JP2010043349A - Steel sheet for high-strength container, and method for manufacturing therefor - Google Patents

Steel sheet for high-strength container, and method for manufacturing therefor Download PDF

Info

Publication number
JP2010043349A
JP2010043349A JP2009094592A JP2009094592A JP2010043349A JP 2010043349 A JP2010043349 A JP 2010043349A JP 2009094592 A JP2009094592 A JP 2009094592A JP 2009094592 A JP2009094592 A JP 2009094592A JP 2010043349 A JP2010043349 A JP 2010043349A
Authority
JP
Japan
Prior art keywords
less
rolling
strength
mpa
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009094592A
Other languages
Japanese (ja)
Other versions
JP5434212B2 (en
Inventor
Hisakatsu Kato
寿勝 加藤
Makoto Araya
誠 荒谷
Katsuto Kawamura
勝人 河村
Katsumi Kojima
克己 小島
Satoru Sato
覚 佐藤
Shigeko Sujita
成子 筋田
Fumio Aoki
文男 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009094592A priority Critical patent/JP5434212B2/en
Publication of JP2010043349A publication Critical patent/JP2010043349A/en
Application granted granted Critical
Publication of JP5434212B2 publication Critical patent/JP5434212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for a container having hardness of ≥500 MPa, and excellent workability, and a method for manufacturing the same. <P>SOLUTION: The steel containing, by mass, 0.01 to 0.05% C, ≤0.04% Si, 0.1 to 1.2% Mn, ≤0.10% S, 0.001 to 0.100% Al, ≤0.10% N, 0.0020 to 0.100% P and the balance Fe with inevitable impurities is subjected to hot rolling at a finishing temperature not lower than Ar3 transformation temperature minus 30°C and a coiling temperature of 400 to 750°C, and is subjected to pickling and cold rolling, then to continuous annealing including an overaging treatment, then to second cold rolling with a draft of 20 to 50%, thereby obtaining the steel sheet for the high-strength container which has a tensile strength of ≥500 MPa and in which the proof stress difference between the sheet widthwise direction and the rolling direction is ≤20 MPa. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶接などの3ピース加工やDIなどの2ピース加工後に径形状の縮小や拡大加工を行う容器用素材として好適な高強度容器用鋼板およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a steel plate for a high-strength container suitable as a container material for performing diameter reduction or enlargement processing after three-piece processing such as welding or two-piece processing such as DI, and a manufacturing method thereof.

近年、コストの低減を目的として、また、利用資材の削減や環境負荷の軽減を目的として素材である鋼材(鋼板)の製品板厚を薄くするための製品開発が進められている。
また、製品板厚を薄くすると剛性が低下するので、この剛性の低下を補うため、鋼材の高強度化を図る必要もある。しかし、鋼材の高強度化を図った場合、硬質化するため、フランジ加工やネッキング加工で割れが生じる問題がある。
上記に対して、現在、種々の製造方法が考案されている。
2. Description of the Related Art In recent years, product development for reducing the product thickness of a steel material (steel plate), which is a material, has been promoted for the purpose of reducing costs and reducing the use of materials and the environmental load.
Further, since the rigidity is reduced when the product plate thickness is reduced, it is necessary to increase the strength of the steel material in order to compensate for this reduction in rigidity. However, when the strength of the steel material is increased, the steel material is hardened, so that there is a problem that cracking occurs in flange processing or necking processing.
In contrast, various manufacturing methods have been devised.

例えば、特許文献1には、鋼中成分を一定範囲に管理した上で、(Ar3変態点−30℃)以上で熱間圧延を終了し、その後、酸洗、冷間圧延を行ったのち、連続焼鈍を行い、2次冷間圧延する方法が提案されている。
しかしながら、特許文献1の方法では、フランジ加工性、ネック加工性および耐食性を劣化させないようにPを0.02wt%以下とし、さらに2次冷間圧延の圧下率を15〜30%とするため薄い製品を効率的に処理することは難しく生産しにくい、また外観不良が発生しやすいといった問題がある。さらに、スラブ表層で割れが生じることがあり、製品での歩留まり低下の原因となるといった問題もある。また、安定的に製造することが難しく、改善が必要である。
For example, in Patent Document 1, after controlling the components in steel within a certain range, hot rolling is finished at (Ar3 transformation point −30 ° C.) or more, and then pickling and cold rolling are performed. A method of carrying out continuous annealing and secondary cold rolling has been proposed.
However, in the method of Patent Document 1, P is set to 0.02 wt% or less so as not to deteriorate the flange workability, neck workability, and corrosion resistance, and further, the reduction ratio of the secondary cold rolling is set to 15 to 30%, so that it is a thin product. However, it is difficult to process efficiently and difficult to produce, and appearance defects are likely to occur. Furthermore, there is a problem that cracks may occur on the surface layer of the slab, resulting in a decrease in yield of the product. Moreover, it is difficult to produce stably, and improvement is required.

また、硬質な容器用鋼板の代表的な製造方法として、下記の方法が提案されており、焼鈍種類に応じて適宜選択し用いられている(例えば非特許文献1)。
熱間圧延→酸洗→冷間圧延→箱型焼鈍(BAF)→2回目冷間圧延(圧下率:20〜50%)
熱間圧延→酸洗→冷間圧延→連続焼鈍(CAL)→2回目冷間圧延(圧下率:20〜50%)
しかしながら、上記の方法では圧延時の潤滑性を向上する目的で粘度の高い各種圧延油が用いられるため圧延油の濃度むらや部分的な油付着による、圧延後の外観不良の問題がある。さらに、圧延圧下率が高い場合、圧延により鋼板が伸ばされるため、鋼板の幅方向と圧延方向の耐力差が大きくなる。
これに対して、2回目の冷間圧延での圧下率を低く抑える方法が考えられる。しかし、圧下率を低くした場合は、必要とする耐力を得ることが困難となる。
Moreover, the following method is proposed as a typical manufacturing method of the hard steel plate for containers, and it selects and uses suitably according to the kind of annealing (for example, nonpatent literature 1).
Hot rolling->pickling-> cold rolling-> box annealing (BAF)-> second cold rolling (rolling ratio: 20-50%)
Hot rolling->pickling-> cold rolling-> continuous annealing (CAL)-> second cold rolling (rolling ratio: 20-50%)
However, in the above method, various rolling oils with high viscosity are used for the purpose of improving lubricity during rolling, and therefore there is a problem of poor appearance after rolling due to uneven concentration of the rolling oil or partial oil adhesion. Further, when the rolling reduction ratio is high, the steel sheet is stretched by rolling, so that the difference in yield strength between the width direction of the steel sheet and the rolling direction becomes large.
On the other hand, a method of keeping the rolling reduction in the second cold rolling low can be considered. However, when the rolling reduction is lowered, it becomes difficult to obtain the required yield strength.

特許第3108615号号公報Japanese Patent No. 3108615

「わが国における缶用表面処理鋼板の技術史」日本鉄鋼協会 平成10年10月30日発行 p.188“Technological History of Steel Sheets for Cans in Japan” Issued on October 30, 1998, Japan Iron and Steel Institute p.188

このように、製品板厚の薄い容器用鋼板を得ようとする場合、強度、加工性そして生産性の全てを満足する製造方法はなく、望まれているのが現状である。   Thus, when it is going to obtain the steel plate for containers with thin product board thickness, there is no manufacturing method which satisfies all intensity | strength, workability, and productivity, and the present condition is desired.

