JP2010092814A - Electrode catalyst for polymer electrolyte fuel cell - Google Patents

Electrode catalyst for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2010092814A
JP2010092814A JP2008264349A JP2008264349A JP2010092814A JP 2010092814 A JP2010092814 A JP 2010092814A JP 2008264349 A JP2008264349 A JP 2008264349A JP 2008264349 A JP2008264349 A JP 2008264349A JP 2010092814 A JP2010092814 A JP 2010092814A
Authority
JP
Japan
Prior art keywords
conductive carbon
catalyst
fuel cell
polymer electrolyte
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264349A
Other languages
Japanese (ja)
Inventor
Kuninori Miyazaki
邦典 宮碕
Atsushi Okamura
淳志 岡村
Masaaki Okuno
政昭 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008264349A priority Critical patent/JP2010092814A/en
Publication of JP2010092814A publication Critical patent/JP2010092814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst for a polymer electrolyte fuel cell in which dispersibility of metal particulates is further improved, and which carries out superior catalyst performance. <P>SOLUTION: A conductive carbon carrier is used, of which the ratio (S1/S2) of BET specific surface area (S1) obtained by having a water molecule as adsorbed species, and BET specific surface area (S2) obtained by having nitrogen molecule as the adsorbed species is within a range of 0.4/1 to 0.8/1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は固体高分子型燃料電池用電極触媒に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell.

固体高分子型燃料電池用電極触媒として、例えば、特許文献1には、シランカップリング剤を付与した導電性カーボン担体に触媒金属を担持した電極触媒が記載されている。
特開2006−344553号公報
As an electrode catalyst for a polymer electrolyte fuel cell, for example, Patent Document 1 describes an electrode catalyst in which a catalytic metal is supported on a conductive carbon carrier provided with a silane coupling agent.
JP 2006-344553 A

特許文献1に記載の固体高分子型燃料電池用電極触媒は、金属微粒子の分散性が向上し、電極触媒性能が優れている、とされているが、実用化には必ずしも十分満足のいくものではない。   The electrode catalyst for a polymer electrolyte fuel cell described in Patent Document 1 is said to have improved dispersibility of metal fine particles and excellent electrode catalyst performance, but is sufficiently satisfactory for practical use. is not.

本発明の目的は、金属微粒子の分散性が一段と向上され、より優れた触媒性能を発揮する固体高分子型燃料電池用電極触媒を提供することにある。   An object of the present invention is to provide an electrode catalyst for a polymer electrolyte fuel cell that further improves the dispersibility of metal fine particles and exhibits more excellent catalytic performance.

本発明者らの研究によれば、上記目的は下記発明により達成されることがわかった。
(1)導電性カーボン担体に触媒金属が担持された固体高分子型燃料電池用電極触媒であって、該導電性カーボン担体として、水分子を吸着種として求めたBET比表面積(S1)と窒素分子を吸着種として求めたBET比表面積(S2)との比(S1/S2)が0.4/1〜0.8/1の範囲にあるものを用いることを特徴とする固体高分子型燃料電池用電極触媒。
(2)導電性カーボン担体は、その表面をSiO 修飾したものである上記(1)の固体高分子型燃料電池用電極触媒。
(3)SiO の量が、導電性カーボン担体とSiO との総質量に対して、1〜40質量%である上記(2)の固体高分子型燃料電池用電極触媒。
(4)触媒金属の量が、導電性カーボン担体とSiO と触媒金属との総質量に対して、0.1〜20質量%である上記(2)または(3)の固体高分子型燃料電池用電極触媒。
(5)SiO 修飾した導電性カーボン担体の比表面積が100〜800m/gである上記(2)〜(4)のいずれかの固体高分子型燃料電池用電極触媒。
According to the studies by the present inventors, it has been found that the above object can be achieved by the following invention.
(1) An electrocatalyst for a polymer electrolyte fuel cell in which a catalytic metal is supported on a conductive carbon support, wherein the conductive carbon support has a BET specific surface area (S1) and nitrogen determined using water molecules as adsorbed species. A solid polymer fuel characterized by using a fuel having a ratio (S1 / S2) to a BET specific surface area (S2) obtained by using molecules as adsorbed species in the range of 0.4 / 1 to 0.8 / 1 Battery electrode catalyst.
(2) The electrode catalyst for a polymer electrolyte fuel cell according to the above (1), wherein the conductive carbon carrier has a surface modified with SiO 2 .
(3) the amount of SiO 2 is, relative to the total mass of the conductive carbon carrier and SiO 2, 1 to 40 wt% at which solid polymer fuel cell electrode catalyst of the above (2).
(4) The solid polymer fuel according to (2) or (3) above, wherein the amount of the catalyst metal is 0.1 to 20% by mass with respect to the total mass of the conductive carbon carrier, SiO 2 and the catalyst metal. Battery electrode catalyst.
(5) The electrode catalyst for a polymer electrolyte fuel cell according to any one of the above (2) to (4), wherein the specific surface area of the conductive carbon support modified with SiO 2 is 100 to 800 m 2 / g.

