JP2010091848A - 焦点検出装置および撮像装置 - Google Patents

焦点検出装置および撮像装置 Download PDF

Info

Publication number
JP2010091848A
JP2010091848A JP2008262735A JP2008262735A JP2010091848A JP 2010091848 A JP2010091848 A JP 2010091848A JP 2008262735 A JP2008262735 A JP 2008262735A JP 2008262735 A JP2008262735 A JP 2008262735A JP 2010091848 A JP2010091848 A JP 2010091848A
Authority
JP
Japan
Prior art keywords
focus detection
pixel
detection pixel
defective
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008262735A
Other languages
English (en)
Other versions
JP5228777B2 (ja
Inventor
Yosuke Kusaka
洋介 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008262735A priority Critical patent/JP5228777B2/ja
Publication of JP2010091848A publication Critical patent/JP2010091848A/ja
Application granted granted Critical
Publication of JP5228777B2 publication Critical patent/JP5228777B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

【課題】欠陥焦点検出画素を含む撮像素子による焦点検出を可能にする。
【解決手段】撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子に対して、複数の焦点検出画素の中に欠陥焦点検出画素A0xがある場合に、欠陥焦点検出画素A0xの周囲の画素の出力信号に基づいて欠陥焦点検出画素A0xの出力信号を補間により演算するとともに、焦点検出画素の出力信号と補間手段により演算された欠陥焦点検出画素A0xの出力信号とにより生成される一対の像信号に基づいて、一対の像の相対的なズレ量を検出し、検出された一対の像のズレ量に基づいて結像光学系の焦点調節状態を演算する。
【選択図】図14