本発明は、かかる事情に鑑みなされたもので、引張強度TSが500MPa以上の強度を有し、かつ板幅方向と圧延方向の耐力差が20MPa以下であり、さらに、加工性に優れた容器用鋼板とその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and has a tensile strength TS of 500 MPa or more, a proof stress difference between a sheet width direction and a rolling direction of 20 MPa or less, and further excellent for workability. It aims at providing a steel plate and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

成分組成としてPの含有量を調整し、かつ圧下率20〜50%の2回目の冷間圧延を行って高強度化し、さらに連続焼鈍の際に過時効処理を行うことにより炭化物を均一に析出させて、この炭化物を加工時の応力を分散させるサイトとして利用することで、外観不適合が少ない上に、幅方向と圧延方向との耐力差が小さく高強度の材質を確保できることを見出した。そして、さらに、上記炭化物の粒径、密度、割合を規定することで、より一層加工性に優れた容器用鋼板が得られることも見出した。
以上のように、本発明では、上記知見に基づき成分を管理することで高強度缶用鋼板を完成するに至った。
Adjusting the P content as the component composition, increasing the strength by performing a second cold rolling with a rolling reduction of 20 to 50%, and precipitating the carbide uniformly by performing an overaging treatment during continuous annealing Thus, it has been found that by using this carbide as a site for dispersing stress during processing, there is little incompatibility in appearance, and a high-strength material can be secured with a small difference in yield strength between the width direction and the rolling direction. Furthermore, it has also been found that a steel plate for containers that is further excellent in workability can be obtained by defining the particle size, density, and ratio of the carbide.
As described above, in the present invention, high strength steel sheets for cans have been completed by managing the components based on the above findings.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P: 0.0020〜0.100%を含有し、残部がFeおよび不可避的不純物からなり、引張強度TSが500MPa以上、かつ板幅方向と圧延方向の耐力差が20MPa以下である高強度容器用鋼板。
[2]質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P:0.0020〜0.020%を含有し、残部がFeおよび不可避的不純物からなり、引張強度TSが500MPa以上、かつ板幅方向と圧延方向の耐力差が20MPa以下である高強度容器用鋼板。
[3]質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P: 0.0020〜0.100%を含有し、残部がFeおよび不可避的不純物からなる鋼を、仕上げ温度:(Ar3変態点温度−30)℃以上、巻き取り温度:400〜750℃で熱間圧延し、酸洗、冷間圧延を行った後、過時効処理を含む連続焼鈍を行い、次いで、圧下率:20〜50%で2回目の冷間圧延を行うことを特徴とする高強度容器用鋼板の製造方法。
[4]質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P: 0.0020〜0.020%を含有し、残部がFeおよび不可避的不純物からなる鋼を、仕上げ温度:(Ar3変態点温度−30)℃以上、巻き取り温度:400〜750℃で熱間圧延し、酸洗、冷間圧延を行った後、過時効処理を含む連続焼鈍を行い、次いで、圧下率:20〜50%で2回目の冷間圧延を行うことを特徴とする高強度容器用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、「高強度容器用鋼板」とは、引張強度TS(以下、単にTSと称することがある)が500MPa以上である容器用鋼板である。
さらに、本発明の高強度容器用鋼板は、容器用素材、缶用素材を対象とする。表面処理の有無は問わず、錫めっき、ニッケル錫めっき、クロムめっき(いわゆるティンフリーめっき)あるいは、さらに有機被覆などを施され、極めて広範囲な用途に適用可能である。
さらに、板厚については特に限定しないが、本発明を最大限に活かし効果を得る点からは板厚0.30mm以下、さらに0.20mm以下が好ましい。とくに好ましいのは0.170mm以下である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to A steel plate for a high-strength container containing 0.100%, the balance being Fe and inevitable impurities, a tensile strength TS of 500 MPa or more, and a proof stress difference between the plate width direction and the rolling direction of 20 MPa or less.
[2] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to A steel plate for a high-strength container containing 0.020%, the balance being Fe and inevitable impurities, a tensile strength TS of 500 MPa or more, and a proof stress difference between the plate width direction and the rolling direction of 20 MPa or less.
[3] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to A steel containing 0.100%, the balance being Fe and inevitable impurities, is hot-rolled at a finishing temperature: (Ar3 transformation temperature-30 ° C) or higher and a coiling temperature: 400-750 ° C, pickled and cooled A method for producing a steel plate for a high-strength container, comprising performing a continuous annealing including an overaging treatment after the hot rolling and then performing a second cold rolling at a rolling reduction of 20 to 50%.
[4] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to A steel containing 0.020%, the balance being Fe and inevitable impurities, hot-rolled at a finishing temperature: (Ar3 transformation point temperature -30) ° C or higher and a coiling temperature: 400-750 ° C, pickled and cooled A method for producing a steel plate for a high-strength container, comprising performing a continuous annealing including an overaging treatment after the hot rolling and then performing a second cold rolling at a rolling reduction of 20 to 50%.
In addition, in this specification,% which shows the component of steel is mass% altogether. In the present invention, the “high-strength steel plate for containers” is a steel plate for containers having a tensile strength TS (hereinafter sometimes simply referred to as TS) of 500 MPa or more.
Furthermore, the steel plate for high-strength containers of the present invention is intended for container materials and can materials. Regardless of the presence or absence of surface treatment, tin plating, nickel tin plating, chromium plating (so-called tin-free plating) or further organic coating is applied, and it can be applied to a wide range of applications.
Further, the thickness of the plate is not particularly limited, but from the viewpoint of obtaining the effect by making the most of the present invention, the plate thickness is preferably 0.30 mm or less, and more preferably 0.20 mm or less. Particularly preferred is 0.170 mm or less.

本発明によれば、500MPa以上のTSを有し、板幅方向と圧延方向の耐力差が20MPa以下であり、かつ、フランジ加工やネッキング加工時に割れが生じない加工性に優れた高強度容器用鋼板が得られる。
さらに、本発明では、P含有量を調整し、かつ2回目の冷間圧延での圧下率を20〜50%として高強度化し、圧延後の外観の問題や幅方向と圧延方向での耐力差の問題が解消される。
また、N成分を好適範囲である0.01%未満とすることで、スラブ割れを防止し、製品での歩留まり低下を抑えることができる。
According to the present invention, for a high-strength container having a TS of 500 MPa or more, having a proof stress difference of 20 MPa or less in the sheet width direction and the rolling direction, and excellent in workability that does not cause cracking during flange processing or necking processing. A steel plate is obtained.
Further, in the present invention, the P content is adjusted and the reduction ratio in the second cold rolling is increased to 20 to 50% to increase the strength, and the appearance problem after rolling and the difference in yield strength between the width direction and the rolling direction are increased. The problem is solved.
Further, by setting the N component to less than 0.01%, which is a preferred range, it is possible to prevent slab cracking and suppress a decrease in yield in products.

