JP2010092808A - Electrode catalyst for polymer electrolyte fuel cell - Google Patents

Electrode catalyst for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2010092808A
JP2010092808A JP2008264225A JP2008264225A JP2010092808A JP 2010092808 A JP2010092808 A JP 2010092808A JP 2008264225 A JP2008264225 A JP 2008264225A JP 2008264225 A JP2008264225 A JP 2008264225A JP 2010092808 A JP2010092808 A JP 2010092808A
Authority
JP
Japan
Prior art keywords
catalyst
fuel cell
polymer electrolyte
electrolyte fuel
electrode catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264225A
Other languages
Japanese (ja)
Inventor
Kuninori Miyazaki
邦典 宮碕
Atsushi Okamura
淳志 岡村
Masaaki Okuno
政昭 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008264225A priority Critical patent/JP2010092808A/en
Publication of JP2010092808A publication Critical patent/JP2010092808A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode catalyst for a polymer electrolyte fuel cell which has a higher cell efficiency. <P>SOLUTION: In the electrode catalyst for the polymer electrolyte fuel cell, a catalyst component containing platinum (Pt) is carried on an electroconductive carbon, and an electrochemical surface area (ECA) of the catalyst component containing platinum is 90 m<SP>2</SP>/g-(catalyst component) or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は固体高分子型燃料電池用電極触媒に関する。   The present invention relates to an electrode catalyst for a polymer electrolyte fuel cell.

燃料電池用電極触媒として、例えば、特許文献1には、導電性カーボン担体に白金アロイを20〜60質量%の割合で担持したものであって、白金(Pt)アロイのECA(電気化学的面積)が35m/g−Pt以上とする電気触媒が記載されている。 As an electrode catalyst for a fuel cell, for example, Patent Document 1 discloses a platinum alloy supported on a conductive carbon carrier at a ratio of 20 to 60% by mass, and an ECA (electrochemical area) of platinum (Pt) alloy. ) Is described as an electrocatalyst with 35 m 2 / g-Pt or more.

電気化学的有効表面積(ECA)はPt系触媒を特徴づけるために使用される。サイクリックボルタンメトリーにより、50〜400mV.vs.RHEにみられる始祖の吸着波から電気二重層の分を差し引き、水素の吸着に関する電気量が測定される。この電気量と210μクーロン/cm−Ptを用いてECAを算出することができる(非特許文献1)。しかし、この測定方法で全てのPt系触媒のCEAを評価できる訳ではない。特に、Pt−Ru系触媒においては、Ruの含有量が高くなるに伴い、電気二重層の電気量が高くなるため、水素吸着波よりECAを算出することは不適であるといわれている(非特許文献2、3)。 Electrochemical effective surface area (ECA) is used to characterize Pt-based catalysts. By cyclic voltammetry, 50-400 mV. vs. The amount of electricity related to hydrogen adsorption is measured by subtracting the electric double layer from the original adsorption wave found in RHE. ECA can be calculated using this amount of electricity and 210 μcoulomb / cm 2 -Pt (Non-patent Document 1). However, the CEA of all Pt-based catalysts cannot be evaluated by this measurement method. In particular, in a Pt-Ru-based catalyst, it is said that calculating the ECA from the hydrogen adsorption wave is not appropriate because the amount of electricity in the electric double layer increases as the Ru content increases (non-contained) Patent Documents 2 and 3).

ECAを評価する測定法として、上述の方法以外に、COストリッピング法がある。この測定方法を適用することにより、Pt−Ru系触媒においても正確なECAを算出することができる。また、COストリッピング法は、Pt−Ru系触媒だけではなく、Pt−Ru系触媒以外のPt系触媒にも適用可能である。   In addition to the above-described method, there is a CO stripping method as a measurement method for evaluating ECA. By applying this measurement method, an accurate ECA can be calculated even for a Pt-Ru catalyst. The CO stripping method is applicable not only to Pt—Ru catalysts but also to Pt catalysts other than Pt—Ru catalysts.

