JP2010065267A - Method for producing aqueous solvent-dispersible silver fine powder - Google Patents

Method for producing aqueous solvent-dispersible silver fine powder Download PDF

Info

Publication number
JP2010065267A
JP2010065267A JP2008232077A JP2008232077A JP2010065267A JP 2010065267 A JP2010065267 A JP 2010065267A JP 2008232077 A JP2008232077 A JP 2008232077A JP 2008232077 A JP2008232077 A JP 2008232077A JP 2010065267 A JP2010065267 A JP 2010065267A
Authority
JP
Japan
Prior art keywords
silver
powder
fine powder
silver particles
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008232077A
Other languages
Japanese (ja)
Other versions
JP5191844B2 (en
Inventor
Jayadewan Barachandoran
ジャヤデワン バラチャンドラン
Lehman Cuya Huaman Jhon
ウアマン ジョン レマン クヤ
Kimitaka Sato
王高 佐藤
Tooru Kurita
哲 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Original Assignee
Tohoku University NUC
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Dowa Electronics Materials Co Ltd filed Critical Tohoku University NUC
Priority to JP2008232077A priority Critical patent/JP5191844B2/en
Publication of JP2010065267A publication Critical patent/JP2010065267A/en
Application granted granted Critical
Publication of JP5191844B2 publication Critical patent/JP5191844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce the powder of silver nanoparticles having high water dispersibility by a simple means. <P>SOLUTION: In the method for producing aqueous solvent-dispersible silver fine powder, the powder of silver particles whose surface is provided with an organic protective material containing primary amine having an unsaturated bond with a molecular weight of 200 to 400 and fatty acid with a molecular weight of 200 to 400 as components, and whose average particle diameter D<SB>TEM</SB>obtained by TEM observation is ≤20 nm is prepared, and the powder of the silver particles is mixed with a silane coupling agent having an amino group in a state of being dispersed into a liquid organic medium. Then, hydrophilicity is imparted to the surfaces of the silver particles. As the silane coupling agent, e.g., aminoalkyltrialkoxysilane can be adopted. Further, instead of the silane coupling agent, normal chain aminocarboxylic acid expressed by HOOC(CH<SB>2</SB>)<SB>n</SB>NH<SB>2</SB>may be used. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水溶媒に対して良好な分散性を有する銀ナノ粒子の粉末を製造する方法に関する。   The present invention relates to a method for producing a powder of silver nanoparticles having good dispersibility in an aqueous solvent.

銀ナノ粒子の粉末は焼結温度が低く、かつ耐酸化性(耐候性)が比較的良好で取扱い性に優れることから、電子部品における微細配線用途を中心に実用化が進められようとしている。   Since the silver nanoparticle powder has a low sintering temperature, has relatively good oxidation resistance (weather resistance), and is excellent in handleability, it is being put to practical use mainly for fine wiring applications in electronic parts.

特開2006−89786号公報JP 2006-89786 A 特開2004−162169号公報JP 2004-162169 A 特開2006−35205号公報JP 2006-35205 A

銀ナノ粒子は通常、表面が有機保護材により保護された状態で合成される。合成後に有機保護材を別の種類のものに付け替える操作が行われることもある。液状媒体に対する銀ナノ粒子の分散性は、有機保護材の種類に大きく依存することから、使用する液状媒体の種類に応じて適切な有機保護材を選択する必要がある。   Silver nanoparticles are usually synthesized with the surface protected by an organic protective material. An operation of replacing the organic protective material with another type may be performed after synthesis. Since the dispersibility of the silver nanoparticles in the liquid medium largely depends on the type of the organic protective material, it is necessary to select an appropriate organic protective material according to the type of the liquid medium to be used.

これまで、有機溶媒に対して良好な分散性を呈する銀ナノ粒子が種々開発されてきた。しかし、水溶媒に対して分散性が良好な銀ナノ粒子を、工業的に実用化しやすい手法で実現した例は知られていない。水溶媒は有機溶媒に比べ環境に優しい。また、親水性基板に配線を描画する場合、銀ナノ粒子分散液(銀インク)として水溶媒を用いることはより密着性の高い導電皮膜を得る上で有利となる。さらに水溶媒は一般的に有機溶媒より表面張力が大きいことから、銀インクの細線を基板に塗布する際にインク付着高さが高くなり、同じ線幅でも銀の量(焼成後の導体の体積)をより増大させることができる。このことは電気抵抗の低減に繋がる。   Until now, various silver nanoparticles having good dispersibility in organic solvents have been developed. However, there is no known example in which silver nanoparticles having good dispersibility in an aqueous solvent are realized by a technique that is industrially easy to put into practical use. Water solvents are more environmentally friendly than organic solvents. Moreover, when drawing wiring on a hydrophilic substrate, using a water solvent as the silver nanoparticle dispersion (silver ink) is advantageous in obtaining a conductive film with higher adhesion. Furthermore, since the surface tension of aqueous solvents is generally higher than that of organic solvents, the height of ink adhesion increases when silver ink fine lines are applied to the substrate, and the amount of silver (the volume of the conductor after firing) is the same even with the same line width. ) Can be further increased. This leads to a reduction in electrical resistance.

本発明は、簡便な手法で水分散性の良好な銀ナノ粒子の粉末を製造する技術を提供しようというものである。   The present invention is intended to provide a technique for producing a silver nanoparticle powder having good water dispersibility by a simple technique.

上記目的を達成するために、本発明では、分子量200〜400の不飽和結合を有する1級アミンと分子量200〜400の脂肪酸とを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、アミノ基を有するシランカップリング剤と混合することにより、銀粒子表面に親水性を付与する水溶媒分散性銀微粉の製造方法が提供される。シランカップリング剤によって親水性を付与した後、その銀粒子の粉末を、有機溶媒を用いて洗浄し、洗浄後の銀粒子の粉末を固形分として回収する工程に供することがより好ましい。 In order to achieve the above object, in the present invention, an organic protective material comprising a primary amine having an unsaturated bond having a molecular weight of 200 to 400 and a fatty acid having a molecular weight of 200 to 400 as a component is obtained by TEM observation. A silver particle powder having an average particle diameter DTEM of 20 nm or less is mixed with a silane coupling agent having an amino group in a dispersed state in a liquid organic medium, thereby imparting hydrophilicity to the surface of the silver particle. A method for producing an aqueous solvent-dispersible silver fine powder is provided. More preferably, after imparting hydrophilicity with a silane coupling agent, the silver particle powder is washed with an organic solvent and the washed silver particle powder is recovered as a solid content.

アミノ基を有するシランカップリング剤として、例えばアミノアルキルトリアルコキシシランが好適である。前記1級アミンとして、例えばオレイルアミンが好適である。前記脂肪酸として、例えばオレイン酸が好適である。   As the silane coupling agent having an amino group, for example, aminoalkyltrialkoxysilane is suitable. For example, oleylamine is suitable as the primary amine. For example, oleic acid is suitable as the fatty acid.