以下、本発明を詳細に説明する。
本発明の容器用鋼板は、TSが500MPa以上、板幅方向と圧延方向の耐力差が20MPa以下の高強度容器用鋼板である。そして、本発明では、P含有量を調整し、かつ、2回目の冷間圧延(以下、2次冷間圧延と称することもある)での圧下率を20〜50%とすることにより高強度の容器用鋼板の提供が可能となる。
Hereinafter, the present invention will be described in detail.
The steel plate for containers of the present invention is a steel plate for high-strength containers having a TS of 500 MPa or more and a proof stress difference between the plate width direction and the rolling direction of 20 MPa or less. In the present invention, the P content is adjusted, and the reduction rate in the second cold rolling (hereinafter sometimes referred to as secondary cold rolling) is set to 20 to 50%, thereby increasing the strength. It is possible to provide steel plates for containers.

本発明の容器用鋼板の成分組成について説明する。
C:0.01〜0.05%
C成分が多いと2次冷間圧延後の鋼板を必要以上に硬質化させ、製缶性やネック加工性を劣化させる。また、溶接部の顕著な硬質化によりフランジ加工時にHAZ割れを生じさせる元素となる。Cが0.05%を超えると、これらの影響が顕著になるので、Cは0.05%以下とする。一方、C成分が極端に低くなると容器の強度を維持するために高圧下率の二次冷間圧延を施すことが必要になるためCは0.01%以上とする。好ましくは0.02%以上0.04%以下、さらに、好ましくは0.02%以上0.03%以下とする。
The component composition of the steel plate for containers according to the present invention will be described.
C: 0.01-0.05%
If the C component is large, the steel sheet after the secondary cold rolling is hardened more than necessary, and canability and neck workability are deteriorated. In addition, it becomes an element that causes HAZ cracking during flange processing due to remarkable hardening of the weld. When C exceeds 0.05%, these effects become significant, so C is made 0.05% or less. On the other hand, if the C component becomes extremely low, it is necessary to perform secondary cold rolling at a high pressure ratio in order to maintain the strength of the container, so C is made 0.01% or more. It is preferably 0.02% or more and 0.04% or less, more preferably 0.02% or more and 0.03% or less.

Si:0.04%以下
Siを多量に添加すると表面性状の劣化、耐食性の劣化などが生じる。よって、Siは0.04%以下とする。
Si: 0.04% or less
When a large amount of Si is added, surface properties and corrosion resistance deteriorate. Therefore, Si is set to 0.04% or less.

Mn:0.1〜1.2%
MnはSによる熱間割れを防止するのに有効な元素である。そして、S量に応じて添加することにより、割れを防止する効果が得られる。また、結晶粒を微細化する作用も有している。これらの効果を発揮するためには、少なくともMnは0.1%以上の添加が必要となる。一方、多量に添加すると、耐食性が劣化する傾向を示すとともに鋼板を必要以上に硬質化させ、フランジ加工性、ネック加工性を劣化させるため、上限は1.2%とする。0.35%以下とするのが好ましい。
Mn: 0.1-1.2%
Mn is an element effective in preventing hot cracking due to S. And the effect which prevents a crack is acquired by adding according to the amount of S. It also has the effect of refining crystal grains. In order to exhibit these effects, it is necessary to add at least 0.1% of Mn. On the other hand, if added in a large amount, the corrosion resistance tends to deteriorate and the steel plate is hardened more than necessary, and the flange workability and neck workability are deteriorated. Therefore, the upper limit is set to 1.2%. It is preferable to set it to 0.35% or less.

P: 0.0020〜0.100%
Pは、鋼を硬質化させる成分であり、本発明においては求められる強度に応じて所定量を含有する。0.0020%未満では、500MPa以上のTSが得られないので、0.0020%以上とする。一方、P成分を必要以上に過剰な量含むことは耐食性を劣化させる。また、フランジ加工性やネック加工性を劣化させる。これらは0.100%を超えると顕著になるので、上限は0.100%とする。0.0020〜0.020%とすると、P添加による適度な強度と後述する二次冷間圧延の効果により、より高い強度が得られるので好ましい。
P: 0.0020-0.100%
P is a component that hardens steel, and in the present invention, P contains a predetermined amount according to the required strength. If less than 0.0020%, a TS of 500 MPa or more cannot be obtained, so the content is made 0.0020% or more. On the other hand, including an excessive amount of P component more than necessary deteriorates the corrosion resistance. In addition, flange workability and neck workability are deteriorated. Since these become remarkable when it exceeds 0.100%, the upper limit is made 0.100%. A content of 0.0020 to 0.020% is preferable because higher strength can be obtained by an appropriate strength by adding P and an effect of secondary cold rolling described later.

S:0.10%以下
Sは鋼中で介在物として存在し、鋼板の延性を減少させさらに耐食性を劣化させる元素である。そのため、0.10%以下とする。好ましくは0.030%以下である。
S: 0.10% or less
S exists as an inclusion in steel, and is an element that decreases the ductility of the steel sheet and further deteriorates the corrosion resistance. Therefore, it is 0.10% or less. Preferably it is 0.030% or less.

Al: 0.001〜0.100%
Alは鋼の脱酸に必要な元素である。その量が0.001%未満では脱酸が不十分となり、介在物によるフランジ加工性の劣化やネック加工性の劣化を招く。よって、0.001%以上とする。一方、AlはN成分と結合し、固溶Nを低減させるが、固溶Nが過度に減少すると必要な強度が得られなくなる。よって、0.100%以下とする。0.035〜0.075%とするのが好ましい。
Al: 0.001 to 0.100%
Al is an element necessary for deoxidation of steel. If the amount is less than 0.001%, deoxidation is insufficient, and the flange workability and neck workability are deteriorated due to inclusions. Therefore, it is 0.001% or more. On the other hand, Al combines with the N component to reduce the solid solution N, but if the solid solution N is excessively reduced, the required strength cannot be obtained. Therefore, it shall be 0.100% or less. It is preferable to set it as 0.035 to 0.075%.

N:0.10%以下
Nは、溶接部の硬さ上昇を招くことなく強度を高めるのに有用な元素である。しかし、含有量が多過ぎると鋼板が著しく硬質化し、圧延素材(スラブ)に割れ欠陥を発生する危険性が顕著に増大し、かえってフランジ加工性やネック加工性を劣化させる。よって、Nは0.10%以下とする。0.05%以下とするのが好ましい。また、スラブ割れ防止の観点から、より好ましくは0.01%未満とする。さらにより好ましくは0.005%以下である。このように、Nを低減することで、スラブ割れを低減することができ、スラブ手入れの必要がなく歩留まりを向上させることができる。
N: 0.10% or less N is an element useful for increasing the strength without increasing the hardness of the weld. However, if the content is too large, the steel sheet is remarkably hardened, and the risk of generating cracking defects in the rolled material (slab) is significantly increased. On the contrary, the flange workability and neck workability are deteriorated. Therefore, N is set to 0.10% or less. It is preferably 0.05% or less. Further, from the viewpoint of preventing slab cracking, it is more preferably less than 0.01%. Even more preferably, it is 0.005% or less. Thus, by reducing N, slab cracks can be reduced, and slab maintenance is not required, and yield can be improved.

残部はFeおよび不可避不純物とする。
上記した成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、例えばSn:0.01%以下が許容できる。
The balance is Fe and inevitable impurities.
The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, for example, Sn: 0.01% or less is acceptable.