上記比(S1/S2)は、後述するように、導電性カーボン担体表面の親水性を示す指標となるものである。   The ratio (S1 / S2) is an index indicating the hydrophilicity of the surface of the conductive carbon carrier, as will be described later.

本発明の電極触媒においては、導電性カーボン担体が高い親水性を有しているため、触媒金属が高い分散性をもって担持されている。そのため、本発明の電極触媒は優れた触媒性能を発揮する。   In the electrode catalyst of the present invention, since the conductive carbon carrier has high hydrophilicity, the catalyst metal is supported with high dispersibility. Therefore, the electrode catalyst of the present invention exhibits excellent catalytic performance.

ダイレクトメタノール型燃料電池のアノードでは、一般的にPt−Ru合金触媒が用いられているが、この触媒反応機構については、下記式(1)〜(3)のように反応が進行するといわれている。式(1)に示すように、PtがMeOHを酸化し、中間生成物であるCOがPt上に吸着する。式(2)のように、Ruが水と反応し、Ru−OHを生成する。この生成したRu−OHはPt上に吸着したCOをCO に酸化する(式(3))。 In the anode of a direct methanol fuel cell, a Pt—Ru alloy catalyst is generally used. However, the catalytic reaction mechanism is said to proceed as shown in the following formulas (1) to (3). . As shown in the formula (1), Pt oxidizes MeOH, and CO as an intermediate product is adsorbed on Pt. As in formula (2), Ru reacts with water to produce Ru-OH. The generated Ru—OH oxidizes CO adsorbed on Pt to CO 2 (formula (3)).

Pt + MeOH → Pt−CO + 4H + 4e (1)
Ru + HO → Ru−OH + H + e (2)
Pt−CO + Ru−OH → CO + H + e (3)
本発明の電極触媒において、SiO 修飾した導電性カーボン担体を用いることにより、SiO 表面のシラノール基がRuと同様の作用をするため式(3)の反応がより促進され、MeOHの酸化性能が向上すると考えられる。
Pt + MeOH → Pt—CO + 4H + + 4e (1)
Ru + H 2 O → Ru—OH + H + + e (2)
Pt—CO + Ru—OH → CO 2 + H + + e (3)
In the electrode catalyst of the present invention, by using a conductive carbon support to SiO 2 modification, the reaction for the silanol groups of the SiO 2 surface is the same action as Ru formula (3) is promoted, MeOH oxidation performance of Is thought to improve.

本発明の電極触媒は、水分子を吸着種として求めたBET比表面積(S1)と窒素分子を吸着種として求めたBET比表面積(S2)との比(S1/S2)が0.4/1〜0.8/1の範囲にある導電性カーボン担体に触媒金属を担持したものである。   The electrode catalyst of the present invention has a ratio (S1 / S2) of the BET specific surface area (S1) obtained using water molecules as an adsorbing species and the BET specific surface area (S2) obtained using nitrogen molecules as an adsorbing species is 0.4 / 1. A catalyst carbon is supported on a conductive carbon support in a range of ˜0.8 / 1.

上記BET比表面積(S1)は、水蒸気吸着等温線(298K)から、また、上記BET比表面積(S2)は、窒素吸着等温線(77k)から算出したものである。水蒸気吸着等温線および窒素吸着等温線は、日本ベル(株)製のBELSORP18 Plus−Tを用いて測定した。測定条件は次のとおりである。
(測定原理) 定溶法
(前処理条件)
水蒸気吸着:真空、150℃で5時間真空加熱を行い、サンプル中の水の除去を行った。
The BET specific surface area (S1) is calculated from the water vapor adsorption isotherm (298K), and the BET specific surface area (S2) is calculated from the nitrogen adsorption isotherm (77k). The water vapor adsorption isotherm and the nitrogen adsorption isotherm were measured using BELSORP18 Plus-T manufactured by Nippon Bell Co., Ltd. The measurement conditions are as follows.
(Measuring principle) Dissolution method (pretreatment conditions)
Water vapor adsorption: Vacuum heating was performed at 150 ° C. for 5 hours to remove water in the sample.

