JP2010095150A - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
JP2010095150A
JP2010095150A JP2008267637A JP2008267637A JP2010095150A JP 2010095150 A JP2010095150 A JP 2010095150A JP 2008267637 A JP2008267637 A JP 2008267637A JP 2008267637 A JP2008267637 A JP 2008267637A JP 2010095150 A JP2010095150 A JP 2010095150A
Authority
JP
Japan
Prior art keywords
pneumatic tire
protrusion
tire
tire according
turbulent flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008267637A
Other languages
English (en)
Inventor
Daisuke Nohara
大輔 野原
Daisuke Nakagawa
大助 中川
Sukekazu Takahashi
祐和 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2008267637A priority Critical patent/JP2010095150A/ja
Publication of JP2010095150A publication Critical patent/JP2010095150A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

【課題】放熱を促進して耐久性能を向上した空気入りタイヤを提供する。
【解決手段】トレッド部と、一対のビード部と、該トレッド部と各ビード部との間に延在する一対のサイドウォール部とを有し、一対のビード部間にトロイド状に延在してこれら各部を補強するカーカスと、該カーカスの内側に設けられたインナーライナーとを備える空気入りタイヤにおいて、サイドウォール部の表面の少なくとも一部に、突部を備える乱流発生部を設け、インナーライナーに熱可塑性樹脂フィルムを用いたことを特徴とする、空気入りタイヤである。
【選択図】図1

