WO2009125876A1 - High-strength steel sheet for container and process for production thereof - Google Patents

High-strength steel sheet for container and process for production thereof Download PDF

Info

Publication number
WO2009125876A1
WO2009125876A1 PCT/JP2009/057717 JP2009057717W WO2009125876A1 WO 2009125876 A1 WO2009125876 A1 WO 2009125876A1 JP 2009057717 W JP2009057717 W JP 2009057717W WO 2009125876 A1 WO2009125876 A1 WO 2009125876A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
strength
cold rolling
steel
Prior art date
Application number
PCT/JP2009/057717
Other languages
French (fr)
Japanese (ja)
Inventor
加藤寿勝
荒谷誠
河村勝人
小島克己
佐藤覚
筋田成子
青木文男
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN2009801127859A priority Critical patent/CN101999009B/en
Priority to KR1020137017399A priority patent/KR20130083487A/en
Priority to US12/936,681 priority patent/US20110168303A1/en
Priority to BRPI0909012A priority patent/BRPI0909012A2/en
Publication of WO2009125876A1 publication Critical patent/WO2009125876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a method of manufacturing a steel plate for a high-strength container suitable as a container material for reducing or expanding the diameter shape after three-piece processing such as welding or two-piece processing such as DI. .
  • Patent Document 1 after controlling the components in the steel within a certain range, after the hot rolling is finished (at the Ar 3 transformation point—30), and then pickling and cold rolling are performed.
  • a method of secondary annealing by performing continuous annealing has been proposed.
  • Patent Document 1 P is set to 0.02 wt% or less so as not to deteriorate the flange workability, neck workability, and corrosion resistance, and the reduction ratio of the secondary cold rolling is 15 to 30%. Therefore, it is difficult to efficiently process thin products and it is difficult to produce them, and there is a problem that appearance defects are likely to occur. In addition, cracks may occur on the surface of the slab, causing problems when yields are reduced in the product. In addition, it is difficult to manufacture stably, and improvement is necessary.
  • the following method has been proposed as a typical method for producing a hard container steel plate, which is appropriately selected according to the type of annealing (for example, Non-Patent Document 1).
  • BAF Cold Rolling ⁇ Cold Rolling ⁇ Box Annealing
  • CAL Cold Rolling
  • the above method uses various rolling oils with high viscosity for the purpose of improving lubricity during rolling. There is a problem of poor appearance after rolling. Furthermore, when the rolling reduction ratio is high, the steel sheet is stretched by rolling, so the difference in resistance between the width direction of the copper sheet and the rolling direction increases.
  • Patent Document 1 Japanese Patent No. 3108615-Non-Patent Document 1 “Technology History of Surface-treated Steel Sheets for Cans in Japan” issued by the Japan Iron and Copper Association October 30, 2010 p. 188
  • the present invention has been made in view of such circumstances.
  • the tensile strength TS has a strength of 50 OMPa or more, and the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less. Furthermore, it aims at providing the steel plate for containers excellent in workability, and its manufacturing method. DISCLOSURE OF THE INVENTION The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
  • a steel sheet for high-strength cans has been completed by managing components based on the above knowledge.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • the “high-strength steel plate for containers” is a steel plate for containers having a tensile strength T S (hereinafter, sometimes simply referred to as T S) of 500 MPa or more.
  • the steel plate for high-strength containers of the present invention is intended for container materials and can materials. Regardless of the presence or absence of surface treatment, tin plating, nickel tin plating, chromium plating (so-called tin-free plating), or organic coatings can be applied for a wide range of applications. .
  • the thickness of the plate is not particularly limited, but from the viewpoint of obtaining the effect by making the best use of the present invention, a thickness of 0.3 mm or less and further 0.20 mm or less are preferable. Particularly preferred is 0.170 mm or less.
  • Ding 3 is 5 0 0? & Above, steel sheet for high-strength containers with a difference in resistance between the sheet width direction and the rolling direction of 2 OMPa or less.
  • the P content is adjusted, and the rolling reduction in the second cold rolling (hereinafter sometimes referred to as secondary cold rolling) is set to 20 to 50%.
  • secondary cold rolling is set to 20 to 50%.
  • a high-strength steel sheet for containers can be provided.
  • the component composition of the steel plate for containers according to the present invention will be described.
  • C is set to 0.05% or less.
  • C is 0.01% or more.
  • it is 0.02 or more and 0.04% or less, More preferably, it is 0.02 or more and 0.03% or less.
  • Si should be 0.043 ⁇ 4 or less.
  • is an effective element to prevent hot cracking due to S. Further, the effect of preventing cracking is obtained by adding according to the amount of S. It also has the effect of refining crystal grains. In order to exert these effects, it is necessary to add at least 0.1% of Mn. On the other hand, if added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened more than necessary, and the flange workability and neck workability are deteriorated. Therefore, the upper limit is set to 1.2%. It is preferable to be 35% or less.
  • P is a component that hardens the steel, and in the present invention, P contains a predetermined amount according to the required strength. If it is less than 0.000 to 0%, a TS of 500 MPa or more cannot be obtained. On the other hand, including an excessive amount of P component more than necessary degrades the corrosion resistance. It also degrades the flange workability and neck workability. Since these become prominent when they exceed 0.100%, the upper limit is set to 0.100%. It is preferable that the range is from 0.0020 to 0.020% because a higher strength can be obtained by an appropriate strength by adding P and the effect of secondary cold rolling described later.
  • S exists as an inclusion in steel and is an element that reduces the ductility of the steel sheet and further degrades the corrosion resistance. Therefore, it should be 0.10 or less. Preferably it is 0.030% or less.
  • A1 is an element necessary for steel deoxidation. If the amount is less than 0.001%, deoxidation becomes insufficient, and the flange workability deteriorates due to inclusions, leading to deterioration of neck workability. Therefore, 0.001% That's it.
  • A1 combines with the N component to reduce the solute N, but if the solid N is excessively reduced, the required strength cannot be obtained. Therefore, it is set to 0.100% or less. It is preferable that the content be 0.03 to 0.075%.
  • N is an element useful for increasing the strength without increasing the hardness of the weld.
  • the content is 0.10% or less. It is preferable that the content be 0.05% or less. Further, from the viewpoint of preventing slab cracking, it is more preferably less than 0.01%. Even more preferable is 0.005% or less. As described above, by reducing N, slab cracking can be reduced, and the yield can be improved without the need for slab maintenance.
  • the balance is Fe and inevitable impurities.
  • the balance other than the above components is Fe and inevitable impurities.
  • an inevitable impurity for example, Sn: 0.01% or less is acceptable.
  • the steel plate for containers of the present invention has the above composition, has a TS of 50 OM Pa or more, and has a resistance difference between the plate width direction and the rolling direction of 2 OM Pa or less.
  • a TS of 500 MPa or more the rigidity does not decrease even if the plate thickness is reduced.
  • the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less, no cracking occurs during flange processing or necking processing.
  • the molten steel having the above composition is melted by a generally known melting method using a converter or the like, and then a rolled material (slab) is formed by a generally known forging method such as a continuous forging method. Next, these rolled materials are used to form hot rolled sheets by hot rolling.
  • the slab extraction temperature of the slab is 1050 ⁇ or higher, a sufficiently high hot rolling end temperature can be secured in the hot rolling of the next process.
  • the slab extraction temperature is preferably 1050 ° C or higher and 1300 ° C or lower.
  • Hot rolling end temperature (Ar 3 transformation point temperature-30) or more Hot rolling end temperature is used to improve the cold rolling property and product characteristics of the subsequent process.
  • the shape of the hot-rolled sheet deteriorates, causing problems in pickling and cold rolling operations in the next process.
  • aluminum nitride will precipitate at the stage of hot-rolled base metal, making it impossible to secure sufficient solute N for strengthening.
  • a structure in which carbide aggregates is formed in the hot-rolled mother plate, and the effect of uniform precipitation of carbide due to overaging described later cannot be obtained.
  • this adversely affects the corrosion resistance of the steel plate.
  • the pickling performance deteriorates as the scale thickness generated on the steel sheet surface increases. In order to avoid these problems, it is necessary to set the temperature to 750 "C or less.