窒素吸着:真空度、200℃で2時間真空加熱を行い、サンプル中の水の除去を行った。
(サンプル量) 50mg〜100mg
上記比(S1/S2)は、導電性カーボン担体の表面が親水性あるいは疎水性であるかを評価する指標となるものであり、この比が大きいほど表面が親水性であり、逆に小さいと疎水性であると評価することができる。
Nitrogen adsorption: Vacuum heating was performed at 200 ° C. for 2 hours to remove water in the sample.
(Sample amount) 50 mg to 100 mg
The ratio (S1 / S2) is an index for evaluating whether the surface of the conductive carbon carrier is hydrophilic or hydrophobic. The larger the ratio is, the more hydrophilic the surface is. It can be evaluated that it is hydrophobic.

本発明の電極触媒の製造に用いる導電性カーボンとしては、特に制限はなく、この種の電極触媒の製造に一般に用いられているものを用いることができる。例えば、カーボンブラック、カーボンナノホン、活性炭カーボン、カーボンナノチューブ、フラレンなどが用いられるが、なかでも、カーボンブラックが好適に用いられる。   There is no restriction | limiting in particular as electroconductive carbon used for manufacture of the electrode catalyst of this invention, What is generally used for manufacture of this kind of electrode catalyst can be used. For example, carbon black, carbon nanophone, activated carbon, carbon nanotube, fullerene and the like are used, and among these, carbon black is preferably used.

本発明で用いる、上記比(S1/S2)が0.4/1〜0.8/1の範囲にある導電性カーボン担体は、一般の導電性カーボンの表面をSiO 修飾することにより容易に得られる。 The conductive carbon carrier having the above ratio (S1 / S2) in the range of 0.4 / 1 to 0.8 / 1 used in the present invention can be easily obtained by modifying the surface of general conductive carbon with SiO 2. can get.

導電性カーボンの表面をSiO 修飾するには、例えば、導電性カーボンを、常法により、シラン化合物および/またはシランカップリング剤で処理すればよい。具体的には、導電性カーボンとシランカップリング剤とを加熱縮合する方法、水熱反応法、プラズマ反応法などが用いられる。 In order to modify the surface of the conductive carbon with SiO 2 , for example, the conductive carbon may be treated with a silane compound and / or a silane coupling agent by a conventional method. Specifically, a method of heat condensing conductive carbon and a silane coupling agent, a hydrothermal reaction method, a plasma reaction method, or the like is used.

上記シラン化合物としては、メチルトリクロロシラン、メチルジクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン等のクロロシラン;テトラメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン等のアルコキシシラン;テトラエチルオルトシリケートなどが挙げられる。   Examples of the silane compound include chlorosilanes such as methyltrichlorosilane, methyldichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, and diphenyldichlorosilane; alkoxysilanes such as tetramethoxysilane, methyltrimethoxysilane, and phenyltrimethoxysilane; tetraethylorthosilicate Etc.

上記シランカップリング剤としては、ビニルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどが挙げられる。なかでも、エチルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。   Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ -Methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and the like. Of these, ethyltrimethoxysilane and vinyltriethoxysilane are preferably used.

SiO 修飾導電性カーボン担体において、SiO の量は、導電性カーボン担体とSiO との総質量に対して、1〜40質量%、好ましくは5〜30質量%である。SiO の量が上記範囲をはずれると、比(S1/S2)が0.4/1〜0.8/1の範囲にあるSiO 修飾導電性カーボン担体が得られない。 In SiO 2 modified conductive carbon support, the amount of SiO 2, relative to the total weight of the conductive carbon carrier and SiO 2, 1 to 40 wt%, preferably from 5 to 30 mass%. When the amount of SiO 2 is out of the above range, a SiO 2 -modified conductive carbon support having a ratio (S1 / S2) in the range of 0.4 / 1 to 0.8 / 1 cannot be obtained.