また、CO分子を触媒に予め吸着させた後、サイクリックボルタンメトリーによりCOを酸化させ、CO酸化ピーク、サイクリックボルタンメトリーにおける2回目のサイクリックボルタモグラムをベースラインとしCO酸化に関する電気量と420μクーロン/cm の関係を用いて算出された方法もある(非特許文献4、5)。 In addition, after CO molecules are adsorbed on the catalyst in advance, CO is oxidized by cyclic voltammetry, and the CO oxidation peak and the second cyclic voltammogram in cyclic voltammetry are used as the baseline and the amount of electricity related to CO oxidation is 420 μcoulomb / cm. There is also a method calculated using the relationship 2 (Non-Patent Documents 4 and 5).

特公平7−63627号公報Japanese Patent Publication No. 7-63627 J.Electronal.Chem.,7,1964,p382J. et al. Electronal. Chem. 7, 1964, p382 Surf.Sci,2004,573,100−108Surf. Sci, 2004, 573, 100-108 J.Electrochim.Acta,2007,47,p3693J. et al. Electrochim. Acta, 2007, 47, p3693 Electrochemistry,70,No.12,2002,p958Electrochemistry, 70, no. 12, 2002, p958 J.Clectrochem.Soc.,147(12),2000,p.4421J. et al. Electrochem. Soc. , 147 (12), 2000, p. 4421

しかし、特許文献1に記載の電極触媒は、その電池性能が必ずしも十分に高いとはいえない。そこで、本発明の目的は、より高い電池性能を有する固体高分子型燃料電池用電極触媒を提供することにある。   However, the electrode catalyst described in Patent Document 1 is not necessarily sufficiently high in battery performance. Therefore, an object of the present invention is to provide an electrode catalyst for a polymer electrolyte fuel cell having higher battery performance.

本発明の目的は下記発明により達成される。
(1)白金(Pt)を含む触媒成分が導電性カーボンに担持された固体高分子型燃料電池用電極触媒であって、該白金を含む触媒成分の電気化学的有効表面積(ECA)が90m/g−(触媒成分)以上である固体高分子型燃料電池用電極触媒。
(2)触媒成分がPtとRu、Pd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものである上記(1)の固体高分子型燃料電池用電極触媒。
(3)触媒成分がPtとRuとPd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものである上記(1)の固体高分子型燃料電池用電極触媒。
(4)導電性カーボンが、その表面にSiO の層を形成したものである上記(1)〜(3)のいずれかの固体高分子型燃料電池用電極触媒。
(5)SiO の担持量が、導電性カーボン担体とSiO との総質量に対して、1〜40質量%である上記(4)の固体高分子型燃料電池用電極触媒。
The object of the present invention is achieved by the following invention.
(1) An electrode catalyst for a polymer electrolyte fuel cell in which a catalyst component containing platinum (Pt) is supported on conductive carbon, and the electrochemically effective surface area (ECA) of the catalyst component containing platinum is 90 m 2. / G- (catalyst component) or higher electrode catalyst for polymer electrolyte fuel cell.
(2) The electrode for a polymer electrolyte fuel cell according to (1), wherein the catalyst component contains Pt and at least one selected from Ru, Pd, Ir, Au, Os, Rh, W, Mo, Sn, and Ta. catalyst.
(3) The electrode for a polymer electrolyte fuel cell according to (1), wherein the catalyst component contains at least one selected from Pt, Ru, Pd, Ir, Au, Os, Rh, W, Mo, Sn, and Ta. catalyst.
(4) The solid polymer fuel cell electrode catalyst according to any one of (1) to (3) above, wherein the conductive carbon has a SiO 2 layer formed on the surface thereof.
(5) supported amount of SiO 2 is, relative to the total mass of the conductive carbon carrier and SiO 2, 1 to 40 wt% in the above (4) of the solid polymer fuel cell electrode catalyst.

本発明の固体高分子型燃料電池用電極触媒は高い電池性能を発揮する。   The electrode catalyst for a polymer electrolyte fuel cell of the present invention exhibits high cell performance.