また本発明では、分子量200〜400の不飽和結合を有する1級アミンを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、HOOC(CH2)nNH2で表される直鎖アミノカルボン酸と混合することにより、銀粒子表面に親水性を付与する水溶媒分散性銀微粉の製造方法が提供される。直鎖アミノカルボン酸によって親水性を付与した後、その銀粒子の粉末を、有機溶媒を用いて洗浄し、洗浄後の銀粒子の粉末を固形分として回収する工程に供することがより好ましい。 In the present invention also has an organic protective material that the primary amine having an unsaturated bond of molecular weight 200 to 400 and component surface, the powder of the silver particles having an average particle diameter D TEM is 20nm or less which is obtained by TEM observation Water-dispersible silver fine powder that imparts hydrophilicity to the surface of silver particles by mixing with a linear aminocarboxylic acid represented by HOOC (CH 2 ) n NH 2 in a dispersed state in a liquid organic medium A manufacturing method is provided. More preferably, after imparting hydrophilicity with a linear aminocarboxylic acid, the silver particle powder is washed with an organic solvent, and the washed silver particle powder is recovered as a solid content.

直鎖アミノカルボン酸としては、例えば12−アミノデカン酸が好適である。前記1級アミンとしては、例えばオレイルアミンが好適である。   For example, 12-aminodecanoic acid is suitable as the linear aminocarboxylic acid. As the primary amine, for example, oleylamine is suitable.

本発明によれば、水溶媒に分散可能な銀ナノ粒子の粉末が工業的に実施しやすい簡便な手法で得られる。前述のように、水溶媒は環境に優しい。水溶媒を用いた銀インクは、親水性基板に配線を描画する場合に密着性の面で有利となる。また、水溶媒は表面張力が大きいので銀インクの細線を基板に塗布する際にインク付着高さが高くなり、同じ線幅でも体積がより大きい導電膜を形成させることができ、電気抵抗が低減する。本発明はこのような水溶媒を用いた銀インクの普及に寄与するものである。   According to the present invention, a powder of silver nanoparticles dispersible in an aqueous solvent can be obtained by a simple technique that is industrially easy to implement. As mentioned above, water solvents are environmentally friendly. Silver ink using an aqueous solvent is advantageous in terms of adhesion when a wiring is drawn on a hydrophilic substrate. In addition, since the surface tension of the aqueous solvent is large, the height of ink adhesion is increased when a fine silver ink line is applied to the substrate, and a conductive film having a larger volume can be formed even with the same line width, thereby reducing electrical resistance. To do. The present invention contributes to the spread of silver ink using such an aqueous solvent.

〔銀ナノ粒子の合成〕
銀ナノ粒子の合成方法については、これまでに種々の手法が開発されており、本発明では、有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末が得られる湿式工程を利用することが好適である。例えば、アルコール溶媒中において、銀化合物を、有機保護材となる有機化合物の存在下で溶媒アルコールの還元力を利用して還元することにより銀粒子を析出させる公知の方法が採用できる。その詳しい方法については本発明者らが既に種々開示しているが、ここでは特開2008−84620号に開示した手法を例に挙げて簡単に説明する。
[Synthesis of silver nanoparticles]
Silver particles The synthesis method of silver nanoparticles, thus far have various techniques have been developed, in the present invention has an organic protective material on the surface, the mean particle diameter D TEM which is obtained by TEM observation is 20nm or less It is preferable to use a wet process in which a powder of the above is obtained. For example, a known method of precipitating silver particles in an alcohol solvent by reducing the silver compound by using the reducing power of the solvent alcohol in the presence of an organic compound serving as an organic protective material can be employed. The detailed method has already been disclosed by the present inventors. Here, the method disclosed in Japanese Patent Application Laid-Open No. 2008-84620 will be briefly described as an example.

溶媒と還元剤を兼ねるアルコールとしては、イソブタノール、2−プロパノールなどが好適である。   As the alcohol serving as the solvent and the reducing agent, isobutanol, 2-propanol and the like are preferable.

有機保護材となる有機化合物としては、分子量200〜400の不飽和結合を有する1級アミンを使用する。個々の銀ナノ粒子の表面に付着する有機保護材は、金属銀を保護する機能の他、液状媒体中で銀粒子に浮力を与える「浮き輪」の機能も有する。分子量200未満の有機化合物だと保護機能が不十分となりやすく、また粒子径20nm以下の銀ナノ粒子に対する浮き輪の機能も不十分となりやすい。浮き輪の機能が不足すると、後述のシランカップリング剤やアミノカルボン酸により親水性を付与する工程において液中での分散性が悪くなり、効率的にそれらの界面活性剤による表面処理を行うことが難しくなる。一方、分子量が過剰に大きいと分散液中の銀濃度を高めることが難しくなり、各工程で不利となる。種々検討の結果、有機保護材の分子量は400以下とすることが望ましい。また、不飽和結合を持つ1級アミンは、銀粒子から適度に脱着しやすい性質を有しており、親水性を付与する工程において有利となる。そのようなアミンとして、例えばオレイルアミン(C918=C917−NH2、分子量約267)を例示することができる。 As an organic compound that serves as an organic protective material, a primary amine having an unsaturated bond with a molecular weight of 200 to 400 is used. The organic protective material that adheres to the surface of each silver nanoparticle has a function of “buoyancy ring” that gives buoyancy to the silver particles in a liquid medium in addition to the function of protecting metallic silver. When the organic compound has a molecular weight of less than 200, the protective function tends to be insufficient, and the function of the floating ring for silver nanoparticles having a particle diameter of 20 nm or less tends to be insufficient. If the function of the float is insufficient, the dispersibility in the liquid will deteriorate in the step of imparting hydrophilicity with the silane coupling agent and aminocarboxylic acid described later, and surface treatment with these surfactants will be performed efficiently. Becomes difficult. On the other hand, if the molecular weight is excessively large, it is difficult to increase the silver concentration in the dispersion, which is disadvantageous in each step. As a result of various studies, the molecular weight of the organic protective material is desirably 400 or less. Moreover, the primary amine having an unsaturated bond has a property of being easily desorbed from the silver particles, and is advantageous in the step of imparting hydrophilicity. Such amines include, for example oleylamine (C 9 H 18 = C 9 H 17 -NH 2, about 267 molecular weight) can be exemplified.

シランカップリング剤を適用する場合は、有機保護材として、上記の1級アミンとともに、分子量200〜400の脂肪酸を混在させる。分子量の限定理由は上記の1級アミンと同様である。この脂肪酸としては、例えばオレイン酸(C918=C815−COOH、分子量約282)が例示できる。 When a silane coupling agent is applied, a fatty acid having a molecular weight of 200 to 400 is mixed with the primary amine as an organic protective material. The reason for limiting the molecular weight is the same as that of the primary amine. Examples of this fatty acid include oleic acid (C 9 H 18 = C 8 H 15 —COOH, molecular weight of about 282).