Description

本発明は、空気入りタイヤに関し、特には、温度上昇を抑制して耐久性能を向上させることが可能な空気入りタイヤに関するものである。
一般に、空気入りタイヤのタイヤ温度の上昇は、材料物性の変化といった経時的変化の促進や、高速走行時のトレッド破損等の原因になるため、タイヤの耐久性の観点から好ましくない。
特に、パンク走行時(内圧0kPa走行時)のランフラットタイヤにおいては、耐久性を向上するためにタイヤ温度を低減することが大きな課題となっている。これは、例えば三日月形補強ゴムを有するランフラットタイヤでは、パンク走行時に補強ゴムにタイヤ径方向の変形が集中して該部分が非常に高温に達し、耐久性に多大な影響を与えるからである。
これに対し、タイヤ構成部材からの発熱を抑制することでタイヤ温度を低減可能なタイヤとして、タイヤ構成部材の歪を低減および抑制する補強部材を使用したタイヤが知られている。しかし、このような補強部材の使用は、意図しない故障の発生を生じる可能性があり、また、ランフラットタイヤにおいて通常内圧走行時の縦バネ定数を高めて乗り心地を悪化させる等の通常性能への悪影響を生じる場合があった。
そのため、通常性能を損なうことなくタイヤ温度の低減が可能なタイヤとして、例えば特許文献1に記載の、タイヤ径方向に長い突条(突部)または溝をタイヤ外表面に配置して冷却効果を向上させたタイヤが用いられている。このタイヤは、ゴムが熱伝導性の悪い材料であることからも分かるように、放熱面積の拡大による冷却効果の向上というよりも、タイヤ外表面の空気流れにおいて乱流発生を促進することによる冷却効果の向上を目的としたタイヤである。
国際公開第2007/032405号パンフレット
しかしながら、上述したような放熱を促進して耐久性能を向上した空気入りタイヤであっても、故障発生をより確実に低減するために、放熱効率および耐久性能の更なる向上が望まれている。
この発明は、上記課題を有利に解決することを目的とするものであり、この発明の空気入りタイヤは、トレッド部と、一対のビード部と、該トレッド部と各ビード部との間に延在する一対のサイドウォール部とを有し、前記一対のビード部間にトロイド状に延在してこれら各部を補強するカーカスと、該カーカスの内側に設けられたインナーライナーとを備える空気入りタイヤにおいて、前記サイドウォール部の表面の少なくとも一部に、突部を備える乱流発生部を設け、前記インナーライナーに熱可塑性樹脂フィルムを用いたことを特徴とする。このように、故障が発生し易いサイドウォール部に乱流発生部を設けたことにより、この乱流発生部で発生した空気の乱流によりサイドウォール部の放熱を促進することができる。また、最も曲げ変形の大きいタイヤ最内側部に存在するインナーライナーに熱可塑性樹脂フィルムを用いることにより、熱伝導性の悪いゴムシートをインナーライナーに用いた場合と比較してインナーライナーの発熱を低減しタイヤの温度上昇を低減することができる。そして、タイヤ構成部材の疲労破壊特性に温度は非線形に関与しており、同じ温度低減効果でもタイヤの絶対温度が低いほどタイヤ耐久性能は向上するので、本発明によれば、熱可塑性樹脂フィルムの使用と乱流発生部の設置との相乗効果によりタイヤの耐久性能が向上する。
ここで、タイヤを構成するゴムは熱伝導性の悪い材料であるため、乱流発生部の突部は、放熱面積を拡大して放熱を促進する効果よりも、乱流の発生を促進させて空気の乱流を直接サイドウォール部に当てることにより放熱を促進する効果の方が大きいと考えられる。そして、本発明では、故障が発生し易い箇所の近傍表面に突部を設けることでタイヤ故障の発生を抑制することができ、本発明は、特に、カーカスの端部が位置するサイドウォール部を有するTBRや、三日月形補強ゴムが設けられたサイドウォール部を有するランフラットタイヤのように、サイドウォール部に故障が発生し易くなる構造の空気入りタイヤに適用して、サイドウォール部の温度低減効果を高めることができる。
ここで、本発明の空気入りタイヤは、前記乱流発生部が複数の突部を備えており、前記突部の高さをh、幅をw、前記乱流発生部における該突部間のピッチをpとしたときに、1.0≦p/h≦50.0、且つ1.0≦(p−w)/w≦100.0の関係を満足することが好ましい。空気の流れ(乱流)の状態は、おおよそp/hで整理できるところ、ピッチ(p)を狭くし過ぎると突部間に空気の流れが入り込まずに放熱効率が殆ど増加せず、一方、ピッチ(p)を広げ過ぎると突部を設けたことによる空気流れの変化の影響が届かない領域が発生してしまい放熱効率が殆ど増加しない。また、ピッチ(p)に対する突部の幅(w)の割合を示す(p−w)/wを小さくし過ぎると、放熱を向上させたい面の面積に対し、ゴムからなる突部(表面積増加による放熱効果の増加が期待できない部分)の表面積が増加してしまう上、ゴム体積の増加による発熱増加の影響も生じ得る。
本発明の空気入りタイヤは、前記ピッチ(p)と高さ(h)との比(p/h)が、2.0≦p/h≦24.0であることが好ましく、10.0≦p/h≦20.0であることが更に好ましい。また、本発明の空気入りタイヤは、前記(p−w)/wが、4.0≦(p−w)/w≦39.0であることが好ましい。p/hおよび(p−w)/wをこの範囲とすることにより、乱流発生部が設けられたサイドウォール部表面の熱伝達率をより向上してタイヤ温度低減を図ることができる。
本発明の空気入りタイヤは、前記突部の高さ(h)が0.5mm≦h≦7mmであり、前記突部の幅(w)が0.3mm≦h≦4mmであることが好ましい。高さ(h)および幅(w)がこの範囲にある突部は放熱効率の向上効果が高く、タイヤ温度低減効果が高いからである。
本発明の空気入りタイヤは、前記突部の延在方向がタイヤ径方向に対してなす角度θが、−70°≦θ≦70°であることが好ましく、−45°≦θ≦45°であることが更に好ましく、−20°≦θ≦20°であることが最も好ましい。突部の延在方向を上述のように規定することにより、乱流発生部の突部での発熱増加および蓄熱の懸念を低減することができる。
本発明の空気入りタイヤは、前記突部が、少なくともタイヤ径方向内側端部において該突部の下部の幅より上部の幅が小さくなっていることが好ましい。空気入りタイヤは回転体であるため、サイドウォール部表面の空気流れは、僅かではあるが遠心力によりタイヤ径方向外側に向かっているところ、少なくともタイヤ径方向内側端部において該突部の下部の幅より上部の幅を小さくする、即ち突部の下部から上部へ向かって突部のタイヤ周方向内側へと傾斜している傾斜面を形成して突部に頂部を設けることで、突部への空気の流入に対して突部の背部にある側の澱み部分を低減し放熱を向上させることができるからである。また、頂部を付加的に設けることにより、三次元的な流れが発生して局所的に更なる放熱効果の向上が可能となる。
本発明の空気入りタイヤは、前記突部の延在方向がタイヤ径方向に対してなす角度θが、タイヤ径方向位置により異なっていても良い。回転中の空気入りタイヤの表面では、タイヤ径方向位置により空気流れの流速が異なるため、任意のタイヤ径方向位置で突部の延在方向の角度を変化させることが好ましい。
本発明の空気入りタイヤは、前記突部が延在方向に沿って不連続に分割されていても良い。サイドウォール部表面に突部を設けた場合、突部への空気の流入に対して突部の背面側では澱みが生じるために突部を設けない場合と比較して放熱が悪化する部分が生じるが、乱流発生部の突部を不連続に分割することにより、この放熱が悪化する部分を削減して平均的な熱伝達率を向上することができる。
本発明の空気入りタイヤは、前記突部が、タイヤ周方向に沿って不均一に配置されていても良い。熱伝達率は空気の流速に依存するところ、空気入りタイヤは回転体でありタイヤ径方向位置によりサイドウォール部表面を流れる空気の流速は異なる。従って、突部をタイヤ周方向に沿って不均一に配置することにより、径方向の放熱効率の均一化を図ることができる。
本発明の空気入りタイヤは、前記サイドウォール部が、三日月形状の補強ゴムを備えても良い。また、本発明の空気入りタイヤは、重荷重用タイヤであっても良い。本発明により、補強ゴムの最大屈曲部の温度低減や、カーカス端部付近の温度低減を図ることができ、タイヤの耐久力を向上して故障発生を低減することができる。
また、本発明の空気入りタイヤは、前記インナーライナーに用いる前記熱可塑性樹脂フィルムが、エチレン−ビニルアルコール共重合体(A)を反応させて得られる変性エチレン−ビニルアルコール共重合体(B)からなるマトリックス中に23℃におけるヤング率が前記変性エチレン−ビニルアルコール共重合体(B)より小さい柔軟樹脂(C)を分散させて得られる樹脂組成物(D)からなる層を少なくとも含むことが好ましい。ここで、本発明の空気入りタイヤの熱可塑性樹脂フィルムは、上記樹脂組成物(D)からなる層を少なくとも含むことを要し、更に他の層を有してもよいし、上記樹脂組成物(D)からなる層のみから構成されていてもよい。また、上記樹脂組成物(D)において、変性エチレン−ビニルアルコール共重合体(B)はマトリックスとして存在し、ここで、マトリックスとは連続相を意味する。このように樹脂組成物(D)からなる層を少なくとも含む熱可塑性樹脂フィルムをインナーライナーとして上述した空気入りタイヤに用いれば、樹脂組成物(D)からなる層はガスバリア性及び耐屈曲性に優れる軽量な層であるので、内圧保持性を大幅に向上した軽量な空気入りタイヤを提供することができる。
本発明の空気入りタイヤは、前記柔軟樹脂(C)の23℃におけるヤング率が500MPa以下であることが好ましい。また、本発明の空気入りタイヤは、前記柔軟樹脂(C)が、水酸基と反応する官能基を有することが好ましい。
本発明の空気入りタイヤは、前記樹脂組成物(D)における前記柔軟樹脂(C)の含有率が10〜80質量%の範囲であることが好ましく、また、前記柔軟樹脂(C)の平均粒径が2μm以下であることが好ましい。