本発明の容器用鋼板は上記組成を有するとともに、500MPa以上のTSを有し、板幅方向と圧延方向の耐力差が20MPa以下である。500MPa以上のTSを有することで、板厚を薄くしても剛性が低下することがない。さらに板幅方向と圧延方向の耐力差を20MPa以下とするので、フランジ加工やネッキング加工時に割れが生じない。   The steel plate for containers of the present invention has the above composition, TS of 500 MPa or more, and a proof stress difference between the plate width direction and the rolling direction of 20 MPa or less. By having TS of 500 MPa or more, the rigidity does not decrease even if the plate thickness is reduced. Furthermore, since the difference in proof stress between the plate width direction and the rolling direction is 20 MPa or less, no cracking occurs during flange processing or necking processing.

次に、本発明の高強度容器用鋼板の製造方法について説明する。
上記した組成の溶鋼を転炉等を用いた通常公知の溶製方法により、溶製し、ついで、連続鋳造法等の通常公知の鋳造方法で圧延素材(スラブ)とする。ついで、これら圧延素材を用い、熱間圧延により熱延板とする。
スラブ抽出温度:1050〜1300℃(好適条件)
スラブの抽出温度を1050℃以上とすると、次工程の熱延において、十分に高い熱延終了温度を確保することができる。一方、抽出温度を1300℃以下とすると最終的に鋼板の表面性状が劣化することがない。よって、スラブ抽出温度は1050℃以上1300℃以下が好ましい。
Next, the manufacturing method of the steel plate for high strength containers of this invention is demonstrated.
The molten steel having the above composition is melted by a generally known melting method using a converter or the like, and then rolled into a rolled material (slab) by a generally known casting method such as a continuous casting method. Subsequently, these rolled materials are used to form hot rolled sheets by hot rolling.
Slab extraction temperature: 1050-1300 ° C (preferred conditions)
When the slab extraction temperature is 1050 ° C. or higher, a sufficiently high hot rolling end temperature can be secured in the hot rolling of the next step. On the other hand, when the extraction temperature is 1300 ° C. or lower, the surface properties of the steel sheet are not finally deteriorated. Therefore, the slab extraction temperature is preferably 1050 ° C. or higher and 1300 ° C. or lower.

仕上げ温度(熱間圧延終了温度):(Ar3変態点温度-30)℃以上
熱間圧延終了温度は、後続工程の冷間圧延性、そして製品特性を良好にするために、
(Ar3 変態点−30)℃以上とすることが必要である。(Ar3 変態点−30)℃未満では、最終的な製品の金属組織が粗粒化して、製缶時に肌荒れが生じやすくなる。また、熱間圧延終了温度が低温になるとリジング現象が発生し、成形加工後の外観不良が生じやすくなる。従って、熱間圧延終了温度は(Ar3 変態点−30)℃以上とする。
Finishing temperature (hot rolling end temperature): (Ar3 transformation point temperature -30) ° C. or higher Hot rolling end temperature is to improve the cold rolling property and product characteristics of the subsequent process.
(Ar3 transformation point -30) It is necessary to set the temperature to be equal to or higher. (Ar3 transformation point -30) If it is less than 30 ° C, the metal structure of the final product is coarsened, and rough skin is likely to occur during can making. In addition, when the hot rolling finish temperature becomes low, a ridging phenomenon occurs, and an appearance defect after the forming process tends to occur. Accordingly, the hot rolling end temperature is set to (Ar3 transformation point−30) ° C. or higher.

巻き取り温度:400 〜750 ℃
巻き取り温度が低過ぎると熱延板の形状が劣化し、次工程の酸洗、冷間圧延の操業に支障をきたすため、400 ℃以上とする。一方、高くなり過ぎると熱延母板の段階で窒化アルミが析出し、強化に十分な固溶Nを確保することができなくなる。また、熱延母板中に炭化物が凝集した組織が形成され、後述する過時効による炭化物の均一析出の効果を得ることができなくなり、加えて、これが鋼板の耐食性に悪影響を与える。さらに、鋼板表面に生じるスケ−ル厚の増大に伴い酸洗性が劣化する。これらの不具合を回避するために、750 ℃以下とする必要がある。
Winding temperature: 400-750 ° C
If the coiling temperature is too low, the shape of the hot-rolled sheet will deteriorate, and the pickling and cold rolling operations in the next process will be hindered. On the other hand, if it becomes too high, aluminum nitride precipitates at the stage of the hot-rolled base plate, and it becomes impossible to ensure sufficient solute N for strengthening. In addition, a structure in which carbide aggregates is formed in the hot-rolled mother board, and the effect of uniform precipitation of carbide due to overaging described later cannot be obtained. In addition, this adversely affects the corrosion resistance of the steel sheet. Furthermore, pickling performance deteriorates as the scale thickness generated on the steel sheet surface increases. In order to avoid these problems, it is necessary to keep the temperature below 750 ° C.

このようにして製造した熱延板に、酸洗、冷間圧延を施し、冷延板とする。酸洗は常法に従い、塩酸、硫酸等の酸で表面スケールを除去すればよい。   The hot-rolled sheet thus manufactured is pickled and cold-rolled to obtain a cold-rolled sheet. For pickling, the surface scale may be removed with an acid such as hydrochloric acid or sulfuric acid according to a conventional method.

(酸洗後の)冷間圧延における圧下率:80%以上(好適条件)
圧下率が80%未満では焼鈍後に組織の充分な細粒化が得られない場合があるので80%以上が好ましい。なお、本発明のような素材の鋼板で、組織の充分な微細化を達成するためには、圧下率は85%以上がより好ましい。一方、圧下率の上限については特に定める必要はなく、熱間圧延、冷間圧延の設備列の能力等を考慮し適宜設定される。
Reduction ratio in cold rolling (after pickling): 80% or more (preferred condition)
If the rolling reduction is less than 80%, sufficient fine graining of the structure may not be obtained after annealing, so 80% or more is preferable. In addition, in order to achieve sufficient refinement | miniaturization of the structure | tissue with the steel plate of a raw material like this invention, 85% or more of a rolling reduction is more preferable. On the other hand, the upper limit of the rolling reduction is not particularly required, and is appropriately set in consideration of the capability of the equipment row for hot rolling and cold rolling.

焼鈍温度:800 ℃以下の再結晶温度(好適条件)
鋼板中に未再結晶組織が残存すると、製缶時の成形性不良、外観不良等を招くので連続焼鈍により再結晶処理を施す必要がある。しかし、焼鈍温度を過度に高めると連続焼鈍時にヒートバックルや板破断等の欠陥を生じる。そして、異常な結晶粒成長により、外観特性の劣化を招く危険性が高くなる。よって、焼鈍温度は800 ℃以下の再結晶温度域で行うことが好ましい。
Annealing temperature: 800 ° C or lower recrystallization temperature (preferred conditions)
If the non-recrystallized structure remains in the steel sheet, it causes a formability defect and a poor appearance at the time of can making, and therefore it is necessary to perform a recrystallization process by continuous annealing. However, if the annealing temperature is excessively increased, defects such as heat buckles and plate breakage occur during continuous annealing. And the risk of deteriorating appearance characteristics due to abnormal crystal grain growth increases. Therefore, the annealing temperature is preferably performed in a recrystallization temperature range of 800 ° C. or lower.