本発明の電極触媒は、上記SiO 修飾導電性カーボン担体に触媒金属を担持することにより得られる。上記触媒金属としては、白金、ルテニウム、パラジウム、ロジウム、ニッケル、コバルト、鉄、金などが用いられる。これらは単独でも、あるいは2種以上を組み合わせて使用することができる。上記触媒金属の担持は、含浸法、イオン注入法など一般に知られている方法にしたがって行うことができる。 The electrode catalyst of the present invention can be obtained by supporting a catalyst metal on the SiO 2 modified conductive carbon support. Platinum, ruthenium, palladium, rhodium, nickel, cobalt, iron, gold or the like is used as the catalyst metal. These can be used alone or in combination of two or more. The catalyst metal can be supported according to a generally known method such as an impregnation method or an ion implantation method.

触媒金属の量は、導電性カーボン担体とSiO と触媒金属との総質量に対して、0.1〜20質量%、好ましくは1〜10質量%である。 The amount of the catalyst metal is 0.1 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the conductive carbon carrier, SiO 2 and the catalyst metal.

以下、実施例を挙げて本発明を具体的に説明する。
(担体調製例)
エタノール250gに3−アミノプロピルトリエトキシシラン5gおよびカーボンブラック(Cabot社、VulcanXC72)10gを添加し、30分間、室温で攪拌を行った。次に、ろ過、水洗後、窒素雰囲気下、110℃で乾燥し、SiO 修飾導電性カーボン担体を得た。次に、このSiO 修飾導電性カーボン担体を1規定の硝酸水溶液100gに加え、室温で2時間攪拌した後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥した。次に、上記硝酸処理したSiO 修飾導電性カーボン担体を、テトラエチルオルトシリケート21gおよびエタノール230gの溶液に加え、室温で15分間攪拌した後、25%アンモニアすい6.8g、水11.2gを添加し、室温で約10時間攪拌を行った。その後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥し、担体Aを得た。得られた担体の水蒸気吸着等温線の測定を行った。その結果を表1および図1に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
(Example of carrier preparation)
To 250 g of ethanol, 5 g of 3-aminopropyltriethoxysilane and 10 g of carbon black (Cabot, Vulcan XC72) were added and stirred at room temperature for 30 minutes. Next, after filtration and washing with water, it was dried at 110 ° C. in a nitrogen atmosphere to obtain a SiO 2 -modified conductive carbon carrier. Next, this SiO 2 -modified conductive carbon carrier was added to 100 g of 1N aqueous nitric acid solution, stirred at room temperature for 2 hours, filtered, washed with water, and dried at 110 ° C. in a nitrogen atmosphere. Next, the nitric acid-treated SiO 2 -modified conductive carbon carrier was added to a solution of 21 g of tetraethylorthosilicate and 230 g of ethanol, stirred for 15 minutes at room temperature, and then added with 6.8 g of 25% ammonia and 11.2 g of water. The mixture was stirred at room temperature for about 10 hours. Thereafter, filtration, washing with water were performed, and drying was performed at 110 ° C. in a nitrogen atmosphere, whereby Carrier A was obtained. The water vapor adsorption isotherm of the obtained carrier was measured. The results are shown in Table 1 and FIG.

Figure 2010092814
上記表から、カーボンブラックにSiO の層を形成させることにより、比(S1/S2)の値が大きく、より親水性が高まっていることがわかる。
Figure 2010092814
From the above table, it can be seen that by forming a SiO 2 layer on carbon black, the value of the ratio (S1 / S2) is large and the hydrophilicity is increased.