本発明の空気入りタイヤは、前記樹脂組成物(D)からなる層が架橋されていても良い。
更に、本発明の空気入りタイヤは、前記樹脂組成物(D)からなる層は、20℃、65%RHにおける酸素透過量が3.0×10-12cm3・cm/cm2・sec・cmHg以下であることが好ましく、また、前記樹脂組成物(D)からなる層の厚さが100μm以下であることが好ましい。ここで、酸素透過率は、例えばJIS K7126(等圧法)に準拠して測定できる。
本発明によれば、熱可塑性樹脂フィルムの使用と乱流発生部の設置との相乗効果により放熱効果が高まり、耐久性能が向上した空気入りタイヤを提供することができる。
以下、本発明に係る空気入りタイヤの実施の形態を図面に基づき詳細に説明する。
<第1実施形態>
ここで、図1は本発明の空気入りタイヤの第1実施形態のランフラットタイヤ1の側面図、図2はランフラットタイヤ1の要部斜視図、図3はランフラットタイヤ1を半径方向に切断した断面を示す要部断面図、図4はランフラットタイヤ1のサイドウォール部3に設けられた乱流発生部5の要部斜視図、図5は乱流発生部5の断面図、図6は乱流発生部5の突部をタイヤ周方向から見た側面図である。
(ランフラットタイヤ)
図1〜3に示すように、ランフラットタイヤ1は、路面と接触するトレッド部2と、タイヤ両側のサイドウォール部3と、各サイドウォール部3の開口縁に沿って設けられたビード部4とを備えている。
サイドウォール部3には、図1に示すような5つの乱流発生部5がタイヤ周方向に間欠的に設けられている。ここで、乱流発生部5を形成するサイドウォール部3の範囲(加工領域)は、図3に示すように、リム(図示せず)のベースラインからのタイヤ断面高さ(SH)の10〜90%の範囲である。
図1および図2に示すように、ビード部4は、サイドウォール部3の開口部の縁部に沿って周回するように設けられた、ビードコア6Aおよびビードフィラー6Bを備えている。ビードコア6Aとしては、スチールコードなどが用いられる。
図2および図3に示すように、ランフラットタイヤ1は、タイヤの骨格となるカーカス層7を有している。そして、サイドウォール部3に位置するカーカス層7のタイヤ幅方向内側には、サイドウォール部3を補強するサイドウォール補強層8が設けられている。ここで、このサイドウォール補強層8は、タイヤ幅方向断面において三日月形状のゴムストックによって形成されている。
カーカス層7のタイヤ径方向外側には、複数のベルト層(スチールベルト補強層9,10、周方向補強層11)が設けられている。そして、周方向補強層11のタイヤ径方向外側には、路面と接地するトレッド部2が設けられている。また、カーカス層7およびサイドウォール補強層8のタイヤ径方向内側には、後に詳細に説明するインナーライナー14が設けられている。
(乱流発生部)
図2、図4および図5に示すように、ランフラットタイヤ1の乱流発生部5は、サイドウォール部3の外側表面に径方向rとほぼ同方向に沿って延在する複数の突部(突条)12と、突部12間の溝部13とを備えてなる。図5に示すように、突部12同士は所定のピッチ(p)に設定され、突部12の高さもタイヤ周方向で隣接する突部12同士で同じ高さに設定されている。なお、図5に示すうに、ピッチ(p)は、突部12の延在方向の中央における幅を2等分した点の間の距離とする。
図6に示すように、本実施形態では、突部12の延在方向(ほぼタイヤ径方向rと同じ)の突部12の中央高さ(h2)が突部12の延在方向における端部の高さ(h1)より高くなるように、延在方向の中央が徐々に盛り上がっている。以下、突部12の高さ(h)とは、突部の最も高い部分の高さ、即ち、本実施形態では中央の高さ(h2)をいうものとする。なお、本実施形態以外にも、突部12の高さは均一(端部の高さと中央の高さとが等しい)であっても良い。
上述したように、乱流発生部5は、サイドウォール部3の周方向に沿って完結的に設けられており、サイドウォール部3の少なくとも一部に設けられた乱流発生部5は角度θの方向で延在している。そして、本実施形態では、乱流発生部5の突部12の上記高さ(h)、ピッチ(p)、幅(w)が、1.0≦p/h≦50.0且つ1.0≦(p−w)/w≦100.0の関係を満足している。なお、本実施形態以外にも、突部のピッチ(p)と高さ(h)の比(p/h)を、好ましくは2.0≦p/h≦24.0、更に好ましくは10.0≦p/h≦20.0とすれば、サイドウォール部表面の熱伝達率を更に向上することができる。
本実施形態では、劣化の発生が他の部分に比較して起こり易いサイドウォール部3に乱流発生部5を設けたことにより、乱流発生部5で発生した空気の乱流でサイドウォール部3の放熱を促進することができる。これは、タイヤを構成するゴムは熱伝導性の悪い素材であるため、放熱面積を拡大して放熱を促進させるよりも、乱流の発生を促進させて空気の乱流を直接サイドウォール部に当てることによる放熱効果が大きいからであると考えられる。
そして、特に、重荷重用タイヤや、三日月形補強ゴムが設けられたサイドウォール部3を有するランフラットタイヤやTBR(トラックバスラジアル)のように、長期使用において他の部分に比較してサイドウォール部3に故障が発生し易い部分を備えた空気入りタイヤにおいて、サイドウォール部3の温度を低減させる効果が高くなる。
なお、上記のようにp/hで規定される空気の流れ(乱流)は、ピッチ(p)を細かく刻み過ぎる、即ちピッチ(p)を狭くすると、空気の流れが入り込まず、ピッチ(p)を広げすぎると乱流発生部の形状加工が無い場合と同等となってしまうため、p/hは上記した数値範囲にすることが好ましい。
また、(p−w)/wは、ピッチ(p)に対する突部の割合を示すものであり、これが小さすぎることは、放熱を向上させたい面の面積に対する突部12の表面積の割合が等しくなることと同様である。突部12は、ゴムからなり、表面積増加による放熱向上効果が期待できないため、(p−w)/wの最小値を1.0に規定している。
また、図7に示すように、突部12の延在方向はタイヤ径方向に対して角度θをなしている。ここで、θとは突部12の中心において延在方向aがタイヤ径方向となす角度であり、−70°≦θ≦70°の範囲にあることが好ましい。ランフラットタイヤ1は、回転体であるため、そのサイドウォール部3表面の空気流れは、遠心力により僅かに径方向外側へ向かっている。そこで、突部12への空気の流入に対し背部にある側の澱み部分を低減し、放熱を向上させるため、径方向rに対して上記角度範囲で傾斜させることが好ましい。
ここで、乱流発生部5の延在方向aは、タイヤ径方向rとなす角度θが、所定のタイヤ径方向rに沿った位置によって異なる角度θをなす構成であっても良い。回転する空気入りタイヤ(ランフラットタイヤ1)では、径方向位置により空気流れの流速が異なるため、径方向の位置により乱流発生部5の延在方向aの角度を径方向rに対して変化させることが好ましい。
加えて、乱流発生部5は、延在方向aに沿って不連続に分割されている構成であっても良い。また、乱流発生部5は、タイヤ周方向に沿って不均一に配置された構成であっても良い。因みに、サイドウォール部3の表面に突部を設けると、空気の流入に対して突部の背面側では澱みが生じてしまい、突部を設けない場合と比較して放熱が悪化する部分が生じてしまう。この放熱が悪化する部分を削減して平均的な熱伝達率を向上させるには、乱流発生部が延在方向に不連続に分割されていることが有効となる。
そして、この乱流発生部5では、図5に示すように、ランフラットタイヤ1の回転に伴い、乱流発生部5が形成されていないサイドウォール部3に接触している空気の流れS1が突部12でサイドウォール部3から剥離されて突部12を乗り越える。このとき、突部12の背面側には、空気の流れが滞留する領域S2が生じる。そして、空気の流れS1は、次の突部12との間の底部(溝部13)に再付着して、次の突部12で再び剥離される。このとき、空気の流れS1と次の突部12の前面との間には、空気の流れが滞留する領域S3が生じる。従って、空気の流れが滞留する領域S2,S3上の空気の流速が早いほど、放熱率が高まることとなる。
なお、本実施形態では、乱流発生部5をタイヤ周方向に沿って間欠的に配置したが、全周に亘って突部12を交互に均一に配置しても良い。
(インナーライナー)
インナーライナー14は、エチレン−ビニルアルコール共重合体を反応させて得られる変性エチレン−ビニルアルコール共重合体からなるマトリックス中に23℃におけるヤング率が前記変性エチレン−ビニルアルコール共重合体より小さい柔軟樹脂を分散させて得られる樹脂組成物からなる熱可塑性樹脂フィルムの層を含んでいる。この様なインナーライナー14は、例えば特開2008−24217号に開示されている方法により製造して本実施形態のランフラットタイヤ1に用いることができ、具体的には、以下のようにして調製した樹脂組成物と、状況に応じて補助層及び接着剤層とを使用し、常法により製造することができる。
上記変性エチレン−ビニルアルコール共重合体の製造方法は、特に限定されないが、エチレン−ビニルアルコール共重合体とエポキシ化合物とを溶液中で反応させる製造方法が好適に挙げられる。より詳しくは、エチレン−ビニルアルコール共重合体の溶液に、酸触媒又はアルカリ触媒存在下、好ましくは酸触媒存在下、エポキシ化合物を添加し、反応させることによって変性エチレン−ビニルアルコール共重合体を製造することができる。反応溶媒としては、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド及びN-メチルピロリドン等の非プロトン性極性溶媒が挙げられる。また、酸触媒としては、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、硫酸及び三フッ化ホウ素等が挙げられ、アルカリ触媒としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、ナトリウムメトキシド等が挙げられる。なお、触媒量は、エチレン−ビニルアルコール共重合体100質量部に対し、0.0001〜10質量部の範囲が好ましい。