また、この温度範囲内であれば、とくに一定の温度に保持する必要はない。操業の安定性から5s以上60s以下の均熱相当時間があれば十分である。5s以上の均熱時間とすると加工時の応力を分散させるサイトとなる炭化物の析出が十分となり好ましい。   Further, it is not necessary to keep the temperature constant within this temperature range. A time equivalent to soaking from 5 to 60 seconds is sufficient for the stability of operation. A soaking time of 5 s or more is preferable because the precipitation of carbides that become sites for dispersing stress during processing is sufficient.

過時効処理
前記焼鈍により析出した炭化物をさらに均一に分散させ、応力分散サイトを効果的にするために過時効処理を行うことが必要である。過時効処理は前記焼鈍のあと、300〜500℃の温度域まで10℃/s以上の冷却速度で冷却し、300〜500℃の温度域で5s以上保持することが好ましい。300〜500℃の温度域まで10℃/s以上の冷却速度で冷却することにより炭化物が析出しやすくなり、300〜500℃の温度域で5s以上保持すると均一な炭化物の析出を確保することができる。また、このような過時効処理を行うことにより、以下に示す2回目の冷間圧延を20〜50%の圧下率で行っても板幅方向と圧延方向の耐力差を20MPa以下とすることが可能となる。このような条件で過時効処理を行うことで、粒径1.5μm以下および粒径1.5μm超3.0μm以下の炭化物の密度および割合を後述する好ましい範囲とすることができる。
Overaging treatment It is necessary to carry out an overaging treatment in order to further uniformly disperse the carbides precipitated by the annealing and to make the stress dispersion sites effective. In the overaging treatment, after the annealing, it is preferably cooled to a temperature range of 300 to 500 ° C. at a cooling rate of 10 ° C./s or more and maintained at a temperature range of 300 to 500 ° C. for 5 s or more. By cooling at a cooling rate of 10 ° C./s or higher to a temperature range of 300 to 500 ° C., it becomes easy for carbides to precipitate, and when kept at a temperature range of 300 to 500 ° C. for 5 seconds or more, uniform carbide precipitation can be ensured. it can. In addition, by performing such overaging treatment, the difference in yield strength between the sheet width direction and the rolling direction can be 20 MPa or less even if the second cold rolling shown below is performed at a reduction rate of 20 to 50%. It becomes possible. By performing the overaging treatment under such conditions, the density and ratio of carbides having a particle size of 1.5 μm or less and a particle size of more than 1.5 μm and 3.0 μm or less can be set within a preferable range described later.

2回目の冷間圧延の圧下率:20〜50%(好適には20〜30%)
連続焼鈍後の2回目の冷間圧延(以下、2次冷間圧延と称することもある)は、溶接缶の耐圧強度すなわち鋼板の降伏強度を確保するために必要である。特に、本発明のP含有量を調整した素材に用いる場合を考慮すると、2次冷間圧延の圧下率は少なくとも20%は必要である。一方、圧下率が50%超では、材質特性の異方性が大きくなり、板幅方向と圧延(圧延)方向の耐力差が20MPa超となる。また、新板取り法(鋼板の圧延方向が缶胴の軸方向に平行となるような板取り法)におけるフランジ加工性やネック加工性を顕著に劣化させる。さらに、製缶時の溶接によって、歪みの開放量が大きくなり、溶接熱影響部における軟化が著しくなるために、フランジ割れが発生し易くなる。よって、50%以下とする。好ましくは20%以上30%以下であるが、P含有量と目的とする鋼板強度に応じて適宜選択すればよい。具体的には、P含有量が0.020%超0.100%以下と高い場合には比較的低い圧下率とすることが好ましい。
Second cold rolling reduction: 20-50% (preferably 20-30%)
The second cold rolling after the continuous annealing (hereinafter also referred to as secondary cold rolling) is necessary to ensure the pressure resistance of the weld can, that is, the yield strength of the steel sheet. In particular, in consideration of the case where the P content of the present invention is used, it is necessary that the rolling reduction of secondary cold rolling is at least 20%. On the other hand, when the rolling reduction exceeds 50%, the material property anisotropy increases, and the difference in yield strength between the sheet width direction and the rolling (rolling) direction exceeds 20 MPa. Moreover, the flange workability and neck workability in the new plate cutting method (a plate cutting method in which the rolling direction of the steel plate is parallel to the axial direction of the can body) are significantly deteriorated. Further, the welding at the time of can making increases the amount of strain release, and the softening in the heat affected zone becomes significant, so that flange cracking is likely to occur. Therefore, 50% or less. Preferably, it is 20% or more and 30% or less, but may be appropriately selected according to the P content and the intended steel sheet strength. Specifically, when the P content is as high as more than 0.020% and 0.100% or less, a relatively low rolling reduction is preferable.

本発明では、2次冷間圧延後に、冷延鋼板の表面に(少なくとも片面)めっき層を形成し、めっき鋼板とすることができる。表面に形成されるめっき層は容器用鋼板に適用されるいずれのものも適用可能である。めっき層としては、錫めっき、クロムめっき、ニッケルめっき、ニッケル・クロムめっきが例示できる。また、これらのめっき処理後に塗装、有機樹脂フィルム等を貼ることもなんら問題ない。   In the present invention, after secondary cold rolling, a plated layer can be formed on the surface of the cold-rolled steel sheet (at least one side) to obtain a plated steel sheet. Any plating layer applied to the steel plate for containers can be applied to the plating layer formed on the surface. Examples of the plating layer include tin plating, chromium plating, nickel plating, and nickel / chromium plating. Moreover, there is no problem in applying a coating, an organic resin film, etc. after these plating treatments.

表1に示す成分を含有し、残部がFe及び不可避的不純物からなる鋼を転炉で溶製し、連続鋳造法でスラブとした。ついで、これらスラブを、スラブ抽出温度を1200℃、熱延仕上げ温度を900℃、巻き取り温度を650℃として、熱間圧延を施し仕上げ厚み2.0mmの熱延板とした。その後、これら熱延板に酸洗による脱スケール処理を施し、さらに圧下率90%の冷間圧延を施し仕上げ厚み0.20mmの冷延板とし、ついで均熱温度を750℃とし、均熱時間を10〜30sとする連続焼鈍、過時効処理および2次冷間圧延を行い、冷延鋼板とした。
なお、過時効処理条件および2次冷間圧延圧下率は表2および表3に示す通りである。
A steel containing the components shown in Table 1 and the balance being Fe and unavoidable impurities was melted in a converter and made into a slab by a continuous casting method. Subsequently, these slabs were hot rolled at a slab extraction temperature of 1200 ° C., a hot rolling finishing temperature of 900 ° C. and a coiling temperature of 650 ° C. to obtain hot rolled sheets having a finished thickness of 2.0 mm. After that, these hot-rolled sheets were descaled by pickling, and further cold-rolled with a reduction rate of 90% to obtain cold-rolled sheets with a finished thickness of 0.20 mm, then the soaking temperature was set to 750 ° C, and the soaking time was set. Continuous annealing to 10 to 30 s, overaging treatment and secondary cold rolling were performed to obtain a cold rolled steel sheet.
The overaging treatment conditions and the secondary cold rolling reduction ratio are as shown in Table 2 and Table 3.