本発明の電極触媒は、導電性カーボン担体に白金を含む触媒成分を担持したものであり、その触媒成分の電気化学的有効表面積(ECA)が90m/g−(触媒成分)以上であることを特徴とする。 The electrocatalyst of the present invention is one in which a catalyst component containing platinum is supported on a conductive carbon support, and the electrochemically effective surface area (ECA) of the catalyst component is 90 m 2 / g- (catalyst component) or more. It is characterized by.

上記ECAは下記方法により測定したものである。
(ECA測定方法)
触媒10mgを5%ナフィオン溶液(Aldrich社製)1mLに添加し、超音波により十分に分散させ、触媒ペーストを作成する。この触媒ペースト5μLをグラッシーカーボン電極上に塗布し、乾燥させる。この触媒層をグラッシーカーボン電極上に固定化し、試験電極とする。
The ECA is measured by the following method.
(ECA measurement method)
10 mg of the catalyst is added to 1 mL of 5% Nafion solution (manufactured by Aldrich) and sufficiently dispersed by ultrasonic waves to prepare a catalyst paste. 5 μL of this catalyst paste is applied onto a glassy carbon electrode and dried. This catalyst layer is fixed on a glassy carbon electrode to form a test electrode.

上記試験電極を25℃に保持された0.1規定の過塩素酸水溶液に浸漬して作用極とし、対極には白金線、参照極には可逆水素電極(RHE)を用いてECAを測定する。まず、30分間アルゴンガスにて脱気を行った後、サイクリックボルタンメトリーにより50〜800mV.vs.RHEの範囲で20回行い、電極のクリーニングを行った。次に、10vol%CO/N ガスに切り替え、系内に供給し、50mV.vs.RHEで1時間保持し、触媒にCOを吸着させる。次いで、アルゴンガスに切り替え、50mV.vs.RHEで30分間保持し、系内のCOの除去を行った。50〜800mV.vs.RHEの範囲でサイクリックボルタンメトリーを2回実施する。この測定結果よりECAを算出する(非特許文献5参照)。 The test electrode is immersed in a 0.1 N perchloric acid aqueous solution maintained at 25 ° C. to form a working electrode, and ECA is measured using a platinum wire as a counter electrode and a reversible hydrogen electrode (RHE) as a reference electrode. . First, after deaeration with argon gas for 30 minutes, 50 to 800 mV. vs. The electrode was cleaned 20 times in the RHE range. Next, it is switched to 10 vol% CO / N 2 gas and supplied into the system, and 50 mV. vs. Hold for 1 hour with RHE to adsorb CO to the catalyst. Subsequently, it switched to argon gas and 50 mV. vs. The system was kept at RHE for 30 minutes to remove CO in the system. 50-800 mV. vs. Perform cyclic voltammetry twice in the RHE range. ECA is calculated from the measurement result (see Non-Patent Document 5).

本発明の電極触媒において、白金(Pt)を含む触媒成分としては、例えば、PtとRu、Pd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものを挙げることができる。なかでも、PtとRuとPd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものが好適に用いられる。   In the electrode catalyst of the present invention, the catalyst component containing platinum (Pt) includes, for example, Pt and at least one selected from Ru, Pd, Ir, Au, Os, Rh, W, Mo, Sn and Ta. Things can be mentioned. Among these, those containing Pt, Ru, and Pd, Ir, Au, Os, Rh, W, Mo, Sn, and Ta are preferably used.

本発明の電極触媒において、導電性カーボンとしては、特に限定はなく、一般に用いられている導電性カーボンを使用することができる。例えば、カーボンブラック、カーボンナノホン、活性炭カーボン、カーボンナノチューブ、フラレンなどが用いられるが、なかでも、カーボンブラック、特に、その表面にSiO の層を形成した、SiO 修飾導電性カーボンが好適に用いられる。
導電性カーボンの表面をSiO 修飾するには、例えば、導電性カーボンを、常法により、シラン化合物および/またはシランカップリング剤で処理すればよい。具体的には、導電性カーボンとシランカップリング剤とを加熱縮合する方法、水熱反応法、プラズマ反応法などが用いられる。
In the electrode catalyst of the present invention, the conductive carbon is not particularly limited, and generally used conductive carbon can be used. For example, carbon black, carbon nano-Hong, activated carbon, carbon nanotubes, but such fullerene is used, inter alia, carbon black, in particular, to form a layer of SiO 2 on the surface thereof, SiO 2 modified conductive carbon suitably Used.
In order to modify the surface of the conductive carbon with SiO 2 , for example, the conductive carbon may be treated with a silane compound and / or a silane coupling agent by a conventional method. Specifically, a method of heat condensing conductive carbon and a silane coupling agent, a hydrothermal reaction method, a plasma reaction method, or the like is used.