上記エポキシ化合物としては、一価のエポキシ化合物が好ましい。二価以上のエポキシ化合物は、エチレン−ビニルアルコール共重合体と架橋反応し、ゲル、ブツ等を発生して、インナーライナーの品質を低下させることがある。なお、変性エチレン−ビニルアルコール共重合体の製造容易性、ガスバリア性、耐屈曲性及び耐疲労性の観点から、一価のエポキシ化合物の中でも、グリシドール及びエポキシプロパンが特に好ましい。また、上記エポキシ化合物は、エチレン−ビニルアルコール共重合体100質量部に対して1〜50質量部を反応させることが好ましく、2〜40質量部を反応させることが更に好ましく、5〜35質量部を反応させることが一層好ましい。
上記変性エチレン−ビニルアルコール共重合体は、ガスバリア性、耐屈曲性及び耐疲労性を得る観点から、メルトフローレート(MFR)が190℃、2160g荷重下で0.1〜30g/10分であることが好ましく、0.3〜25g/10分であることが更に好ましく、0.5〜20g/10分であることが一層好ましい。
上記変性エチレン−ビニルアルコール共重合体からなるマトリックス中に分散させる柔軟樹脂は、23℃におけるヤング率が上記変性エチレン−ビニルアルコール共重合体より小さいことを要し、500MPa以下であることが好ましい。上記柔軟樹脂の23℃におけるヤング率が変性エチレン−ビニルアルコール共重合体より小さいと、樹脂組成物の弾性率を低下させることができ、その結果、耐屈曲性を向上させることができる。また、上記柔軟樹脂は、水酸基と反応する官能基を有することが好ましい。上記柔軟樹脂が水酸基と反応する官能基を有することで、変性エチレン−ビニルアルコール共重合体中に柔軟樹脂が均一に分散するようになる。ここで、水酸基と反応する官能基としては、無水マレイン酸残基、水酸基、カルボキシル基、アミノ基等が挙げられる。かかる水酸基と反応する官能基を有する柔軟樹脂として、具体的には、無水マレイン酸変性水素添加スチレン−エチレン−ブタジエン−スチレンブロック共重合体、無水マレイン酸変性超低密度ポリエチレン等が挙げられる。
また、上記樹脂組成物における柔軟樹脂の含有率は、10〜80質量%の範囲であることが好ましい。柔軟樹脂の含有率が10質量%未満では、耐屈曲性を向上させる効果が小さく、一方、80質量%を超えると、ガスバリア性が低下することがある。更に、上記柔軟樹脂は、平均粒径が2μm以下であることが好ましい。平均粒径が2μmを超えると、樹脂組成物からなる層の耐屈曲性を十分に改善できないおそれがあり、ガスバリア性の低下、延いてはタイヤの内圧保持性の悪化をもたらすことがある。なお、樹脂組成物中の柔軟樹脂の平均粒径は、例えば、サンプルを凍結し、該サンプルをミクロトームにより切片にして、透過電子顕微鏡(TEM)で観察する。
上記樹脂組成物は、−20℃におけるヤング率が1500MPa以下であることが好ましい。−20℃におけるヤング率が1500MPa以下であると、寒冷地で使用した際の耐久性を向上させることができる。
上記樹脂組成物は、変性エチレン−ビニルアルコール共重合体と柔軟樹脂とを混練して調製することができる。また、上記樹脂組成物は、インナーライナーの製造時にフィルム状であることが好ましく、該樹脂組成物からなる層は、溶融成形、好ましくはTダイ法、インフレーション法等の押出成形により、好ましくは150〜270℃の溶融温度でフィルムやシート等に成形され、インナーライナーとして使用される。
上記樹脂組成物からなる層は、架橋されていることが好ましい。樹脂組成物からなる層が架橋されていない場合、タイヤの加硫工程でインナーライナーが著しく変形して不均一となり、インナーライナーのガスバリア性、耐屈曲性、耐疲労性が悪化することがある。ここで、架橋方法としては、エネルギー線を照射する方法が好ましく、該エネルギー線としては、紫外線、電子線、X線、α線、γ線等の電離放射線が挙げられ、これらの中でも電子線が特に好ましい。電子線の照射は、樹脂組成物をフィルムやシート等の成形体に加工した後に行うことが好ましい。ここで、電子線の線量は、10〜60Mradの範囲が好ましく、20〜50Mradの範囲が更に好ましい。電子線の線量が10Mrad未満では、架橋が進み難く、一方、60Mradを超えると、成形体の劣化が進み易くなる。
また、上記樹脂組成物からなる層は、20℃、65%RHにおける酸素透過量が3.0×10-12cm3・cm/cm2・sec・cmHg以下であることが好ましく、1.0×10-12cm3・cm/cm2・sec・cmHg以下であることが更に好ましく、5.0×10-13cm3・cm/cm2・sec・cmHg以下であることが一層好ましい。20℃、65%RHにおける酸素透過量が3.0×10-12cm3・cm/cm2・sec・cmHgを超えると、インナーライナーとして用いる際に、タイヤの内圧保持性を高めるために、樹脂組成物からなる層を厚くせざるを得ず、タイヤの重量を十分に低減できなくなる。
更に、上記樹脂組成物からなる層の厚さは、100μm以下であることが好ましく、より好ましくは下限が0.1μmであり、1〜40μmの範囲であることが更に好ましく、5〜30μmの範囲であることが一層好ましい。樹脂組成物からなる層の厚さが100μmを超えると、インナーライナーとして用いる際に、従来のブチルゴム系のインナーライナーに対して重量の低減効果が小さくなる上、耐屈曲性及び耐疲労性が低下し、タイヤ転動時の屈曲変形により破断・亀裂が生じ易く、また、亀裂が伸展し易くなるため、タイヤの内圧保持性が使用前に比べて低下することがある。一方、0.1μm未満では、ガスバリア性が不十分で、タイヤの内圧保持性を十分に確保できないことがある。
本実施形態のインナーライナー14は、上記樹脂組成物からなる層に隣接して、更にエラストマーからなる補助層を一層以上備えることが好ましい。ここで、上記補助層は、エラストマーを用いるため、変性エチレン−ビニルアルコール共重合体の水酸基と接着性が高く、樹脂組成物からなる層から剥離し難い。そのため、樹脂組成物からなる層に破断・亀裂が生じても、亀裂が伸展し難いので、大きな破断及びクラックのような弊害を抑制し、タイヤの内圧保持性を十分に維持することができる。また、インナーライナー14は、上記樹脂組成物からなる層と補助層との間及び上記補助層と補助層との間の少なくとも一箇所に、一層以上の接着剤層を備えることもできる。なお、上記接着剤層に使用する接着剤としては、塩化ゴム・イソシアネート系の接着剤が挙げられる。
なお、インナーライナー14は、上記樹脂組成物からなる層の他、補助層と、必要に応じて接着剤層とを備える場合、積層体として形成される。ここで、積層体を製造する方法としては、例えば、樹脂組成物からなる層と他の層とを共押出により積層させる方法、樹脂組成物からなる層と補助層とを必要に応じて接着剤層を用いて貼り合わせる方法、更にはタイヤ成形時にドラム上で樹脂組成物からなる層と補助層とを必要に応じて接着剤層を用いて貼り合わせる方法等が挙げられる。
上記補助層は、20℃、65%RHにおける酸素透過量が3.0×10-9cm3・cm/cm2・sec・cmHg以下であることが好ましく、1.0×10-9cm3・cm/cm2・sec・cmHg以下であることが更に好ましい。20℃、65%RHにおける酸素透過量が3.0×10-9cm3・cm/cm2・sec・cmHg以下であると、ガスバリア性の補強効果が十分に発揮され、タイヤの内圧保持性を高度に維持することが可能となる。
上記補助層に用いるエラストマーとしては、ブチルゴム、ハロゲン化ブチルゴム、ジエン系エラストマー、熱可塑性ウレタン系エラストマーを好適に挙げることができる。ここで、ガスバリア性の観点からは、ブチルゴム及びハロゲン化ブチルゴムが好ましく、ハロゲン化ブチルゴムが更に好ましい。また、樹脂組成物からなる層に亀裂が生じた際の伸展を抑制するには、ブチルゴム及びジエン系エラストマーが好ましい。更に、補助層を薄層化しつつ、亀裂の発生や伸展を抑制するには、熱可塑性ウレタン系エラストマーが好ましい。その上、補助層は、積層することが可能であり、種々の特性を持つエラストマーからなる補助層を多層化することが特に好ましい。なお、これらエラストマーは、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記ジエン系エラストマーとして、具体的には、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン共重合体ゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム(CR)等が挙げられ、これらの中でも天然ゴム、ブタジエンゴムが好ましい。これらジエン系エラストマーは、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記熱可塑性ウレタン系エラストマーは、ポリオールと、イソシアネート化合物と、短鎖ジオールとの反応によって得られる。ポリオール及び短鎖ジオールは、イソシアネート化合物との付加反応により、直鎖状ポリウレタンを形成する。ここで、ポリオールは、熱可塑性ウレタン系エラストマーにおいて柔軟な部分となり、イソシアネート化合物及び短鎖ジオールは硬い部分となる。なお、熱可塑性ウレタン系エラストマーは、原料の種類、配合量、重合条件等を変えることで、広範囲に性質を変えることができる。
上記補助層の厚さの合計は、50〜2000μmの範囲であることが好ましく、100〜1000μmの範囲であることが更に好ましく、300〜800μmの範囲であることが一層好ましい。補助層の厚さの合計が50μm未満では、補強効果が十分に発揮されず、樹脂組成物からなる層に破断・亀裂が生じた際の弊害を抑制することが困難となり、タイヤの内圧保持性を十分に維持できないことがある。一方、補助層の厚さの合計が2000μmを超えると、タイヤの重量が大きくなる。