Figure 2010043349
Figure 2010043349

以上により得られた鋼板に対して、以下の方法により組織観察を行い、炭化物粒径の密度および割合を求めた。また、以下の試験を行い、特性を評価した。
上記により得られた冷延鋼板をベークライト樹脂に埋め込み、断面を研磨した。次いで、腐食液としてのち、ピクリン酸、水酸化ナトリウムを調合してなるピクリン酸ソーダ溶液を用いて、80℃、60秒で腐食液への浸漬処理を施した。次いで、炭化物を400倍の光学顕微鏡で3視野(0.1375mm×0.1375mm程度の範囲)を観察した。各視野において、目視により、粒径1.5μm以下、粒径1.5μm超3.0μm以下、3.0μm超の炭化物の個数を求め、3視野の密度と割合の平均値を求めた。この時、炭化物の粒径は最小径とし、例えば、炭化物形状が矩形や楕円状で短径と長径が存在する場合は最小径を本発明においては粒径とした。
(i)引張試験
これら冷延鋼板の幅方向の中央部から圧延(L)方向に、JIS 13号-B引張試験片を採取し、歪速度クロスヘッド速度:10mm/s で引張試験を実施し、引張強度TSおよび降伏強度YSを測定した。なお、引張試験は製品化後1日以内に実施した。引張試験片をJIS 13号-B試験片としたのは、標点外で破断する現象を極力低減するためである。
The steel plate obtained as described above was subjected to structure observation by the following method, and the density and ratio of the carbide particle size were determined. Moreover, the following test was done and the characteristic was evaluated.
The cold-rolled steel sheet obtained as described above was embedded in a bakelite resin and the cross section was polished. Next, after the caustic solution was used, an immersion treatment was performed in the caustic solution at 80 ° C. for 60 seconds using a sodium picrate acid solution prepared by mixing picric acid and sodium hydroxide. Next, the carbides were observed with a 400 × optical microscope in three fields (a range of about 0.1375 mm × 0.1375 mm). In each field of view, the number of carbides having a particle size of 1.5 μm or less, a particle size of more than 1.5 μm and less than 3.0 μm, and more than 3.0 μm was determined visually, and the average value of the density and ratio of the three fields of view was determined. At this time, the particle diameter of the carbide is set to the minimum diameter. For example, when the carbide shape is rectangular or elliptical and the short diameter and the long diameter exist, the minimum diameter is set as the particle diameter in the present invention.
(I) Tensile test JIS 13-B tensile test specimens were sampled in the rolling (L) direction from the center in the width direction of these cold-rolled steel sheets and subjected to a tensile test at a strain rate crosshead speed of 10 mm / s. The tensile strength TS and the yield strength YS were measured. The tensile test was carried out within one day after commercialization. The reason why the tensile test piece is a JIS 13-B test piece is to reduce as much as possible the phenomenon of breaking outside the gauge.

(ii)板幅方向と圧延方向での耐力差
上記(i)の引張試験により測定したYSと、板幅方向に採取したJIS 13号-B引張試験片を(i)と同様に測定したYSとの差を求めた。
(Ii) Yield difference between sheet width direction and rolling direction YS measured by the tensile test in (i) above, and YS measured in the same manner as (i) on a JIS 13-B tensile specimen taken in the sheet width direction. The difference was obtained.

(iii)ネッキング加工性
これら冷延鋼板にSnめっき処理(片面あたりのSn付着量2.8g/m2)を行い、めっき鋼板とした。このめっき鋼板の表面に、塗装・印刷・透明ニス仕上げを行った後、プレス油を使用せずに前記鋼板を以下の条件でカップ絞り、さらに2度の再絞り加工を施す深絞り成形を100回行い、ネックの絞りしわの発生率を調査した。
深絞り成形条件
ブランク径:200mmφ
潤滑条件:プレス油使用せず
第1絞りの絞り比:1.5
第2絞りの絞り比:1.2
第3絞りの絞り比:1.2
第1〜3絞りのしわ押さえ圧:最適条件
フランジ加工:伸び率8%
再絞りダイス肩半径:0.45mm
加工速度:0.3m/s
(iv)耐フランジ割れ性
(iii)の深絞り成形において、フランジ割れの発生率を調査した。
(Iii) Necking workability These cold-rolled steel sheets were Sn-plated (Sn deposition amount 2.8 g / m 2 per side) to obtain plated steel sheets. After drawing, printing, and transparent varnish finish on the surface of this plated steel sheet, the steel sheet was cup-drawn under the following conditions without using press oil, and deep-drawing was performed by applying redrawing twice. The rate of occurrence of neck wrinkles was investigated.
Deep drawing conditions Blank diameter: 200mmφ
Lubrication condition: No press oil used, 1st aperture ratio: 1.5
Aperture ratio of the second aperture: 1.2
Aperture ratio of third aperture: 1.2
Wrinkle holding pressure of 1st to 3rd aperture: Optimal condition Flange processing: Elongation 8%
Redrawing die shoulder radius: 0.45mm
Machining speed: 0.3m / s
(Iv) In the deep drawing of flange crack resistance (iii), the incidence of flange cracking was investigated.

(v)外観
これら冷延鋼板を目視で観察し、光沢や色調が異なると判断される部分を外観不良とした。観察した100m単位の中に1箇所でも外観不良が確認されればこの100mを外観不良部とし、10000mを観察して外観不良率を求めた。
(vi)スラブ割れ
連続鋳造後のスラブ表面を目視でスラブ割れの状況を観察した。
観察した1m単位の中に割れが1箇所でも確認されればこの1mを外観不良部とし、10mを観察して外観不良率を求めた。得られた結果を条件と併せておよび表3に示す。
(V) Appearance These cold-rolled steel sheets were visually observed, and portions judged to have different gloss and color tone were regarded as defective appearance. When an appearance defect was confirmed even at one location in the observed 100 m unit, this 100 m was regarded as an appearance defect portion, and 10000 m was observed to obtain an appearance defect rate.
(Vi) Slab cracking The condition of slab cracking was visually observed on the slab surface after continuous casting.
If even one crack was confirmed in the observed 1 m unit, this 1 m was regarded as a defective appearance portion, and 10 m was observed to obtain the appearance defect rate. The results obtained are shown together with the conditions and in Table 3.

