JP2007109456A - Electrode catalyst for solid polymer fuel cell and fuel cell - Google Patents

Electrode catalyst for solid polymer fuel cell and fuel cell Download PDF

Info

Publication number
JP2007109456A
JP2007109456A JP2005297305A JP2005297305A JP2007109456A JP 2007109456 A JP2007109456 A JP 2007109456A JP 2005297305 A JP2005297305 A JP 2005297305A JP 2005297305 A JP2005297305 A JP 2005297305A JP 2007109456 A JP2007109456 A JP 2007109456A
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
surface area
fuel cell
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297305A
Other languages
Japanese (ja)
Inventor
Atsushi Okamura
淳志 岡村
Takaaki Hashimoto
高明 橋本
Kuninori Miyazaki
邦典 宮碕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2005297305A priority Critical patent/JP2007109456A/en
Publication of JP2007109456A publication Critical patent/JP2007109456A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-efficiency electrode catalyst for a solid polymer fuel cell, in which carrying of precious metal particles into micropores are controlled and a carrying precious metal utilization ratio is high, even if a conductive carbon material having a large specific surface area with a number of micropores is used, and moreover, the precious metal particles are carried in a highly dispersed condition, and to provide a solid polymer fuel cell that uses this electrode catalyst. <P>SOLUTION: The electrode catalyst has carrying precious metal particles of an average particle diameter smaller than 5 nm and an α value is smaller than 20% in the Formula: α=ä(Sco-Sepsa)/Sco}×100(%)(Sco is the total surface area (m<SP>2</SP>/g-catalyst) measured by a CO pulse suction measuring method and Sepsa is the electrochemically effective precious metal surface area (m<SP>2</SP>/g-catalyst) as measured by electrochemical method). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固体高分子型燃料電池用電極触媒、およびこの電極触媒を用いた固体高分子型燃料電池に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell using the electrode catalyst.

固体高分子型燃料電池用電極触媒としては、白金などの貴金属を導電性炭素材料に担持した電極触媒が一般に用いられている。固体高分子型燃料電池の高出力化を実現するためには、高活性な電極触媒が不可欠であり、通常、触媒成分である貴金属を導電性炭素材料に微細粒子として高分散担持し、その表面積を増加させて触媒性能の向上を図ることが検討されている。   As an electrode catalyst for a polymer electrolyte fuel cell, an electrode catalyst in which a noble metal such as platinum is supported on a conductive carbon material is generally used. In order to achieve high output of a polymer electrolyte fuel cell, a highly active electrode catalyst is indispensable. Usually, a noble metal as a catalyst component is supported on a conductive carbon material as fine particles and dispersed in a highly dispersed surface area. It has been studied to improve the catalyst performance by increasing.

導電性炭素材料として比表面積の大きいものを用いることにより貴金属粒子をより微細化できることが報告されている。比表面積が大きい導電性炭素材料とは、細孔構造が発達した材料ということができ、通常、微小細孔を多く有している。しかし、白金などの貴金属微粒子は直径2.5〜7.5nmの微小細孔を優先的な吸着サイトとして吸着するため、比表面積が大きい炭素材料、換言すれば、微小細孔を多く有する炭素材料を担体材料として用いると、貴金属微粒子はこれら微小細孔内にその多くが担持されることになる。貴金属微粒子をより微細化すると更に微小細孔内への担持が進行しやすくなる。   It has been reported that noble metal particles can be made finer by using a conductive carbon material having a large specific surface area. The conductive carbon material having a large specific surface area can be said to be a material having a developed pore structure, and usually has many fine pores. However, since noble metal fine particles such as platinum adsorb micropores with a diameter of 2.5 to 7.5 nm as preferential adsorption sites, a carbon material having a large specific surface area, in other words, a carbon material having many micropores. When is used as a carrier material, most of the noble metal fine particles are supported in these micropores. When the noble metal fine particles are further refined, the support in the fine pores further proceeds.

しかしながら、固体高分子型燃料電池に用いる固体高分子電解質は、通常、5〜20nmのサイズを有するため直径5nm以下の極めて微小な細孔内に進入することができない。そのため、直径5nm以下となるような微小細孔内に存在する貴金属微粒子は固体高分子電解質と接触することができず、電気化学的に不活性となり担持貴金属利用率が低下するという問題があった。   However, since the solid polymer electrolyte used in the polymer electrolyte fuel cell usually has a size of 5 to 20 nm, it cannot enter into extremely fine pores having a diameter of 5 nm or less. Therefore, the noble metal fine particles present in the micropores having a diameter of 5 nm or less cannot be brought into contact with the solid polymer electrolyte, resulting in a problem that the utilization rate of the supported noble metal is reduced because it becomes electrochemically inactive. .

上記問題を解決するために、担持貴金属利用率を低下させずに効率よく貴金属微粒子を高分散担持させる方法として、固体高分子電解質が進入できないような微小細孔が少ない導電性炭素材料を担持材料として使用する方法が提案されている(例えば、特許文献1、2参照)。しかし、この方法では、担持貴金属利用率の低下を抑制するために担持材料として、微小細孔の少ない導電性炭素材料、つまり、比表面積の小さい導電性炭素材料を使用しているため、貴金属の微細化、高分散化が必ずしも十分でないという問題が生じる。   In order to solve the above problem, as a method for efficiently carrying highly dispersed noble metal fine particles without lowering the supported noble metal utilization rate, a conductive carbon material having a small number of fine pores into which a solid polymer electrolyte cannot enter is supported. Have been proposed (see, for example, Patent Documents 1 and 2). However, in this method, a conductive carbon material having a small number of micropores, that is, a conductive carbon material having a small specific surface area is used as a supporting material in order to suppress a decrease in the usage rate of the supporting noble metal. There arises a problem that miniaturization and high dispersion are not always sufficient.