Description

本発明は、光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を複数個の焦点検出画素の配列により生成するとともに、一対の像信号のズレ量に基づいて光学系の焦点調節状態を検出する焦点検出装置および撮像装置に関する。
光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する複数個の焦点検出画素の配列を撮像画素中に混在させたイメージセンサーを備え、撮像画素の出力により画像信号を生成するとともに、焦点検出画素が生成する一対の像信号のズレ量に基づいて、光学系の焦点調節状態を検出する焦点検出機能を備えた撮像装置が知られている(例えば、特許文献1参照)。
特開2007−189312号公報
しかしながら、上述した従来の撮像装置では、複数の焦点検出画素の一部に出力が異常となる欠陥焦点検出画素を含んだまま像ズレ検出を行った場合、焦点検出精度が悪化し、間違った焦点検出結果を出したり、焦点検出が不能になるという問題がある。このような問題を防止するために、個別検査により欠陥焦点検出画素を含まないイメージセンサーを選別して撮像装置に組み込む対策を施すと、イメージセンサーの歩留まりが低下し、撮像装置のコストが増加するという問題が生じる。
(1) 請求項1の発明は、撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、欠陥焦点検出画素の周囲の画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する補間手段と、焦点検出画素の出力信号と補間手段により演算された欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、一対の像の相対的なズレ量を検出する検出手段と、検出手段により検出された一対の像のズレ量に基づいて、結像光学系の焦点調節状態を演算する演算手段とを備える。
(2) 請求項2の発明は、請求項1に記載の焦点検出装置において、補間手段は、欠陥焦点検出画素の周囲の撮像画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する。
(3) 請求項3の発明は、請求項1に記載の焦点検出装置において、補間手段は、欠陥焦点検出画素の周囲の焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する。
(4) 請求項4の発明は、請求項1に記載の焦点検出装置において、補間手段は、欠陥焦点検出画素の周囲の撮像画素と焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する。
(5) 請求項5の発明は、請求項2または請求項4に記載の焦点検出装置において、撮像画素には複数種類の色フィルターが設けられており、補間手段は、色フィルターが設けられていない欠陥焦点検出画素の出力信号を、それぞれの色フィルターが設けられた撮像画素の出力信号の線形和として演算する。
(6) 請求項6の発明は、請求項3または請求項4に記載の焦点検出装置において、焦点検出画素は、一対の像信号の内の一方の像信号を出力する第1焦点検出画素と他方の像信号を出力する第2焦点検出画素とからなり、補間手段は、欠陥焦点検出画素の周囲に配置された第1焦点検出画素と第2焦点検出画素の内、欠陥焦点検出画素と同一種類の第1焦点検出画素または第2焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する。
(7) 請求項7の発明は、請求項1〜6のいずれか一項に記載の焦点検出装置において、欠陥焦点検出画素の位置情報を記憶する記憶手段を備え、補間手段は、記憶手段に記憶された欠陥焦点検出画素の位置情報に基づいて、欠陥焦点検出画素の出力信号を補間により演算する。
(8) 請求項8の発明は、焦点検出画素が平面上に配列された焦点検出用撮像素子であって、複数の焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する焦点検出用撮像素子と、複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、欠陥焦点検出画素の周囲の焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算する補間手段と、焦点検出画素の出力信号と補間手段により演算された欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、一対の像の相対的なズレ量を検出する検出手段と、検出手段により検出された一対の像のズレ量に基づいて、結像光学系の焦点調節状態を演算する演算手段とを備える。
(9) 請求項9の発明は、請求項1〜8のいずれか一項に記載の焦点検出装置を備える撮像装置である。
本発明によれば、欠陥焦点検出画素を含んだ撮像素子を使用しても正常に焦点検出を行うことが可能になるとともに、撮像素子の歩留まりの低下を防ぐことができる。
一実施の形態の焦点検出装置および撮像装置として、レンズ交換式デジタルスチルカメラを例に上げて説明する。図1は一実施の形態のカメラの構成を示すカメラの横断面図である。一実施の形態のデジタルスチルカメラ201は交換レンズ202とカメラボディ203から構成され、交換レンズ202がマウント部204を介してカメラボディ203に装着される。カメラボディ203にはマウント部204を介して種々の撮影光学系を有する交換レンズ202が装着可能である。
交換レンズ202はレンズ209、ズーミング用レンズ208、フォーカシング用レンズ210、絞り211、レンズ駆動制御装置206などを備えている。レンズ駆動制御装置206は不図示のマイクロコンピューター、メモリ、駆動制御回路などから構成され、フォーカシング用レンズ210の焦点調節と絞り211の開口径調節のための駆動制御や、ズーミング用レンズ208、フォーカシング用レンズ210および絞り211の状態検出などを行う他、後述するボディ駆動制御装置214との通信によりレンズ情報の送信とカメラ情報の受信を行う。絞り211は、光量およびボケ量調整のために光軸中心に開口径が可変な開口を形成する。
カメラボディ203は撮像素子212、ボディ駆動制御装置214、液晶表示素子駆動回路215、液晶表示素子216、接眼レンズ217、メモリカード219などを備えている。撮像素子212には、撮像画素が二次元状に配置されるとともに、焦点検出位置に対応した部分に焦点検出画素が組み込まれている。また撮像素子212には不揮発性メモリ(詳細後述)が内蔵されており、撮像素子212がカメラボディ203に組み込まれる前に個別検査が行われ、欠陥画素の有無、欠陥画素の位置情報などの撮像素子個別の情報が該メモリに書き込まれて記憶される。この撮像素子212については詳細を後述する。
ボディ駆動制御装置214はマイクロコンピューター、メモリ、駆動制御回路などから構成され、撮像素子212の駆動制御と画像信号および焦点検出信号の読み出しと、焦点検出信号に基づく焦点検出演算と交換レンズ202の焦点調節を繰り返し行うとともに、画像信号の処理と記録、カメラの動作制御などを行う。また、ボディ駆動制御装置214は電気接点213を介してレンズ駆動制御装置206と通信を行い、レンズ情報の受信とカメラ情報(デフォーカス量や絞り値など)の送信を行う。
液晶表示素子216は電気的なビューファインダー(EVF:Electronic View Finder)として機能する。液晶表示素子駆動回路215は撮像素子212によるスルー画像を液晶表示素子216に表示し、撮影者は接眼レンズ217を介してスルー画像を観察することができる。メモリカード219は、撮像素子212により撮像された画像を記憶する画像ストレージである。
交換レンズ202を通過した光束により、撮像素子212の受光面上に被写体像が形成される。この被写体像は撮像素子212により光電変換され、画像信号と焦点検出信号がボディ駆動制御装置214へ送られる。
ボディ駆動制御装置214は、撮像素子212の焦点検出画素からの焦点検出信号に基づいてデフォーカス量を算出し、このデフォーカス量をレンズ駆動制御装置206へ送る。また、ボディ駆動制御装置214は、撮像素子212からの画像信号を処理して画像を生成し、メモリカード219に格納するとともに、撮像素子212からのスルー画像信号を液晶表示素子駆動回路215へ送り、スルー画像を液晶表示素子216に表示させる。さらに、ボディ駆動制御装置214は、レンズ駆動制御装置206へ絞り制御情報を送って絞り211の開口制御を行う。
レンズ駆動制御装置206は、フォーカシング状態、ズーミング状態、絞り設定状態、絞り開放F値などに応じてレンズ情報を更新する。具体的には、ズーミング用レンズ208とフォーカシング用レンズ210の位置と絞り211の絞り値を検出し、これらのレンズ位置と絞り値に応じてレンズ情報を演算したり、あるいは予め用意されたルックアップテーブルからレンズ位置と絞り値に応じたレンズ情報を選択する。
レンズ駆動制御装置206は、受信したデフォーカス量に基づいてレンズ駆動量を算出し、レンズ駆動量に応じてフォーカシング用レンズ210を合焦位置へ駆動する。また、レンズ駆動制御装置206は受信した絞り値に応じて絞り211を駆動する。
図2は、交換レンズ202の撮影画面上における焦点検出位置を示す図であり、後述する撮像素子212上の焦点検出画素列が焦点検出の際に撮影画面上で像をサンプリングする領域(焦点検出エリア、焦点検出位置)の一例を示す。この例では、矩形の撮影画面100上の中央および上下の3箇所に焦点検出エリア101〜103が配置される。長方形で示す焦点検出エリアの長手方向に、焦点検出画素が直線的に配列される。
図3は撮像素子212の詳細な構成を示す正面図であり、撮像素子212上の焦点検出エリア101の近傍を拡大して示す。撮像素子212には撮像画素310が二次元正方格子状に稠密に配列されるとともに、焦点検出エリア101に対応する位置には焦点検出用の焦点検出画素313、314が垂直方向の直線上に隣接して交互に配列される。なお、図示を省略するが、焦点検出エリア102、103の近傍の構成も図3に示す構成と同様である。
撮像画素310は、図4に示すようにマイクロレンズ10、光電変換部11、および色フィルター(不図示)から構成される。色フィルターは赤(R)、緑(G)、青(B)の3種類からなり、それぞれの分光感度は図6に示す特性になっている。撮像素子212には、各色フィルターを備えた撮像画素310がベイヤー配列されている。
焦点検出画素313は、図5(a)に示すようにマイクロレンズ10と光電変換部13とから構成され、光電変換部13の形状は半円形である。また、焦点検出画素314は、図5(b)に示すようにマイクロレンズ10と光電変換部14とから構成され、光電変換部14の形状は半円形である。焦点検出画素313と焦点検出画素314は、図2および図3に示すように焦点検出エリア101〜103において垂直方向に交互に配置され、この配列において焦点検出画素313の光電変換部13はマイクロレンズ10の上半分の位置に配置され、焦点検出用画素314の光電変換部14はマイクロレンズ10の下半分の位置に配置される。