  • the hot-rolled sheet manufactured in this way is pickled and cold-rolled to form a cold-rolled sheet.
  • the surface scale can be removed with an acid such as hydrochloric acid or sulfuric acid.
  • the rolling reduction is less than 80%, it may not be possible to obtain a sufficiently fine structure after annealing, so 80% or more is preferable.
  • the rolling reduction is more preferably 85% or more.
  • the upper limit of the rolling reduction is not particularly required, and is set as appropriate in consideration of the capacity of equipment lines for hot rolling and cold rolling.
  • Annealing temperature Recrystallization temperature below 800 ° C (preferred conditions) If an unrecrystallized structure remains in the steel sheet, it may cause formability failure during can making, poor appearance, etc., so it is necessary to perform recrystallization treatment by continuous annealing. However, if the annealing temperature is excessively increased, defects such as heat buckles and plate breakage occur during continuous annealing. In addition, abnormal crystal grain growth increases the risk of deteriorating appearance characteristics. Therefore, the annealing temperature is 800, and it is preferable to carry out in the following recrystallization temperature range.
  • a soaking time equivalent to 5 s or more and 60 s or less is sufficient.
  • a soaking time of 5 s or longer is preferable because precipitation of carbides that can disperse stress during processing becomes sufficient. .
  • the difference in yield strength between the sheet width direction and the rolling direction is 2 OMPa or less. It becomes possible.
  • the density and ratio of carbides having a particle size of 1.5 im or less and a particle size of 1.5 to more than 111 / 3.0 or less can be set within a preferable range described later. .
  • Second cold rolling reduction 20-50% (preferably 20-30%)
  • the second cold rolling after continuous annealing (hereinafter sometimes referred to as secondary cold rolling) is necessary to ensure the pressure resistance of the welded can, that is, the yield strength of the steel sheet.
  • the reduction ratio of secondary cold rolling is required to be at least 20%.
  • the rolling reduction exceeds 50%, the material property anisotropy increases, and the difference in resistance between the sheet width direction and the rolling (rolling) direction exceeds 2 OMPa.
  • the flange formability and neck workability of the new plate removal method (a plate removal method in which the rolling direction of the steel plate is parallel to the axial direction of the can body) are significantly deteriorated.
  • the content is preferably 20% or more and 30% or less, but may be appropriately selected according to the P content and the intended steel sheet strength. Specifically, when the P content is as high as more than 0.020% and not more than 0.100%, a relatively low rolling reduction is preferable.
  • a plated layer can be formed on the surface of the cold-rolled steel sheet (at least one side) to obtain a plated steel sheet.
  • the adhesion layer formed on the surface any of those applied to steel plates for containers can be applied.
  • the plating layer include tin plating, chromium plating, nickel plating, nickel plating and chromium plating.
  • Tables 2 and 3 show the overaging treatment conditions and the secondary cold rolling reduction ratio.
  • the steel sheet obtained as described above was subjected to structure observation by the following method to determine the density and ratio of the carbide particle size. The following tests were conducted to evaluate the characteristics.
  • the cold-rolled steel sheet obtained as described above was embedded in a single-climate resin and the cross section was polished. Next, after being used as a corrosive solution, a soda picrate soda solution prepared by mixing picric acid and sodium hydroxide was used and immersed in the corrosive solution at 80 seconds for 6 seconds. Next, the carbides were observed in three fields of view (in the range of about 0.1375mm x 0.1375mm) with a 400x optical microscope.
  • the number of carbide particles having a particle size of 1.5 / m or less, a particle size of 1.5 ⁇ or more, 3.0 ⁇ or less, and a particle size of more than 3.0 // m was determined, and the average value of the density and ratio of the three fields was determined.
  • the particle diameter of the carbide is set to the minimum diameter.
  • the minimum diameter is set as the particle diameter in the present invention.
  • Nos. 8 to 10 as examples of the present invention 10 and 13 to 1; 18 and 26 to 28 and 31 to 36 have sufficient strength, and the width direction of the plate
  • the difference in resistance in the rolling direction is 2 OMPa or less, and, for example, the performance required for 3-piece processing has been sufficiently achieved.
  • it has an excellent appearance and no neck wrinkles or flange cracks are observed.
  • the workability is further improved in Nos. 8 to 10, Nos. 13 to 15, 26 to 28, and 31 to 3 in which the density and ratio of the carbides are in a suitable range.
  • Nos. 1, 2, 19, and 20 in the comparative examples in which overaging treatment is not performed have a low rolling reduction in secondary cold rolling and cannot provide strength.
  • Nos. 3-5 and 2 1-23 have a secondary cold rolling reduction ratio of 20% or more and high strength, but the difference in resistance between the L and C directions exceeds 2 OMPa, resulting in neck wrinkles. And the occurrence of flange cracks is remarkable. In addition, appearance defects have occurred.
  • No. 6, 7, 11 1, 12, 24, 25, 29, 30 with a rolling reduction of secondary cold rolling of less than 20% cannot obtain strength.
  • the steel sheet for high-strength containers according to the present invention has a density of carbides with a particle size of 1.5 m or less of 102 ⁇ m 2 and a particle size of 1.5 / zm or more and a carbide of 3.0 / im or less. it is preferred density of 63 ZlOOOO / zm 2 greater. Furthermore, the ratio of the number of carbides with a particle size of 1.5 / xm or less to the total number of carbides is more than 52%, and the ratio of the number of carbides with a particle size of 3.0 / zm or less to the total number of carbides is more than 85%. Is more preferable.
  • the density of carbides with a particle size of 1.5 / zm or less is 102 10000; more than zm 2 and the density of carbides with a particle size of more than 1.5 and 3.0 m or less is 63 / 10,000 m 2.
  • a sufficient amount of carbides functioning as a dispersion site can be secured, and workability will be further improved.
  • the density of carbides with a particle size of 1.5 ⁇ or less is 130/10000 ⁇ 2 or more, and the density of carbides with a particle size of more than 1.5 ⁇ of 3.0 ⁇ m or less is 80 or more and 10000 ⁇ m 2 .
  • the ratio of the number of carbides with a particle size of 1.5 / zm or less to the total number of carbides is more than 52%, and the ratio of the number of carbides with a particle size of 3.0 xm or less to the total number of carbides is If it exceeds 85%, the effect of the carbide functioning as a stress dispersion site is further enhanced, and the workability is further improved. More preferably, the ratio of the number of carbides having a particle size of 1.5 m or less to the total number of carbides is 55% or more, and the ratio of the number of carbides having a particle size of 3.0 ⁇ m or less to the total number of carbides is 90%. That's it.
  • the density and ratio of the carbides can be controlled by annealing the copper sheet after cold rolling under predetermined conditions. Specifically, in the continuous annealing process after cold rolling, an overaging treatment is performed by adjusting the thermal history of the steel sheet within a predetermined range.
  • Table 3 is an example in which the N content is 0.0055% and 0.0039% and the preferable range is less than 0.01%. From Table 3, it can be seen that when the N content is less than 0.01%, no slab cracking is confirmed and slab cracking is prevented.
  • the workability has a TS of 50 OMPa or more, the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less, and no cracking occurs during flange processing or necking processing. A high strength steel plate for containers is obtained.
  • the P content is adjusted, and the reduction ratio in the second cold rolling is increased to 20 to 50% to increase the strength, and the appearance problems after rolling, the width direction and the rolling direction are increased. The problem of resistance to resistance is eliminated.
  • the steel plate for containers of the present invention can provide excellent strength without cracking in necking and flange processing.
  • it can be used for food containers such as cans, non-food containers such as oil filters, and electronic parts such as batteries. It can be suitably used as a container material in the center.

Abstract

Provided are a steel sheet for a container which has hardness of 500MPa or above and excellent workability, and a process for the production of the sheet. A high-strength steel sheet for containers which has a tensile strength of 500MPa or above and in which the proof stress difference between the sheet widthwise direction and the rolling direction is 20MPa or below can be obtained by subjecting a steel which contains by mass C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, Al: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.100% with the balance being Fe and unavoidable impurities to hot rolling at a finishing temperature not lower than the Ar3 transformation temperature minus 30 (°C) and a coiling temperature of 400 to 750°C, subjecting the rolled steel to pickling, cold rolling, and then continuous annealing including over-aging, and then subjecting the resulting sheet to second cold rolling with a draft of 20 to 50%.