上記補助層は、300%伸び時における引張応力が10MPa以下であることが好ましく、8MPa以下であることが更に好ましく、7MPa以下であることが一層好ましい。該引張応力が10MPaを超えると、補助層をインナーライナーに用いた際の耐屈曲性及び耐疲労性が低下することがある。
なお、本実施形態以外にも、熱可塑性樹脂フィルムとしては、溶液流延法、溶融押し出し法、カレンダー法等により製造できる、熱可塑性ウレタン系エラストマー層を含むと共に、変性エチレン−ビニルアルコール共重合体層を一層以上含む多層フィルムからなる層等を用いることができる。
<第2実施形態>
図8および図9は、本発明の第2の実施の形態の空気入りタイヤとしてのランフラットタイヤ1Dを示す。ここで、図8は、ランフラットタイヤ1Dの斜視図であり、図9(a)はサイドウォール部3に設けられた乱流発生部の複数の突部20を示す図、図9(b)は突部のタイヤ径方向内側(タイヤ回転軸側)の端部の形状を示す図、図9(c)は図9(a)のA−A線に沿う断面図、図9(d)はランフラットタイヤ1Dの側面図である。なお、本実施形態のランフラットタイヤ1Dにおいては、上述の第1実施形態のランフラットタイヤ1と同一の部分には同一の符号を付し、説明を省略する。
(ランフラットタイヤ)
ランフラットタイヤ1Dの概略構成は、上記した第1実施形態と殆ど同様であり、トレッド部2と、サイドウォール部3と、ビード部4とを備えている。
このランフラットタイヤ1Dでは、サイドウォール部3の外側面全体が乱流発生部5となっている。即ち、サイドウォール部全体に亘って1つの乱流発生部5が設けられていることとなり、サイドウォール部3の外側表面にはタイヤ径方向rとほぼ同方向に沿って延在する複数の突部(突条)20が設けられている。これら突部20は、タイヤ径方向rに沿って高さが同一であり、また、隣接する突部20間のピッチ(p)は一定となるようにされている。
(乱流発生部)
図9(a)〜(c)に示すように、突部20は、タイヤ径方向内側の端部21に、サイドウォール部3の外側面より立ち上がる起立面22が形成されている。また、突部20は、下部の幅(w1)より上部の幅(w2)が小さくなっており、断面が台形状になっている。従って、突部20のタイヤ周方向の側面は、突部20の下部から上部に向かって突部のタイヤ周方向内側へと傾斜している傾斜面となっている。そして、前述した起立面22と突部20の上面24とが交差する部分が頂部23となる。なお、本実施形態のように突部20の幅が上部と下部とで異なる場合の幅(w)とは、突部20の最も広い幅である下部の幅(w1)をいう。
そして、本実施形態の乱流発生部5は、第1実施形態と同様に、突部20の高さ(h)、ピッチ(p)、幅(w)が、1.0≦p/h≦50.0且つ1.0≦(p−w)/w≦100.0の関係を満足している。なお、本実施形態以外にも、突部のピッチ(p)と高さ(h)の比(p/h)を、好ましくは2.0≦p/h≦24.0、更に好ましくは10.0≦p/h≦20.0とすれば、サイドウォール部表面の熱伝達率を更に向上することができる。
本実施形態では、劣化の発生が他の部分に比較して起こり易いサイドウォール部3に複数の突部20を所定のピッチで配置したことにより、突部20で発生した空気の乱流でサイドウォール部3の放熱を促進することができる。これは、タイヤを構成するゴムは熱伝導性の悪い素材であるため、放熱面積を拡大して放熱を促進させるよりも、乱流の発生を促進させて空気の乱流を直接サイドウォール部に当てることによる放熱効果が大きいからであると考えられる。
そして、特に、重荷重用タイヤや、三日月形補強ゴムが設けられたサイドウォール部3を有するランフラットタイヤやTBR(トラックバスラジアル)のように、長期使用において他の部分に比較してサイドウォール部3に故障が発生し易い部分を備えた空気入りタイヤにおいて、サイドウォール部3の温度を低減させる効果が高くなる。
なお、上記のようにp/hで規定される空気の流れ(乱流)は、ピッチ(p)を細かく刻み過ぎる、即ちピッチ(p)を狭くすると、空気の流れが入り込まず、ピッチ(p)を広げすぎると突部20を形成しない場合と同等となってしまうため、p/hは上記した数値範囲にすることが好ましい。
また、(p−w)/wは、ピッチ(p)に対する突部20の割合を示すものであり、これが小さすぎることは、放熱を向上させたい面の面積(サイドウォール部の外側面)に対する突部20の表面積の割合が等しくなることと同様である。突部20は、ゴムからなり、表面積増加による放熱向上効果が期待できないため、(p−w)/wの最小値を1.0に規定している。
また、突部20の延在方向(図7参照)は、タイヤ径方向に対して角度θ(−70°≦θ≦70°)をなしていることが好ましい。ランフラットタイヤ1Dは、回転体であるため、そのサイドウォール部3表面の空気流れは、遠心力により僅かに径方向外側へ向かっている。そこで、突部20への空気の流入に対し背部にある側の澱み部分を低減し、放熱を向上させるため、径方向rに対して上記角度範囲で傾斜させることが好ましい。
加えて突部20は、延在方向aに沿って不連続に分割されている構成であっても良い。また、突部20は、タイヤ周方向に沿ってピッチが不均一に配置された構成であっても良い。因みに、サイドウォール部3の外側表面に突部20を設けると、空気の流入に対して突部の背面側では澱みが生じてしまい、突部20を設けない場合と比較して放熱が悪化する部分が生じてしまう。この放熱が悪化する部分を削減して平均的な熱伝達率を向上させるには、乱流発生部が延在方向に不連続に分割されていることが有効となる。
この乱流発生部5では、第1実施形態と同様に、ランフラットタイヤ1Dの回転に伴い、乱流発生部5が形成されていないサイドウォール部3に接触している空気の流れが突部20でサイドウォール部3から剥離されて突部20を乗り越える。このとき、突部20の背面側には、空気の流れが滞留する領域が生じる。そして、空気の流れは、次の突部20との間の底部に再付着して、次の突部20で再び剥離される。このとき、空気の流れと次の突部20の前面との間には、空気の流れが滞留する領域が生じる。従って、空気の流れが滞留する領域上の空気の流速が早いほど、放熱率が高まると考えられる。
また、本実施形態のランフラットタイヤ1Dは、突部20のタイヤ径方向内側端部21に頂部23を有するので、この頂部23を起点として剥離した空気流が旋回しながら遠心力の方向に流れると考えられる。これにより、放熱率をより高めることができる。なお、本実施形態以外にも、突部の最も温度を低減したい箇所よりもタイヤ径方向内側に頂部23を配置する、即ち最も温度を低減したい箇所よりもタイヤ径方向内側の突部に傾斜面を設けることで、選択的に放熱を高めることができる。また、本実施形態以外にも、突部20をタイヤ径方向に沿って分断する構造とすることにより、タイヤ径方向に沿って複数の頂部23を配置して、頂部23を起点とする空気の旋回流により放熱の向上を図る領域を拡大することもできる。
なお、本実施形態では、複数の突部20を等間隔に配置したが、本実施形態以外にも、複数の突部20が集まった乱流発生部をタイヤ周方向に沿って間欠的に配置する構成としても良い。
(インナーライナー)
本実施形態のインナーライナーには、第1実施形態と同様のインナーライナー14を用いることができる。
<突部の第1変形例>
図10は、上記した第1および第2実施形態のランフラットタイヤ1,1Dに適用できる突部の第1変形例を示している。なお、以下の変形例の説明では、上記した第1および第2実施形態のランフラットタイヤ1,1Dと同一の部分には同一の符号を、類似の部分には類似の符号を付して説明する。
この乱流発生部5Aの突部12Aは、タイヤ径方向rに沿って突部12Aの幅が漸次狭くなるように形成されている。この第1変形例では、サイドウォール部3の特に放熱を要する部分で突部12A同士の間隔を広くして放熱効率を高めることができる。即ち、タイヤ径方向rの位置に応じて、突部12Aの間隔を変化させて放熱効率の適正化を図ることができる。なお、ピッチ(p)と高さ(h)の比(p/h)は、以下に説明する変形例においても、1.0≦p/h≦50.0且つ1.0≦(p−w)/w≦100.0の関係を満足し、更に、2.0≦p/h≦24.0の関係を満足することが好ましい。
<突部の第2変形例>
図11は、突部の第2変形例を示している。図11に示すように、乱流発生用突部5Bには、タイヤ周方向に、タイヤ周方向で切断した断面がほぼ直角三角形状で、空気の流れS1に対して突部背面側にある斜面の断面が下に凸の曲線となっている突部12Bと、タイヤ周方向で切断した断面がほぼ矩形状で、空気の流れS1に対して突部背面側にある斜面の断面が上に凸の曲線となっている突部12Cとが交互に形成されている。
この第2変形例の突部12B,12Cを有する乱流発生部5Bでは、図11に示すように、突部12Bの背面側の凹んだ斜面に、空気の流れが滞留する領域S2が形成されるため、突部12Bと突部12Cとの間の放熱対象となる表面での空気滞留による影響を少なくすることができる。
<突部の第3変形例>
図12は、第3変形例を示している。この第3変形例の突部を有する乱流発生部5Cは、断面で見るとほぼ矩形状で空気の流れS1に対して突部背面側にある斜面の断面が上に凸の曲線となっている複数の突部12Dを有している。
この第3変形例では、突部12Dを乗り越えた空気の流れS1が突部12Dの背面側の斜面に沿って突部12D同士の間に入り込むため、空気の流れが滞留する部分S2を小さくすることができる。このため、乱流発生部5Cでの放熱効果を高めることが可能となる。
<突部の第4変形例>