銀の原料としては、溶媒アルコールによく溶ける各種銀塩や銀酸化物等の銀化合物が使用できる。例えば塩化銀、硝酸銀、酸化銀、炭酸銀等が挙げられるが、工業的には硝酸銀を使用することが望ましい。   As a silver raw material, silver compounds such as various silver salts and silver oxides which are well soluble in solvent alcohol can be used. For example, silver chloride, silver nitrate, silver oxide, silver carbonate and the like can be mentioned, but it is desirable to use silver nitrate industrially.

その他、還元反応を進行させるに際して、還元補助剤を使用することができる。還元補助剤としては、例えばジエタノールアミン、トリエタノールアミン等の第2級または第3級のアミンが好適である。   In addition, a reduction auxiliary agent can be used when the reduction reaction proceeds. As the reducing aid, for example, secondary or tertiary amines such as diethanolamine and triethanolamine are suitable.

反応元液として、溶媒と還元剤を兼ねるアルコール、有機保護材となる有機化合物、および銀化合物が良く溶け合った液を作る。液中のAgイオン濃度は例えば50〜500mmol/L程度とすればよい。有機保護材となる有機化合物に1級アミンと脂肪酸を混合して用いる場合は、脂肪酸/1級アミンのモル比を0.001〜0.01、好ましくは0.005〜0.01の範囲とすればよい。この反応元液を80〜200℃かつ溶媒アルコールの沸点以下の温度に昇温することにより、銀の還元析出反応が進行し、有機保護材に覆われた平均粒子径DTEMが20nm以下の銀粒子が銀ナノ粒子が得られる。還元を効率的に行うために上記の還元補助剤を使用することが有効である。還元補助剤は還元反応の終了近くで添加するのがよく、その添加量はAgに対するモル比で0.1〜20の範囲とするのがよい。 As a reaction source solution, a solution in which an alcohol serving as a solvent and a reducing agent, an organic compound serving as an organic protective material, and a silver compound are well dissolved is prepared. The Ag ion concentration in the liquid may be about 50 to 500 mmol / L, for example. When a primary amine and a fatty acid are used in a mixture with an organic compound as an organic protective material, the molar ratio of fatty acid / primary amine is in the range of 0.001 to 0.01, preferably 0.005 to 0.01. do it. By raising the temperature of the reaction source solution to a temperature of 80 to 200 ° C. and lower than the boiling point of the solvent alcohol, the silver reductive precipitation reaction proceeds, and the average particle diameter D TEM covered with the organic protective material is 20 nm or less. Silver nanoparticles are obtained. In order to efficiently perform the reduction, it is effective to use the above-mentioned reduction auxiliary agent. The reduction aid is preferably added near the end of the reduction reaction, and the addition amount is preferably in the range of 0.1 to 20 in terms of molar ratio to Ag.

反応後の銀ナノ粒子の懸濁液(反応直後のスラリー)を固液分離して固形分を回収し、これを良く洗浄する。必要に応じて固形分を極性の小さい分散媒(トルエン、テトラデカンなど当該銀微粉が非常に良く分散する液)に分散させ、遠心分離により上澄みを回収することにより、極めて分散性の良い粒子のみを液中に回収することも可能である。このようにして表面に有機保護材を有する銀ナノ粒子の粉末を得る。
この銀ナノ粒子の粉末を「原料銀微粉」と呼ぶ。
The suspension of silver nanoparticles after the reaction (slurry immediately after the reaction) is subjected to solid-liquid separation to recover a solid content, which is thoroughly washed. If necessary, the solid content is dispersed in a dispersion medium with a small polarity (a liquid in which the silver fine powder such as toluene and tetradecane is very well dispersed), and the supernatant is recovered by centrifugation, so that only particles with extremely good dispersibility are obtained. It can also be recovered in the liquid. In this way, a silver nanoparticle powder having an organic protective material on the surface is obtained.
This silver nanoparticle powder is called “raw silver fine powder”.

〔シランカップリング剤による表面処理〕
本発明では、水溶媒分散性を有する銀微粉を得るための手法の1態様として、シランカップリング剤を用いて銀ナノ粒子の表面処理を行う手法を採用する。
シランカップリング剤としては、アミノ基を有するシランカップリング剤の1種以上を用いることが極めて効果的である。例えばアミノアルキルトリアルコキシシランが好適な対象として挙げられる。具体的には、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等が挙げられる。
[Surface treatment with silane coupling agent]
In the present invention, as one embodiment of a method for obtaining silver fine powder having water solvent dispersibility, a method of performing surface treatment of silver nanoparticles using a silane coupling agent is adopted.
As the silane coupling agent, it is extremely effective to use one or more silane coupling agents having an amino group. For example, aminoalkyltrialkoxysilane is a suitable target. Specifically, aminopropyltrimethoxysilane, aminopropyltriethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and the like.

発明者らの検討によれば、このようなアミノ基を有するシランカップリング剤を用いて銀ナノ粒子表面に親水性を付与するためには、原料銀微粉として、有機保護材に前記「1級アミン」と前記「脂肪酸」が複合で含有されるものを使用することが効果的である。その理由については現時点で明確ではないが、これまでの調査によれば、原料銀微粉の有機保護材が前記「1級アミン」を成分とし「脂肪酸」を成分としないものである場合に比べ、その両者を複合で成分とするものである場合には、極めて良好な親水性を安定して付与することが可能であった。原料銀微粉における有機保護材中の脂肪酸含有量は、TG−DTA測定によるDTA曲線において「1級アミン」と「脂肪酸」が複合して含有されていることが確認できる程度とすれば足りる。   According to the study by the inventors, in order to impart hydrophilicity to the surface of silver nanoparticles using such a silane coupling agent having an amino group, the above-mentioned “first grade” is applied to the organic protective material as a raw silver fine powder. It is effective to use a compound containing “amine” and the above “fatty acid” in combination. Although the reason for this is not clear at the present time, according to the investigations so far, compared to the case where the organic protective material of the raw material silver fine powder is composed of the “primary amine” and not the “fatty acid”, When both of them are combined and used as components, extremely good hydrophilicity can be stably imparted. It is sufficient that the fatty acid content in the organic protective material in the raw silver fine powder is such that it can be confirmed that “primary amine” and “fatty acid” are contained in combination in the DTA curve by TG-DTA measurement.