図1には、横軸に水蒸気相対圧を、縦軸に水蒸気吸着量をとり、未処理の上記カーボンブラックと、上記カーボンブラックにシランカップリング剤およびシラン化合物でSiO 層を形成させたもの(担体A;SiO −VulcanXC72)の25℃における水蒸気吸着を検討したグラフを示す。シランカップリング剤およびシラン化合物で処理することにより水蒸気吸着量は未処理より向上している。
(実施例1)
エチレングリコール100mLにNaOH(顆粒状)2gを添加し、窒素雰囲気下、70℃で溶解させた。次に、エチレングリコール100mLにジニトロジアンミン白金硝酸水溶液(Pt:0.386g)4.79g、硝酸ルテニウム水溶液(Ru:0.270g)5.93gを添加した。このエチレングリコール溶液に、NaOHを溶解させたエチレングリコール溶液を添加し、窒素雰囲気下、室温で1時間攪拌した(脱気)。次に、この溶液を、窒素雰囲気下、90℃(液温)で3時間還流した。冷却後、この溶液に担体Aを0.386g添加し、窒素雰囲気下、室温で、1時間攪拌した(脱気)後で、160℃(液温)で、窒素雰囲気下、3時間還流した。冷却後、攪拌しながら、1N硝酸水溶液を徐々に滴下し、pH1に調整した。固体をろ過し、イオン交換水で十分に洗浄し、窒素雰囲気下110℃で乾燥した後に、水素を用いて300℃で2時間還元処理して触媒Aを作成した。得られた触媒Aを分析したところ、その組成は、Pt:Ru:SiO :カーボンブラック=29:30:10:31(質量%)であった。
(比較例1)
実施例1において、担体Aの代わりに未処理のカーボンブラック(Cabot社、VulcanXC72)を用いた以外は実施例1と同様にして触媒Bを作成した。得られた触媒Bを分析したところ、その組成は、Pt:Ru:カーボンブラック=29:30:41(質量%)であった。
(比較例2)
実施例1において、担体Aの代わりに未処理のカーボンブラック(Johnson Matthey社、HiSPEC10100)を用いた以外は実施例1と同様にして触媒Cを作成した。得られた触媒Cを分析したところ、その組成は、Pt:Ru:カーボンブラック=29:30:41(質量%)であった。
(性能評価)
触媒Aの10mgを5%ナフィオン溶液(Aldrich社製)1mLに添加し、超音波により十分に攪拌させ、触媒ペーストを作成した。次に、この触媒ペースト5μLをグラッシーカーボン電極上に塗布し、乾燥させた。この触媒層をグラッシーカーボン電極上に固定化し、試験電極とした。触媒性能の評価は、1規定の硫酸水溶液にメタノールを1mol/Lとなるように添加した。25℃に保持された、この溶液中に上記試験電極を浸漬して作用極とし、対極には白金線、参照極には可逆水素電極(RHE)を用いて電位規制法によりメタノール酸化電流と電極電位の関係を測定し、0.6Vvs.RHEにおける酸化電流値をグラッシーカーボン電極上に塗布した触媒中に含まれる白金質量で除した値(白金質量当たりの酸化電流値)とした。電流値が高い程、触媒性能が優れている。触媒A、Bを用いたときの評価結果を表2に示す。
In FIG. 1, the horizontal axis represents the water vapor relative pressure, the vertical axis represents the water vapor adsorption amount, and the untreated carbon black and the carbon black formed with a SiO 2 layer with a silane coupling agent and a silane compound. It shows a graph of investigation steam adsorption at 25 ° C. of; (SiO 2 -VulcanXC72 carrier a). By treating with a silane coupling agent and a silane compound, the amount of water vapor adsorption is improved over that of the untreated.
Example 1
2 g of NaOH (granular) was added to 100 mL of ethylene glycol and dissolved at 70 ° C. in a nitrogen atmosphere. Next, 4.79 g of dinitrodiammine platinum nitrate aqueous solution (Pt: 0.386 g) and 5.93 g of ruthenium nitrate aqueous solution (Ru: 0.270 g) were added to 100 mL of ethylene glycol. To this ethylene glycol solution, an ethylene glycol solution in which NaOH was dissolved was added and stirred at room temperature for 1 hour under a nitrogen atmosphere (degassing). Next, this solution was refluxed at 90 ° C. (liquid temperature) for 3 hours under a nitrogen atmosphere. After cooling, 0.386 g of carrier A was added to this solution, stirred for 1 hour at room temperature in a nitrogen atmosphere (degassing), and then refluxed at 160 ° C. (liquid temperature) in a nitrogen atmosphere for 3 hours. After cooling, 1N nitric acid aqueous solution was gradually added dropwise with stirring to adjust the pH to 1. The solid was filtered, thoroughly washed with ion-exchanged water, dried at 110 ° C. under a nitrogen atmosphere, and then reduced with hydrogen at 300 ° C. for 2 hours to prepare Catalyst A. When the obtained catalyst A was analyzed, the composition was Pt: Ru: SiO 2 : carbon black = 29: 30: 10: 31 (mass%).
(Comparative Example 1)
In Example 1, Catalyst B was prepared in the same manner as in Example 1 except that untreated carbon black (Cabot, Vulcan XC72) was used instead of the support A. When the obtained catalyst B was analyzed, the composition was Pt: Ru: carbon black = 29: 30: 41 (mass%).
(Comparative Example 2)
A catalyst C was prepared in the same manner as in Example 1 except that untreated carbon black (Johnson Matthey, HiSPEC 10100) was used in place of the support A. When the obtained catalyst C was analyzed, the composition was Pt: Ru: carbon black = 29: 30: 41 (mass%).
(Performance evaluation)
10 mg of Catalyst A was added to 1 mL of 5% Nafion solution (manufactured by Aldrich) and sufficiently stirred by ultrasonic waves to prepare a catalyst paste. Next, 5 μL of this catalyst paste was applied onto a glassy carbon electrode and dried. This catalyst layer was fixed on a glassy carbon electrode to obtain a test electrode. For the evaluation of the catalyst performance, methanol was added to a 1N aqueous sulfuric acid solution at 1 mol / L. The test electrode is immersed in this solution held at 25 ° C. to make a working electrode, a platinum wire is used as a counter electrode, a reversible hydrogen electrode (RHE) is used as a reference electrode, and a methanol oxidation current and an electrode by a potential regulating method. The potential relationship was measured and 0.6 V vs. A value obtained by dividing the oxidation current value in RHE by the mass of platinum contained in the catalyst applied on the glassy carbon electrode (oxidation current value per mass of platinum). The higher the current value, the better the catalyst performance. Table 2 shows the evaluation results when the catalysts A and B were used.