図13は、第4変形例を示している。この第4変形例の突部を有する乱流発生部5Dには、タイヤ回転方向の断面が略矩形状の突部12Fと、突部12Fの高さ(h1)よりやや低い高さ(h2)の突部12Gとが交互に配置されている。そして、突部12Fの上面にはタイヤ径方向rに沿って形成された溝部13Dが形成され、突部12Gの上面にはタイヤ径方向rに沿って形成された溝部13Eが形成されている。この第5変形例の突部12F,12Gでは、溝部13D,13Eにより更に複雑な乱流が発生する。
<突部の第5変形例>
図14は、第5変形例を示している。この第5変形例の突部を有する乱流発生部5Fでは、高さの高い突部12Hと、突部12Hより高さの低い突部12Iとが交互に配置されている。このように突部12Hと突部12Iとの高さが異なるため、乱流が発生して放熱効率を高める。
<突部の第6変形例>
図15は、第6変形例を示している。この第6変形例の突部を有する乱流発生部5Gは、互いに高さが同等で幅寸法が異なる突部12J,12Kを交互に配置したものである。
<突部の変形例7>
図16は、第7変形例を示している。この第7変形例の突部を有する乱流発生部5Hは、断面矩形状の複数の突部12L間に、該突部12Lより小さい複数の突部12Mを配置したものである。
<その他の変形例>
以下、乱流発生部のその他の変形例について説明する。なお、以下に説明する変形例においては、乱流発生部に符号5を、突部に符号12を付して説明する。また、以下の変形例では乱流発生部5をタイヤ周方向に沿って間欠的に配置したが、全周に亘って連続して乱流発生部5を形成しても良い。
図17〜図19に示す乱流発生部5は、リムのベースラインからのタイヤ断面高さ(SH)の90%の長さをタイヤ径方向rに3等分した長さに等しい長さを有する突部12、またはSHの半分若しくは半分以下の長さに等しい長さを有する突部12を、回転方向にずらして配置したものである。
図20に示す乱流発生部5は、周方向から乱流発生部5を見た際に突部の一部がサイドウォール部3の中央付近で重なり合うように、互いにタイヤ回転方向にずらして分離配置された突部12が配列されてなる。
図21に示す乱流発生部5は、タイヤ径方向の外側の突部12と内側の突部12とを、互い違いの方向を向いて延在するようにタイヤ径方向に対して傾けて配置してなる。
図22に示す乱流発生部5は、タイヤ径方向rに対して斜め方向に延在する複数の突部12を平行に配置した構造である。
図23および図24に示す乱流発生部5は、タイヤ径方向に対してそれぞれ異なった角度を有する複数群の突部12を配置したものである。
図25に示す乱流発生部5は、タイヤ径方向に整列した突部12と、タイヤ径方向に対して斜め方向に配置した突部12とを有する。
図26に示す乱流発生部5は、タイヤ径方向に沿って略「く」字状に湾曲した複数の突部12を有する。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(従来例)
インナーライナーに2mmのゴムシートを用いた、p/hが12、(p−w)/wが23、θが0である第1実施形態と同様の構成のタイヤを作製し、下記条件で耐久ドラム試験を行った。
(比較例1)
インナーライナーに2mmのゴムシートを用いた、乱流発生部を有さないタイヤを作製し、下記条件で耐久ドラム試験を行った。
(比較例2)
インナーライナーに2mmの熱可塑性フィルムシートを用いた、乱流発生部を有さないタイヤを作製し、下記条件で耐久ドラム試験を行った。
(実施例1〜2)
インナーライナーに、1mmのゴムシートおよび1mmの熱可塑性フィルムシートの積層体、または2mmの熱可塑性フィルムシートを用いた、p/hが12、(p−w)/wが23、θが0である第1実施形態と同様の構成のタイヤを作製し、下記条件で耐久ドラム試験を行った。
(ドラム耐久試験)
タイヤサイズ:285/50R20
使用リム:8JJ×20
内圧:0kpa
荷重:9.8kN
速度:90km/h
上記条件でドラム耐久試験(JIS K6302)を行い、故障発生までの耐久距離を、従来例を100として指数化した。結果を表1に示す
Figure 2010095150
*1 熱可塑性フィルムには、以下のようにして作製したフィルム(特開2008−024217号に記載のフィルム1)を用いた。
(変性エチレン−ビニルアルコール共重合体(B)の合成)
加圧反応槽に、エチレン含量44モル%、ケン化度99.9%のエチレン−ビニルアルコール共重合体(A)(190℃、2160g荷重下でのMFR:5.5g/10分)2質量部及びN-メチル-2-ピロリドン8質量部を仕込み、120℃で2時間加熱撹拌して、エチレン−ビニルアルコール共重合体(A)を完全に溶解させた。これにエポキシ化合物(E)としてエポキシプロパン0.4質量部を添加後、160℃で4時間加熱した。加熱終了後、蒸留水100質量部に析出させ、多量の蒸留水で充分にN-メチル-2-ピロリドン及び未反応のエポキシプロパンを洗浄し、変性エチレン−ビニルアルコール共重合体(B)を得た。更に、得られた変性エチレン−ビニルアルコール共重合体(B)を粉砕機で粒子径2mm程度に細かくした後、再度多量の蒸留水で十分に洗浄した。洗浄後の粒子を8時間室温で真空乾燥した後、二軸押出機を用いて200℃で溶融し、ペレット化した。なお、得られた変性エチレン−ビニルアルコール共重合体(B)の23℃におけるヤング率は、株式会社島津製作所製オートグラフ[AG−A500型]を用いて、チャック間隔50mm、引張速度50mm/分の条件で測定したところ、1300MPaであった。
(柔軟樹脂(C)の合成)
無水マレイン酸変性水素添加スチレン−エチレン−ブタジエン−スチレンブロック共重合体を公知の方法により合成し、ペレット化した。得られた無水マレイン酸変性水素添加スチレン−エチレン−ブタジエン−スチレンブロック共重合体は、23℃におけるヤング率が3MPa、スチレン含量が20%、無水マレイン酸量が0.3meq/gであった。なお、23℃におけるヤング率は、上記変性エチレン−ビニルアルコール共重合体(B)と同様の方法で測定した。
(フィルム1の作製)
上記変性エチレン−ビニルアルコール共重合体(B)と、上記柔軟樹脂(C)とを配合量がB:C=80:20となるように二軸押出機で混練し、樹脂組成物(D)を得た。ここで、樹脂組成物(D)中の柔軟樹脂(C)の平均粒径は、得られた樹脂組成物(D)の試料を凍結した後、該試料をミクロトームにより切片にして、透過電子顕微鏡で測定した。また、設定温度を−20℃に変更する以外は、上記ヤング率の測定方法と同様にして、樹脂組成物(D)の−20℃におけるヤング率を測定した。次に、得られた樹脂組成物(D)と、熱可塑性ポリウレタン(TPU)[(株)クラレ製クラミロン3190]とを使用し、2種3層共押出装置を用いて、下記共押出成形条件で3層フィルム1(熱可塑性ポリウレタン層/樹脂組成物(D)層/熱可塑性ポリウレタン層)を作製した。ここで、フィルム1の層の厚みは、TPU層:樹脂組成物(D)層:TPU層=1:1:1である。
各樹脂の押出温度:C1/C2/C3/ダイ=170/170/200/200℃
各樹脂の押出機仕様:
熱可塑性ポリウレタン:25mmφ押出機P25−18AC[大阪精機工作株式会社製]
樹脂組成物(D)又は変性EVOH(B):20mmφ押出機ラボ機ME型CO−EXT[株式会社東洋精機製]
Tダイ仕様:500mm幅2種3層用[株式会社プラスチック工学研究所製]
冷却ロールの温度:50℃
引き取り速度:4m/分
なお、得られたフィルム1の物性は、−20℃でのヤング率:750MPa、柔軟樹脂(C)の平均粒径:1.2μm、樹脂組成物(D)層の酸素透過量:9.3×10-13cm3・cm/cm2・sec・cmHg、TPU層の酸素透過量:4.6×10-11cm3・cm/cm2・sec・cmHg、フィルム1の酸素透過量:9.1×10-13cm3・cm/cm2・sec・cmHgである。
表1より、サイドウォール部に乱流発生突部を設けると共にインナーライナーに熱可塑性樹脂フィルムを用いることにより、タイヤの耐久性能が飛躍的に向上することが明らかとなった。
本発明の第1実施形態のランフラットタイヤの側面図である。 本発明の第1実施形態のランフラットタイヤの要部断面を示す斜視図である。 本発明の第1実施形態のランフラットタイヤの要部断面を示す断面図である。 本発明の第1実施形態のランフラットタイヤの乱流発生部の要部を示す斜視図である。 本発明の第1実施形態のランフラットタイヤの乱流発生部での乱流発生状態を示す断面説明図である。 本発明の第1実施形態のランフラットタイヤの乱流発生部の側面図である。 本発明の第1実施形態のランフラットタイヤの乱流発生部のピッチp、角度θを示す説明図である。 本発明の第2実施形態のランフラットタイヤの要部断面を示す斜視図である。 (a)は本発明の第2実施形態のランフラットタイヤ、(b)は突部のタイヤ径方向内側端部をタイヤ回転軸側から見た側面図、(c)は図9(a)のA−A線に沿う断面図、(d)は本発明の第2実施形態のランフラットタイヤの側面図である。 ランフラットタイヤの突部の第1変形例を示す要部斜視図である。 ランフラットタイヤの突部の第2変形例を示す要部斜視図である。 ランフラットタイヤの突部の第3変形例を示す要部斜視図である。 ランフラットタイヤの突部の第4変形例を示す要部斜視図である。 ランフラットタイヤの突部の第5変形例を示す要部斜視図である。 ランフラットタイヤの突部の第6変形例を示す要部斜視図である。 ランフラットタイヤの突部の第7変形例を示す要部斜視図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。 乱流発生部の変形例を示すランフラットタイヤの側面図である。
符号の説明
1 ランフラットタイヤ
2 トレッド部
3 サイドウォール部
4 ビード部
5 乱流発生部
12 突部
14 インナーライナー
20 突部
23 頂部