この原料銀微粉を、液状有機媒体(例えばトルエン、デカン、テトラデカン等の極性の小さい炭化水素)に分散させた状態とし、この液中で原料銀微粉と上記シランカップリング剤を混合する。シランカップリング剤はアルコール溶媒等に溶解させた希釈液の状態で原料銀微粉の分散液中に添加するとよい。その希釈液中には必要に応じて少量の水および弱酸を加えることができる。混合の手段としては超音波混合を行うことが望ましい。超音波混合は、超音波による振動を利用して液中の物質を撹拌混合する手法であり、実験室的規模であれば超音波洗浄機(超音波撹拌機)を使用することができる。超音波混合は常温で行うことができ、その混合時間は例えば5〜60分程度とすればよい。このようにしてシランカップリング剤による親水性付与効果が得られる。   The raw silver fine powder is dispersed in a liquid organic medium (for example, a hydrocarbon having a small polarity such as toluene, decane, tetradecane, etc.), and the raw silver fine powder and the silane coupling agent are mixed in this liquid. The silane coupling agent is preferably added to the dispersion of the raw material silver fine powder in a diluted state dissolved in an alcohol solvent or the like. A small amount of water and a weak acid can be added to the diluted solution as necessary. As a mixing means, it is desirable to perform ultrasonic mixing. Ultrasonic mixing is a method of stirring and mixing substances in a liquid using ultrasonic vibration, and an ultrasonic cleaner (ultrasonic stirrer) can be used on a laboratory scale. Ultrasonic mixing can be performed at room temperature, and the mixing time may be, for example, about 5 to 60 minutes. Thus, the hydrophilicity imparting effect by the silane coupling agent is obtained.

その後、親水性が付与された銀ナノ粒子の粉末を、有機溶媒中で十分に洗浄することが望ましい。有機溶媒中での超音波洗浄、および遠心分離による固液分離の操作を1回または2回以上行い、洗浄後の銀ナノ粒子の粉末を固形分として回収すればよい。このようにして水溶媒分散性を有する清浄な銀微粉が得られる。   Thereafter, it is desirable to sufficiently wash the silver nanoparticle powder imparted with hydrophilicity in an organic solvent. The operation of ultrasonic cleaning in an organic solvent and solid-liquid separation by centrifugation may be performed once or twice or more, and the silver nanoparticle powder after the cleaning may be recovered as a solid content. Thus, clean silver fine powder having water solvent dispersibility is obtained.

〔アミノカルボン酸による表面処理〕
水溶媒分散性を有する銀微粉を得るための別の態様として、上記シランカップリング剤を用いる手法に代えて、直鎖アミノカルボン酸を用いる手法を採用することができる。
発明者らの検討によれば、HOOC(CH2)nNH2で表される直鎖アミノカルボン酸は、銀ナノ粒子の表面に親水性を付与するための界面活性剤として好適に機能することが明らかになった。化学式HOOC(CH2)nNH2におけるnは10〜18程度とすればい。
[Surface treatment with aminocarboxylic acid]
As another embodiment for obtaining silver fine powder having water solvent dispersibility, a technique using a linear aminocarboxylic acid can be adopted instead of the technique using the silane coupling agent.
According to the inventors' investigation, the linear aminocarboxylic acid represented by HOOC (CH 2 ) n NH 2 functions suitably as a surfactant for imparting hydrophilicity to the surface of the silver nanoparticles. Became clear. N in the chemical formula HOOC (CH 2 ) n NH 2 may be about 10 to 18.

この場合、原料銀微粉としては前記「1級アミン」を成分とする有機保護材を有しているものを採用すればよく、前記「脂肪酸」を複合で含有する有機保護材であることは特に要求されない。   In this case, as the raw material silver fine powder, a material having an organic protective material containing the “primary amine” as a component may be employed, and the organic protective material containing the “fatty acid” in combination is particularly preferable. Not required.

この原料銀微粉を、液状有機媒体(例えばトルエン、デカン、テトラデカン等の極性の小さい炭化水素)に分散させた状態とし、この液中で原料銀微粉と上記直鎖アミノカルボン酸を混合する。直鎖アミノカルボン酸を予め溶媒中に溶解させた状態で原料銀微粉の分散液中に添加するとよい。その溶媒中には必要に応じてアルカリを加えることができる。混合の手段としては超音波混合を行うことが望ましい。超音波混合は常温で行うことができ、その混合時間は例えば5〜60分程度とすればよい。このようにして直鎖アミノカルボン酸による親水性付与効果が得られる。   The raw silver fine powder is dispersed in a liquid organic medium (for example, a hydrocarbon having a small polarity such as toluene, decane, tetradecane, etc.), and the raw silver fine powder and the linear aminocarboxylic acid are mixed in this liquid. The linear aminocarboxylic acid may be added to the dispersion of the raw silver fine powder in a state in which the straight-chain aminocarboxylic acid is previously dissolved in the solvent. An alkali can be added to the solvent as necessary. As a mixing means, it is desirable to perform ultrasonic mixing. Ultrasonic mixing can be performed at room temperature, and the mixing time may be, for example, about 5 to 60 minutes. Thus, the hydrophilicity imparting effect by the linear aminocarboxylic acid can be obtained.

その後、親水性が付与された銀ナノ粒子の粉末を、有機溶媒中で十分に洗浄することが望ましい。洗浄操作は前述の要領で行えばよい。このようにして水溶媒分散性を有する清浄な銀微粉が得られる。   Thereafter, it is desirable to sufficiently wash the silver nanoparticle powder imparted with hydrophilicity in an organic solvent. The washing operation may be performed as described above. Thus, clean silver fine powder having water solvent dispersibility is obtained.

《実施例1》
〔原料銀微粉の合成〕
溶媒と還元剤を兼ねるアルコールとしてイソブタノール64g、有機保護材となる有機化合物として1級アミンであるオレイルアミン110gおよび脂肪酸であるオレイン酸0.6g、銀化合物として硝酸銀結晶14gを用意し、これらを混合して、マグネットスターラーにて撹拌することにより硝酸銀を溶解させ、反応元液とした。反応元液を還流器のついた容器に移してオイルバスに載せ、マグネットスターラーにより回転速度100rpmで撹拌し、容器内に窒素ガスを400mL/minで導入しながら、108℃まで2℃/minで昇温させた。その後、撹拌と窒素ガス導入を維持して108℃の温度で6時間還流を行った。108℃に到達してから5時間経過した時点で還元補助剤としてジエタノールアミン26gを添加した。
Example 1
[Synthesis of raw silver fine powder]
Prepare 64 g of isobutanol as an alcohol serving as a solvent and a reducing agent, 110 g of oleylamine as a primary amine and 0.6 g of oleic acid as a fatty acid as an organic compound as an organic protective material, and 14 g of silver nitrate crystals as a silver compound. Then, silver nitrate was dissolved by stirring with a magnetic stirrer to obtain a reaction source solution. The reaction source liquid is transferred to a container equipped with a refluxer, placed on an oil bath, stirred with a magnetic stirrer at a rotation speed of 100 rpm, and nitrogen gas is introduced into the container at 400 mL / min, while the temperature is increased to 108 ° C. at 2 ° C./min. The temperature was raised. Then, refluxing was performed at a temperature of 108 ° C. for 6 hours while maintaining stirring and introduction of nitrogen gas. When 5 hours had passed since reaching 108 ° C., 26 g of diethanolamine was added as a reducing aid.