Description

明細書  Specification
高強度容器用鋼板およびその製造方法 Steel plate for high-strength container and manufacturing method thereof
技術分野 Technical field
本発明は、 溶接などの 3ピース加工や DI などの 2ピース加工後に径形状の縮 小や拡大加工を行う容器用素材として好適な高強度容器用鋼板おょぴその製造方 法に関するものである。  The present invention relates to a method of manufacturing a steel plate for a high-strength container suitable as a container material for reducing or expanding the diameter shape after three-piece processing such as welding or two-piece processing such as DI. .
背景技術 Background art
近年、 コス トの低減を目的と して、 また、 利用資材の削減や環境負荷 の軽減を目的と して素材である鋼材 (鋼板) の製品板厚を薄く するため の製品開発が進められている。  In recent years, product development has been promoted to reduce the product thickness of steel (steel plate), which is a material, with the aim of reducing costs and reducing the use of materials and the environmental load. Yes.
また、 製品板厚を薄くすると剛性が低下するので、 この剛性の低下を補 うため、 鋼材の髙強度化を図る必要もある。 しかし、 銅材の髙強度化を 図った場合、 硬質化するため、 フラ ンジ加工やネ ッキング加工で割れが 生じる間題がある。 In addition, since the rigidity decreases when the product plate thickness is reduced, it is necessary to increase the strength of the steel material to compensate for this decrease in rigidity. However, when the strength of the copper material is increased, it becomes harder, so there is a problem that cracking occurs in flange processing and necking processing.
上記に対して、 現在、 種々の製造方法が考案されている。 In contrast to the above, various manufacturing methods have been devised.
例えば、 特許文献 1には、 鋼中成分を一定範囲に管理した上で、 (Ar 3変態点— 30で) 以上で熱間圧延を終了し、 その後、 酸洗、 冷間圧延を行ったのち、 連続焼 鈍を行い、 2次冷間圧延する方法が提案されている。 For example, in Patent Document 1, after controlling the components in the steel within a certain range, after the hot rolling is finished (at the Ar 3 transformation point—30), and then pickling and cold rolling are performed. A method of secondary annealing by performing continuous annealing has been proposed.
しかしながら、 特許文献 1の方法では、 フランジ加工性、 ネック加工性および耐 蝕性を劣化させないように Pを 0. 02wt%以下とし、 さらに 2次冷間圧延の圧下率 を 1 5〜3 0 %とするため薄い製品を効率的に処理することは難しく生産しにく い、 また外観不良が発生しやすいといった問題がある。 さらに、 スラブ表層で割 れが生じることがあり、製品での歩留まり低下の原因となるといつた問題もある。 また、 安定的に製造することが難しく、 改善が必要である。 また、 硬質な容器用鋼板の代表的な製造方法として、 下記の方法が提案されて おり、 焼鈍種類に応じて適宜選択し用いられている (例えば非特許文献 1 )。 熱間圧延—酸洗→冷間圧延→箱型焼鈍(BAF)→ 2回目冷間圧延(圧下率: 20〜50% ) 熱間圧延→酸洗—冷間圧延→連続焼鈍(CAL)→ 2回目冷間圧延(圧下率: 20〜50%) しかしながら、 上記の方法では圧延時の潤滑性を向上する目的で粘度の高い各種 圧延油が用いられるため圧延油の濃度むらや部分的な油付着による、 圧延後の外 観不良の問題がある。 さらに、 圧延圧下率が高い場合、 圧延により鋼板が伸ばさ れるため、 銅板の幅方向と圧延方向の耐カ差が大きくなる。 However, in the method of Patent Document 1, P is set to 0.02 wt% or less so as not to deteriorate the flange workability, neck workability, and corrosion resistance, and the reduction ratio of the secondary cold rolling is 15 to 30%. Therefore, it is difficult to efficiently process thin products and it is difficult to produce them, and there is a problem that appearance defects are likely to occur. In addition, cracks may occur on the surface of the slab, causing problems when yields are reduced in the product. In addition, it is difficult to manufacture stably, and improvement is necessary. In addition, the following method has been proposed as a typical method for producing a hard container steel plate, which is appropriately selected according to the type of annealing (for example, Non-Patent Document 1). Hot Rolling—Pickling → Cold Rolling → Box Annealing (BAF) → Second Cold Rolling (Rolling Ratio: 20-50%) Hot Rolling → Pickling—Cold Rolling → Continuous Annealing (CAL) → 2 Cold rolling (rolling ratio: 20-50%) However, the above method uses various rolling oils with high viscosity for the purpose of improving lubricity during rolling. There is a problem of poor appearance after rolling. Furthermore, when the rolling reduction ratio is high, the steel sheet is stretched by rolling, so the difference in resistance between the width direction of the copper sheet and the rolling direction increases.
これに対して、 2回目の冷間圧延での圧下率を低く抑える方法が考えられる。 し かし、 圧下率を低くした場合は、 必要とする耐カを得ることが困難となる。 特許文献 1 特許第 3108615号号公報 - 非特許文献 1「わが国における缶用表面処理鋼板の技術史」日本鉄銅協会 平 成 10年 10月 30日発行 p. 188 On the other hand, a method of keeping the rolling reduction in the second cold rolling low can be considered. However, when the rolling reduction is lowered, it becomes difficult to obtain the required resistance. Patent Document 1 Japanese Patent No. 3108615-Non-Patent Document 1 “Technology History of Surface-treated Steel Sheets for Cans in Japan” issued by the Japan Iron and Copper Association October 30, 2010 p. 188
このように、 製品板厚の薄い容器用鋼板を得よ う とする場合、 強度、 加工性そして生産性の全てを満足する製造方法はなく 、望まれているの が現状である。  Thus, in order to obtain a container steel plate with a thin product plate thickness, there is no production method that satisfies all of the strength, workability and productivity, and the present situation is desired.
本発明は、 かかる事情に鑑みなされたもので、 引張強度 T Sが 5 0 O M P a以 上の強度を有し、 かつ板幅方向と圧延方向の耐カ差が 2 O M P a以下であり、 さ らに、 加工性に優れた容器用鋼板とその製造方法を提供することを目的とする。 発明の開示 - 本発明者らは、 上記課題を解決するために鋭意研究を行った。 その結果、 以下 の知見を得た。  The present invention has been made in view of such circumstances. The tensile strength TS has a strength of 50 OMPa or more, and the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less. Furthermore, it aims at providing the steel plate for containers excellent in workability, and its manufacturing method. DISCLOSURE OF THE INVENTION The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
成分組成として Pの含有量を調整し、かつ圧下率 20〜50 %の 2回目の冷間 圧延を行って高強度化し、 さらに連続焼鈍の際に過時効処理を行うことにより 炭化物を均一に析出させて、 この炭化物を加工時の応力を分散させるサイ トとし て利用することで、 外観不適合が少ない上に、 幅方向と圧延方向との耐カ差が小 さく高強度の材質を確保できることを見出した。 そして、 さらに、 上記炭化物の 粒径、 密度、 割合を規定することで、 より一層加工性こ優れた容器用鋼板が得ら れることも見出した。 By adjusting the P content as the component composition and increasing the strength by performing a second cold rolling with a rolling reduction of 20 to 50%, and by performing an overaging treatment during continuous annealing By uniformly depositing carbide and using this carbide as a site to disperse stress during processing, there is little appearance nonconformity, and there is little difference in resistance between the width direction and the rolling direction, and high strength. It was found that the material can be secured. Furthermore, it has also been found that by defining the particle size, density, and ratio of the carbides, a steel plate for containers with even better workability can be obtained.
以上のように、 本発明では、 上記知見に基づき成分を管理することで高強度缶用 鋼板を完成するに至った。 As described above, in the present invention, a steel sheet for high-strength cans has been completed by managing components based on the above knowledge.