特開平9−167622号公報Japanese Patent Laid-Open No. 9-167622 特開2000−100448号公報Japanese Patent Laid-Open No. 2000-1000044

本発明の目的は、微小細孔の多い、比表面積が大きな導電性炭素材料を用いても、貴金属微粒子の微小細孔内への担持が抑制されていて、担持貴金属利用率が高く、しかも、貴金属微粒子が高分散の状態で担持されているという、高性能な固体高分子型燃料電池用電極触媒を提供することにある。また、他の目的は、高性能の固体高分子型燃料電池を提供することにある。   The object of the present invention is that even when a conductive carbon material having a large number of micropores and a large specific surface area is used, the support of noble metal fine particles in the micropores is suppressed, and the supported noble metal utilization rate is high, The object is to provide a high-performance electrode catalyst for a polymer electrolyte fuel cell in which noble metal fine particles are supported in a highly dispersed state. Another object is to provide a high-performance polymer electrolyte fuel cell.

上記目的は、下記発明によって達成される。
(1)導電性炭素材料に貴金属微粒子を担持してなる固体高分子型燃料電池用電極触媒であって、貴金属微粒子の平均粒子径が5nm未満であり、かつ、下記式(I)により示されるα値が20%未満であることを特徴とする固体高分子型燃料電池用電極触媒。
α={(Sco−Sepsa)/Sco}x100(%) (I)
Sco=COパルス吸着測定法により測定された全貴金属表面積(m/g−触媒)
Sepsa=電気化学的方法により測定された電気化学的に有効な貴金属の表面積(m/g−触媒)
(2)導電性炭素材料の比表面積が850m/g以上である上記(1)の固体高分子型燃料電池用電極触媒。
(3)上記(1)の固体高分子型燃料電池用電極触媒を用いてなる固体高分子型燃料電池。
The above object is achieved by the following invention.
(1) An electrode catalyst for a polymer electrolyte fuel cell in which noble metal fine particles are supported on a conductive carbon material, the average particle diameter of the noble metal fine particles is less than 5 nm, and is represented by the following formula (I) An electrode catalyst for a polymer electrolyte fuel cell, wherein the α value is less than 20%.
α = {(Sco-Sepsa) / Sco} × 100 (%) (I)
Sco = total noble metal surface area measured by CO pulse adsorption measurement (m 2 / g-catalyst)
Sepsa = surface area of electrochemically effective noble metal measured by electrochemical method (m 2 / g-catalyst)
(2) The electrode catalyst for a polymer electrolyte fuel cell according to the above (1), wherein the conductive carbon material has a specific surface area of 850 m 2 / g or more.
(3) A polymer electrolyte fuel cell comprising the electrode catalyst for a polymer electrolyte fuel cell of (1) above.

本発明の電極触媒は次のような効果を有する。
(1)貴金属微粒子の微小細孔内への担持が抑制されているため、固体高分子電解質との接触ができない貴金属微粒子の量は限定的である。したがって、担持貴金属利用率が高く、導電性炭素材料に担持された貴金属微粒子が効果的に触媒性能を発揮する。
(2)微小細孔の多い、比表面積の大きな導電性炭素材料であっても用いることができるので、貴金属微粒子は高分散の状態で導電性炭素材料に担持されていて、高い触媒性能が得られる。
The electrode catalyst of the present invention has the following effects.
(1) Since the loading of the noble metal fine particles in the micropores is suppressed, the amount of the noble metal fine particles that cannot be contacted with the solid polymer electrolyte is limited. Accordingly, the supported noble metal utilization rate is high, and the noble metal fine particles supported on the conductive carbon material exhibit the catalytic performance effectively.
(2) Since even a conductive carbon material having many micropores and a large specific surface area can be used, the noble metal fine particles are supported on the conductive carbon material in a highly dispersed state, and high catalytic performance is obtained. It is done.

本発明で用いる「導電性炭素材料」としては、電極触媒の製造において、貴金属微粒子を担持するための担体として一般に用いられている導電性炭素材料であればいずれも使用することができる。なかでも、比表面積が850m/g以上、好ましくは1000〜3500m/g、より好ましくは1200〜2500m/gの導電性炭素材料が好適に用いられる。このような比表面積の大きな導電性炭素材料を用いることにより、貴金属微粒子を高分散に担持させることができる。なお、比表面積は、BET一点法(湯浅アイオニクス(株)製全自動表面積測定装置4−ソーブ)により測定したものである。 As the “conductive carbon material” used in the present invention, any conductive carbon material generally used as a carrier for supporting noble metal fine particles in the production of an electrode catalyst can be used. Among them, a specific surface area of 850 meters 2 / g or more, preferably 1000~3500m 2 / g, more preferably conductive carbon material 1200~2500m 2 / g is preferably used. By using such a conductive carbon material having a large specific surface area, the noble metal fine particles can be supported in a highly dispersed manner. The specific surface area is measured by the BET single point method (Yuasa Ionics Co., Ltd. fully automatic surface area measuring device 4-sorb).