焦点検出画素313、314には光量をかせぐために色フィルターが設けられておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。
焦点検出用の焦点検出画素313、314は、撮像画素310のBとGが配置されるべき列に配置されている。焦点検出用の焦点検出画素313、314が、撮像画素310のBとGが配置されるべき列に配置されているのは、焦点検出画素の位置における撮像用の画像信号を求めるための補間処理において補間誤差が生じた場合に、人間の視覚特性上、赤画素の補間誤差に比較して青画素の補間誤差が目立たないためである。
撮像画素310の光電変換部11は、マイクロレンズ10によって最も明るい交換レンズの射出瞳径(例えばF1.0)を通過する光束をすべて受光するような形状に設計される。また、焦点検出画素313、314の光電変換部13、14は、マイクロレンズ10によって交換レンズの射出瞳の所定の領域(例えばF2.8)を通過する光束をすべて受光するような形状に設計される。
図8は撮像画素310の断面図である。撮像画素310では撮像用の光電変換部11の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部11の形状が前方に投影される。光電変換部11は半導体回路基板29上に形成される。なお、不図示の色フィルターはマイクロレンズ10と光電変換部11の中間に配置される。
図9(a)は焦点検出画素313の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素313において、光電変換部13の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部13の形状が前方に投影される。光電変換部13は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素313の断面構造についても、図9(a)に示す断面構造と同様である。
図9(b)は焦点検出画素314の断面図である。画面中央の焦点検出エリア101に配置された焦点検出画素314において、光電変換部14の前方にマイクロレンズ10が配置され、マイクロレンズ10により光電変換部14の形状が前方に投影される。光電変換部14は半導体回路基板29上に形成されるとともに、その上にマイクロレンズ10が半導体イメージセンサーの製造工程により一体的かつ固定的に形成される。なお、画面上下の焦点検出エリア102、103に配置された焦点検出画素314の断面構造についても、図9(b)に示す断面構造と同様である。
図10は、マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す。なお、焦点検出画素の部分は拡大して示す。図において、90は、交換レンズ202(図1参照)の予定結像面に配置されたマイクロレンズから前方dの距離に設定された射出瞳である。この距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との間の距離などに応じて決まる距離であって、この明細書では測距瞳距離と呼ぶ。91は交換レンズの光軸、10a〜10dはマイクロレンズ、13a、13b、14a、14bは光電変換部、313a、313b、314a、314bは焦点検出画素、73,74、83,84は焦点検出光束である。
また、93は、マイクロレンズ10a、10cにより投影された光電変換部13a、13bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。同様に、94は、マイクロレンズ10b、10dにより投影された光電変換部14a、14bの領域であり、この明細書では測距瞳と呼ぶ。図10では、説明を解りやすくするために楕円形の領域で示しているが、実際には光電変換部の形状が拡大投影された形状になる。
図10では、撮影光軸に隣接する4つの焦点検出画素313a、313b、314a、314bを模式的に例示しているが、焦点検出エリア101のその他の焦点検出画素においても、また画面周辺部の焦点検出エリア102、103の焦点検出画素においても、光電変換部はそれぞれ対応した測距瞳93、94から各マイクロレンズに到来する光束を受光するように構成されている。焦点検出画素の配列方向は一対の測距瞳の並び方向、すなわち一対の光電変換部の並び方向と一致させる。
マイクロレンズ10a〜10dは交換レンズ202(図1参照)の予定結像面近傍に配置されており、マイクロレンズ10a〜10dによりその背後に配置された光電変換部13a、13b、14a、14bの形状がマイクロレンズ10a〜10cから測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、投影距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。
光電変換部13aは測距瞳93を通過し、マイクロレンズ10aに向う光束73によりマイクロレンズ10a上に形成される像の強度に対応した信号を出力する。同様に、光電変換部13bは測距瞳93を通過し、マイクロレンズ10cに向う光束83によりマイクロレンズ10c上に形成される像の強度に対応した信号を出力する。また、光電変換部14aは測距瞳94を通過し、マイクロレンズ10bに向う光束74によりマイクロレンズ10b上に形成される像の強度に対応した信号を出力する。同様に、光電変換部14bは測距瞳94を通過し、マイクロレンズ10dに向う光束84によりマイクロレンズ10d上に形成される像の強度に対応した信号を出力する。
上述した2種類の焦点検出画素を直線状に多数配置し、各画素の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94をそれぞれ通過する焦点検出用光束が画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割型位相差検出方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を行うことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。
図11は撮像素子212の回路構成の概念を示す図である。撮像素子212はCMOSイメージセンサーとして構成される。図11では、説明を解りやすくするために、撮像素子212の回路構成を水平方向8画素、垂直方向4画素のレイアウトに簡略化して説明する。垂直方向において2列目と6列目に焦点検出画素(図中に○印で示す)が配列され、撮像画素(図中に□印で示す)がそれ以外の列に配列される。
ラインメモリ320は、1列分の画素の画素信号をサンプルホールドして一時的に保持するバッファーであり、信号線501に出力されている同一列の画素信号を水平走査回路301が発する制御信号ΦSに基づいて同時にサンプルホールドする。なお、ラインメモリ320に保持される画素信号は、制御信号ΦH1〜ΦH8の立ち上がりに同期してリセットされる。
撮像画素および焦点検出画素からの画素信号の出力は、水平走査回路301が発する制御信号(ΦH1〜ΦH8)により列ごとに独立に制御される。制御信号(ΦH1〜ΦH8)により選択された列の画素の画素信号は、信号線501へ出力される。ラインメモリ320に保持された画素信号は、垂直走査回路302が発する制御信号(ΦV1〜ΦV4)により順次出力回路330へ転送され、出力回路330において予め設定された増幅度で増幅されて外部へ出力される。撮像画素および焦点検出画素は、画素信号がサンプルホールドされた後、リセット回路303が発する制御信号(ΦR1〜ΦR8)によりリセットされ、次回の画素信号のための電荷蓄積を開始する。
欠陥画素メモリ304は、欠陥画素(欠陥撮像画素および欠陥焦点検出画素)の位置情報を記憶するEEPROMなどの不揮発性メモリである。製造段階の検査で欠陥画素が発見されると、その欠陥画素の位置情報が欠陥画素メモリ304へ書き込まれ、記憶される。なお、この一実施の形態では撮像素子212の半導体基板上に欠陥画素メモリ304を半導体製造プロセスで付加する例を示すが、撮像素子212は通常防塵ケースの中に封入されて撮像素子ユニット(不図示)としてカメラに設置されるので、その撮像素子ユニット内にメモリを設置して欠陥画素のデータを記憶するようにしてもよい。あるいは、カメラに装備される各種データを記憶するメモリに欠陥画素のデータを記憶するようにしてもよい。
図12は、一実施の形態のデジタルスチルカメラ(撮像装置)の撮像動作を示すフローチャートである。ボディ駆動制御装置214は、ステップ100でカメラの電源がオンされると、ステップ110以降の撮像動作を開始する。ステップ110において撮像画素のデータを間引き読み出しし、電子ビューファインダーに表示させる。続くステップ120では焦点検出画素列から一対の像に対応した一対の像データを読み出す。なお、焦点検出エリアは、撮影者が焦点検出エリア選択部材(不図示)を用いて焦点検出エリア101〜103の内のいずれかを予め選択しているものとする。
ステップ125では撮像素子212に内蔵された欠陥画素メモリ304(図11参照)から欠陥焦点検出画素情報を読み出し、選択された焦点検出エリアに欠陥焦点検出画素が存在する場合には、欠陥焦点検出画素の位置情報に応じて、欠陥焦点検出画素が正常であった場合の出力データを補間演算(詳細後述)により推定する。
ステップ130では読み出された一対の像データ(正常な焦点検出画素の出力データとステップ125で補間により推定された欠陥焦点検出画素の出力データ)に基づいて後述する像ズレ検出演算処理(相関演算処理)を行い、像ズレ量を演算してデフォーカス量に変換する。ステップ140で合焦近傍か否か、すなわち算出されたデフォーカス量の絶対値が所定値以内であるか否かを調べる。合焦近傍でないと判定された場合はステップ150へ進み、デフォーカス量をレンズ駆動制御装置206へ送信し、交換レンズ202のフォーカシングレンズ210を合焦位置に駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。
なお、焦点検出不能な場合もこのステップに分岐し、レンズ駆動制御装置206へスキャン駆動命令を送信し、交換レンズ202のフォーカシングレンズ210を無限から至近までの間でスキャン駆動させる。その後、ステップ110へ戻って上述した動作を繰り返す。
ステップ140で合焦近傍であると判定された場合はステップ160へ進み、シャッターボタン(不図示)の操作によりシャッターレリーズがなされたか否かを判別する。シャッターレリーズがなされていないと判定された場合はステップ110へ戻り、上述した動作を繰り返す。一方、シャッターレリーズがなされたと判定された場合はステップ170へ進み、レンズ駆動制御装置206へ絞り調整命令を送信し、交換レンズ202の絞り値を制御F値(撮影者または自動により設定されたF値)にする。絞り制御が終了した時点で、撮像素子212に撮像動作を行わせ、撮像素子212の撮像画素310および全ての焦点検出画素313,314から画像データを読み出す。