本発明は、 以上の知見に基づきなされたもので、 その要旨は以下のとおりであ る。  The present invention has been made based on the above findings, and the gist thereof is as follows.
[ 1 ]質量0 /0で、 C:0.01〜0.05%、 Si :0.04%以下、 Mn: 0.1〜 1.2¾、 S: 0.10% 以下、 A1 : 0.001〜0.100%、 Ν:0·.10¾以下、 Ρ: 0.0020〜 0.100¾を含有し、 残部が Feおよび不可避的不純物からなり、 引張強度 T Sが 5 0 OMP a以上、か つ板幅方向と圧延方向の耐カ差が 2 OMP a以下である高強度容器用鋼板。 [1] in a weight 0/0, C: 0.01~0.05% , Si: 0.04% or less, Mn: 0.1~ 1.2¾, S: 0.10% or less, A1: 0.001~0.100%, Ν: 0 · .10¾ below, Ρ: Contains 0.0020 to 0.100¾, the balance consists of Fe and inevitable impurities, tensile strength TS is 50 OMPa or more, and the resistance difference between the plate width direction and rolling direction is 2 OMPa or less Steel plate for strength containers.
[2]質量%で、 C:0.01〜0.05%、 Si: 0.04%以下、 Mn: 0.1〜1.2¾、 S:0.10% 以下、 A1 : 0.001~ 0.100%, N:0.10%以下、 P: 0.0020〜 0.020%を含有し、 残部が Feおよび不可避的不純物からなり、 引張強度 T Sが 5 0 OMP a以上、か つ板幅方向と圧延方向の耐カ差が 2 OMP a以下である高強度容器用鋼板。 [2] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2¾, S: 0.10% or less, A1: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to A steel plate for high-strength containers containing 0.020%, the balance being Fe and inevitable impurities, tensile strength TS is 50 OMPa or more, and the resistance difference between the plate width direction and rolling direction is 2 OMPa or less. .
[3 ]質量0 /0で、 C:0.01~0.05%、 Si:0.04%以下、 Mn: 0.1〜 1.2¾、 S:0.10% 以下、 A1 : 0.001—0.100%, N:0.10%以下、 P: 0.0020〜 0.100%を含有し、 残部が Feおよび不可避的不純物からなる鋼を、 仕上げ温度 : (Ar3変態点温 度— 30) t以上、 卷き取り温度 : ΑΟΟ ΤδΟ^ で熱間圧延し、 酸洗、 冷間 圧延を行った後、 過時効処理を含む連続焼鈍を行い、 次いで、 圧下率 : 20〜50%で 2回目の冷間圧延を行う こ と を特徴とする高強度容器用鋼板 の製造方法。 [3] Mass 0/0, C: 0.01 ~ 0.05%, Si: 0.04% or less, Mn: 0.1~ 1.2¾, S: 0.10% or less, A1: 0.001-0.100%, N: 0.10% or less, P: A steel containing 0.0020 to 0.100%, the balance being Fe and inevitable impurities, is hot-rolled at a finishing temperature of (Ar 3 transformation point temperature-30) t or more and a scraping temperature of ΑΟΟ ΤδΟ ^. A steel plate for high-strength containers, characterized in that after pickling and cold rolling, continuous annealing including overaging treatment is performed, and then the second cold rolling is performed at a reduction ratio of 20 to 50%. Manufacturing method.
[4]質量%で、 C:0.01~0.05%、 Si:0.04%以下、 Mn: 0.1〜1.2%、 S:0.10% 以下、 A1 : 0.001~0.100%, N:0.10%以下、 P: 0.0020~ 0.020%を含有し、 残部が Feおよび不可避的不純物からなる鋼を、 仕上げ温度 : (Ar3変態点温 度一 30) 以上、 卷き取り温度 : 400〜 750°Cで熱間圧延し、 酸洗、 冷間 圧延を行った後、 過時効処理を含む連続焼鈍を行い、 次いで、 圧下率 : 20〜50 %で 2 回 目 の冷間圧延を行う こと を特徴とする高強度容器用鋼板 の製造方法。 [4] By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, A1: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to Steel containing 0.020%, the balance being Fe and inevitable impurities, finishing temperature: (Ar 3 transformation point temperature 30) above, scraping temperature: hot rolling at 400-750 ° C, pickling and cold rolling, followed by continuous annealing including overaging treatment, then rolling reduction: 20- A method for producing a steel plate for a high-strength container, characterized by performing a second cold rolling at 50%.
なお、 本明細書において、 鋼の成分を示す%は、 すべて質量%である。 また、 本 発明において、 「高強度容器用鋼板」 とは、 引張強度 T S (以下、 単に T Sと称す ることがある) が 5 0 0 M P a以上である容器用鋼板である。 In the present specification, the percentages indicating the components of steel are all mass%. In the present invention, the “high-strength steel plate for containers” is a steel plate for containers having a tensile strength T S (hereinafter, sometimes simply referred to as T S) of 500 MPa or more.
さ らに、 本発明の高強度容器用鋼板は、 容器用素材、 缶用素材を対象とす る。 表面処理の有無は問わず、 錫めつき、 ニッケル錫めつき、 ク ロムめつ き (いわゆるティ ンフリーめつき) あるいは、 さ らに有機被覆などを施 され、 極めて広範囲な用途に適用可能であ 。 Furthermore, the steel plate for high-strength containers of the present invention is intended for container materials and can materials. Regardless of the presence or absence of surface treatment, tin plating, nickel tin plating, chromium plating (so-called tin-free plating), or organic coatings can be applied for a wide range of applications. .
さ らに、 板厚については特に限定しないが、 本発明を最大限に活かし効 果を得る点からは板厚 0 . 3 0 mm以下、 さ らに 0 . 2 0 mm以下が好ま しい。 と く に好ま しいのは 0 . 1 7 0 mm以下である。 発明を実施するための形態 Further, the thickness of the plate is not particularly limited, but from the viewpoint of obtaining the effect by making the best use of the present invention, a thickness of 0.3 mm or less and further 0.20 mm or less are preferable. Particularly preferred is 0.170 mm or less. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の容器用銅板は、 丁3が5 0 0 ? &以上、 板幅方向と圧延方向の耐カ差 が 2 O M P a以下の高強度容器用鋼板である。 そして、 本発明では、 P含有量を 調整し、 かつ、 2回目の冷間圧延 (以下、 2次冷間圧延と称することもある) での 圧下率を 2 0〜5 0 %とすることにより高強度の容器用鋼板の提供が可能となる。 本発明の容器用鋼板の成分組成について説明する。 In the copper plate for containers of the present invention, Ding 3 is 5 0 0? & Above, steel sheet for high-strength containers with a difference in resistance between the sheet width direction and the rolling direction of 2 OMPa or less. In the present invention, the P content is adjusted, and the rolling reduction in the second cold rolling (hereinafter sometimes referred to as secondary cold rolling) is set to 20 to 50%. A high-strength steel sheet for containers can be provided. The component composition of the steel plate for containers according to the present invention will be described.
C : 0. 01〜0. 05% C: 0.01 to 0.05%
C成分が多いと 2次冷間圧延後の鋼板を必要以上に硬質化させ、 製缶性やネック 加工性を劣化させる。 また、 溶接部の顕著な硬質化によりフランジ加工時に HAZ 割れを生じさせる元素となる。 Cが 0. 05%を超えると、 これらの影響が顕著にな るので、 Cは 0. 05%以下とする。 一方、 C成分が極端に低くなると容器の強度を 維持するために高圧下率の二次冷間圧延を施すことが必要になるため Cは 0. 01 % 以上とする。好ましくは 0. 02¾以上 0. 04%以下、さらに、好ましくは 0. 02¾以上 0. 03% 以下とする。 If the C component is large, the steel sheet after secondary cold rolling will be hardened more than necessary, resulting in deterioration of can manufacturing and neck workability. Also, due to the remarkable hardening of the weld, it becomes an element that causes HAZ cracking during flange processing. When C exceeds 0.05%, these effects become significant, so C is set to 0.05% or less. On the other hand, when the C component is extremely low, the strength of the container is reduced. In order to maintain this, it is necessary to perform secondary cold rolling at a high pressure ratio, so C is 0.01% or more. Preferably it is 0.02 or more and 0.04% or less, More preferably, it is 0.02 or more and 0.03% or less.