反応終了後の液が約50℃以下に降温したのち、遠心分離機(日立工機株式会社製;CF7D2)にて3000rpmで30分間の遠心分離を行い、固形分を回収した。その後、「固形分とメタノールを混合→超音波洗浄→遠心分離→固形分回収」の操作を3回行った。回収された固形分を、極性の小さいテトラデカンの液状媒体に超音波分散させ、この分散液を上記の遠心分離機にて3000rpmで30分間遠心分離し、上澄み液を回収した。この上澄み液中には、表面に有機保護材を有する銀ナノ粒子の粉末(原料銀微粉)が約70質量%の金属銀濃度で存在している。   After the temperature of the liquid after the reaction was lowered to about 50 ° C. or lower, the mixture was centrifuged at 3000 rpm for 30 minutes with a centrifuge (manufactured by Hitachi Koki Co., Ltd .; CF7D2) to collect the solid content. Thereafter, the operation of “mixing solid content and methanol → ultrasonic cleaning → centrifugation → solid content recovery” was performed three times. The collected solid was ultrasonically dispersed in a liquid medium of tetradecane having a small polarity, and this dispersion was centrifuged at 3000 rpm for 30 minutes with the above-mentioned centrifuge, and the supernatant was collected. In this supernatant liquid, silver nanoparticle powder (raw material silver fine powder) having an organic protective material on its surface is present at a metal silver concentration of about 70% by mass.

上記の原料銀微粉がテトラデカンに約70質量%の金属銀濃度で分散している分散液から1.0mLを分取し、これに100mLのメタノールを加えて5分間の超音波洗浄を施した後、上記遠心分離機にて3000rpmで10分間の遠心分離を行い、固形分を回収した。その後、「固形分と100mLのメタノールを混合→超音波洗浄→遠心分離→固形分回収」の操作を2回行った。回収された固形分にトルエンを10mL加えて分散させ、十分に洗浄された原料銀微粉が分散した分散液(原料銀インク)を得た。   After taking 1.0 mL from the dispersion liquid in which the above-mentioned raw silver fine powder is dispersed in tetradecane at a concentration of about 70% by mass of metal silver, 100 mL of methanol is added thereto and subjected to ultrasonic cleaning for 5 minutes. The centrifuge was centrifuged at 3000 rpm for 10 minutes to recover the solid content. Thereafter, the operation of “mixing solid content and 100 mL of methanol → ultrasonic cleaning → centrifuging → recovering solid content” was performed twice. To the recovered solid content, 10 mL of toluene was added and dispersed to obtain a dispersion liquid (raw material silver ink) in which sufficiently washed raw material silver fine powder was dispersed.

この原料銀インクについてTEM(透過型電子顕微鏡)観察を行った。TEM画像において、重なっていない独立した銅粒子300個を無作為に選んでその径(長径)を測定し、測定した全粒子の径の平均値を平均粒子径DTEMとした。その結果、DTEMは6.58nmであった。 This raw silver ink was observed with a TEM (transmission electron microscope). In the TEM image, 300 independent copper particles that did not overlap were randomly selected and the diameter (major axis) was measured, and the average value of the diameters of all the measured particles was defined as the average particle diameter DTEM . As a result, D TEM was 6.58 nm.

〔シランカップリング剤による表面処理〕
シランカップリング剤として3−アミノプロピルトリエトキシシラン(信越化学工業社製)を0.5mL秤量し、これと、2−プロパノール10mL、純水0.2mL、酢酸0.005gを混合した液(シランカップリング剤含有液)を用意した。
[Surface treatment with silane coupling agent]
0.5 mL of 3-aminopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was weighed as a silane coupling agent, and a liquid (silane) mixed with 10 mL of 2-propanol, 0.2 mL of pure water and 0.005 g of acetic acid. A coupling agent-containing liquid) was prepared.

上記シランカップリング剤含有液の全量を、上記原料銀インク0.01gに添加し、超音波混合を30分間行った後、室温で12時間静置した。この液にエタノール10mLを加え、超音波洗浄を10分間行い、さらにその液にトルエン5mLとエタノール5mLを加え、超音波洗浄を10分間行った。その後、上記遠心分離機にて3000rpmで30分間の遠心分離を行い、固形分を回収した。   The total amount of the silane coupling agent-containing liquid was added to 0.01 g of the raw material silver ink, and after ultrasonic mixing for 30 minutes, the mixture was allowed to stand at room temperature for 12 hours. Ethanol 10mL was added to this liquid, ultrasonic cleaning was performed for 10 minutes, and toluene 5mL and ethanol 5mL were further added to the liquid, and ultrasonic cleaning was performed for 10 minutes. Thereafter, the centrifuge was centrifuged at 3000 rpm for 30 minutes to recover the solid content.

〔水溶媒分散性試験〕
この固形分に純水100mLと酢酸0.05gを添加し、液を撹拌したところ、沈殿物のない透明な分散液となった。この液における銀ナノ粒子のTEM写真を図1に例示する。
この液を30日間室温で放置した結果、液に濁り、沈殿は生じなかった。すなわち、この例で得られた銀微粉は極めて良好な水溶媒分散性を呈することが確認された。
(Water solvent dispersibility test)
When 100 mL of pure water and 0.05 g of acetic acid were added to the solid content and the liquid was stirred, a transparent dispersion without precipitates was obtained. A TEM photograph of silver nanoparticles in this solution is illustrated in FIG.
This solution was allowed to stand at room temperature for 30 days. As a result, the solution became cloudy and no precipitation occurred. That is, it was confirmed that the silver fine powder obtained in this example exhibits extremely good aqueous solvent dispersibility.

《比較例1》
実施例1の「原料銀微粉の合成」において、有機保護材となる有機化合物としてオレイン酸を添加しなかったこと、還流時の液温を100℃としたこと、および還元補助剤を添加しなかったことを除き、実施例1と同様の実験を行った。すなわちこの例では、「オレイルアミンを成分とし、オレイン酸を含まない有機保護材」を粒子表面に有する原料銀微粉が分散した原料銀インク(金属銀濃度;約70質量%)を使用した。この例で得られた原料銀微粉のDTEMは9.52nmであった。
<< Comparative Example 1 >>
In “Synthesis of raw material silver fine powder” in Example 1, oleic acid was not added as an organic compound serving as an organic protective material, the liquid temperature at reflux was 100 ° C., and no reduction aid was added. The same experiment as in Example 1 was performed. That is, in this example, a raw material silver ink (metal silver concentration: about 70% by mass) in which a raw silver fine powder having “oleylamine as a component and no oleic acid” on the particle surface is dispersed is used. D TEM of the raw material silver fine powder obtained in this example was 9.52Nm.

実施例1と同様にシランカップリング剤による表面処理を終えた固形分について水溶媒分散性試験を行った。固形分に実施例1と同じ水溶媒を添加して撹拌した液における銀ナノ粒子のTEM写真を図2に例示する。
この液を1日間室温で放置した段階で沈殿物を生じ、凝集していることが確認された。
The aqueous solvent dispersibility test was performed on the solid content after the surface treatment with the silane coupling agent in the same manner as in Example 1. FIG. 2 illustrates a TEM photograph of silver nanoparticles in a solution obtained by adding the same aqueous solvent as in Example 1 to the solid content and stirring.
When this liquid was allowed to stand at room temperature for 1 day, a precipitate was formed and confirmed to be aggregated.