ステップ180において、焦点検出画素列の各画素位置の画素データを焦点検出画素の周囲の撮像画素のデータに基づいて画素補間する。続くステップ190では、撮像画素のデータおよび補間されたデータからなる画像データをメモリーカード219に記憶し、ステップ110へ戻って上述した動作を繰り返す。
図12のステップ130における像ズレ検出演算処理(相関演算処理)の詳細について説明する。焦点検出画素が検出する一対の像は、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れている可能性があるので、光量バランスに対して像ズレ検出精度を維持できるタイプの相関演算を施す。焦点検出画素列から読み出された一対のデータ列(A11〜A1M、A21〜A2M:Mはデータ数)に対し(1)式に示す相関演算を行い、相関量C(k)を演算する。
C(k)=Σ|A1n・A2n+1+k−A2n+k・A1n+1| ・・・(1)
(1)式において、Σ演算はnについて累積される。nのとる範囲は、像ずらし量kに応じてA1n、A1n+1、A2n+k、A2n+1+kのデータが存在する範囲に限定される。像ずらし量kは整数であり、データ列のデータ間隔を単位とした相対的シフト量である。
(1)式の演算結果は、図13(a)に示すように、一対のデータの相関が高いシフト量(図13(a)ではk=kj=2)において相関量C(k)が極小(小さいほど相関度が高い)になる。次の(2)式〜(5)式による3点内挿の手法を用いて連続的な相関量に対する極小値C(k)を与えるシフト量xを求める。
x=kj+D/SLOP ・・・(2),
C(x)= C(kj)−|D| ・・・(3),
D={C(kj-1)−C(kj+1)}/2 ・・・(4),
SLOP=MAX{C(kj+1)−C(kj),C(kj-1)−C(kj)}・・・(5)
(2)式で算出されたずらし量xの信頼性があるかどうかは、次のようにして判定する。図13(b)に示すように、一対のデータの相関度が低い場合は、内挿された相関量の極小値C(x)の値が大きくなる。したがって、C(x)が所定のしきい値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいは、C(x)をデータのコントラストで規格化するために、コントラストに比例した値となるSLOPでC(x)を除した値が所定値以上の場合は、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。あるいはまた、コントラストに比例した値となるSLOPが所定値以下の場合は、被写体が低コントラストであり、算出されたずらし量の信頼性が低いと判定し、算出されたずらし量xをキャンセルする。図13(c)に示すように、一対のデータの相関度が低く、シフト範囲kmin〜kmaxの間で相関量C(k)の落ち込みがない場合は、極小値C(x)を求めることができず、このような場合は焦点検出不能と判定する。
相関演算式としては上記(1)式に限定されず、測距瞳がレンズの絞り開口によりけられて光量バランスが崩れている場合でも、光量バランスに対して像ズレ検出精度を維持できるタイプの相関演算式であればどのような演算式でもよい。
算出されたずらし量xの信頼性があると判定された場合は、(6)式により像ズ レ量shftに換算される。
shft=PY・x ・・・(6)
(6)式において、PYは検出ピッチである。(6)式で算出された像ズレ量に所定の変換係数kを乗じてデフォーカス量defへ変換する。
def=k・shft ・・・(7)
次に、図12のステップ125における欠陥焦点検出画素の出力データの補間演算処理を説明する。図14および図15は、図3に示す撮像素子212の部分的な拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素313を、A1*(*=0,1,2,・・)は焦点検出画素314をそれぞれ示す。
《欠陥焦点検出画素の補間演算例1》
図14は、欠陥焦点検出画素が焦点検出画素313であった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の補間データA0xは、下記(8)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとを平均することにより求められる。
A0x=(A0av+A0w)/2 ・・・(8)
(8)式において、右辺第1項のA0avは、下記(9)式に示すように欠陥焦点検出画素と同じ種類の焦点検出画素であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータの平均データである。
A0av=(A00+A01)/2 ・・・(9)
また、(8)式において、右辺第2項のA0wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。すなわち、撮像画素と焦点検出画素は図6および図7に示すような分光特性を有しており、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表される。一般的に、焦点検出画素313と314のデータの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に次の(10)式が成立する。
A=Kr・R+Kg・G+Kb・B ・・・(10)
(10)式において、Kr、Kg、Kbは所定の係数であり、これらは実際に測定して決定される。
(10)式のA、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(11)式が得られる。
A=A0w+(A10+A11)/2,
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(11)
(11)式を(10)式に代入して整理すると、推定値A0wは次の(12)式で得られる。
A0w=Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2−(A10+A11)/2 ・・・(12)
補間演算例1では、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0xを正確に推定することができる。なお、2つの推定値A0av、A0wを重み付け平均してもよい(A0x=K1・A0av+K2・A0w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avとしてもよい(A0x=A0av)。あるいは、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとしてもよい(A0x=A0w)。
《欠陥焦点検出画素の補間演算例2》
図15は、欠陥焦点検出画素が焦点検出画素314であった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の補間データA1xは、下記(13)式に示すように、欠陥焦点検出画素を挟む位置にある正常焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとを平均することにより求めることができる。
A1x=(A1av+A1w)/2 ・・・(13)
(13)式において、右辺第1項のA1avは、下記(14)式に示すように欠陥焦点検出画素と同じ種類の焦点検出画素であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータの平均データである。
A1av=(A10+A11)/2 ・・・(14)
また、(13)式において、右辺第2項のA1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素313と314のデータの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(15)式が得られる。
A=A1w+(A00+A01)/2,
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(15)
(15)式を(10)式に代入して整理すると、推定値A1wは次の(16)式で得られる。
A1w=Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/2−(A00+A01)/2 ・・・(16)
補間演算例2では、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA1xを正確に推定することができる。なお、2つの推定値A1av、A1wを重み付け平均してもよい(A1x=K1・A1av+K2・A1w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avとしてもよい(A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとしてもよい(A1x=A1w)。
《発明の他の実施の形態》
撮像素子における焦点検出エリアの配置は図2に限定されることはなく、対角線方向や、その他の位置に水平方向および垂直方向に焦点検出エリアを配置することも可能である。
図3に示す一実施の形態の撮像素子212では、焦点検出画素313、314が一つの画素内に一つの光電変換部を備えた例を示したが、一つの画素内に一対の光電変換部を備えてもよい。図16は、図3に示す撮像素子212に対応した変形例の撮像素子212Aの部分拡大図であり、焦点検出画素311はひとつの画素内に一対の光電変換部を備えている。図に示す焦点検出画素311は、図3に示す焦点検出画素313と焦点検出画素314のペアに相当した機能を果たす。
焦点検出画素311は、図17に示すようにマイクロレンズ10と一対の光電変換部13,14から構成される。焦点検出画素311には光量をかせぐために色フィルターは配置されておらず、その分光特性は光電変換を行うフォトダイオードの分光感度と、赤外カットフィルター(不図示)の分光特性とを総合した分光特性(図7参照)となる。つまり、図6に示す緑画素、赤画素および青画素の分光特性を加算したような分光特性となり、その感度の光波長領域は緑画素、赤画素および青画素の感度の光波長領域を包括している。
図18は、図16に示す撮像素子212Aの焦点検出画素による瞳分割方式の焦点検出動作を説明するための図である。図において、90は、交換レンズの予定結像面に配置されたマイクロレンズの前方dの距離に設定された射出瞳である。ここで、距離dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部の間の距離などに応じて決まる距離であって、以下では測距瞳距離と呼ぶ。91は交換レンズの光軸、50、60はマイクロレンズ、(53,54)、(63,64)は焦点検出画素の対の光電変換部、73,74、83,84は焦点検出用光束である。