Claims (21)

  1. トレッド部と、一対のビード部と、該トレッド部と各ビード部との間に延在する一対のサイドウォール部とを有し、前記一対のビード部間にトロイド状に延在してこれら各部を補強するカーカスと、該カーカスの内側に設けられたインナーライナーとを備える空気入りタイヤにおいて、
    前記サイドウォール部の表面の少なくとも一部に、突部を備える乱流発生部を設け、
    前記インナーライナーに熱可塑性樹脂フィルムを用いたことを特徴とする、空気入りタイヤ。
  2. 前記乱流発生部は複数の突部を備えており、
    前記突部の高さをh、幅をw、前記乱流発生部における該突部間のピッチをpとしたときに、
    1.0≦p/h≦50.0、且つ
    1.0≦(p−w)/w≦100.0
    の関係を満足することを特徴とする、請求項1に記載の空気入りタイヤ。
  3. 前記ピッチ(p)と高さ(h)との比(p/h)が、2.0≦p/h≦24.0であることを特徴とする、請求項2に記載の空気入りタイヤ。
  4. 前記ピッチ(p)と高さ(h)との比(p/h)が、10.0≦p/h≦20.0であることを特徴とする、請求項2または請求項3に記載の空気入りタイヤ。
  5. 前記(p−w)/wが、4.0≦(p−w)/w≦39.0であることを特徴とする、請求項2〜4の何れかに記載の空気入りタイヤ。
  6. 前記突部の高さ(h)が0.5mm≦h≦7mmであり、
    前記突部の幅(w)が0.3mm≦h≦4mmであることを特徴とする、請求項1〜5の何れかに記載の空気入りタイヤ。
  7. 前記突部の延在方向がタイヤ径方向に対してなす角度θが、−70°≦θ≦70°であることを特徴とする、請求項1〜6の何れかに記載の空気入りタイヤ。
  8. 前記突部は、少なくともタイヤ径方向内側端部において該突部の下部の幅より上部の幅が小さくなっていることを特徴とする、請求項1〜7の何れかに記載の空気入りタイヤ。
  9. 前記突部の延在方向がタイヤ径方向に対してなす角度θが、タイヤ径方向位置により異なっていることを特徴とする、請求項1〜8の何れかに記載の空気入りタイヤ。
  10. 前記突部が延在方向に沿って不連続に分割されていることを特徴とする、請求項1〜9の何れかに記載の空気入りタイヤ。
  11. 前記突部は、タイヤ周方向に沿って不均一に配置されていることを特徴とする、請求項1〜10の何れかに記載の空気入りタイヤ。
  12. 前記サイドウォール部が、三日月形状の補強ゴムを備えることを特徴とする、請求項1〜11の何れかに記載の空気入りタイヤ。
  13. 前記空気入りタイヤは、重荷重用タイヤであることを特徴とする、請求項1〜12の何れかに記載の空気入りタイヤ。
  14. 前記熱可塑性樹脂フィルムが、エチレン−ビニルアルコール共重合体(A)を反応させて得られる変性エチレン−ビニルアルコール共重合体(B)からなるマトリックス中に23℃におけるヤング率が前記変性エチレン−ビニルアルコール共重合体(B)より小さい柔軟樹脂(C)を分散させて得られる樹脂組成物(D)からなる層を少なくとも含むことを特徴とする、請求項1〜13の何れかに記載の空気入りタイヤ。
  15. 前記柔軟樹脂(C)の23℃におけるヤング率が500MPa以下であることを特徴とする、請求項14に記載の空気入りタイヤ。
  16. 前記柔軟樹脂(C)が、水酸基と反応する官能基を有することを特徴とする請求項14または請求項15に記載の空気入りタイヤ。
  17. 前記樹脂組成物(D)における前記柔軟樹脂(C)の含有率が10〜80質量%の範囲であることを特徴とする、請求項14〜16の何れかに記載の空気入りタイヤ。
  18. 前記柔軟樹脂(C)の平均粒径が2μm以下であることを特徴とする、請求項14〜17の何れかに記載の空気入りタイヤ。
  19. 前記樹脂組成物(D)からなる層が架橋されていることを特徴とする、請求項14〜18の何れかに記載の空気入りタイヤ。
  20. 前記樹脂組成物(D)からなる層は、20℃、65%RHにおける酸素透過量が3.0×10-12cm3・cm/cm2・sec・cmHg以下であることを特徴とする、請求項14〜19の何れかに記載の空気入りタイヤ。
  21. 前記樹脂組成物(D)からなる層の厚さが100μm以下であることを特徴とする、請求項14〜20の何れかに記載の空気入りタイヤ。
JP2008267637A 2008-10-16 2008-10-16 空気入りタイヤ Pending JP2010095150A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267637A JP2010095150A (ja) 2008-10-16 2008-10-16 空気入りタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267637A JP2010095150A (ja) 2008-10-16 2008-10-16 空気入りタイヤ