Si : 0. 04%以下  Si: 0.04% or less
Siを多量に添加すると表面性状の劣化、 耐食性の劣化などが生じる。 よって、 Si は 0. 04¾以下とする。  If a large amount of Si is added, surface properties and corrosion resistance will deteriorate. Therefore, Si should be 0.04¾ or less.
Mn: 0. 1〜1· 2%  Mn: 0.1 1-2%
Μηは Sによる熱間割れを防止するのに有効な元素である。 そして、 S量に応じて ¾加することにより、 割れを防止する効果が得られる。 また、 結晶粒を微細化す る作用も有している。 これらの効果を発揮するためには、 少なくとも Mnは 0. 1% 以上の添加が必要となる。 一方、 多量に添加すると、 耐食性が劣化する傾向を示 すとともに鋼板を必要以上に硬質化させ、 フランジ加工性、 ネック加工性を劣化 させるため、 上限は 1. 2%とする。 0. 35%以下とするのが好ましい。  Μη is an effective element to prevent hot cracking due to S. Further, the effect of preventing cracking is obtained by adding according to the amount of S. It also has the effect of refining crystal grains. In order to exert these effects, it is necessary to add at least 0.1% of Mn. On the other hand, if added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened more than necessary, and the flange workability and neck workability are deteriorated. Therefore, the upper limit is set to 1.2%. It is preferable to be 35% or less.
P: 0. 0020—0. 100%  P: 0. 0020—0. 100%
Pは、 鋼を硬質化させる成分であり、 本発明においては求められる強度に応じて 所定量を含有する。 0. 00?0%未満では、 500M P a以上の TS が得られない ので、 0. 0020 %以上とする。 一方、 P成分を必要以上に過剰な量含むことは 耐食性を劣化させる。 また、 フランジ加工性やネック加工性を劣化させる。 これ らは 0.100%を超えると顕著になるので、 上限は 0. 100 %とする。 0. 0020〜 0. 020%とすると、 P添加による適度な強度と後述する二次冷間圧延の効果により、 より高い強度が得られるので好ましい。 P is a component that hardens the steel, and in the present invention, P contains a predetermined amount according to the required strength. If it is less than 0.000 to 0%, a TS of 500 MPa or more cannot be obtained. On the other hand, including an excessive amount of P component more than necessary degrades the corrosion resistance. It also degrades the flange workability and neck workability. Since these become prominent when they exceed 0.100%, the upper limit is set to 0.100%. It is preferable that the range is from 0.0020 to 0.020% because a higher strength can be obtained by an appropriate strength by adding P and the effect of secondary cold rolling described later.
S : 0. 10%以下  S: 0.10% or less
S は鋼中で介在物として存在し、 鋼板の延性を減少させさらに耐食性を劣化させ る元素である。 そのため 0. 10¾以下とする。 好ましくは 0. 030%以下である。  S exists as an inclusion in steel and is an element that reduces the ductility of the steel sheet and further degrades the corrosion resistance. Therefore, it should be 0.10 or less. Preferably it is 0.030% or less.
A1: 0. 001〜0. 100%  A1: 0.001 to 0.100%
A1は鋼の脱酸に必要な元素である。その量が 0. 001%未満では脱酸が不十分となり、 介在物によるフランジ加工性の劣化ゃネック加工性の劣化を招く。よって、 0. 001% 以上とする。 一方、 A1は N成分と結合し、 固溶 Nを低減させるが、 固寧 Nが過度 に減少すると必要な強度が得られなくなる。 よって、 0. 100%以下とする。 0. 035 ~0. 075%とするのが好ましい。 A1 is an element necessary for steel deoxidation. If the amount is less than 0.001%, deoxidation becomes insufficient, and the flange workability deteriorates due to inclusions, leading to deterioration of neck workability. Therefore, 0.001% That's it. On the other hand, A1 combines with the N component to reduce the solute N, but if the solid N is excessively reduced, the required strength cannot be obtained. Therefore, it is set to 0.100% or less. It is preferable that the content be 0.03 to 0.075%.
N : 0. 10%以下  N: 0.10% or less
Nは、 溶接部の硬さ上昇を招くことなく強度を高めるのに有用な元素である。 し かし、 含有量が多過ぎると鋼板が著しく硬質化し、 圧延素材 (スラブ) に割れ欠 陥を発生する危険性が顕著に増大し、 かえってフランジ加工性ゃネック加工性を 劣化させる。 よって、 Nは 0. 10%以下とする。 0. 05%以下とするのが好ましい。 また、 スラブ割れ防止の観点から、 より好ましくは 0. 01%未満とする。 さらによ り好ましぐは 0. 005%以下である。 のように、 Nを低減することで、 スラブ割れ を低減することができ、 スラブ手入れの必要がなく歩留まりを向上させることが できる。  N is an element useful for increasing the strength without increasing the hardness of the weld. However, if the content is too high, the steel sheet becomes extremely hard and the risk of cracking in the rolled material (slab) is significantly increased. On the other hand, flange workability and neck workability are deteriorated. Therefore, N is 0.10% or less. It is preferable that the content be 0.05% or less. Further, from the viewpoint of preventing slab cracking, it is more preferably less than 0.01%. Even more preferable is 0.005% or less. As described above, by reducing N, slab cracking can be reduced, and the yield can be improved without the need for slab maintenance.
残部は Feおよび不可避不純物とする。  The balance is Fe and inevitable impurities.
上記した成分以外の残部は、 Feおよび不可避的不純物である。 なお、 不可避的不 純物としては、 例えば Sn: 0. 01 %以下が許容できる。 The balance other than the above components is Fe and inevitable impurities. As an inevitable impurity, for example, Sn: 0.01% or less is acceptable.
本発明の容器用鋼板は上記組成を有するとともに、 5 0 O M P a以上の T Sを 有し、 板幅方向と圧延方向の耐カ差が 2 O M P a以下である。 5 0 0 M P a以上 の T Sを有することで、 板厚を薄く しても剛性が低下することがない。 さらに板 幅方向と圧延方向の耐カ差を 2 O M P a以下とするので、 フランジ加工やネツキ ング加工時に割れが生じない。  The steel plate for containers of the present invention has the above composition, has a TS of 50 OM Pa or more, and has a resistance difference between the plate width direction and the rolling direction of 2 OM Pa or less. By having a TS of 500 MPa or more, the rigidity does not decrease even if the plate thickness is reduced. Furthermore, since the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less, no cracking occurs during flange processing or necking processing.
次に、 本発明の高強度容器用鋼板の製造方法について説明する。  Next, the manufacturing method of the steel plate for high strength containers of this invention is demonstrated.
上記した組成の溶鋼を転炉等を用いた通常公知の溶製方法により、 溶製し、 つい で、 連続錄造法等の通常公知の铸造方法で圧延素材 (スラブ) とする。 ついで、 これら圧延素材を用い、 熱間圧延により熱延板とする。 The molten steel having the above composition is melted by a generally known melting method using a converter or the like, and then a rolled material (slab) is formed by a generally known forging method such as a continuous forging method. Next, these rolled materials are used to form hot rolled sheets by hot rolling.
スラブ抽出温度: 1050〜1300¾ (好適条件) Slab extraction temperature: 1050-1300¾ (preferred conditions)
スラブの抽出温度を 1050^以上とすると、 次工程の熱延において、 十分に高い熱 延終了温度を確保することができる。 一方、 抽出温度を 1300で以下とすると最終 的に鋼板の表面性状が劣化することがない。 よって、 スラブ抽出温度は 1050°C以 上 1300°C以下が好ましい。 If the extraction temperature of the slab is 1050 ^ or higher, a sufficiently high hot rolling end temperature can be secured in the hot rolling of the next process. On the other hand, if the extraction temperature is 1300 or less, the final In particular, the surface properties of the steel sheet are not deteriorated. Therefore, the slab extraction temperature is preferably 1050 ° C or higher and 1300 ° C or lower.