Figure 2010043349
Figure 2010043349

Figure 2010043349
Figure 2010043349

表2および表3より、本発明例であるNo.8〜10、13〜18、26〜28、31〜36は十分な強度を有し、かつ板幅方向と圧延方向の耐力差が20MPa以下であり、例えば、3ピース加工に必要な性能を十分に達成している。また、外観に優れ、比較例のNo.1〜7、11、12、19〜25、29、30に比べネックしわやフランジ割れも少ないことが認められる。また、炭化物の密度、割合が好適範囲であるNo.8〜10、13〜15、26〜28、31〜33では、より一層加工性が優れているのがわかる。
一方、過時効処理を行わない比較例のNo.1、2、19、20は二次冷間圧延の圧下率が低く強度が得られない。No.3〜5、21〜23は二次冷間圧延の圧下率が20%以上であり強度は高くなるが、L方向とC方向の耐力差が20MPaを超え、ネックしわやフランジ割れの発生が顕著である。また、外観の不良も発生している。
また、二次冷間圧延の圧下率が20%未満のNo.6、7、11、12、24、25、29、30は強度が得られない。
From Table 2 and Table 3, No.8-10, 13-18, 26-28, 31-36 which are examples of this invention have sufficient intensity | strength, and the proof stress difference of a sheet width direction and a rolling direction is 20 Mpa or less. For example, the performance required for 3-piece processing is sufficiently achieved. In addition, the appearance is excellent, and the comparative example No. It is recognized that there are few neck wrinkles and flange cracks compared to 1-7, 11, 12, 19-25, 29, 30. Moreover, in No.8-10, 13-15, 26-28, 31-33 whose density and ratio of a carbide | carbonized_material are a suitable range, it turns out that workability is still more excellent.
On the other hand, No. of the comparative example which does not perform overaging treatment. Nos. 1, 2, 19 and 20 have a low rolling reduction in secondary cold rolling and cannot provide strength. No. In 3-5 and 21-23, the rolling reduction of secondary cold rolling is 20% or more and the strength is high, but the proof stress difference between the L direction and the C direction exceeds 20 MPa, and the occurrence of neck wrinkles and flange cracks is remarkable. It is. Moreover, the appearance defect has also occurred.
In addition, No. 6, 7, 11, 12, 24, 25, 29, 30 with a rolling reduction of secondary cold rolling of less than 20% cannot obtain strength.

さらに、炭化物の密度、割合に関して以下の知見を得た。本発明の高強度容器用鋼板は、加工性の点から、粒径3.0μm以下の炭化物個数の全炭化物個数に対する割合が85%以上であることが好ましい。さらには粒径1.5μm以下の炭化物個数の全炭化物個数に対する割合が52%以上であることが好ましい。さらには、粒径1.5μm以下の炭化物の密度が100個/10000μm2以上であり、かつ、粒径1.5μm超3.0μm以下の炭化物の密度が63個/10000μm2超であることがより好ましい。 Furthermore, the following knowledge was acquired regarding the density and ratio of carbide. In the steel plate for a high-strength container of the present invention, the ratio of the number of carbides having a particle size of 3.0 μm or less to the total number of carbides is preferably 85% or more from the viewpoint of workability. Furthermore, the ratio of the number of carbides having a particle size of 1.5 μm or less to the total number of carbides is preferably 52% or more. More preferably, the density of carbides with a particle size of 1.5 μm or less is 100/10000 μm 2 or more, and the density of carbides with a particle size of more than 1.5 μm and 3.0 μm or less is 63/10000 μm 2 .

粒径3.0μm以下の炭化物個数の全炭化物個数に対する割合を85%以上とすることで、加工時に応力分散サイトとして機能する炭化物を十分量確保でき、一層加工性が優れることになる。さらに好ましくは、粒径3.0μm以下の炭化物個数の全炭化物個数に対する割合が85%超、より好ましいのは90%以上である。   By setting the ratio of the number of carbides having a particle size of 3.0 μm or less to the total number of carbides to be 85% or more, a sufficient amount of carbides functioning as stress dispersion sites at the time of processing can be secured, and workability is further improved. More preferably, the ratio of the number of carbides having a particle size of 3.0 μm or less to the total number of carbides is more than 85%, and more preferably 90% or more.

また、粒径1.5μm以下の炭化物個数の全炭化物個数に対する割合が52%以上であると、応力分散サイトとして機能する炭化物の効果をさらに高めることになり、より一層加工性が改善される。さらに好ましくは、粒径1.5μm以下の炭化物の個数の全炭化物個数に対する割合が52%超であり、さらには55%以上である。   Further, when the ratio of the number of carbides having a particle size of 1.5 μm or less to the total number of carbides is 52% or more, the effect of the carbide functioning as a stress dispersion site is further enhanced, and the workability is further improved. More preferably, the ratio of the number of carbides having a particle size of 1.5 μm or less to the total number of carbides is more than 52%, and more preferably 55% or more.

さらに、粒径1.5μm以下の炭化物の密度が100個/10000μm2以上であり、かつ、粒径1.5μm超3.0μm以下の炭化物の密度が63個/10000μm2超とすることで、より一層上記加工性への効果が高くなる。さらに好ましくは、粒径1.5μm以下の炭化物の密度が102個/10000μm2超、さらには105個/10000μm2以上、粒径1.5μm超3.0μm以下の炭化物の密度は70個/10000μm2以上である。 Furthermore, the density of carbides with a particle size of 1.5 μm or less is 100/10000 μm 2 or more, and the density of carbides with a particle size of more than 1.5 μm and 3.0 μm or less is 63/10000 μm 2 , so that Increases workability. In More preferably, the density of the particle size 1.5μm or less of carbides 102 pieces / 10000 2 greater, more 105 pieces / 10000 2 or more, the density of the particle size 1.5μm ultra 3.0μm following carbide 70/10000 2 or more is there.

また、上記炭化物の密度および割合は、冷間圧延後の鋼板を所定の条件で焼鈍処理することによって制御することができる。具体的には、冷間圧延後の連続焼鈍工程において、鋼板の熱履歴を所定の範囲内に調整して過時効処理を行う。   The density and proportion of the carbide can be controlled by annealing the cold-rolled steel sheet under predetermined conditions. Specifically, in the continuous annealing process after cold rolling, an overaging treatment is performed by adjusting the thermal history of the steel sheet within a predetermined range.

さらに、表3は、N含有量を0.0065%、0.0043%と好適範囲:0.01%未満とした実施例である。表3より、N含有量を0.01%未満とすることで、スラブ割れが全く確認されず、スラブ割れが防止されているのがわかる。   Further, Table 3 shows examples in which the N content is 0.0065% and 0.0043%, and the preferable range is less than 0.01%. From Table 3, it can be seen that when the N content is less than 0.01%, no slab cracking is confirmed and slab cracking is prevented.

本発明の容器用鋼板は、ネッキング加工やフランジ加工において割れを生じることなく優れた強度が得られるので、例えば、缶などの食品容器、オイルフィルターなど非食品容器、バッテリーなどの電子パーツなどを中心に容器用素材として好適に使用できる。   The steel plate for containers of the present invention can provide excellent strength without cracking in necking and flange processing. For example, food containers such as cans, non-food containers such as oil filters, and electronic parts such as batteries are mainly used. It can be suitably used as a container material.