Publications (1)

Publication Number Publication Date
JP2010095150A true JP2010095150A (ja) 2010-04-30

Family

ID=42257136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267637A Pending JP2010095150A (ja) 2008-10-16 2008-10-16 空気入りタイヤ

Country Status (1)

Country Link
JP (1) JP2010095150A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
JP2012066548A (ja) * 2010-09-27 2012-04-05 Bridgestone Corp 更生タイヤ製造方法
JP2012250554A (ja) * 2011-05-31 2012-12-20 Bridgestone Corp ランフラットタイヤ
JP2013071659A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The タイヤ/ホイール組立体
WO2013111886A1 (ja) * 2012-01-27 2013-08-01 株式会社ブリヂストン タイヤ
KR101349040B1 (ko) * 2011-07-13 2014-01-09 한국타이어 주식회사 차량용 타이어의 사이드월
JPWO2012165441A1 (ja) * 2011-05-31 2015-02-23 株式会社クラレ 空気入りタイヤ用インナーライナー、その製造方法及び空気入りタイヤ
KR101545106B1 (ko) * 2011-08-10 2015-08-17 스미토모 고무 고교 가부시키가이샤 공기 타이어
JP2017144790A (ja) * 2016-02-15 2017-08-24 東洋ゴム工業株式会社 空気入りタイヤ
JP2019137216A (ja) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 スポーク式ホイール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029029A1 (fr) * 2001-09-05 2003-04-10 The Yokohama Rubber Co., Ltd. Pneumatique pouvant rouler a plat
WO2007032405A1 (ja) * 2005-09-13 2007-03-22 Bridgestone Corporation 空気入りタイヤ
JP2007276587A (ja) * 2006-04-05 2007-10-25 Bridgestone Corp タイヤ
JP2008024217A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 空気入りタイヤ用インナーライナー及びそれを備えた空気入りタイヤ
JP2008024228A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 積層体及びその製造方法、並びにそれを用いたタイヤ
WO2008059716A1 (fr) * 2006-11-14 2008-05-22 Bridgestone Corporation Pneu et procédé et dispositif pour fabriquer l'élément de structure de pneu

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029029A1 (fr) * 2001-09-05 2003-04-10 The Yokohama Rubber Co., Ltd. Pneumatique pouvant rouler a plat
WO2007032405A1 (ja) * 2005-09-13 2007-03-22 Bridgestone Corporation 空気入りタイヤ
JP2007276587A (ja) * 2006-04-05 2007-10-25 Bridgestone Corp タイヤ
JP2008024217A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 空気入りタイヤ用インナーライナー及びそれを備えた空気入りタイヤ
JP2008024228A (ja) * 2006-07-24 2008-02-07 Bridgestone Corp 積層体及びその製造方法、並びにそれを用いたタイヤ
WO2008059716A1 (fr) * 2006-11-14 2008-05-22 Bridgestone Corporation Pneu et procédé et dispositif pour fabriquer l'élément de structure de pneu

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5613246B2 (ja) * 2010-08-05 2014-10-22 株式会社ブリヂストン タイヤ
WO2012018128A1 (ja) * 2010-08-05 2012-02-09 株式会社ブリヂストン タイヤ
CN103118883A (zh) * 2010-08-05 2013-05-22 株式会社普利司通 轮胎
US9045008B2 (en) 2010-08-05 2015-06-02 Bridgestone Corporation Tire
JP2012066548A (ja) * 2010-09-27 2012-04-05 Bridgestone Corp 更生タイヤ製造方法
JP2012250554A (ja) * 2011-05-31 2012-12-20 Bridgestone Corp ランフラットタイヤ
JPWO2012165441A1 (ja) * 2011-05-31 2015-02-23 株式会社クラレ 空気入りタイヤ用インナーライナー、その製造方法及び空気入りタイヤ
KR101349040B1 (ko) * 2011-07-13 2014-01-09 한국타이어 주식회사 차량용 타이어의 사이드월
KR101545106B1 (ko) * 2011-08-10 2015-08-17 스미토모 고무 고교 가부시키가이샤 공기 타이어
US9381776B2 (en) 2011-08-10 2016-07-05 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2013071659A (ja) * 2011-09-28 2013-04-22 Yokohama Rubber Co Ltd:The タイヤ/ホイール組立体
CN104105605A (zh) * 2012-01-27 2014-10-15 株式会社普利司通 轮胎
JP2013154701A (ja) * 2012-01-27 2013-08-15 Bridgestone Corp タイヤ
WO2013111886A1 (ja) * 2012-01-27 2013-08-01 株式会社ブリヂストン タイヤ
RU2579385C2 (ru) * 2012-01-27 2016-04-10 Бриджстоун Корпорейшн Шина
US10611194B2 (en) 2012-01-27 2020-04-07 Bridgestone Corporation Tire
JP2017144790A (ja) * 2016-02-15 2017-08-24 東洋ゴム工業株式会社 空気入りタイヤ
JP2019137216A (ja) * 2018-02-09 2019-08-22 トヨタ自動車株式会社 スポーク式ホイール
JP7006341B2 (ja) 2018-02-09 2022-01-24 トヨタ自動車株式会社 スポーク式ホイール

Similar Documents

Publication Publication Date Title
JP2010095150A (ja) 空気入りタイヤ
JP4990575B2 (ja) 空気入りタイヤ用インナーライナー及びそれを備えた空気入りタイヤ
JP4589615B2 (ja) 空気入りタイヤ用インナーライナー及び空気入りタイヤ
JP5039332B2 (ja) 空気入りタイヤ用インナーライナー及びそれを備えた空気入りタイヤ
JP5592616B2 (ja) フィルム、タイヤ用インナーライナー及びそれを用いたタイヤ
JP5591225B2 (ja) 空気入りタイヤ
JP2006256557A (ja) 重荷重用タイヤ
WO2008013152A1 (fr) Corps à couches multiples, procédé de fabrication associé, revêtement intérieur pour pneumatique et pneumatique
JP6338248B2 (ja) インナーライナー用積層体およびそれを用いたタイヤ
JP4939863B2 (ja) 空気入りタイヤ用インナーライナー及びその製造方法、並びに空気入りタイヤ
JP2009190448A (ja) タイヤ
JP5767862B2 (ja) タイヤ
JP2009083776A (ja) タイヤ用インナーライナー及びそれを用いたタイヤ
JP6155084B2 (ja) 乗用車用空気入りラジアルタイヤ
JP5551414B2 (ja) インナーライナーおよびそれを用いたタイヤ
JP2009274680A (ja) 重荷重用タイヤ
JP5707031B2 (ja) 空気入りタイヤおよびその製造方法
JP5350580B2 (ja) タイヤ
JP2009040117A (ja) タイヤ
JP4468073B2 (ja) 応急用空気入りタイヤ
JP5237937B2 (ja) 重荷重用ラジアルタイヤ
JP2006213300A (ja) 空気入りタイヤ
JP6144957B2 (ja) 乗用車用空気入りラジアルタイヤ
JP5534784B2 (ja) 空気入りタイヤ用インナーライナーの製造方法
JP2007276581A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507