仕上げ温度 (熱間圧延終了温度) : (Ar 3変態点温度- 3 0 ) で以上 熱間圧延終了温度は、 後続工程の冷間圧延性、 そして製品特性を良好にするため に、 Finishing temperature (Hot rolling end temperature): (Ar 3 transformation point temperature-30) or more Hot rolling end temperature is used to improve the cold rolling property and product characteristics of the subsequent process.
(Ar 3変態点一 3 0 ) で以上とすることが必要である。 (Ar 3変態点一 3 0 ) で未 満では、 最終的な製品の金属組織が粗粒化して、 製缶時に肌荒れが生じやすくな る。 また、 熱間圧延終了温度が低温になるとリジング現象が発生し、 成形加工後 の外観不良が生じやすくなる。従って、熱間圧延終了温度は(Ar 3変態点一 3 0 ) ^ 以上とする。 It is necessary to make the above at (Ar 3 transformation point 1 3 0). If it is less than (Ar 3 transformation point 30), the metal structure of the final product becomes coarse and rough skin is likely to occur during canning. In addition, when the hot rolling finish temperature becomes low, a ridging phenomenon occurs, and an appearance defect after forming tends to occur. Therefore, the hot rolling end temperature is set to (Ar 3 transformation point 1 3 0) ^ or more.
巻き取り温度: 400 〜750  Winding temperature: 400-750
卷き取り温度が低過ぎると熱延板の形状が劣化し、 次工程の酸洗、 冷間圧延の操 業に支障をきたすため、 400 以上とする。 一方、 高くなり過ぎると熱延母板の 段階で窒化アルミが析出し、強化に十分な固溶 Nを確保することができなくなる。 また、 熱延母板中に炭化物が凝集した組織が形成され、 後述する過時効による炭 化物の均一析出の効果を得ることができなくなり、 加えて、 これが鋼板の耐食性 に悪影響を与える。 さらに、 鋼板表面に生じるスケール厚の増大に伴い酸洗性が 劣化する。 これらの不具合を回避するために、 750 "C以下とする必要がある。 このようにして製造した熱延板に、 酸洗、 冷間圧延を施し、 冷延板とする。 酸 洗は常法に従い、 塩酸、 硫酸等の酸で表面スケールを除去すればよい。 If the scraping temperature is too low, the shape of the hot-rolled sheet deteriorates, causing problems in pickling and cold rolling operations in the next process. On the other hand, if it becomes too high, aluminum nitride will precipitate at the stage of hot-rolled base metal, making it impossible to secure sufficient solute N for strengthening. In addition, a structure in which carbide aggregates is formed in the hot-rolled mother plate, and the effect of uniform precipitation of carbide due to overaging described later cannot be obtained. In addition, this adversely affects the corrosion resistance of the steel plate. In addition, the pickling performance deteriorates as the scale thickness generated on the steel sheet surface increases. In order to avoid these problems, it is necessary to set the temperature to 750 "C or less. The hot-rolled sheet manufactured in this way is pickled and cold-rolled to form a cold-rolled sheet. The surface scale can be removed with an acid such as hydrochloric acid or sulfuric acid.
(酸洗後の) 冷間圧延における圧下率: 8 0 %以上 (好適条件)  Rolling ratio in cold rolling (after pickling): 80% or more (preferred conditions)
圧下率が 8 0 %未満では焼鈍後に組織の充分な細粒化が得られない場合があるの で 8 0 %以上が好ましい。 なお、 本発明のような素材の鋼板で、 組織の充分な微 細化を達成するためには、 圧下率は 8 5 %以上がより好ましい。 一方、 圧下率の 上限については特に定める必要はなく、 熱間圧延、 冷間圧延の設備列の能力等を 考慮し適宜設定される。 If the rolling reduction is less than 80%, it may not be possible to obtain a sufficiently fine structure after annealing, so 80% or more is preferable. In order to achieve a sufficiently fine structure in a steel plate made of a material as in the present invention, the rolling reduction is more preferably 85% or more. On the other hand, the upper limit of the rolling reduction is not particularly required, and is set as appropriate in consideration of the capacity of equipment lines for hot rolling and cold rolling.
焼鈍温度: 800 °C以下の再結晶温度 (好適条件) 鋼板中に未再結晶組織が残存すると、 製缶時の成形性不良、 外観不良等を招くの で連続焼鈍により再結晶処理を施す必要がある。 しかし、 焼鈍温度を過度に高め ると連続焼鈍時にヒートバックルや板破断等の欠陥を生じる。 そして、 異常な結 晶粒成長により、 外観特性の劣化を招く危険性が高くなる。 よって、 焼鈍温度は 800 で以下の再結晶温度域で行うことが好ましい。 Annealing temperature: Recrystallization temperature below 800 ° C (preferred conditions) If an unrecrystallized structure remains in the steel sheet, it may cause formability failure during can making, poor appearance, etc., so it is necessary to perform recrystallization treatment by continuous annealing. However, if the annealing temperature is excessively increased, defects such as heat buckles and plate breakage occur during continuous annealing. In addition, abnormal crystal grain growth increases the risk of deteriorating appearance characteristics. Therefore, the annealing temperature is 800, and it is preferable to carry out in the following recrystallization temperature range.
また、 この温度範囲内であれば、 とくに一定の温度に保持する必要はない。 操 業の安定性から 5 s以上 60 s以下の均熱相当時間があれば十分である。 5 s以上の 均熱時間とすると加工時の応力を分散させるサイ トとなる炭化物の析出が十分と なり好ましい。.  In addition, if it is within this temperature range, it is not necessary to keep the temperature constant. In view of operational stability, a soaking time equivalent to 5 s or more and 60 s or less is sufficient. A soaking time of 5 s or longer is preferable because precipitation of carbides that can disperse stress during processing becomes sufficient. .
過時効処理  Overaging treatment
前記焼鈍により析出した炭化物をさらに均一に分散させ、 応力分散サイ トを効果 的にするために過時効処理を行うことが必要である。 過時効処理は前記焼鈍のあ と、 3 0 0〜 5 0 0での温度域まで 1 O ^Z s以上の冷却速度で冷却し、 3 0 0 〜 5 0 0での温度域で 5 s以上保持することが好ましい。 3 0 0〜 5 0 0での温 度域まで 1 0で Z s以上の冷却速度で冷却することにより炭化物が析出しゃすく なり、 3 0 0〜 5 0 0 ¾の温度域で 5 s以上保持すると均一な炭化物の析出を確 保することができる。 また、 このような過時効処理を行うことにより、 以下に示 す 2回目の冷間圧延を 20〜50%の圧下率で行っても板幅方向と圧延方向の耐 力差を 2 O M P a以下とすることが可能となる。 このような条件で過時効 処理を行うことで、 粒径 1. 5 i m以下および粒径 1. 5 111超3. 0 /^以下の炭化物 の密度および割合を後述する好ましい範囲とすることができる。 It is necessary to perform an overaging treatment in order to disperse the carbides precipitated by the annealing more uniformly and to make the stress dispersion site effective. In the over-aging treatment, after the annealing, cooling is performed at a cooling rate of 1 O ^ Z s or more to a temperature range of 300 to 500, and 5 s or more in the temperature range of 300 to 500. It is preferable to hold. Carbide precipitates by cooling at a cooling rate of at least Z s at 10 until the temperature range from 300 to 500 and is maintained for at least 5 s in the temperature range of 300 to 5,000 ¾. Then, uniform carbide precipitation can be ensured. In addition, by performing such overaging treatment, even if the second cold rolling shown below is performed at a rolling reduction of 20 to 50%, the difference in yield strength between the sheet width direction and the rolling direction is 2 OMPa or less. It becomes possible. By performing an overaging treatment under such conditions, the density and ratio of carbides having a particle size of 1.5 im or less and a particle size of 1.5 to more than 111 / 3.0 or less can be set within a preferable range described later. .