Claims (4)

質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P: 0.0020〜0.100%を含有し、残部がFeおよび不可避的不純物からなり、引張強度TSが500MPa以上、かつ板幅方向と圧延方向の耐力差が20MPa以下である高強度容器用鋼板。   In mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.100% A steel plate for a high-strength container which contains, the balance is made of Fe and inevitable impurities, the tensile strength TS is 500 MPa or more, and the proof stress difference between the plate width direction and the rolling direction is 20 MPa or less. 質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P:0.0020〜0.020%を含有し、残部がFeおよび不可避的不純物からなり、引張強度TSが500MPa以上、かつ板幅方向と圧延方向の耐力差が20MPa以下である高強度容器用鋼板。   In mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.020% A steel plate for a high-strength container which contains, the balance is made of Fe and inevitable impurities, the tensile strength TS is 500 MPa or more, and the proof stress difference between the plate width direction and the rolling direction is 20 MPa or less. 質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P:0.0020〜0.100%を含有し、残部がFeおよび不可避的不純物からなる鋼を、仕上げ温度:(Ar3変態点温度−30)℃以上、巻き取り温度:400〜750℃で熱間圧延し、酸洗、冷間圧延を行った後、過時効処理を含む連続焼鈍を行い、次いで、圧下率:20〜50%で2回目の冷間圧延を行うことを特徴とする高強度容器用鋼板の製造方法。   In mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.100% Containing steel, the balance being Fe and inevitable impurities, hot rolled at a finishing temperature: (Ar3 transformation point temperature -30) ° C or higher, coiling temperature: 400-750 ° C, pickling and cold rolling The manufacturing method of the steel plate for high strength containers characterized by performing continuous annealing including overaging treatment after performing, and then performing the second cold rolling at a reduction ratio of 20 to 50%. 質量%で、C:0.01〜0.05%、Si:0.04%以下、Mn:0.1〜1.2%、S:0.10%以下、Al:0.001〜0.100%、N:0.10%以下、P: 0.0020〜0.020%を含有し、残部がFeおよび不可避的不純物からなる鋼を、仕上げ温度:(Ar3変態点温度−30)℃以上、巻き取り温度:400〜750℃で熱間圧延し、酸洗、冷間圧延を行った後、過時効処理を含む連続焼鈍を行い、次いで、圧下率:20〜50%で2回目の冷間圧延を行うことを特徴とする高強度容器用鋼板の製造方法。   In mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.020% Containing steel, the balance being Fe and inevitable impurities, hot rolled at a finishing temperature: (Ar3 transformation point temperature -30) ° C or higher, coiling temperature: 400-750 ° C, pickling and cold rolling The manufacturing method of the steel plate for high strength containers characterized by performing continuous annealing including overaging treatment after performing, and then performing the second cold rolling at a reduction ratio of 20 to 50%.
JP2009094592A 2008-04-11 2009-04-09 Steel plate for high-strength container and manufacturing method thereof Active JP5434212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094592A JP5434212B2 (en) 2008-04-11 2009-04-09 Steel plate for high-strength container and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008103303 2008-04-11
JP2008103303 2008-04-11
JP2008185660 2008-07-17
JP2008185660 2008-07-17
JP2009094592A JP5434212B2 (en) 2008-04-11 2009-04-09 Steel plate for high-strength container and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010043349A true JP2010043349A (en) 2010-02-25
JP5434212B2 JP5434212B2 (en) 2014-03-05

Family

ID=41162006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094592A Active JP5434212B2 (en) 2008-04-11 2009-04-09 Steel plate for high-strength container and manufacturing method thereof

Country Status (8)

Country Link
US (1) US20110168303A1 (en)
JP (1) JP5434212B2 (en)
KR (2) KR20100122115A (en)
CN (2) CN103409706B (en)
BR (1) BRPI0909012A2 (en)
MY (1) MY168642A (en)
TW (1) TWI390053B (en)
WO (1) WO2009125876A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof
US9315877B2 (en) 2010-12-06 2016-04-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
WO2021166026A1 (en) * 2020-02-17 2021-08-26 日本製鉄株式会社 Steel sheet for can, and method for producing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same
FI122143B (en) * 2009-10-23 2011-09-15 Rautaruukki Oyj Procedure for the manufacture of a high-strength galvanized profile product and profile product
JP5803660B2 (en) * 2011-12-26 2015-11-04 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
KR20140108214A (en) * 2012-04-19 2014-09-05 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
CN103290312B (en) * 2013-06-05 2015-01-21 首钢总公司 Production method for increasing work hardening value of 440MPa-level carbon structural steel
CN103757534B (en) * 2013-12-27 2016-01-20 首钢总公司 A kind of cold-rolled steel sheet and production method thereof with good flange welding property
WO2015166653A1 (en) 2014-04-30 2015-11-05 Jfeスチール株式会社 High strength steel sheet for container, and method for producing same
US11359255B2 (en) * 2017-07-31 2022-06-14 Jfe Steel Corporation Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
CN109423577B (en) 2017-08-30 2021-01-12 宝山钢铁股份有限公司 High-strength multi-phase steel tinning raw plate and manufacturing method thereof
JP6822617B1 (en) 2019-03-29 2021-01-27 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method
CN110541123B (en) * 2019-09-05 2021-06-15 首钢集团有限公司 Cold-rolled strip steel for battery case and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH10110244A (en) * 1996-10-08 1998-04-28 Nippon Steel Corp Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030041932A1 (en) * 2000-02-23 2003-03-06 Akio Tosaka High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
CN1145709C (en) * 2000-02-29 2004-04-14 川崎制铁株式会社 High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP4023106B2 (en) * 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
JP4179024B2 (en) * 2003-04-09 2008-11-12 日立金属株式会社 High speed tool steel and manufacturing method thereof
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
CN101144138B (en) * 2007-11-01 2011-05-25 济南钢铁股份有限公司 Producing method of steel plate for low temperature pressure container and thereof
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH10110244A (en) * 1996-10-08 1998-04-28 Nippon Steel Corp Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof
US9315877B2 (en) 2010-12-06 2016-04-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
WO2021166026A1 (en) * 2020-02-17 2021-08-26 日本製鉄株式会社 Steel sheet for can, and method for producing same

Also Published As

Publication number Publication date
WO2009125876A1 (en) 2009-10-15
KR20100122115A (en) 2010-11-19
JP5434212B2 (en) 2014-03-05
TW201000649A (en) 2010-01-01
KR20130083487A (en) 2013-07-22
CN103409706B (en) 2015-12-02
CN101999009B (en) 2013-07-17
CN103409706A (en) 2013-11-27
BRPI0909012A2 (en) 2015-09-22
MY168642A (en) 2018-11-27
US20110168303A1 (en) 2011-07-14
TWI390053B (en) 2013-03-21
CN101999009A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
CN109642294B (en) Steel sheet and method for producing same
TWI390052B (en) High tensile strength steel sheet for can and its production method
JP5565534B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
TWI485261B (en) High strength steel sheet having excellent warm stamp formability and method for manufacturing the same
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP2013177673A (en) Hot-dip galvanized steel sheet and prodcing method therefor
WO2014171062A1 (en) High-strength hot-rolled steel sheet and method for manufacturing same
JP5892147B2 (en) High strength hot rolled steel sheet and method for producing the same
KR101923839B1 (en) Steel sheets for cans and methods for manufacturing the same
KR20140081599A (en) Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP4943244B2 (en) Steel sheet for ultra-thin containers
TWI515309B (en) High strength hot-rolled steel sheet and method for producing the same
JP2018059196A (en) High strength ultrathin steel sheet and manufacturing method therefor
JP2001107186A (en) High strength steel sheet for can and its producing method
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
KR20140014500A (en) 1500mpa-ultra high strength high manganese steel sheet having excellent bendability
JP2018502213A (en) Cold rolled high strength low alloy steel
TW201441384A (en) High strength hot-rolled steel sheet and method for producing the same
TWI461542B (en) Cold rolled steel sheet and method for manufacturing the same
JP2017155267A (en) Steel sheet for can and manufacturing method therefor
CN113950536B (en) Steel sheet for can and method for producing same
JP2018070920A (en) Method for producing high tensile strength steel plate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5434212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250