さらに、93はマイクロレンズ50、60により投影された光電変換部53,63の領域であり、以下では測距瞳と呼ぶ。同様に、94はマイクロレンズ50、60により投影された光電変換部54,64の領域であり、以下では測距瞳と呼ぶ。図18では、光軸91上にある焦点検出画素(マイクロレンズ50と一対の光電変換部53、54からなる)と、隣接する焦点検出画素(マイクロレンズ60と一対の光電変換部63、64からなる)を模式的に例示しているが、撮像面上の周辺に配置された焦点検出用画素においても、一対の光電変換部はそれぞれ一対の測距瞳93、94から各マイクロレンズに到来する光束を受光する。焦点検出画素の配列方向は一対の測距瞳の並び方向と一致させる。
マイクロレンズ50、60は光学系の予定結像面近傍に配置されており、光軸91上に配置されたマイクロレンズ50によって、その背後に配置された一対の光電変換部53、54の形状がマイクロレンズ50、60から測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。また、マイクロレンズ50に隣接して配置されたマイクロレンズ60によって、その背後に配置された一対の光電変換部63、64の形状が測距瞳距離dだけ離間した射出瞳90上に投影され、その投影形状は測距瞳93,94を形成する。すなわち、測距瞳距離dにある射出瞳90上で各焦点検出画素の光電変換部の投影形状(測距瞳93,94)が一致するように、各画素のマイクロレンズと光電変換部の位置関係が決定されている。
光電変換部53は、測距瞳93を通過してマイクロレンズ50へ向う焦点検出光束73によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。また、光電変換部54は、測距瞳94を通過してマイクロレンズ50へ向う焦点検出光束74によってマイクロレンズ50上に形成される像の強度に対応した信号を出力する。同様に、光電変換部63は、測距瞳93を通過してマイクロレンズ60へ向う焦点検出光束83によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。また、光電変換部64は、測距瞳94を通過してマイクロレンズ60へ向う焦点検出光束84によってマイクロレンズ60上に形成される像の強度に対応した信号を出力する。
このような焦点検出用画素を直線状に多数配置し、各画素の一対の光電変換部の出力を測距瞳93および測距瞳94に対応した出力グループにまとめることによって、測距瞳93と測距瞳94を各々通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関する情報が得られる。この情報に対して後述する像ズレ検出演算処理(相関演算処理、位相差検出処理)を施すことによって、いわゆる瞳分割方式で一対の像の像ズレ量が検出される。さらに、像ズレ量に所定の変換処理を施すことによって、予定結像面に対する現在の結像面(予定結像面上のマイクロレンズアレイの位置に対応した焦点検出位置における結像面)の偏差(デフォーカス量)が算出される。
図16に示す撮像素子212Aのように、一つのマイクロレンズに対して一対の光電変換部を有する焦点検出画素を配列した撮像素子に対する欠陥焦点検出画素の補間演算を説明する。図19および図20は、図16に示す撮像素子212Aの欠陥焦点検出画素付近の拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素の一対の光電変換部の内の一方の光電変換部を、A1*(*=0,1,2,・・)は焦点検出画素の他方の光電変換部をそれぞれ示す。
《欠陥焦点検出画素の補間演算例3》
図19は、欠陥焦点検出画素の一対の光電変換部の内の一方の光電変換部の出力が異常で、他方の光電変換部の出力が正常な場合であって、欠陥焦点検出画素が撮像画素配列の青画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一方の光電変換部の補間データA0xは、下記(17)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとを平均することにより求められる。
A0x=(A0av+A0w)/2 ・・・(17)
(17)式において、右辺第1項のA0avは、下記(18)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2 ・・・(18)
また、(17)式において、右辺第2項のA0wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(19)式が得られる。
A=A0w+A10,
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(19)
(19)式を(10)式に代入して整理すると、推定値A0wは(20)式で得られる。
A0w=Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2−A10 ・・・(20)
補間演算例3では、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0xを正確に推定することができる。なお、2つの推定値A0av、A0wを重み付け平均してもよい(A0x=K1・A0av+K2・A0w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0avとしてもよい(A0x=A0av)。あるいは、欠陥焦点検出画素の補間データA0xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0wとしてもよい(A0x=A0w)。
《欠陥焦点検出画素の補間演算例4》
図20は、欠陥焦点検出画素の一対の光電変換部の内の一方の光電変換部の出力が異常で、他方の光電変換部の出力が正常な場合であって、欠陥焦点検出画素が撮像画素配列の緑画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一方の補間データA1xは、下記(21)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとを平均することにより求められる。
A1x=(A1av+A1w)/2 ・・・(21)
(21)式において、右辺第1項のA1avは、(22)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A1av=(A10+A11)/2 ・・・(22)
また、(21)式において、右辺第2項のA1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(23)式が得られる。
A=A1w+A00,
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(23)
(23)式を(10)式に代入して整理すると、推定値A1wは(24)式で得られる。
A1w=Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/2−A00 ・・・(24)
補間演算例4では、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA1xを正確に推定することができる。なお、2つの推定値A1av、A1wを重み付け平均してもよい(A1x=K1・A1av+K2・A1w、K1,K2は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A1avとしてもよい(A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A1wとしてもよい(A1x=A1w)。
図21および図22は、図16に示す撮像素子212Aの欠陥焦点検出画素付近の拡大図である。これらの図において、各画素に付記したR、G、Bは各撮像画素の分光特性を示しており、A0*(*=0,1,2,・・)は焦点検出画素の一対の光電変換部の内の一方の光電変換部を、A1*(*=0,1,2,・・)は焦点検出画素の他方の光電変換部をそれぞれ示す。
《欠陥焦点検出画素の補間演算例5》
図21は、欠陥焦点検出画素の一対の光電変換部の両方の出力が異常な場合であって、欠陥焦点検出画素が撮像画素配列の青画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一対の光電変換部の補間データA0x、A1xは、下記(25)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとを平均することにより求めれれる。
A0x=(A0av+A0w)/2,
A1x=(A1av+A1w)/2 ・・・(25)
(25)式において、両式の右辺第1項のA0av、A1avは、下記(26)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2,
A1av=(A10+A01)/2 ・・・(26)
また、(25)式において、両式の右辺第2項のA0w、A1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(27)式が得られる。
A=A0w+A1w=(A00+A01+A10+A11)/2,
A0w/A1w=(A00+A01)/(A10+A11),
R=(R00+R01+R10+R11)/4,
G=(G00+G01)/2,
B=(B00+B01)/2 ・・・(27)
(27)式を(10)式に代入して整理すると、推定値A0w、A1wは(28)式で得られる。
A0w={Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2}/{1+(A10+A11)/(A00+A01)},
A1w={Kr・(R00+R01+R10+R11)/4+Kg・(G00+G01)/2+Kb・(B00+B01)/2}/{1+(A00+A01)/(A10+A11)} ・・・(28)
補間演算例5では、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとの平均として求める例を示した。この演算方法によれば欠陥焦点検出画素の補間データA0x、A1xを正確に推定することができる。なお、2組の推定値(A0av、A0w)、(A1av、A1w)をそれぞれ重み付け平均してもよい(A0x=K1・A0av+K2・A0w、A1x=K3・A1av+K4・A1w、K1,K2,K3,K4は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avとしてもよい(A0x=A0av、A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとしてもよい(A0x=A0w、A1x=A1w)。
《欠陥焦点検出画素の補間演算例6》
図22は、欠陥焦点検出画素の一対の光電変換部の両方の出力が異常な場合であって、欠陥焦点検出画素が撮像画素配列の緑画素の位置にあった場合に、欠陥焦点検出画素を中心として縦5画素、横5画素分の画素配置を示したものである。求めるべき欠陥焦点検出画素の一対の光電変換部の補間データA0x、A1xは、(29)式に示すように、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとを平均することにより求められる。
A0x=(A0av+A0w)/2,
A1x=(A1av+A1w)/2 ・・・(29)
(29)式において、両式の右辺第1項のA0av、A1avは、下記(30)式に示すように欠陥焦点検出画素の出力異常の光電変換部と同じ種類の光電変換部であって、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素の光電変換部のデータの平均データである。
A0av=(A00+A01)/2,
A1av=(A10+A01)/2 ・・・(30)
また、(29)式において、両式の右辺第2項のA0w、A1wは、焦点検出画素のデータと撮像画素のデータの等価関係に基づいて導出される欠陥焦点検出画素のデータの推定値である。上述したように、焦点検出画素の出力は近似的に撮像画素の出力の線型和として表されるので、焦点検出画素311の一対の光電変換部の出力データの和を焦点検出画素のデータAとすると、焦点検出画素のデータAと撮像画素のデータR、G、Bの和との間には、近似的に上記(10)式が成立する。(10)式において、R、G、Bを欠陥焦点検出画素の近傍周囲の焦点検出画素および撮像画素のデータから局所的に推定すると、次の(31)式が得られる。
A=A0w+A1w=(A00+A01+A10+A11)/2,
A0w/A1w=(A00+A01)/(A10+A11),
R=(R00+R01)/2,
G=(G00+G01+G10+G11)/4,
B=(B00+B01+B10+B11)/4 ・・・(31)
(31)式を(10)式に代入して整理すると、推定値A0w、A1wは(32)式で得られる。
A0w={Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/4}/{1+(A10+A11)/(A00+A01)},
A1w={Kr・(R00+R01)/2+Kg・(G00+G01+G10+G11)/4+Kb・(B00+B01+B10+B11)/4}/{1+(A00+A01)/(A10+A11)} ・・・(32)
補間演算例6では、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avと、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとの平均として求める例を示した。この方法によれば欠陥焦点検出画素の補間データA0x、A1xを正確に推定することができる。なお、2組の推定値(A0av、A0w)、(A1av、A1w)をそれぞれ重み付け平均してもよい(A0x=K1・A0av+K2・A0w、A1x=K3・A1av+K4・A1w、K1,K2,K3,K4は重み)。また、推定精度がわずかに低くなるが、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素を挟む位置にある正常な焦点検出画素のデータから推定した欠陥焦点検出画素の推定値A0av、A1avとしてもよい(A0x=A0av、A1x=A1av)。あるいは、欠陥焦点検出画素の補間データA0x、A1xを、欠陥焦点検出画素の周囲の正常な撮像画素のデータから推定した欠陥焦点検出画素の推定値A0w、A1wとしてもよい(A0x=A0w、A1x=A1w)。
以上説明した一実施の形態では、焦点検出画素が連続的にかつ1直線上に配列された場合の欠陥焦点検出画素のデータ補間について述べたが、同様な考え方を適用することによって、焦点検出画素が間引かれて配置された場合や、焦点検出画素がジグザグに配置された場合においても、欠陥焦点検出画素のデータ補間を行うことができる。
図3および図16に示す撮像素子212、212Aでは、撮像画素310がベイヤー配列の色フィルターを備えた例を示したが、色フィルターの構成や配列はこれに限定されることはなく、補色フィルター(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列やベイヤー配列以外の配列にも本発明を適用することができる。また、図3および図16に示す撮像素子212、212Aでは、焦点検出画素313、314に色フィルターを設けない例を示したが、撮像画素310と同色の色フィルターの内のひとつのフィルター(例えば緑フィルター)を設けるようにした場合でも、本発明を適用することができる。
また、上述した一実施の形態の図5、図17に示す焦点検出画素311、313、314では、光電変換部の形状を半円形や矩形にした例を示したが、焦点検出画素の光電変換部の形状はこれらに限定されず、他の形状であってもよい。例えば焦点検出画素の光電変換部の形状を楕円や多角形にすることも可能である。
さらに、図3および図16に示す撮像素子212、212Aでは、撮像画素と焦点検出画素を稠密正方格子配列に配置した例を示したが、稠密六方格子配列(ハニカム状配列)としてもよい。
上述した一実施の形態では、撮像画素と焦点検出画素とが二次元状に配列された撮像素子212(図3参照)、212A(図16参照)を例に挙げて説明したが、焦点検出画素が平面上に配列された焦点検出専用素子に対しても本願発明を適用することができ、同様な効果を得ることができる。なお、この場合には図1に示す交換レンズ202と撮像素子212の間にハーフミラー等の光透過反射部材を設けるとともに、撮像素子212を撮像画素を二次元状に配列した撮像専用素子とし、光透過反射部材からの透過光を撮像専用素子で受光するとともに、光透過反射部材からの反射光を焦点検出専用素子で受光する構成とすればよい。
上述した一実施の形態では、マイクロレンズを用いた瞳分割方式による焦点検出動作を説明したが、本発明はこのような方式の焦点検出に限定されず、特開2008−015157号公報に開示された偏光素子による瞳分割型位相差検出方式の焦点検出装置にも適用可能である。
なお、撮像装置としては、上述したようなカメラボディに交換レンズが装着される構成のデジタルスチルカメラやフィルムスチルカメラに限定されない。例えばレンズ一体型のデジタルスチルカメラ、フィルムスチルカメラ、あるいはビデオカメラにも本発明を適用することができる。さらには、携帯電話などに内蔵される小型カメラモジュール、監視カメラやロボット用の視覚認識装置、車載カメラなどにも適用できる。
上述した実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、一実施の形態は、撮像画素310と焦点検出画素311,313,314とが二次元状に配列された撮像素子であって、複数の焦点検出画素311,313,314の配列により交換レンズ202を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子212,212Aと、複数の焦点検出画素311,313,314の中に欠陥焦点検出画素がある場合に、欠陥焦点検出画素の周囲の画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するとともに、焦点検出画素311,313,314の出力信号と演算された欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、一対の像の相対的なズレ量を検出し、検出された前記一対の像のズレ量に基づいて交換レンズ202の焦点調節状態を演算するボディ駆動制御装置214を備えている。このような構成を備えることにより、欠陥焦点検出画素を含んだ撮像素子を使用しても正常に焦点検出を行うことが可能になるとともに、撮像素子の歩留まりの低下を防ぐことができる、という優れた効果を得ることができる。特に、被写体像のコントラスト変化が大きい、つまり空間周波数が高いほど、欠陥焦点検出画素の存在が焦点検出精度を低下させるが、一実施の形態によれば焦点検出精度の低下を防ぐことができる。
次に、一実施の形態によれば、欠陥焦点検出画素の周囲の撮像画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、焦点検出画素の周辺に配置される多くの撮像画素の出力信号を利用して欠陥焦点検出画素の出力信号を補間により求めることができる。
さらに、一実施の形態によれば、欠陥焦点検出画素の周囲の撮像画素と焦点検出画素の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、欠陥焦点検出画素の出力信号を補間により正確に求めることができる。
一実施の形態によれば、色フィルターが設けられていない欠陥焦点検出画素の出力信号を、それぞれの色フィルターが設けられた撮像画素の出力信号の線形和として演算するようにしたので、焦点検出画素の周辺に配置される多くの撮像画素の出力信号を利用して欠陥焦点検出画素の出力信号を正確に補間することができる。
一実施の形態によれば、一対の像信号の内の一方の像信号を出力する第1焦点検出画素313と他方の像信号を出力する第2焦点検出画素314とを備えた撮像素子212(図3参照)に対し、欠陥焦点検出画素の周囲に配置された第1焦点検出画素313と第2焦点検出画素314の内、欠陥焦点検出画素と同一種類の第1焦点検出画素313または第2焦点検出画素314の出力信号に基づいて欠陥焦点検出画素の出力信号を補間により演算するようにしたので、欠陥焦点検出画素の出力信号を正確に補間することができる。
一実施の形態のカメラの構成を示すカメラの横断面図 交換レンズの撮影画面上における焦点検出位置を示す図 撮像素子の詳細な構成を示す正面図 撮像画素の構成を示す正面図 焦点検出画素の構成を示す正面図 撮像画素の分光特性を示す図 焦点検出画素の分光特性を示す図 撮像画素の構造を示す断面図 焦点検出画素の構造を示す断面図 マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図 撮像素子の回路構成の概念を示す図 一実施の形態のデジタルスチルカメラ(撮像装置)の撮像動作を示すフローチャート 焦点検出結果の信頼性を説明する図 欠陥焦点検出画素の補間演算例1を説明するための図 欠陥焦点検出画素の補間演算例2を説明するための図 変形例の撮像素子の正面図 焦点検出画素の構成を示す正面図 マイクロレンズを用いた瞳分割型位相差検出方式の焦点検出光学系の構成を示す図 欠陥焦点検出画素の補間演算例3を説明するための図 欠陥焦点検出画素の補間演算例4を説明するための図 欠陥焦点検出画素の補間演算例5を説明するための図 欠陥焦点検出画素の補間演算例6を説明するための図
符号の説明
201;カメラ、202;交換レンズ、212、212A;撮像素子、214;ボディ駆動制御装置、310;撮像画素、311、313、314;焦点検出画素