《比較例2》
シランカップリング剤を使用しなかったことを除き、実施例1と同様の実験を行った。すなわちこの例では、実施例1の「シランカップリング剤含有液」の代わりに、2−プロパノール10mL、純水0.2mL、酢酸0.005gを混合した液を用い、実施例1をトレースした。
水溶媒分散性試験の結果、銀微粉は分散せず、液中に沈殿した。
<< Comparative Example 2 >>
The same experiment as in Example 1 was performed except that no silane coupling agent was used. That is, in this example, Example 1 was traced using a liquid in which 10 mL of 2-propanol, 0.2 mL of pure water, and 0.005 g of acetic acid were used instead of the “silane coupling agent-containing liquid” in Example 1.
As a result of the water solvent dispersibility test, the silver fine powder was not dispersed but precipitated in the liquid.

《比較例3》
シランカップリング剤を使用しなかったことを除き、比較例1と同様の実験を行った。すなわちこの例では、実施例1に記載した「シランカップリング剤含有液」の代わりに、2−プロパノール10mL、純水0.2mL、酢酸0.005gを混合した液を用い、比較例1をトレースした。
水溶媒分散性試験の結果、銀微粉は分散せず、液中に沈殿した。
<< Comparative Example 3 >>
An experiment similar to Comparative Example 1 was performed, except that no silane coupling agent was used. That is, in this example, instead of the “silane coupling agent-containing liquid” described in Example 1, a mixture of 10 mL of 2-propanol, 0.2 mL of pure water and 0.005 g of acetic acid was used, and Comparative Example 1 was traced. did.
As a result of the water solvent dispersibility test, the silver fine powder was not dispersed but precipitated in the liquid.

《実施例2》
〔原料銀微粉の合成〕
比較例1と同様の方法で原料銀微粉を合成し、それが分散した原料銀インクを得た。すなわちこの例では、「オレイルアミンを成分とし、オレイン酸を含まない有機保護材」を粒子表面に有する原料銀微粉が分散した原料銀インク(金属銀濃度;約70質量%)を使用した。この例で得られた原料銀微粉のDTEMは8.98nmであった。
Example 2
[Synthesis of raw silver fine powder]
Raw material silver fine powder was synthesized in the same manner as in Comparative Example 1, and a raw material silver ink in which it was dispersed was obtained. That is, in this example, a raw material silver ink (metal silver concentration: about 70% by mass) in which a raw silver fine powder having “oleylamine as a component and no oleic acid” on the particle surface is dispersed is used. D TEM of the raw material silver fine powder obtained in this example was 8.98Nm.

〔アミノカルボン酸による表面処理〕
アミノカルボン酸として12−アミノドデカン酸(HOOC(CH2)11NH2)を0.01g秤量し、これと、純水0.5mL、水酸化ナトリウム0.002gを10分間超音波混合した液(12−アミノドデカン酸含有液)を用意した。
[Surface treatment with aminocarboxylic acid]
A solution prepared by weighing 0.01 g of 12-aminododecanoic acid (HOOC (CH 2 ) 11 NH 2 ) as an aminocarboxylic acid, and ultrasonically mixing it with 0.5 mL of pure water and 0.002 g of sodium hydroxide ( 12-aminododecanoic acid-containing liquid) was prepared.

上記12−アミノドデカン酸含有液の全量を、上記原料銀インク0.01gに添加し、超音波混合を20分間行った。この液を上記遠心分離機にて3000rpmで10分間遠心分離して固形分を回収した。この固形分にトルエン10mLを加え、超音波洗浄を10分間行い、その後、上記遠心分離機にて3000rpmで10分間の遠心分離を行い、固形分を回収した。   The total amount of the 12-aminododecanoic acid-containing liquid was added to 0.01 g of the raw silver ink, and ultrasonic mixing was performed for 20 minutes. This liquid was centrifuged at 3000 rpm for 10 minutes with the above centrifuge to recover the solid content. Toluene (10 mL) was added to this solid content, and ultrasonic cleaning was performed for 10 minutes. Thereafter, centrifugation was performed at 3000 rpm for 10 minutes using the above centrifugal separator, and the solid content was recovered.

〔水溶媒分散性試験〕
この固形分に純水100mLを添加し、液を撹拌したところ、沈殿物のない透明な分散液となった。この液における銀ナノ粒子のTEM写真を図3に例示する。
この液を30日間室温で放置した結果、液に濁り、沈殿は生じなかった。すなわち、この例で得られた銀微粉は極めて良好な水溶媒分散性を呈することが確認された。
(Water solvent dispersibility test)
When 100 mL of pure water was added to this solid content and the liquid was stirred, it became a transparent dispersion having no precipitate. A TEM photograph of silver nanoparticles in this solution is illustrated in FIG.
This solution was allowed to stand at room temperature for 30 days. As a result, the solution became cloudy and no precipitation occurred. That is, it was confirmed that the silver fine powder obtained in this example exhibits extremely good aqueous solvent dispersibility.

《比較例4》
12−アミノドデカン酸を使用しなかったことを除き、実施例2と同様の実験を行った。すなわちこの例では、実施例2の「12−アミノドデカン酸含有液」の代わりに、純水0.5mL、水酸化ナトリウム0.002gを10分間超音波混合した液を用い、実施例2をトレースした。
水溶媒分散性試験の結果、銀微粉は分散せず、液中に沈殿した。
<< Comparative Example 4 >>
The same experiment as in Example 2 was performed, except that 12-aminododecanoic acid was not used. That is, in this example, instead of the “12-aminododecanoic acid-containing liquid” in Example 2, a liquid obtained by ultrasonically mixing pure water 0.5 mL and sodium hydroxide 0.002 g for 10 minutes was used to trace Example 2. did.
As a result of the water solvent dispersibility test, the silver fine powder was not dispersed but precipitated in the liquid.

実施例1における水溶媒中の銀ナノ粒子のTEM写真。4 is a TEM photograph of silver nanoparticles in an aqueous solvent in Example 1. FIG. 比較例1における水溶媒中の銀ナノ粒子のTEM写真。4 is a TEM photograph of silver nanoparticles in an aqueous solvent in Comparative Example 1. FIG. 実施例2における水溶媒中の銀ナノ粒子のTEM写真。4 is a TEM photograph of silver nanoparticles in an aqueous solvent in Example 2. FIG.