上記シラン化合物としては、メチルトリクロロシラン、メチルジクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン等のクロロシラン;テトラメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン等のアルコキシシラン;テトラエチルオルトシリケートなどが挙げられる。   Examples of the silane compound include chlorosilanes such as methyltrichlorosilane, methyldichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, and diphenyldichlorosilane; alkoxysilanes such as tetramethoxysilane, methyltrimethoxysilane, and phenyltrimethoxysilane; tetraethylorthosilicate Etc.

上記シランカップリング剤としては、ビニルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどが挙げられる。なかでも、エチルトリメトキシシラン、ビニルトリエトキシシランが好適に用いられる。   Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ -Methacryloxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane and the like. Of these, ethyltrimethoxysilane and vinyltriethoxysilane are preferably used.

SiO 修飾導電性カーボン担体において、SiO の量は、導電性カーボン担体とSiO との総質量に対して、1〜40質量%、好ましくは5〜30質量%である。 In SiO 2 modified conductive carbon support, the amount of SiO 2, relative to the total weight of the conductive carbon carrier and SiO 2, 1 to 40 wt%, preferably from 5 to 30 mass%.

本発明の電極触媒は上記SiO 修飾導電性カーボン担体に触媒成分を担持することにより得られる。上記触媒成分の担持は、含浸法、イオン注入法など一般に知られている方法にしたがって行うことができる。 The electrode catalyst of the present invention can be obtained by supporting a catalyst component on the SiO 2 modified conductive carbon support. The catalyst component can be supported according to a generally known method such as an impregnation method or an ion implantation method.

触媒成分の量は、導電性カーボン担体とSiO と触媒成分との総質量に対して、0.1〜20質量%、好ましくは1〜10質量%である。 The amount of the catalyst component is 0.1 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the conductive carbon carrier, SiO 2 and the catalyst component.

以下、実施例を挙げて本発明をさらに具体的に説明する。
(実施例1)
<担体調製>
エタノール250gに3−アミノプロピルトリエトキシシラン5gおよびカーボンブラック(Ketjen Black EC、ケッチェンブラックインターナショナル製)10gを添加し、30分間、室温で攪拌を行った。次に、ろ過、水洗後、窒素雰囲気下、110℃で乾燥し、SiO 修飾導電性カーボン担体を得た。次に、このSiO 修飾導電性カーボン担体を1規定の硝酸水溶液100gに加え、室温で2時間攪拌した後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥した。次に、上記硝酸処理したSiO 修飾導電性カーボン担体を、テトラエチルオルトシリケート21gおよびエタノール230gの溶液に加え、室温で15分間攪拌した後、25%アンモニア水6.8g、水11.2gを添加し、室温で約10時間攪拌を行った。その後、ろ過、水洗を行い、窒素雰囲気下110℃で乾燥し、担体Aを得た。
<触媒調製>
エチレングリコール100mLにNaOH(顆粒状)2gを添加し、窒素雰囲気下、70℃で溶解させた。次に、エチレングリコール100mLにジニトロジアンミン白金硝酸水溶液(Pt:0.386g)4.79g、硝酸ルテニウム水溶液(Ru:0.425g)9.34gを添加した。このエチレングリコール溶液に、NaOHを溶解させたエチレングリコール溶液を添加し、窒素雰囲気下、室温で1時間攪拌した(脱気)。次に、この溶液を、窒素雰囲気下、90℃(液温)で3時間還流した。冷却後、この溶液に担体Aを0.386g添加し、窒素雰囲気下、室温で、1時間攪拌した(脱気)後で、160℃(液温)で、窒素雰囲気下、3時間還流した。冷却後、攪拌しながら、1N硝酸水溶液を徐々に滴下し、pH1に調整した。固体をろ過し、イオン交換水で十分に洗浄し、窒素雰囲気下110℃で乾燥した後に、水素を用いて300℃で2時間還元処理して触媒Aを作成した。得られた触媒Aを分析したところ、その組成は、Pt:Ru:SiO :カーボンブラック=38:23:9:30(質量%)であった。
<評価>
触媒Aに純水と5質量%ナフィオン分散液(Dupont社製)を加え、超音波洗浄機で30分間処理し、触媒ペーストを作成した。この触媒ペーストをカーボンペーパー(東レ製、TGP−090−H)上にPtRu(触媒成分)が1.0mg/cm となるように塗布、乾燥させ、触媒層を形成した。これをアノード電極とした。また、Johnson Mattey社製のPt担持カーボン触媒(HiSPEC9100)を用いて、同様の方法で触媒ペーストを作成し、Ptがカーボンペーパー(東レ製、TGP−090−H)上に、PtRuが1.0mg/cm となるように塗布、乾燥させ、触媒層を形成した。これをカソード電極とした。上述のようにして得られた電極をホットプレス機にて高分子固体高分子電解質膜(米国Dupont社製、Nafion117膜)に両面に接合し、電極膜接合体(MEA)を作製した。このようにして作製したMEAを用い、燃料電池特性測定用セル(単セル)を組み立て、試験を実施した。セルの温度は60℃とし、アノード側には1Mメタノール水溶液を、カソード側には空気を供給し、電圧−電流特性試験を実施した。結果を図1に示す。電池電圧が0.4Vでの電流密度は80mA/cm であった。
(比較例1)
実施例1において、アノードに用いる触媒を触媒AからJohnson Mattey社製のPt−Ru担持カーボン触媒(HiSPEC10100)に変更した以外は実施例1と同様にしてMEAを作製し、その電池評価を行った。結果を図1に示す。電池電圧が0.4Vでの電流密度は40mA/cm であった。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
<Carrier preparation>
To 250 g of ethanol, 5 g of 3-aminopropyltriethoxysilane and 10 g of carbon black (Ketjen Black EC, manufactured by Ketjen Black International) were added and stirred at room temperature for 30 minutes. Next, after filtration and washing with water, it was dried at 110 ° C. in a nitrogen atmosphere to obtain a SiO 2 -modified conductive carbon carrier. Next, this SiO 2 -modified conductive carbon carrier was added to 100 g of 1N aqueous nitric acid solution, stirred at room temperature for 2 hours, filtered, washed with water, and dried at 110 ° C. in a nitrogen atmosphere. Next, the nitric acid-treated SiO 2 -modified conductive carbon carrier was added to a solution of 21 g of tetraethylorthosilicate and 230 g of ethanol, stirred for 15 minutes at room temperature, and then added with 6.8 g of 25% aqueous ammonia and 11.2 g of water. The mixture was stirred at room temperature for about 10 hours. Thereafter, filtration, washing with water were performed, and drying was performed at 110 ° C. in a nitrogen atmosphere, whereby Carrier A was obtained.
<Catalyst preparation>
2 g of NaOH (granular) was added to 100 mL of ethylene glycol and dissolved at 70 ° C. in a nitrogen atmosphere. Next, 4.79 g of dinitrodiammine platinum nitrate aqueous solution (Pt: 0.386 g) and 9.34 g of ruthenium nitrate aqueous solution (Ru: 0.425 g) were added to 100 mL of ethylene glycol. To this ethylene glycol solution, an ethylene glycol solution in which NaOH was dissolved was added and stirred at room temperature for 1 hour under a nitrogen atmosphere (degassing). Next, this solution was refluxed at 90 ° C. (liquid temperature) for 3 hours under a nitrogen atmosphere. After cooling, 0.386 g of carrier A was added to this solution, stirred for 1 hour at room temperature in a nitrogen atmosphere (degassing), and then refluxed at 160 ° C. (liquid temperature) in a nitrogen atmosphere for 3 hours. After cooling, 1N nitric acid aqueous solution was gradually added dropwise with stirring to adjust the pH to 1. The solid was filtered, thoroughly washed with ion-exchanged water, dried at 110 ° C. under a nitrogen atmosphere, and then reduced with hydrogen at 300 ° C. for 2 hours to prepare Catalyst A. When the obtained catalyst A was analyzed, the composition was Pt: Ru: SiO 2 : carbon black = 38: 23: 9: 30 (mass%).
<Evaluation>
Pure water and 5% by mass Nafion dispersion (manufactured by Dupont) were added to catalyst A, and the mixture was treated with an ultrasonic cleaner for 30 minutes to prepare a catalyst paste. This catalyst paste was applied onto carbon paper (Toray, TGP-090-H) so that PtRu (catalyst component) was 1.0 mg / cm 2 and dried to form a catalyst layer. This was used as an anode electrode. Further, using a Pt-supported carbon catalyst (HiSPEC9100) manufactured by Johnson Mattey, a catalyst paste was prepared in the same manner, and Pt was 1.0 mg of PtRu on carbon paper (Toray, TGP-090-H). The catalyst layer was formed by coating and drying so as to be / cm 2 . This was used as a cathode electrode. The electrode obtained as described above was bonded on both sides to a polymer solid polymer electrolyte membrane (Nafion 117 membrane, manufactured by Dupont, USA) with a hot press machine to prepare an electrode membrane assembly (MEA). Using the MEA thus produced, a fuel cell characteristic measurement cell (single cell) was assembled and tested. The cell temperature was 60 ° C., a 1M methanol aqueous solution was supplied to the anode side, and air was supplied to the cathode side, and a voltage-current characteristic test was performed. The results are shown in FIG. The current density at a battery voltage of 0.4 V was 80 mA / cm 2 .
(Comparative Example 1)
In Example 1, an MEA was produced in the same manner as in Example 1 except that the catalyst used for the anode was changed from the catalyst A to a Pt-Ru supported carbon catalyst (HiSPEC10100) manufactured by Johnson Mattey, and the battery was evaluated. . The results are shown in FIG. The current density at a battery voltage of 0.4 V was 40 mA / cm 2 .

実施例1と比較例1における、各触媒のECAおよび0.4Vでの電流密度をまとめて表1に示す。   Table 1 summarizes the ECA of each catalyst and the current density at 0.4 V in Example 1 and Comparative Example 1.

Figure 2010092808
Figure 2010092808

実施例1および比較例1における、電圧−電流特性曲線である。3 is a voltage-current characteristic curve in Example 1 and Comparative Example 1.

Claims (5)

白金(Pt)を含む触媒成分が導電性カーボンに担持された固体高分子型燃料電池用電極触媒であって、該白金を含む触媒成分の電気化学的有効表面積(ECA)が90m/g−(触媒成分)以上である固体高分子型燃料電池用電極触媒。 An electrode catalyst for a polymer electrolyte fuel cell in which a catalyst component containing platinum (Pt) is supported on conductive carbon, and the electrochemically effective surface area (ECA) of the catalyst component containing platinum is 90 m 2 / g- (Catalyst component) An electrode catalyst for a polymer electrolyte fuel cell that is more than the above. 触媒成分がPtとRu、Pd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものである請求項1に記載の固体高分子型燃料電池用電極触媒。 The electrode catalyst for a polymer electrolyte fuel cell according to claim 1, wherein the catalyst component contains Pt and at least one selected from Ru, Pd, Ir, Au, Os, Rh, W, Mo, Sn and Ta. 触媒成分がPtとRuとPd、Ir、Au、Os、Rh、W、Mo、SnおよびTaから選ばれる少なくとも1種とを含むものである請求項1に記載の固体高分子型燃料電池用電極触媒。 2. The polymer electrolyte fuel cell electrode catalyst according to claim 1, wherein the catalyst component contains at least one selected from Pt, Ru, Pd, Ir, Au, Os, Rh, W, Mo, Sn, and Ta. 導電性カーボンが、その表面にSiO の層を形成したものである請求項1〜3のいずれかに記載の固体高分子型燃料電池用電極触媒。 Conductive carbon, a solid polymer fuel cell electrode catalyst according to claim 1 is obtained by forming a layer of SiO 2 on the surface thereof. SiO の担持量が、導電性カーボン担体とSiO との総質量に対して、1〜40質量%である請求項4に記載の固体高分子型燃料電池用電極触媒。 Loading amount of SiO 2 is, relative to the total mass of the conductive carbon carrier and SiO 2, according to claim 4, wherein 1 to 40 wt% solid polymer fuel cell electrode catalyst.
JP2008264225A 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell Pending JP2010092808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264225A JP2010092808A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264225A JP2010092808A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2010092808A true JP2010092808A (en) 2010-04-22

Family

ID=42255326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264225A Pending JP2010092808A (en) 2008-10-10 2008-10-10 Electrode catalyst for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2010092808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045694A (en) * 2011-08-25 2013-03-04 Nissan Motor Co Ltd Electrode catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell and fuel cell
JP2019515441A (en) * 2016-04-28 2019-06-06 コーロン インダストリーズ インク Fuel cell membrane-electrode assembly
JP2021068638A (en) * 2019-10-25 2021-04-30 株式会社豊田中央研究所 Catalyst layer
RU2788560C1 (en) * 2022-03-23 2023-01-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method for manufacturing electrocatalyst for solid polymer fuel cell with stabilized water balance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045694A (en) * 2011-08-25 2013-03-04 Nissan Motor Co Ltd Electrode catalyst layer for fuel cell, electrode for fuel cell, membrane electrode assembly for fuel cell and fuel cell
JP2019515441A (en) * 2016-04-28 2019-06-06 コーロン インダストリーズ インク Fuel cell membrane-electrode assembly
US11114684B2 (en) 2016-04-28 2021-09-07 Kolon Industries, Inc. Fuel cell membrane-electrode assembly
JP2021068638A (en) * 2019-10-25 2021-04-30 株式会社豊田中央研究所 Catalyst layer
JP7184011B2 (en) 2019-10-25 2022-12-06 株式会社豊田中央研究所 catalyst layer
RU2788560C1 (en) * 2022-03-23 2023-01-23 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Method for manufacturing electrocatalyst for solid polymer fuel cell with stabilized water balance

Similar Documents

Publication Publication Date Title
Avasarala et al. Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP2007335338A (en) Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP5297786B2 (en) Anode catalyst layer of polymer electrolyte fuel cell
JP2018098196A (en) Electrode catalyst for fuel cell
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JPWO2007055411A1 (en) Catalyst for fuel cell, electrode for fuel cell, and polymer electrolyte fuel cell having the same
JP2010092799A (en) Electrode catalyst for polymer electrolyte fuel cell
JP2004311225A (en) Catalytic powder, catalytic electrode, and electrochemical device
JP2007194200A (en) Catalyst for fuel cell, electrode for fuel cell, membrane-electrode assembly and fuel cell
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2008041498A (en) Method of manufacturing catalyst support body for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP2005327721A (en) Catalyst for fuel cell and fuel cell including this
JP2002015745A (en) Solid polymer fuel cell
JP2010092808A (en) Electrode catalyst for polymer electrolyte fuel cell
JPWO2007011004A1 (en) CO poison resistant multi-component electrode catalyst for polymer electrolyte fuel cells
JP7116665B2 (en) catalyst layer
JPWO2011136186A1 (en) Electrode material
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP5058805B2 (en) Method for producing noble metal fine particles
JP2010092814A (en) Electrode catalyst for polymer electrolyte fuel cell
JP4665536B2 (en) Method for producing electrode catalyst layer for fuel cell and fuel cell having the electrode catalyst layer
JP2011014406A (en) Ink for catalyst and catalyst layer formed using ink for catalyst
JPWO2009051111A1 (en) Fuel cell supported catalyst and fuel cell