上記導電性炭素材料の代表例としては、例えば、ケッチェンブラックEC600JD(ライオン(Lion)社製、比表面積:1270m/g)、ブラックパールズ(キャボット(Cabot)社製、比表面積:1376m/g)、SA−1000(フタムラ化学(株)製、比表面積:1420m/g)、CW−130A(フタムラ化学(株)製、比表面積:1310m/g)、CW−480SZ(フタムラ化学(株)製、比表面積:1900m/g)などを挙げることができる。上記のケッチェンブラックEC600JDは、前記特許文献1において、貴金属微粒子を担持する担体として使用するには不適当とされる、直径が8nm以下の細孔の占める容積が500cm/g以上の導電性炭素材料として、また、前記特許文献2において、貴金属微粒子を担持する担体として使用するには不適当とされる、直径が60Å以下の細孔を全細孔に対して20%以上の割合で有する導電性炭素材料として例示されている。 Representative examples of the conductive carbon material include, for example, Ketjen Black EC600JD (manufactured by Lion, specific surface area: 1270 m 2 / g), Black Pearls (manufactured by Cabot, specific surface area: 1376 m 2 / g), SA-1000 (Futamura Chemical Co., Ltd., specific surface area: 1420 m 2 / g), CW-130A (Futamura Chemical Co., Ltd., specific surface area: 1310 m 2 / g), CW-480SZ (Futamura Chemical ( Co., Ltd., specific surface area: 1900 m 2 / g). The above ketjen black EC600JD is not suitable for use as a carrier for supporting noble metal fine particles in Patent Document 1, and has a conductivity occupied by pores having a diameter of 8 nm or less and having a volume occupied by 500 cm 3 / g or more. As a carbon material and in Patent Document 2 described above, pores having a diameter of 60 mm or less, which is inappropriate for use as a support for supporting noble metal fine particles, have a ratio of 20% or more with respect to the total pores. The conductive carbon material is exemplified.

上記のような高い比表面積を有する導電性炭素材料を担体として用いることにより、貴金属微粒子を高分散の状態で担持し得るが、このような導電性炭素材料には、一般に用いられている固体高分子電解質が進入し得ない微小細孔が多く存在し、このような微小細孔内にまで貴金属微粒子が担持されることになる。しかし、上記の微小細孔内には固体高分子電解質が進入し得ないため、固体高分子電解質と貴金属微粒子とが接触できず、担持した貴金属微粒子の一部が有効に利用されないことになり、結果として、高価な貴金属の担持量に見合った十分な触媒性能が得られないことがある。しかし、本発明の電極触媒においては、このような導電性炭素材料を担体として用いても、微小細孔内に担持される貴金属微粒子が極力抑制されているため、担持された貴金属微粒子の利用率が極めて高く、必要量の貴金属を担持させるだけで十分な触媒性能が得られる。   By using the conductive carbon material having a high specific surface area as a support as described above, the noble metal fine particles can be supported in a highly dispersed state. There are many micropores into which the molecular electrolyte cannot enter, and noble metal fine particles are supported in such micropores. However, since the solid polymer electrolyte cannot enter the micropores, the solid polymer electrolyte and the noble metal fine particles cannot be contacted, and a part of the supported noble metal fine particles cannot be effectively used. As a result, sufficient catalyst performance commensurate with the amount of expensive noble metal supported may not be obtained. However, in the electrode catalyst of the present invention, even when such a conductive carbon material is used as a carrier, the precious metal fine particles supported in the micropores are suppressed as much as possible. Is extremely high, and sufficient catalyst performance can be obtained only by loading a required amount of noble metal.

本発明の電極触媒における「貴金属微粒子の平均粒子径」は5nm未満、好ましくは5〜1nm、より好ましくは4〜2nmである。平均粒子径が5nm以上では、貴金属表面積が低下するため、十分な触媒性能が発揮されない。また、小さすぎても、貴金属表面積の増加に見合った性能向上が得られず、逆に微細粒子同士の凝縮が起こりやすくなり耐久性が低下する場合がある。なお、「貴金属微粒子の平均粒子径」とは、透過型電子顕微鏡(日本電子(株)製透過型電子顕微鏡JEM−100SX、加圧電圧:100kV)を用いて触媒上の貴金属微粒子を直接観察することにより測定したものである。   The “average particle diameter of noble metal fine particles” in the electrode catalyst of the present invention is less than 5 nm, preferably 5 to 1 nm, more preferably 4 to 2 nm. When the average particle size is 5 nm or more, the surface area of the noble metal is reduced, so that sufficient catalytic performance is not exhibited. Moreover, even if it is too small, the performance improvement commensurate with the increase in the surface area of the noble metal cannot be obtained, and conversely, condensation of fine particles tends to occur and the durability may be lowered. The “average particle diameter of the noble metal fine particles” means that the noble metal fine particles on the catalyst are directly observed using a transmission electron microscope (transmission electron microscope JEM-100SX manufactured by JEOL Ltd., pressurization voltage: 100 kV). It is measured by.

次に、式(I)について詳しく説明する。式(I)のScoとは、COパルス吸着測定法により測定された全貴金属表面積(m/g−触媒)を示す。また、Sepsaとは、電気化学的方法により測定された電気化学的に有効な貴金属の表面積(m/g−触媒)を示す。ここで、電気化学的に有効な貴金属の表面積とは、特定の固体高分子電解質(ナフィオン溶液(アルドリッチ(Aldrich)社製))の固体高分子電解質(フッ素系高分子電解質ナフィオン117)が実質的に進入し得ない微小細孔内に存在する貴金属を除いた、残りの貴金属の表面積、すなわち、上記特定の固体高分子電解質が実質的に進入し得ない微小細孔内以外の位置に存在する貴金属の表面積(m/g−触媒)を意味する。したがって、式(I)で示されるα値とは、導電性炭素材料に担持された全貴金属の表面積(m/g−触媒)に対する、上記特定の固体高分子電解質が実質的に進入し得ない微小細孔内に存在する貴金属の表面積(m/g−触媒)の割合を意味するものである。α値が小さい程、担持貴金属利用率が高いということになる。 Next, Formula (I) will be described in detail. Sco in the formula (I) indicates the total noble metal surface area (m 2 / g-catalyst) measured by a CO pulse adsorption measurement method. Moreover, Sepsa shows the surface area (m < 2 > / g-catalyst) of the electrochemically effective noble metal measured by the electrochemical method. Here, the surface area of the electrochemically effective noble metal is substantially the solid polymer electrolyte (fluorine polymer electrolyte Nafion 117) of a specific solid polymer electrolyte (Nafion solution (manufactured by Aldrich)). The surface area of the remaining noble metal, excluding the noble metal existing in the micropores that cannot enter, that is, the positions other than the inside of the micropores where the specific solid polymer electrolyte cannot substantially enter It means the surface area of noble metal (m 2 / g-catalyst). Therefore, the α value represented by the formula (I) means that the specific solid polymer electrolyte can substantially enter the surface area (m 2 / g-catalyst) of all noble metals supported on the conductive carbon material. It means the ratio of the surface area (m 2 / g-catalyst) of noble metal present in the minute pores. The smaller the α value, the higher the supported precious metal utilization rate.

なお、ナフィオン溶液中の固体高分子電解質の粒径は5〜20nmとされているので(アルドリッチ社カタログ)、具体的な概念としては、α値とは、導電性炭素材料に担持された全貴金属の表面積(m/g−触媒)に対する、直径がおおよそ5nm以下の微小細孔の内部に存在する貴金属の表面積(m/g−触媒)の割合ということもできる。 In addition, since the particle diameter of the solid polymer electrolyte in the Nafion solution is 5 to 20 nm (Aldrich catalog), as a specific concept, the α value is the total noble metal supported on the conductive carbon material. for surface area (m 2 / g- catalyst), it can be said that the proportion of the surface area of the noble metal present in the interior of the following micro pores approximately 5nm in diameter (m 2 / g- catalyst).

本発明の「COパルス吸着測定法」とは、COガスをプローブ分子として用い、その貴金属表面への吸着量を測定することにより貴金属の表面積を求めるものである。COガスの分子サイズは0.4nm程度であるので、導電性炭素材料が有する微小細孔内に担持されている貴金属微粒子へも到着して吸着されることが可能である。このため、COパルス吸着測定法により測定される全貴金属表面積は導電性炭素材料に担持されている全ての貴金属粒子に由来する表面積となる。なお、本発明の「COパルス吸着測定法」の実施条件は次のとおりである。
装置:日本ベル株式会社製、触媒分析装置BEL−CAT
前処理条件:150℃にて15分間ヘリウム気流中で処理→150℃にて15分間水素(5%)/ヘリウム混合ガス中で還元処理→150℃にて15分間ヘリウム気流中で処理→50℃まで降温
プローブ:CO
吸着温度:50℃
サンプル量:10〜20mg程度
本発明の「電気化学的方法」による電気化学的に有効な貴金属の表面積(m/g−触媒)の測定は次のとおりである。なお、試験電極は次のようにして作成した。
(試験電極の作成)
サンプル10mgを5%ナフィオン溶液(アルドリッチ(Aldrich)社製)1mLに加え、超音波により均一分散させて触媒インクを作成した。この触媒インク5μLをグラッシーカーボンディスク電極上に均一に展開し(塗布面積:0.196cm)、室温で12時間乾燥させて電極触媒層をグラッシーカーボンディスク電極上に固定化して試験電極とする。
装置:北斗電工株式会社製、ポテンショガルバノスタット HAG−5010
溶液:0.1M過塩素酸水溶液
温度:25℃
参照電極:可逆水素電極(RHE)
試験電極:上記電極
電位走査範囲:50〜1300mVvs.RHE
電位走査速度:50mV/sec
上記方法により得られるサイクリックボルタモグラムにおける50〜400mVvs.RHEにみられるプロトン離脱ピークの電気量を210μC/cm−貴金属の値を用いて電気化学的に有効な貴金属表面積を算出する(技報堂出版株式会社 電気化学測定法(上)86頁/白金電極の表面積の求め方/参照)。
The “CO pulse adsorption measurement method” of the present invention is to obtain the surface area of a noble metal by measuring the amount of adsorption on the surface of the noble metal using CO gas as a probe molecule. Since the molecular size of the CO gas is about 0.4 nm, it can arrive and be adsorbed on the noble metal fine particles supported in the micropores of the conductive carbon material. For this reason, the total noble metal surface area measured by the CO pulse adsorption measurement method is the surface area derived from all the noble metal particles supported on the conductive carbon material. The implementation conditions of the “CO pulse adsorption measurement method” of the present invention are as follows.
Apparatus: Nippon Bell Co., Ltd., catalyst analyzer BEL-CAT
Pretreatment conditions: treatment in a helium stream at 150 ° C. for 15 minutes → reduction treatment in a hydrogen (5%) / helium mixed gas at 150 ° C. for 15 minutes → treatment in a helium stream for 15 minutes at 150 ° C. → 50 ° C. Temperature drop probe: CO
Adsorption temperature: 50 ° C
Sample amount: about 10 to 20 mg Measurement of the electrochemically effective surface area (m 2 / g-catalyst) of the noble metal by the “electrochemical method” of the present invention is as follows. The test electrode was prepared as follows.
(Create test electrode)
A catalyst ink was prepared by adding 10 mg of a sample to 1 mL of a 5% Nafion solution (manufactured by Aldrich) and uniformly dispersing by ultrasonic waves. 5 μL of this catalyst ink is uniformly spread on a glassy carbon disk electrode (application area: 0.196 cm 2 ) and dried at room temperature for 12 hours to immobilize the electrode catalyst layer on the glassy carbon disk electrode to obtain a test electrode.
Apparatus: Hokuto Denko Co., Ltd., potentiogalvanostat HAG-5010
Solution: 0.1M perchloric acid aqueous solution Temperature: 25 ° C
Reference electrode: reversible hydrogen electrode (RHE)
Test electrode: Electrode potential scanning range: 50 to 1300 mVvs. RHE
Potential scanning speed: 50 mV / sec
50 to 400 mVvs. In a cyclic voltammogram obtained by the above method. Calculate the electrochemically effective noble metal surface area using the value of 210 μC / cm 2 -noble metal as the amount of electricity at the proton withdrawal peak in RHE (Gihodo Publishing Co., Ltd., Electrochemical measurement method (above), page 86 / platinum electrode How to obtain / reference the surface area of