Claims (11)

分子量200〜400の不飽和結合を有する1級アミンと分子量200〜400の脂肪酸とを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、アミノ基を有するシランカップリング剤と混合することにより、銀粒子表面に親水性を付与する水溶媒分散性銀微粉の製造方法。 Has an organic protective material that the primary amine and the fatty acid having a molecular weight from 200 to 400 having an unsaturated bond molecular weight 200 to 400 and component surface, the silver particles having an average particle diameter D TEM is 20nm or less which is obtained by TEM observation A method for producing a water-dispersible silver fine powder that imparts hydrophilicity to the surface of silver particles by mixing the powder of the above with a silane coupling agent having an amino group in a dispersed state in a liquid organic medium. 分子量200〜400の不飽和結合を有する1級アミンと分子量200〜400の脂肪酸とを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、アミノ基を有するシランカップリング剤と混合することにより、銀粒子表面に親水性を付与する工程、
前記親水性を付与した銀粒子の粉末を、有機溶媒を用いて洗浄し、洗浄後の銀粒子の粉末を固形分として回収する工程、
を有する水溶媒分散性銀微粉の製造方法。
Has an organic protective material that the primary amine and the fatty acid having a molecular weight from 200 to 400 having an unsaturated bond molecular weight 200 to 400 and component surface, the silver particles having an average particle diameter D TEM is 20nm or less which is obtained by TEM observation A step of imparting hydrophilicity to the surface of the silver particles by mixing with a silane coupling agent having an amino group in a state where the powder is dispersed in a liquid organic medium,
The step of washing the powder of silver particles imparted with hydrophilicity using an organic solvent, and collecting the powder of silver particles after washing as a solid content,
A method for producing an aqueous solvent-dispersible silver fine powder having
銀粒子の粉末とシランカップリング剤との混合は、超音波混合とする請求項1または2に記載の水溶媒分散性銀微粉の製造方法。   The method for producing an aqueous solvent-dispersible silver fine powder according to claim 1 or 2, wherein the mixing of the silver particle powder and the silane coupling agent is ultrasonic mixing. アミノ基を有するシランカップリング剤は、アミノアルキルトリアルコキシシランである請求項1〜3のいずれかに記載の水溶媒分散性銀微粉の製造方法。   The method for producing an aqueous solvent-dispersible silver fine powder according to any one of claims 1 to 3, wherein the silane coupling agent having an amino group is an aminoalkyltrialkoxysilane. 前記1級アミンは、オレイルアミンである請求項1〜4のいずれかに記載の水溶媒分散性銀微粉の製造方法。   The said primary amine is oleylamine, The manufacturing method of the water solvent dispersible silver fine powder in any one of Claims 1-4. 前記脂肪酸は、オレイン酸である請求項1〜5のいずれかに記載の水溶媒分散性銀微粉の製造方法。   The said fatty acid is oleic acid, The manufacturing method of the water-solvent dispersible silver fine powder in any one of Claims 1-5. 分子量200〜400の不飽和結合を有する1級アミンを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、HOOC(CH2)nNH2で表される直鎖アミノカルボン酸と混合することにより、銀粒子表面に親水性を付与する水溶媒分散性銀微粉の製造方法。 It has an organic protective material that the primary amine having an unsaturated bond of molecular weight 200 to 400 and component surface, the powder of the silver particles having an average particle diameter D TEM is 20nm or less which is obtained by TEM observation, in a liquid organic medium A method for producing an aqueous solvent-dispersible silver fine powder that imparts hydrophilicity to the surface of silver particles by mixing with a linear aminocarboxylic acid represented by HOOC (CH 2 ) n NH 2 in a state of being dispersed in the water. 分子量200〜400の不飽和結合を有する1級アミンを成分とする有機保護材を表面に有し、TEM観察により求まる平均粒子径DTEMが20nm以下である銀粒子の粉末を、液状有機媒体中に分散させた状態で、HOOC(CH2)nNH2で表される直鎖アミノカルボン酸と混合することにより、銀粒子表面に親水性を付与する工程、
前記親水性を付与した銀粒子の粉末を、有機溶媒を用いて洗浄し、洗浄後の銀粒子の粉末を固形分として回収する工程、
を有する水溶媒分散性銀微粉の製造方法。
It has an organic protective material that the primary amine having an unsaturated bond of molecular weight 200 to 400 and component surface, the powder of the silver particles having an average particle diameter D TEM is 20nm or less which is obtained by TEM observation, in a liquid organic medium A step of imparting hydrophilicity to the surface of the silver particles by mixing with a linear aminocarboxylic acid represented by HOOC (CH 2 ) n NH 2 in a state dispersed in
The step of washing the powder of silver particles imparted with hydrophilicity using an organic solvent, and collecting the powder of silver particles after washing as a solid content,
A method for producing an aqueous solvent-dispersible silver fine powder having
銀粒子の粉末と直鎖アミノカルボン酸との混合は、超音波混合とする請求項7または8に記載の水溶媒分散性銀微粉の製造方法。   The method for producing an aqueous solvent-dispersible silver fine powder according to claim 7 or 8, wherein the mixing of the silver particle powder and the linear aminocarboxylic acid is ultrasonic mixing. 直鎖アミノカルボン酸は、12−アミノデカン酸である請求項7〜9のいずれかに記載の水溶媒分散性銀微粉の製造方法。   The method for producing an aqueous solvent-dispersible silver fine powder according to any one of claims 7 to 9, wherein the linear aminocarboxylic acid is 12-aminodecanoic acid. 前記1級アミンは、オレイルアミンである請求項7〜10のいずれかに記載の水溶媒分散性銀微粉の製造方法。   The method for producing an aqueous solvent-dispersible silver fine powder according to any one of claims 7 to 10, wherein the primary amine is oleylamine.
JP2008232077A 2008-09-10 2008-09-10 Method for producing aqueous solvent-dispersible silver fine powder Expired - Fee Related JP5191844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232077A JP5191844B2 (en) 2008-09-10 2008-09-10 Method for producing aqueous solvent-dispersible silver fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232077A JP5191844B2 (en) 2008-09-10 2008-09-10 Method for producing aqueous solvent-dispersible silver fine powder

Publications (2)

Publication Number Publication Date
JP2010065267A true JP2010065267A (en) 2010-03-25
JP5191844B2 JP5191844B2 (en) 2013-05-08

Family

ID=42191099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232077A Expired - Fee Related JP5191844B2 (en) 2008-09-10 2008-09-10 Method for producing aqueous solvent-dispersible silver fine powder

Country Status (1)