2回目の冷間圧延の圧下率: 20〜50% (好適には 20〜30% )  Second cold rolling reduction: 20-50% (preferably 20-30%)
連続焼鈍後の 2回目の冷間圧延 (以下、 2次冷間圧延と称することもある) は、 溶接缶の耐圧強度すなわち鋼板の降伏強度を確保するために必要である。 特 に、 本発明の P含有量を調整した素材に用いる場合を考慮すると、 2次冷間圧延 の圧下率は少なく とも 20%は必要である。一方、圧下率が 50%超では、材質特性 の異方性が大きくなり、 板幅方向と圧延 (圧延) 方向の耐カ差が 2 O M P a超と なる。 また、 新板取り法 (鋼板の圧延方向が缶胴の軸方向に平行となるような板 取り法) におけるフランジ加工性やネック加工性を顕著に劣化させる。 さらに、 製缶時の溶接によって、 歪みの開放量が大きくなり、 溶接熱影響部における軟化 が著しくなるために、フランジ割れが発生し易くなる。よって、 50%以下とする。 好ましくは 20%以上 30%以下であるが、 P含有量と目的とする鋼板強度に応じて 適宜選択すればよい。 具体的には、 P含有量が 0. 020%超 0. 100%以下と高い場合 には比較的低い圧下率とすることが好ましい。 The second cold rolling after continuous annealing (hereinafter sometimes referred to as secondary cold rolling) is necessary to ensure the pressure resistance of the welded can, that is, the yield strength of the steel sheet. In particular, considering the case of using the P-content-adjusted material of the present invention, the reduction ratio of secondary cold rolling is required to be at least 20%. On the other hand, when the rolling reduction exceeds 50%, the material property anisotropy increases, and the difference in resistance between the sheet width direction and the rolling (rolling) direction exceeds 2 OMPa. Become. In addition, the flange formability and neck workability of the new plate removal method (a plate removal method in which the rolling direction of the steel plate is parallel to the axial direction of the can body) are significantly deteriorated. In addition, welding at the time of can making increases the amount of strain release and significantly softens the weld heat-affected zone, making it easy for flange cracks to occur. Therefore, 50% or less. The content is preferably 20% or more and 30% or less, but may be appropriately selected according to the P content and the intended steel sheet strength. Specifically, when the P content is as high as more than 0.020% and not more than 0.100%, a relatively low rolling reduction is preferable.
本発明では、 2次冷間圧延後に、 冷延鋼板の表面に (少なくとも片面) めっき 層を形成し、 めっき鋼板とすることができる。 表面に形成されるめつき層は容器 用鋼板に適用されるいずれのものも適用可能である。 めっき層としては、 錫めつ き、 クロムめつき、 ニッケノレめつき、 ニッケノレ · クロムめつきが例示できる。 ま た、 これらのめっき処理後に塗装、 有機樹脂フィルム等を貼ることもなんら問題 ない。 実施例  In the present invention, after secondary cold rolling, a plated layer can be formed on the surface of the cold-rolled steel sheet (at least one side) to obtain a plated steel sheet. As for the adhesion layer formed on the surface, any of those applied to steel plates for containers can be applied. Examples of the plating layer include tin plating, chromium plating, nickel plating, nickel plating and chromium plating. In addition, there is no problem with applying paint or organic resin film after these plating treatments. Example
表 1に示す成分を含有し、残部が Fe及び不可避的不純物からなる鋼を転炉で瘠 製し、 連続铸造法でスラブとした。 ついで、 これらスラブを、 スラブ抽出温度を 1200で、熱延仕上げ温度を 900¾、'卷き取り温度を 650 として、 熱間圧延を施し 仕上げ厚み 2. 0mmの熱延板とした。 その後、 これら熱延板に酸洗による脱スケー ル処理を施し、 さらに圧下率 90%の冷間圧延を施し仕上げ厚み 0. 20mmの冷延板 とし、 ついで均熱温度を 750^とし、 均熱時間を 10〜30s とする連続焼鈍、 過時 効処理おょぴ 2次冷間圧延を行い、,冷延銅板とした。  Steel containing the components shown in Table 1 and the balance consisting of Fe and unavoidable impurities was produced in a converter and made into a slab by continuous forging. Subsequently, these slabs were hot rolled at a slab extraction temperature of 1200, a hot rolling finishing temperature of 900¾, and a scraping temperature of 650 to obtain hot rolled sheets having a finished thickness of 2.0 mm. After that, these hot-rolled sheets were descaled by pickling, and further cold-rolled with a reduction rate of 90% to obtain cold-rolled sheets with a finished thickness of 0.20 mm, and then the soaking temperature was 750 ^. Continuous annealing for 10 to 30 s, over-aging treatment, secondary cold rolling, and cold rolled copper sheet.
なお、 過時効処理条件および 2次冷間圧延圧下率は表 2および表 3に示す通りで ある。 表 1 Tables 2 and 3 show the overaging treatment conditions and the secondary cold rolling reduction ratio. table 1
Figure imgf000011_0001
以上により得られた鋼板に対して、 以下の方法により組織観察を行い、 炭化物 粒径の密度および割合を求めた。 また、 以下の試験を行い、 特性を評価した。 上記により得られた冷延鋼板をべ一クライ ト樹脂に埋め込み、 断面を研磨した。 次いで、 腐食液としてのち、 ピク リン酸、 水酸化ナトリウムを調合してなるピク リン酸ソーダ溶液を用いて、 80で、6り秒で腐食液への浸漬処理を施した。次いで、 炭化物を 400倍の光学顕微鏡で 3視野 (0.1375mm X0.1375mm程度の範囲) を 観察した。 各視野において、 目視により、 粒径 1.5/ m以下、 粒径 1.5μ πι超 3.0 μ ιη以下、 3.0// m超の炭化物の個数を求め、 3視野の密度と割合の平均値を求め た。 この時、 炭化物の粒径は最小径とし、 例えば、 炭化物形状が矩形や楕円状で 短径と長径が存在する場合は最小径を本発明においては粒径とした。
Figure imgf000011_0001
The steel sheet obtained as described above was subjected to structure observation by the following method to determine the density and ratio of the carbide particle size. The following tests were conducted to evaluate the characteristics. The cold-rolled steel sheet obtained as described above was embedded in a single-climate resin and the cross section was polished. Next, after being used as a corrosive solution, a soda picrate soda solution prepared by mixing picric acid and sodium hydroxide was used and immersed in the corrosive solution at 80 seconds for 6 seconds. Next, the carbides were observed in three fields of view (in the range of about 0.1375mm x 0.1375mm) with a 400x optical microscope. In each field of view, the number of carbide particles having a particle size of 1.5 / m or less, a particle size of 1.5 μπι or more, 3.0 μιιη or less, and a particle size of more than 3.0 // m was determined, and the average value of the density and ratio of the three fields was determined. At this time, the particle diameter of the carbide is set to the minimum diameter. For example, when the carbide shape is rectangular or elliptical, and the short diameter and the long diameter exist, the minimum diameter is set as the particle diameter in the present invention.
( i ) 引張試験  (i) Tensile test
これら冷延鋼板の幅方向の中央部から圧延 (L) 方向に、 JIS 13号- B引張試験片 を採取し、 歪速度クロスへッ 速度: 10mm/S で引張試験を実施し、 引張強度 T Sおよび降伏強度 Y Sを測定した。 なお、 引張試験は製品化後 1.日以内に実施し た。 引張試験片を JIS 13号- B試験片としたのは、 標-点外で破断する現象を極力 低減するためである。 Rolling (L) direction from the center in the width direction thereof cold-rolled steel sheet, JIS 13 No. - B tensile test pieces were taken, Tsu speed to strain rate Cross: performing a tensile test at 10 mm / S, the tensile strength TS And the yield strength YS was measured. The tensile test was conducted within 1. days after commercialization. The reason why the tensile test specimen was JIS No. 13-B test specimen was to reduce the phenomenon of fracture outside the target point as much as possible.
( i i ) 板幅方向と圧延方向での耐カ差  (i i) Difference in resistance between sheet width direction and rolling direction
上記 ( i ) の引張試験により測定した Y Sと、 板幅方向に採取した JIS 13 号- B 引張試験片を ( i ) と同様に測定した Y Sとの差を求め 。 Find the difference between YS measured by the tensile test in (i) above and YS measured in the same way as in (i) on JIS 13-B tensile specimens taken in the plate width direction.