上記電気化学的方法は、固体高分子型燃料電池の電極構造と同様の電極触媒と前記特定の固体高分子電解質とから形成された電極層を用い、固体高分子電解質を伝導するプロトンの吸着−脱離に伴う電気量を用いて電気化学的に有効な貴金属表面積を測定するものである。ここで、固体高分子電解質は電極触媒表面を覆う状態で存在しており、電極触媒が有する細孔内部にも進入した状態になっている。しかし、前記特定の固体高分子電解質は、その直径よりも小さな直径を有する微小細孔内には進入することができない。そのため、このような微小細孔内に存在する貴金属微粒子は固体高分子電解質と接触することができず、電気化学的には不活性となる。したがって、Sepsaとは、電気化学的に不活性な貴金属表面積を除いた電気化学的に有効な貴金属の表面積を測定したものとなる。   The electrochemical method uses an electrode layer formed of an electrode catalyst similar to the electrode structure of a solid polymer fuel cell and the specific solid polymer electrolyte, and adsorbs protons that are conducted through the solid polymer electrolyte. An electrochemically effective noble metal surface area is measured using the amount of electricity associated with desorption. Here, the solid polymer electrolyte is present in a state of covering the surface of the electrode catalyst, and has entered the pores of the electrode catalyst. However, the specific solid polymer electrolyte cannot enter into micropores having a diameter smaller than that diameter. Therefore, the noble metal fine particles present in such fine pores cannot be brought into contact with the solid polymer electrolyte, and become electrochemically inactive. Accordingly, Sepsa is obtained by measuring the surface area of an electrochemically effective noble metal excluding the electrochemically inactive noble metal surface area.

本発明の電極触媒のα値は、20%未満であり、なかでもα値が10%、あるいは5%を超えないものが好ましい。α値が小さいほど、担持貴金属利用率が高くなり、好ましいものである。   The α value of the electrode catalyst of the present invention is less than 20%, and it is preferable that the α value does not exceed 10% or 5%. The smaller the α value, the higher the supported noble metal utilization rate, which is preferable.

本発明の電極触媒は、例えば、以下の方法によって製造することができる。   The electrode catalyst of the present invention can be produced, for example, by the following method.

貴金属塩または貴金属錯体を、少なくとも1種の多価アルコールを含む溶媒に溶解し、この溶液のpHを上昇させた後、窒素やアルゴンなどの不活性ガス雰囲気下に加熱、還流して貴金属のコロイド溶液を調製する。また、十分に乾燥した導電性炭素材料を、pHを上昇させた少なくとも1種の多価アルコールを含む溶媒に添加し、十分に攪拌して導電性炭素材料の分散溶液を調製する。次に、これら貴金属コロイド溶液と導電性炭素材料分散溶液とを混合した後、混合液のpHを低下させることにより、貴金属のコロイド粒子を導電性炭素材料に担持させる。   A noble metal salt or a noble metal complex is dissolved in a solvent containing at least one polyhydric alcohol, the pH of the solution is increased, and then heated and refluxed in an inert gas atmosphere such as nitrogen or argon to colloid of the noble metal Prepare the solution. Further, the sufficiently dried conductive carbon material is added to a solvent containing at least one kind of polyhydric alcohol whose pH has been raised, and sufficiently stirred to prepare a dispersion solution of the conductive carbon material. Next, after mixing the noble metal colloid solution and the conductive carbon material dispersion solution, the noble metal colloidal particles are supported on the conductive carbon material by lowering the pH of the mixed solution.

上記のように、貴金属コロイド溶液と導電性炭素材料分散溶液との混合液のpHを低下させて、貴金属コロイド粒子を導電性炭素材料に担持させることにより、本発明のα値が20%未満の電極触媒が得られる。この理由は、導電性炭素材料の分散溶液の調製の際に、導電性炭素材料の微小細孔内にpHを上昇させた少なくとも1種の多価アルコールを含む溶媒を浸透させているため、混合液のpH低下工程においても、導電性炭素材料の微小細孔内では、その影響を受けにくく、混合液のpHがそのまま維持されるか、あるいは、pH低下が抑制されるために、微小細孔内での貴金属コロイド粒子の担持が抑制され、その結果、α値が20%未満の電極触媒が得られるものと考えられている。   As described above, the α value of the present invention is less than 20% by lowering the pH of the mixed solution of the noble metal colloid solution and the conductive carbon material dispersion solution and supporting the noble metal colloid particles on the conductive carbon material. An electrode catalyst is obtained. This is because when the conductive carbon material dispersion solution is prepared, the solvent containing at least one polyhydric alcohol whose pH is increased is infiltrated into the micropores of the conductive carbon material. Even in the step of lowering the pH of the liquid, in the micropores of the conductive carbon material, it is not easily affected, and the pH of the mixed solution is maintained as it is or the pH drop is suppressed, so that the micropores It is believed that the support of the noble metal colloidal particles is suppressed, and as a result, an electrode catalyst having an α value of less than 20% can be obtained.