Country Link
JP (1) JP5191844B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102161092A (en) * 2011-03-22 2011-08-24 中科院广州化学有限公司 Nano silver capable of being dispersed in hydrophilic system and preparation method thereof
JP2012082502A (en) * 2010-10-14 2012-04-26 Toshiba Corp Metal nanoparticle-dispersed composition
JP2012185944A (en) * 2011-03-03 2012-09-27 Ulvac Japan Ltd Metal nanoparticle dispersion liquid
JP2013007067A (en) * 2011-06-22 2013-01-10 Toshiba Tec Corp Method of manufacturing silver nanoparticles
JP2013524021A (en) * 2010-04-12 2013-06-17 ソウルテハクサンハクヒョリョクタン Mass production method of silver nanoparticles having uniform size
WO2013118891A1 (en) * 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface-treated metal powder and manufacturing method therefor
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
CN104249151A (en) * 2013-06-27 2014-12-31 中国科学院化学研究所 Organic/metal nanowire heterojunction, as well as preparation method and application thereof
JP2015036439A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
JP2016106175A (en) * 2012-02-08 2016-06-16 Jx金属株式会社 Surface-treated metal powder, and method for producing the same
CN110355381A (en) * 2019-08-21 2019-10-22 无锡帝科电子材料股份有限公司 A kind of nano-silver powder and the preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376958A (en) * 1976-12-20 1978-07-07 Hitachi Maxell Metal magnetic powder and said manufacturing process
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2006219693A (en) * 2005-02-08 2006-08-24 Harima Chem Inc Method for producing fine particle of metallic silver
JP2007077479A (en) * 2005-09-16 2007-03-29 Dowa Holdings Co Ltd Composite particle powder, dispersion liquid or paste thereof and production method therefor
JP2008084620A (en) * 2006-09-26 2008-04-10 Dowa Electronics Materials Co Ltd Silver particle powder and its manufacturing method
JP2008081789A (en) * 2006-09-27 2008-04-10 Dowa Electronics Materials Co Ltd Composite powder of silver particle and production method therefor
JP2008150701A (en) * 2006-12-14 2008-07-03 Samsung Electro Mech Co Ltd Method for producing metal nanoparticle, and metal nanoparticle produced by the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376958A (en) * 1976-12-20 1978-07-07 Hitachi Maxell Metal magnetic powder and said manufacturing process
JP2002121606A (en) * 2000-10-13 2002-04-26 Ulvac Corporate Center:Kk Metallic hyperfine grain dispersed solution and its production method
WO2005037465A1 (en) * 2003-10-20 2005-04-28 Harima Chemicals, Inc. Fine metal particles and fine metal oxide particles in dry powder form, and use thereof
JP2006089786A (en) * 2004-09-22 2006-04-06 Mitsuboshi Belting Ltd Method for producing metallic nano-particle dispersed in polar solvent
JP2006219693A (en) * 2005-02-08 2006-08-24 Harima Chem Inc Method for producing fine particle of metallic silver
JP2007077479A (en) * 2005-09-16 2007-03-29 Dowa Holdings Co Ltd Composite particle powder, dispersion liquid or paste thereof and production method therefor
JP2008084620A (en) * 2006-09-26 2008-04-10 Dowa Electronics Materials Co Ltd Silver particle powder and its manufacturing method
JP2008081789A (en) * 2006-09-27 2008-04-10 Dowa Electronics Materials Co Ltd Composite powder of silver particle and production method therefor
JP2008150701A (en) * 2006-12-14 2008-07-03 Samsung Electro Mech Co Ltd Method for producing metal nanoparticle, and metal nanoparticle produced by the method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013524021A (en) * 2010-04-12 2013-06-17 ソウルテハクサンハクヒョリョクタン Mass production method of silver nanoparticles having uniform size
JP2012082502A (en) * 2010-10-14 2012-04-26 Toshiba Corp Metal nanoparticle-dispersed composition
JP2012185944A (en) * 2011-03-03 2012-09-27 Ulvac Japan Ltd Metal nanoparticle dispersion liquid
CN102161092A (en) * 2011-03-22 2011-08-24 中科院广州化学有限公司 Nano silver capable of being dispersed in hydrophilic system and preparation method thereof
JP2013007067A (en) * 2011-06-22 2013-01-10 Toshiba Tec Corp Method of manufacturing silver nanoparticles
JPWO2013118891A1 (en) * 2012-02-08 2015-05-11 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
WO2013118891A1 (en) * 2012-02-08 2013-08-15 Jx日鉱日石金属株式会社 Surface-treated metal powder and manufacturing method therefor
JP2016106175A (en) * 2012-02-08 2016-06-16 Jx金属株式会社 Surface-treated metal powder, and method for producing the same
JPWO2013157514A1 (en) * 2012-04-16 2015-12-21 ダイソー株式会社 Conductive ink composition
KR20150005901A (en) * 2012-04-16 2015-01-15 다이소 가부시키가이샤 Electroconductive ink composition
CN104093796A (en) * 2012-04-16 2014-10-08 大曹株式会社 Electroconductive ink composition
WO2013157514A1 (en) * 2012-04-16 2013-10-24 ダイソー株式会社 Electroconductive ink composition
US9481804B2 (en) 2012-04-16 2016-11-01 Osaka Soda Co., Ltd. Electroconductive ink composition
KR102007712B1 (en) * 2012-04-16 2019-08-06 가부시키가이샤 오사카소다 Electroconductive ink composition
CN104249151A (en) * 2013-06-27 2014-12-31 中国科学院化学研究所 Organic/metal nanowire heterojunction, as well as preparation method and application thereof
JP2015036439A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Surface-treated metal powder and method for producing the same
CN110355381A (en) * 2019-08-21 2019-10-22 无锡帝科电子材料股份有限公司 A kind of nano-silver powder and the preparation method and application thereof

Also Published As

Publication number Publication date
JP5191844B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5191844B2 (en) Method for producing aqueous solvent-dispersible silver fine powder
KR100869026B1 (en) Spherical assembly particle composition of cuprous oxide and preparation method thereof
CN103374352B (en) Composite material of fluorescence magnetism composite microsphere and oxidized graphene and preparation method thereof
JP2012519073A5 (en)
CN101599335B (en) Oxidation resistant dimethyl silicon oil based magnetic fluid and preparation method thereof
TW200812729A (en) Fine particle dispersion and method for producing fine particle dispersion
JP3746884B2 (en) Magnetic fluid and manufacturing method thereof
JP6324237B2 (en) Fine particles, method for producing fine particles, and fine particle dispersion solution
JPWO2011013169A1 (en) Oil adsorbent and method for producing oil adsorbent
JP2013151753A (en) Silver micropowder excellent in affinity for polar medium, and silver ink
JP2009138243A (en) Silver fine powder with excellent affinity for polar medium, silver ink, and method for producing silver particle
JP2010133015A (en) Method of preparing copper fine particle dispersion aqueous solution and method of storing copper fine particles dispersion aqueous solution
JP2009221505A (en) Silver nanoparticle coated with gallic acid or its derivative
KR20100110791A (en) Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009007593A (en) Fine particle dispersion and method for producing fine particle dispersion
WO2018091666A1 (en) Metal nanoparticle surface ligand replacement method
JP4746534B2 (en) Method for producing silver nanoparticles
JP2009102716A (en) Method for producing silver nanoparticle
JP2008050650A (en) Method for producing copper powder
JP2007284715A (en) Method for producing nickel nanoparticle, and nickel nanoparticle
CN113354049A (en) Preparation method of hyperbranched magnetic demulsifying flocculant for oil field water treatment
JP2008050661A (en) Method for producing copper powder
KR101193454B1 (en) Iron powder recovery method from waste permanent magnet
JP2007084407A (en) Metal colloidal solution and method for its preparation
JP2009215503A (en) Silver ink excellent in dispersibility using non-polar hydrocarbon as solvent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5191844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees