
US10852400B2 (en) System for determining a distance to an object
US8947646B2 (en) Photoelectric conversion element, light receiving device, light receiving system, and distance measuring device
JP5675468B2 (ja) 測距システム
KR20130137651A (ko) 동일 프레임에 동일한 감광면에서 게이트-제어된 광과 비-게이트-제어된 광을 캡처하기 위한 방법 및 시스템
JP5675469B2 (ja) 測距システム
JP2009004583A (ja) 受光装置および空間情報の検出装置
JP5829036B2 (ja) 単位画素の信号加算方法
JP5660959B2 (ja) 受光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130115