Claims (9)

  1. 撮像画素と焦点検出画素とが二次元状に配列された撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する撮像素子と、
    前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
    前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
    前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする焦点検出装置。
  2. 請求項1に記載の焦点検出装置において、
    前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
  3. 請求項1に記載の焦点検出装置において、
    前記補間手段は、前記欠陥焦点検出画素の周囲の前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
  4. 請求項1に記載の焦点検出装置において、
    前記補間手段は、前記欠陥焦点検出画素の周囲の前記撮像画素と前記焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
  5. 請求項2または請求項4に記載の焦点検出装置において、
    前記撮像画素には複数種類の色フィルターが設けられており、
    前記補間手段は、前記色フィルターが設けられていない前記欠陥焦点検出画素の出力信号を、それぞれの前記色フィルターが設けられた前記撮像画素の出力信号の線形和として演算することを特徴とする焦点検出装置。
  6. 請求項3または請求項4に記載の焦点検出装置において、
    前記焦点検出画素は、前記一対の像信号の内の一方の像信号を出力する第1焦点検出画素と他方の像信号を出力する第2焦点検出画素とからなり、
    前記補間手段は、前記欠陥焦点検出画素の周囲に配置された前記第1焦点検出画素と前記第2焦点検出画素の内、前記欠陥焦点検出画素と同一種類の前記第1焦点検出画素または前記第2焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
  7. 請求項1〜6のいずれか一項に記載の焦点検出装置において、
    前記欠陥焦点検出画素の位置情報を記憶する記憶手段を備え、
    前記補間手段は、前記記憶手段に記憶された前記欠陥焦点検出画素の位置情報に基づいて、前記欠陥焦点検出画素の出力信号を補間により演算することを特徴とする焦点検出装置。
  8. 焦点検出画素が平面上に配列された焦点検出用撮像素子であって、複数の前記焦点検出画素の配列により結像光学系を通過する一対の光束が形成する一対の像に対応した一対の像信号を生成する焦点検出用撮像素子と、
    前記複数の焦点検出画素の中に欠陥焦点検出画素がある場合に、前記欠陥焦点検出画素の周囲の焦点検出画素の出力信号に基づいて前記欠陥焦点検出画素の出力信号を補間により演算する補間手段と、
    前記焦点検出画素の出力信号と前記補間手段により演算された前記欠陥焦点検出画素の出力信号とにより生成される一対の像信号に基づいて、前記一対の像の相対的なズレ量を検出する検出手段と、
    前記検出手段により検出された前記一対の像のズレ量に基づいて、前記結像光学系の焦点調節状態を演算する演算手段とを備えることを特徴とする焦点検出装置。
  9. 請求項1〜8のいずれか一項に記載の焦点検出装置を備えることを特徴とする撮像装置。
JP2008262735A 2008-10-09 2008-10-09 焦点検出装置および撮像装置 Active JP5228777B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262735A JP5228777B2 (ja) 2008-10-09 2008-10-09 焦点検出装置および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262735A JP5228777B2 (ja) 2008-10-09 2008-10-09 焦点検出装置および撮像装置