Figure 2010092814
上記結果から、シラン化合物および/またはシランカップリング剤を用いて、導電性カーボンの表面をSiO 修飾して親水性を高めた導電性カーボン担体を用いることにより、未処理の導電性カーボン担体を用いる場合に比べて、より高いメタノール酸化性能が得られることがわかる。
Figure 2010092814
From the above results, an untreated conductive carbon carrier was obtained by using a conductive carbon carrier whose surface was modified with SiO 2 to improve hydrophilicity using a silane compound and / or a silane coupling agent. It can be seen that higher methanol oxidation performance can be obtained compared to the case of using.

担体A(SiO −VulcanXC72)と未処理のカーボンブラック(Cabot社、VulcanXC72)の水蒸気吸着量を示すグラフである。Carrier A (SiO 2 -VulcanXC72) and untreated carbon black (Cabot Corporation, Vulcan XC72) is a graph showing the water vapor adsorption amount of.

Claims (5)

導電性カーボン担体に触媒金属が担持された固体高分子型燃料電池用電極触媒であって、該導電性カーボン担体として、水分子を吸着種として求めたBET比表面積(S1)と窒素分子を吸着種として求めたBET比表面積(S2)との比(S1/S2)が0.4/1〜0.8/1の範囲にあるものを用いることを特徴とする固体高分子型燃料電池用電極触媒。   An electrocatalyst for a polymer electrolyte fuel cell in which a catalytic metal is supported on a conductive carbon support, which adsorbs a BET specific surface area (S1) and nitrogen molecules determined by using water molecules as adsorbed species as the conductive carbon support. Electrode for polymer electrolyte fuel cell, characterized in that the ratio (S1 / S2) to the BET specific surface area (S2) obtained as a seed is in the range of 0.4 / 1 to 0.8 / 1 catalyst. 導電性カーボン担体は、その表面をSiO 修飾したものである請求項1に記載の固体高分子型燃料電池用電極触媒。 2. The electrode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the surface of the conductive carbon carrier is modified with SiO2. SiO の量が、導電性カーボン担体とSiO との総質量に対して、1〜40質量%である請求項2に記載の固体高分子型燃料電池用電極触媒。 The electrode catalyst for a polymer electrolyte fuel cell according to claim 2, wherein the amount of SiO 2 is 1 to 40% by mass with respect to the total mass of the conductive carbon support and SiO 2 . 触媒金属の量が、導電性カーボン担体とSiO と触媒金属との総質量に対して、0.1〜20質量%である請求項2または3に記載の固体高分子型燃料電池用電極触媒。 The electrode catalyst for a polymer electrolyte fuel cell according to claim 2 or 3, wherein the amount of the catalyst metal is 0.1 to 20% by mass with respect to the total mass of the conductive carbon support, SiO 2 and the catalyst metal. . SiO 修飾した導電性カーボン担体の比表面積が100〜800m/gである請求項2〜4のいずれかに記載の固体高分子型燃料電池用電極触媒。 5. The electrode catalyst for a polymer electrolyte fuel cell according to claim 2, wherein the SiO 2 -modified conductive carbon support has a specific surface area of 100 to 800 m 2 / g.
JP2008264349A 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell Pending JP2010092814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264349A JP2010092814A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264349A JP2010092814A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2010092814A true JP2010092814A (en) 2010-04-22