本発明の有利な実施態様を示している以下の実施例を挙げて、本発明を更に具体的に説明する。
(実施例1)
水酸化ナトリウム2gをエチレングリコール100gに添加し、窒素雰囲気下にて70℃で溶解させた後、25℃に冷却した。次に、ジニトロジアンミン白金硝酸溶液(白金0.77g含有)9.43gをエチレングリコール100gに加えたものを、上記に調製した水酸化ナトリウムのエチレングリコール溶液に添加した後、窒素雰囲気下にて攪拌しながら150℃で5時間加熱することにより白金コロイド溶液を調製した。
The invention is further illustrated by the following examples, which illustrate advantageous embodiments of the invention.
Example 1
2 g of sodium hydroxide was added to 100 g of ethylene glycol, dissolved at 70 ° C. under a nitrogen atmosphere, and then cooled to 25 ° C. Next, 9.43 g of dinitrodiammine platinum nitrate solution (containing 0.77 g of platinum) added to 100 g of ethylene glycol was added to the ethylene glycol solution of sodium hydroxide prepared above, followed by stirring under a nitrogen atmosphere. Then, a platinum colloid solution was prepared by heating at 150 ° C. for 5 hours.

次に、水酸化ナトリウム0.1gをエチレングリコール10gに添加し、窒素雰囲気下にて70℃で溶解させた溶液に、カーボンブラック(ケッチェンブラックEC600JD、ライオン(株)製)0.51gを加え、攪拌することでカーボンブラック分散溶液を調製した。   Next, 0.11 g of sodium hydroxide is added to 10 g of ethylene glycol, and 0.51 g of carbon black (Ketjen Black EC600JD, manufactured by Lion Corporation) is added to a solution dissolved at 70 ° C. in a nitrogen atmosphere. The carbon black dispersion solution was prepared by stirring.

このカーボンブラック分散溶液を前記白金コロイド溶液に添加し、6時間室温で攪拌した。その後、攪拌を続けながら1Mギ酸水溶液を徐々に添加しながらpH3に調整した。6時間後、固体をろ別し、イオン交換水で十分に洗浄した後、窒素雰囲気下110℃で乾燥して触媒Aを得た。   This carbon black dispersion was added to the platinum colloid solution and stirred for 6 hours at room temperature. Thereafter, pH was adjusted to 3 while gradually adding a 1 M aqueous formic acid solution while continuing stirring. After 6 hours, the solid was filtered off, washed thoroughly with ion-exchanged water, and then dried at 110 ° C. in a nitrogen atmosphere to obtain Catalyst A.

触媒Aの組成は、白金:カーボンブラック=60:40(質量比)であった。COパルス吸着測定により算出された全貴金属(白金)表面積は、触媒の単位質量当たり、41m/gであった。サイクリックボルタモグラムにより求めた電気化学的に有効な貴金属(白金)表面積は、触媒の単位質量当たり、40m/gであった。また、透過型電子顕微鏡により測定した貴金属(白金)平均粒子径は4.0nmであった。触媒Aの貴金属平均粒子径およびα値を表1に示す。
(比較例1)
ジニトロジアンミン白金硝酸溶液9.43g(白金0.77g含有)に純水を加えて40mLとした。この水溶液にカーボンブラック(ケッチェンブラックEC600JD、ライオン(株)製)0.51gを加えて攪拌した後、98質量%のエタノール水溶液5mLを添加した。次いで、この溶液を窒素雰囲気下95℃で6時間攪拌しながら還流した。その後、室温まで降温し、固体をろ別して、イオン交換水で十分に洗浄した後、窒素雰囲気下110℃で乾燥して触媒Bを得た。
The composition of the catalyst A was platinum: carbon black = 60: 40 (mass ratio). The total noble metal (platinum) surface area calculated by CO pulse adsorption measurement was 41 m 2 / g per unit mass of the catalyst. The electrochemically effective noble metal (platinum) surface area determined by cyclic voltammogram was 40 m 2 / g per unit mass of the catalyst. Moreover, the noble metal (platinum) average particle diameter measured with the transmission electron microscope was 4.0 nm. Table 1 shows the noble metal average particle diameter and α value of Catalyst A.
(Comparative Example 1)
Pure water was added to 9.43 g (containing 0.77 g of platinum) of a dinitrodiammine platinum nitrate solution to make 40 mL. To this aqueous solution, 0.51 g of carbon black (Ketjen Black EC600JD, manufactured by Lion Corporation) was added and stirred, and then 5 mL of a 98% by mass ethanol aqueous solution was added. The solution was then refluxed with stirring at 95 ° C. for 6 hours under a nitrogen atmosphere. Thereafter, the temperature was lowered to room temperature, the solid was filtered off, washed thoroughly with ion-exchanged water, and then dried at 110 ° C. in a nitrogen atmosphere to obtain Catalyst B.