Publications (2)

Publication Number Publication Date
JP2010091848A true JP2010091848A (ja) 2010-04-22
JP5228777B2 JP5228777B2 (ja) 2013-07-03

Family

ID=42254621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262735A Active JP5228777B2 (ja) 2008-10-09 2008-10-09 焦点検出装置および撮像装置

Country Status (1)

Country Link
JP (1) JP5228777B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139665A (ja) * 2008-12-10 2010-06-24 Canon Inc 焦点検出装置及びその制御方法
JP2012133138A (ja) * 2010-12-22 2012-07-12 Canon Inc 画像処理装置及び画像処理方法
WO2015046147A1 (ja) * 2013-09-27 2015-04-02 オリンパス株式会社 撮像装置及び画像処理方法
US9491352B2 (en) 2013-03-13 2016-11-08 Fujifilm Corporation Imaging device, signal processing method, and signal processing program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556355A (ja) * 1991-08-28 1993-03-05 Canon Inc 光電変換装置
JP2001177756A (ja) * 1999-12-21 2001-06-29 Canon Inc 撮像装置及びそれを備えたカメラシステム
JP2007158109A (ja) * 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007158597A (ja) * 2005-12-02 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007282109A (ja) * 2006-04-11 2007-10-25 Nikon Corp 撮像装置、カメラおよび画像処理方法
JP2008224801A (ja) * 2007-03-09 2008-09-25 Nikon Corp 焦点検出装置および撮像装置
JP2009163229A (ja) * 2007-12-10 2009-07-23 Canon Inc 撮像装置及びその制御方法
JP2010078856A (ja) * 2008-09-25 2010-04-08 Canon Inc 撮像装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556355A (ja) * 1991-08-28 1993-03-05 Canon Inc 光電変換装置
JP2001177756A (ja) * 1999-12-21 2001-06-29 Canon Inc 撮像装置及びそれを備えたカメラシステム
JP2007158597A (ja) * 2005-12-02 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007158109A (ja) * 2005-12-06 2007-06-21 Nikon Corp 焦点検出用信号の生成機能を有する固体撮像装置、および電子カメラ
JP2007282109A (ja) * 2006-04-11 2007-10-25 Nikon Corp 撮像装置、カメラおよび画像処理方法
JP2008224801A (ja) * 2007-03-09 2008-09-25 Nikon Corp 焦点検出装置および撮像装置
JP2009163229A (ja) * 2007-12-10 2009-07-23 Canon Inc 撮像装置及びその制御方法
JP2010078856A (ja) * 2008-09-25 2010-04-08 Canon Inc 撮像装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010139665A (ja) * 2008-12-10 2010-06-24 Canon Inc 焦点検出装置及びその制御方法
US8531560B2 (en) 2008-12-10 2013-09-10 Canon Kabushiki Kaisha Focus detection apparatus and method for controlling the same
JP2012133138A (ja) * 2010-12-22 2012-07-12 Canon Inc 画像処理装置及び画像処理方法
US9491352B2 (en) 2013-03-13 2016-11-08 Fujifilm Corporation Imaging device, signal processing method, and signal processing program
WO2015046147A1 (ja) * 2013-09-27 2015-04-02 オリンパス株式会社 撮像装置及び画像処理方法
JP2015070432A (ja) * 2013-09-27 2015-04-13 オリンパス株式会社 撮像装置、画像処理方法及び画像処理プログラム
US9503661B2 (en) 2013-09-27 2016-11-22 Olympus Corporation Imaging apparatus and image processing method

Also Published As

Publication number Publication date
JP5228777B2 (ja) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5012495B2 (ja) 撮像素子、焦点検出装置、焦点調節装置および撮像装置
JP5163068B2 (ja) 撮像装置
JP5092685B2 (ja) 撮像素子および撮像装置
JP5029274B2 (ja) 撮像装置
JP4770560B2 (ja) 撮像装置、カメラおよび画像処理方法
JP5157400B2 (ja) 撮像装置
JP4952060B2 (ja) 撮像装置
JP5374862B2 (ja) 焦点検出装置および撮像装置
US7586072B2 (en) Correlation operation method, correlation operation device, focus detection device and imaging device
JP5256711B2 (ja) 撮像素子および撮像装置
US7586588B2 (en) Correlation operation method, correlation operation device, focus detection device and imaging device
JP5167783B2 (ja) 焦点検出装置および撮像装置
JP5211590B2 (ja) 撮像素子および焦点検出装置
JP5381472B2 (ja) 撮像装置
JP2009271523A (ja) 焦点検出装置および撮像装置
JP5228777B2 (ja) 焦点検出装置および撮像装置
JP5278123B2 (ja) 撮像装置
JP5338112B2 (ja) 相関演算装置、焦点検出装置および撮像装置
JP5407314B2 (ja) 焦点検出装置および撮像装置
JP5481914B2 (ja) 相関演算方法、相関演算装置、焦点検出装置および撮像装置
JP5338113B2 (ja) 相関演算装置、焦点検出装置および撮像装置
JP2009162845A (ja) 撮像素子、焦点検出装置および撮像装置
JP5476702B2 (ja) 撮像素子および撮像装置
JP4968009B2 (ja) 相関演算方法、相関演算装置、焦点検出装置および撮像装置
JP5978570B2 (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250