Family

ID=42255332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264349A Pending JP2010092814A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2010092814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022960A (en) * 2010-07-16 2012-02-02 Jx Nippon Oil & Energy Corp Membrane electrode assembly and fuel cell
JP2016192399A (en) * 2015-03-30 2016-11-10 東洋インキScホールディングス株式会社 Paste composition for ful cell, and fuel cell
JPWO2015151714A1 (en) * 2014-03-31 2017-04-13 三井金属鉱業株式会社 Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2018010785A (en) * 2016-07-13 2018-01-18 国立大学法人 大分大学 Catalyst for fuel cell and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022960A (en) * 2010-07-16 2012-02-02 Jx Nippon Oil & Energy Corp Membrane electrode assembly and fuel cell
JPWO2015151714A1 (en) * 2014-03-31 2017-04-13 三井金属鉱業株式会社 Membrane electrode assembly and polymer electrolyte fuel cell using the same
US10355285B2 (en) 2014-03-31 2019-07-16 Mitsui Mining & Smelting Co., Ltd. Membrane electrode assembly with a catalyst layer including an inorganic oxide catalyst carrier and a highly hydrophobic substance and solid polymer fuel cell using the assembly
US11594737B2 (en) 2014-03-31 2023-02-28 Mitsui Mining & Smelting Co., Ltd. Membrane electrode assembly with a catalyst layer including an inorganic oxide catalyst carrier and a highly hydrophobic substance and solid polymer fuel cell using the assembly
JP2016192399A (en) * 2015-03-30 2016-11-10 東洋インキScホールディングス株式会社 Paste composition for ful cell, and fuel cell
JP2018010785A (en) * 2016-07-13 2018-01-18 国立大学法人 大分大学 Catalyst for fuel cell and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6608753B2 (en) PdRu alloy electrode material and manufacturing method thereof
Chetty et al. Effect of reduction temperature on the preparation and characterization of Pt− Ru nanoparticles on multiwalled carbon nanotubes
JP2010092799A (en) Electrode catalyst for polymer electrolyte fuel cell
JP5116340B2 (en) Method for producing metal oxide-supported carbon
CN105377428B (en) Electrode catalyst for fuel cell and method for activating catalyst
JP5328290B2 (en) Fuel cell electrode catalyst
Kwon et al. Fabrication of nonenzymatic glucose sensors based on multiwalled carbon nanotubes with bimetallic Pt-M (M= Ru and Sn) catalysts by radiolytic deposition
JP6606069B2 (en) Redox catalyst, electrode material, electrode, membrane electrode assembly for fuel cell, and fuel cell
JP2010092814A (en) Electrode catalyst for polymer electrolyte fuel cell
JP6151321B2 (en) Electrode material
CN111129510B (en) Preparation method and application of carbon material modified graphite phase carbon nitride nanosheet loaded platinum nano electro-catalyst
JP2004332028A (en) Ternary metallic colloid having three layer core/shell structure and method for producing ternary metallic colloid
JP2007217194A (en) Method for producing surface-modified carbon nano-material and pt-based catalyst
JPWO2005083818A1 (en) Fuel cell electrode catalyst and fuel cell using the same
JP6815590B2 (en) Platinum catalyst, its manufacturing method, and fuel cells using the platinum catalyst
JP2009117287A (en) Catalyst for direct type alcohol fuel cell electrode, and manufacturing method of catalyst for that electrode
JP2002001095A (en) Colloidal solution and method for producing colloidal solution
RU2428769C1 (en) Preparation method of bimetallic catalyst (versions) and its use for fuel elements
JP6331580B2 (en) Electrode catalyst, catalyst layer precursor, catalyst layer, and fuel cell
JP2006210314A (en) Electrode catalyst for fuel cell and its manufacturing method
JP5755124B2 (en) Method for producing cathode catalyst for polymer electrolyte fuel cell
RU2446009C1 (en) Method of preparing platinum-ruthenium electrocatalysts
JP2007109456A (en) Electrode catalyst for solid polymer fuel cell and fuel cell
JP2017162572A (en) Electrode catalyst, carrier used therefor and method for manufacturing the same, and fuel battery using the electrode catalyst
JP2005063749A (en) Method of manufacturing catalyst for fuel cell electrode and its use