触媒Bの組成は、白金:カーボンブラック=60:40(質量%)であった。COパルス吸着測定により算出された全貴金属表面積は、触媒の単位質量当たり、55m/gであった。サイクリックボルタモグラムにより求めた電気化学的に有効な貴金属表面積は、触媒の単位質量当たり、24m/gであった。また、透過型電子顕微鏡により測定した貴金属平均粒子径は3.0nmであった。触媒Bの貴金属平均粒子径およびα値を表1に示す。
(比較例2)
カーボンブラック(ケッチェンブラックEC600JD、ライオン(株)製)1.0gを純水100mLに懸濁させた。この懸濁液に攪拌下、ジニトロジアンミン白金硝酸水溶液(白金濃度8.18質量%)18.3gを添加し、その後、純水にて液量を150mLに調整した。次いで、5質量%の水素化ホウ素ナトリウム水溶液143mLを攪拌下に滴下して懸濁液中に溶解している白金前駆体を還元し、カーボンブラックにその全量を担持させた。このようにして得られた粉末をろ別し、純水で十分に洗浄した後、窒素雰囲気下、110℃にて乾燥して触媒Cを得た。
The composition of the catalyst B was platinum: carbon black = 60: 40 (mass%). The total noble metal surface area calculated by CO pulse adsorption measurement was 55 m 2 / g per unit mass of the catalyst. The electrochemically effective noble metal surface area determined by cyclic voltammogram was 24 m 2 / g per unit mass of the catalyst. Moreover, the noble metal average particle diameter measured with the transmission electron microscope was 3.0 nm. Table 1 shows the noble metal average particle diameter and α value of the catalyst B.
(Comparative Example 2)
1.0 g of carbon black (Ketjen Black EC600JD, manufactured by Lion Corporation) was suspended in 100 mL of pure water. With stirring, 18.3 g of a dinitrodiammine platinum nitrate aqueous solution (platinum concentration: 8.18% by mass) was added to the suspension, and then the liquid volume was adjusted to 150 mL with pure water. Subsequently, 143 mL of a 5% by mass aqueous sodium borohydride solution was dropped with stirring to reduce the platinum precursor dissolved in the suspension, and the entire amount was supported on carbon black. The powder thus obtained was filtered off, washed thoroughly with pure water, and then dried at 110 ° C. in a nitrogen atmosphere to obtain catalyst C.

触媒Cの組成は、白金:カーボンブラック=60:40(質量%)であった。COパルス吸着測定により算出された全貴金属表面積は、触媒の単位質量当たり、21m/gであった。サイクリックボルタモグラムにより求めた電気化学的に有効は貴金属表面は、触媒の単位質量当たり、20m/gであった。また、透過型電子顕微鏡により測定した貴金属平均粒子径は8.0nmであった。触媒Cの貴金属平均粒子径およびα値を表1に示す。
(性能評価)
実施例1および比較例1、2で得られた触媒A〜C(触媒B、Cは比較用)の電極触媒としての性能を評価した。触媒性能の評価は、固体高分子型燃料電池用電極触媒の評価に有効であり、かつ、燃料電池性能と良い相関が得られる回転電極法にて実施した。
<評価法>
触媒10mgを5%ナフィオン溶液(アルドリッチ社製)1mLに加え、超音波により十分に分散させて触媒ペーストを作成した。次いで、この触媒ペーストの所定量をグラッシーカーボンディスク電極上に塗布し、十分に乾燥させて触媒層を回転グラッシーカーボン電極上に固定した試験電極とした。次いで、触媒層を固定した回転電極を酸素で飽和した25℃に保持された0.1M過塩素酸水溶液中に浸漬し、可逆水素電極(RHE)を参照極として酸素還元電流と電極電位の関係を測定した。0.75Vvs.RHEでの酸素還元電流値の評価結果を表1に示した。なお、酸素還元電流値は、測定された還元電流値をグラッシーカーボン電極上に塗布した触媒中に含有される貴金属質量で除した値(貴金属質量当たりの還元電流値)とした。
The composition of the catalyst C was platinum: carbon black = 60: 40 (mass%). The total noble metal surface area calculated by CO pulse adsorption measurement was 21 m 2 / g per unit mass of the catalyst. The electrochemically effective noble metal surface determined by cyclic voltammogram was 20 m 2 / g per unit mass of the catalyst. Moreover, the noble metal average particle diameter measured with the transmission electron microscope was 8.0 nm. Table 1 shows the noble metal average particle diameter and α value of the catalyst C.
(Performance evaluation)
The performance of the catalysts A to C (catalysts B and C for comparison) obtained in Example 1 and Comparative Examples 1 and 2 as electrode catalysts was evaluated. The evaluation of the catalyst performance was carried out by a rotating electrode method that is effective for the evaluation of an electrode catalyst for a polymer electrolyte fuel cell and has a good correlation with the fuel cell performance.
<Evaluation method>
10 mg of the catalyst was added to 1 mL of 5% Nafion solution (manufactured by Aldrich) and sufficiently dispersed by ultrasonic waves to prepare a catalyst paste. Next, a predetermined amount of the catalyst paste was applied onto a glassy carbon disk electrode and sufficiently dried to obtain a test electrode in which the catalyst layer was fixed on the rotating glassy carbon electrode. Next, the rotating electrode on which the catalyst layer is fixed is immersed in a 0.1 M aqueous solution of perchloric acid maintained at 25 ° C. saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential using the reversible hydrogen electrode (RHE) as a reference electrode. Was measured. 0.75 Vvs. The evaluation results of the oxygen reduction current value in RHE are shown in Table 1. The oxygen reduction current value was a value obtained by dividing the measured reduction current value by the noble metal mass contained in the catalyst applied on the glassy carbon electrode (reduction current value per noble metal mass).

Figure 2007109456
Figure 2007109456

Claims (3)

導電性炭素材料に貴金属微粒子を担持してなる固体高分子型燃料電池用電極触媒であって、貴金属微粒子の平均粒子径が5nm未満であり、かつ、下記式(I)により示されるα値が20%未満であることを特徴とする固体高分子型燃料電池用電極触媒。
α={(Sco−Sepsa)/Sco}x100(%) (I)
Sco=COパルス吸着測定法により測定された全貴金属表面積(m/g−触媒)
Sepsa=電気化学的方法により測定された電気化学的に有効な貴金属の表面積(m/g−触媒)
An electrode catalyst for a polymer electrolyte fuel cell in which noble metal fine particles are supported on a conductive carbon material, the average particle diameter of the noble metal fine particles is less than 5 nm, and an α value represented by the following formula (I) is An electrode catalyst for a polymer electrolyte fuel cell, characterized by being less than 20%.
α = {(Sco-Sepsa) / Sco} × 100 (%) (I)
Sco = total noble metal surface area measured by CO pulse adsorption measurement (m 2 / g-catalyst)
Sepsa = surface area of electrochemically effective noble metal measured by electrochemical method (m 2 / g-catalyst)
導電性炭素材料の比表面積が850m/g以上である請求項1記載の固体高分子型燃料電池用電極触媒。 2. The electrode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the conductive carbon material has a specific surface area of 850 m 2 / g or more. 請求項1の固体高分子型燃料電池用電極触媒を用いてなる固体高分子型燃料電池。
A polymer electrolyte fuel cell comprising the electrode catalyst for a polymer electrolyte fuel cell according to claim 1.
JP2005297305A 2005-10-12 2005-10-12 Electrode catalyst for solid polymer fuel cell and fuel cell Pending JP2007109456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297305A JP2007109456A (en) 2005-10-12 2005-10-12 Electrode catalyst for solid polymer fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297305A JP2007109456A (en) 2005-10-12 2005-10-12 Electrode catalyst for solid polymer fuel cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2007109456A true JP2007109456A (en) 2007-04-26

Family

ID=38035177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297305A Pending JP2007109456A (en) 2005-10-12 2005-10-12 Electrode catalyst for solid polymer fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP2007109456A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136140A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Method for evaluating performance of electrode catalyst for battery, method for exploring electrode catalyst for battery, electrode catalyst for battery, and fuel battery using the electrode catalyst
EP1983762A2 (en) 2007-04-18 2008-10-22 Sony Corporation Image signal processor, image signal processing method for use in the same, and program
US8883367B2 (en) 2010-04-05 2014-11-11 Samsung Sdi Co., Ltd. Catalyst for fuel cell, membrane-electrode assembly including same, and fuel cell system including same
CN112666306A (en) * 2019-10-16 2021-04-16 中国科学院大连化学物理研究所 Porous electrode ionomer coverage calibration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257687A (en) * 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
JP2002184414A (en) * 2000-12-15 2002-06-28 Asahi Glass Co Ltd Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2005515063A (en) * 2001-12-03 2005-05-26 スリーエム イノベイティブ プロパティズ カンパニー Supported nanoparticle catalyst
JP2005190712A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Catalyst carrying electrode, mea for fuel cell, and fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257687A (en) * 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
JP2002184414A (en) * 2000-12-15 2002-06-28 Asahi Glass Co Ltd Method of manufacturing gas diffusion electrode and method of manufacturing solid polymer fuel cell
JP2005515063A (en) * 2001-12-03 2005-05-26 スリーエム イノベイティブ プロパティズ カンパニー Supported nanoparticle catalyst
JP2005190712A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Catalyst carrying electrode, mea for fuel cell, and fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007136140A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Method for evaluating performance of electrode catalyst for battery, method for exploring electrode catalyst for battery, electrode catalyst for battery, and fuel battery using the electrode catalyst
EP1983762A2 (en) 2007-04-18 2008-10-22 Sony Corporation Image signal processor, image signal processing method for use in the same, and program
US8883367B2 (en) 2010-04-05 2014-11-11 Samsung Sdi Co., Ltd. Catalyst for fuel cell, membrane-electrode assembly including same, and fuel cell system including same
CN112666306A (en) * 2019-10-16 2021-04-16 中国科学院大连化学物理研究所 Porous electrode ionomer coverage calibration method

Similar Documents

Publication Publication Date Title
EP2959970B1 (en) Carbon material for catalyst support use
JP5456797B2 (en) Fuel cell electrode catalyst
Wang et al. Methanol electrocatalytic oxidation on highly dispersed Pt/sulfonated-carbon nanotubes catalysts
CN105377428B (en) Electrode catalyst for fuel cell and method for activating catalyst
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JP4764866B2 (en) Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst
JP2018098196A (en) Electrode catalyst for fuel cell
CN111725524B (en) Fuel cell cathode catalyst, preparation method thereof, membrane electrode and fuel cell
JP2006231266A (en) Nano catalyst particle containing liquid with stabilized dispersion
JP2015032468A (en) Electrode catalyst for fuel cell, method for producing the same, catalyst carrying electrode for fuel cell, and fuel cell
CN111129510B (en) Preparation method and application of carbon material modified graphite phase carbon nitride nanosheet loaded platinum nano electro-catalyst
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2007109456A (en) Electrode catalyst for solid polymer fuel cell and fuel cell
CN113638007A (en) Hydrogen electrolysis catalyst and preparation method thereof
JPWO2011136186A1 (en) Electrode material
JP2012236138A (en) Cathode platinum catalyst for highly active fuel cell
Ren et al. Facile fabrication of poly (o-methoxyaniline)-modified graphene hybrid material as a highly active catalyst support for methanol oxidation
JP2011009129A (en) Catalytic electrode dispersed with catalytic nanoparticles
CN114122426B (en) Platinum-carbon catalyst and preparation method and application thereof
JP2006092957A (en) Cathode catalyst for solid polymer fuel cell, cathode electrode equipped with catalyst, solid polymer fuel cell equipped with electrode, and manufacturing method of catalyst
JP2022138872A (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP2012000612A (en) Platinum colloid-carrying carbon
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
CN114122430B (en) Platinum-carbon catalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426