( i i i ) ネッキング加工性 .  (i i i) Necking workability.
これら冷延鋼板に S nめっき処理 (片面あたりの S n付着量 2.8g/m2) を行い、 めっき鋼板とした。 このめつき鋼板の表面に、 塗装 .印刷 '透明ニス仕上げを 行った後、 プレス油を使用せずに前記鋼板を以下の条件でカップ絞り、 さらに 2度の再絞り加工を施す深絞り成形を 1 00回行い、 ネックの絞りしわの発生率 を調査し 7こ。 These cold-rolled steel sheets were Sn-plated (Sn adhesion amount per side 2.8g / m 2 ) A plated steel sheet was obtained. After painting and printing 'transparent varnish finish on the surface of the steel plate, the steel plate is cup-drawn under the following conditions without using press oil, and deep-drawing is performed by performing redrawing twice. Conducted 1 00 times and investigated the occurrence rate of neck wrinkles.
深絞り成形条件 Deep drawing conditions
ブランク径: 200mm φ Blank diameter: 200mm φ
潤滑条件: プレス油使用せず Lubrication conditions: No press oil used
第 1絞りの絞り比: 1.5 First aperture ratio: 1.5
索 2絞りの絞り比: 1.2 Rope 2 aperture ratio: 1.2
第 3絞りの絞り比: 1.2 Third aperture ratio: 1.2
第 1〜3絞りのしわ押さえ圧:最適条件 1st to 3rd aperture wrinkle pressure: Optimal condition
フランジ加工:伸び率 8% Flange processing: Elongation 8%
再絞りダイス肩半径: 0.45讓 Redrawing die shoulder radius: 0.45mm
加工速度: 0.3m/s . Machining speed: 0.3m / s.
( i v) 耐フランジ割れ性  (i v) Flange crack resistance
( i i i ) の深絞り成形において、 フランジ割れの発生率を調査した。  In the deep drawing of (i i i), the incidence of flange cracking was investigated.
( V ) 外観  (V) Appearance
これら冷延鋼板を目視で観察し、 光沢や色調が異なると判断される部分を外観不 良とした。観察した 100m単位の中に 1箇所でも外観不良が確認されればこの 100 mを外観不良部とし、 10000mを観察して外観不良率を求めた。 These cold-rolled steel sheets were visually observed, and the parts judged to have different luster and color tone were regarded as having poor appearance. If an appearance defect was confirmed even at one location in the observed 100 m unit, this 100 m was regarded as an appearance defect portion, and 10000 m was observed to obtain the appearance defect rate.
( V i ) スラブ割れ  (V i) Slab crack
連続铸造後のスラブ表面を目視でスラブ割れの状況を観察した。 The state of slab cracking was visually observed on the surface of the slab after continuous forging.
観察した lm単位の中に割れが 1箇所でも確認されればこの lmを外観不良部とし、 10mを観察して外観不良率を求めた。 If even one crack was confirmed in the observed lm unit, this lm was regarded as a defective appearance part, and 10m was observed to obtain the defective appearance ratio.
得られた結果を条件と併せて表 2および表 3に示す。
Figure imgf000013_0001
The results obtained are shown in Table 2 and Table 3 together with the conditions.
Figure imgf000013_0001
Figure imgf000014_0001
Figure imgf000014_0001
表 2および表 3より、本発明例である No. 8〜: 1 0、 1 3〜; 1 8、 2 6〜2 8、 3 1〜3 6は十分な強度を有し、 かつ板幅方向と圧延方向の耐カ差が 2 OMP a 以下であり、 例えば、 3 ピース加工に必要な性能を十分に達成している。 また、 外観に優れ、ネックしわやフランジ割れも生じていないことが認められる。また、 炭化物の密度、 割合が好適範囲である No. 8 ~ 1 0、 1 3〜1 5、 26〜2 8、 3 1〜3 3では、 より一層加工性が優れているのがわかる。 From Tables 2 and 3, Nos. 8 to 10 as examples of the present invention: 10 and 13 to 1; 18 and 26 to 28 and 31 to 36 have sufficient strength, and the width direction of the plate The difference in resistance in the rolling direction is 2 OMPa or less, and, for example, the performance required for 3-piece processing has been sufficiently achieved. In addition, it has an excellent appearance and no neck wrinkles or flange cracks are observed. Further, it can be seen that the workability is further improved in Nos. 8 to 10, Nos. 13 to 15, 26 to 28, and 31 to 3 in which the density and ratio of the carbides are in a suitable range.
方、 過時効処理を行わない比較例の No. 1、 2、 1 9、 2 0は二次冷間圧延の 圧下率が低く強度が得られない。 No. 3〜5、 2 1〜 2 3は二次冷間圧延の圧下 率が 20%以上であり強度は高くなるが、 L方向と C方向の耐カ差が 2 OMPaを超 え、 ネックしわやフランジ割れの発生が顕著である。 また、 外観の不良も発生し ている。 - また、 二次冷間圧延の圧下率が 20%未満の No. 6、 7、 1 1、 1 2、 24、 2 5、 2 9、 3 0は強度が得られない。  On the other hand, Nos. 1, 2, 19, and 20 in the comparative examples in which overaging treatment is not performed have a low rolling reduction in secondary cold rolling and cannot provide strength. Nos. 3-5 and 2 1-23 have a secondary cold rolling reduction ratio of 20% or more and high strength, but the difference in resistance between the L and C directions exceeds 2 OMPa, resulting in neck wrinkles. And the occurrence of flange cracks is remarkable. In addition, appearance defects have occurred. -In addition, No. 6, 7, 11 1, 12, 24, 25, 29, 30 with a rolling reduction of secondary cold rolling of less than 20% cannot obtain strength.
さらに、 炭化物の密度、 .割合に関して以下の知見を得た。 本発明の高強度容器 用鋼板は、 加工性の点から、 粒径 1.5 m以下の炭化物の密度が 102個 ΖΐΟΟΟΟ m2超であり、 かつ、 粒径 1.5/zm超 3.0/i m以下の炭化物の密度が 63個 ZlOOOO/z m2超であることが好ましい。 さらには、粒径 1.5/xm以下の炭化物個数の全炭化物 個数に対する割合が 52%超であり、 かつ、 粒径 3.0/z m以下の炭化物個数の全炭 化物個数に対する割合が 85%超であることがより好ましい。 Furthermore, the following knowledge about the density and ratio of carbides was obtained. From the viewpoint of workability, the steel sheet for high-strength containers according to the present invention has a density of carbides with a particle size of 1.5 m or less of 102 ΖΐΟΟΟΟ m 2 and a particle size of 1.5 / zm or more and a carbide of 3.0 / im or less. it is preferred density of 63 ZlOOOO / zm 2 greater. Furthermore, the ratio of the number of carbides with a particle size of 1.5 / xm or less to the total number of carbides is more than 52%, and the ratio of the number of carbides with a particle size of 3.0 / zm or less to the total number of carbides is more than 85%. Is more preferable.
粒径 1.5/zm以下の炭化物の密度が 102個 10000 ;zm2超であり、かつ、粒径 1.5 超 3.0 m以下の炭化物の密度が 63個/ 10000 m2超とすることで、 加工時に 応力分散サイ トとして機能する炭化物を十分量確保でき、 一層加工性が優れるこ とになる。 さらに好ましくは、 粒径 1.5μπι以下の炭化物の密度が 130個/ 10000 μΐη2以上、粒径 1.5μπι超 3.0μ m以下の炭化物の密度が 80個 10000 μ m2以上で ある。 The density of carbides with a particle size of 1.5 / zm or less is 102 10000; more than zm 2 and the density of carbides with a particle size of more than 1.5 and 3.0 m or less is 63 / 10,000 m 2. A sufficient amount of carbides functioning as a dispersion site can be secured, and workability will be further improved. More preferably, the density of carbides with a particle size of 1.5 μπι or less is 130/10000 μΐη 2 or more, and the density of carbides with a particle size of more than 1.5 μπι of 3.0 μm or less is 80 or more and 10000 μm 2 .
また、 粒径 1.5/zm以下の炭化物の個数の全炭化物個数に対する割合が 52%超 であり、 かつ、 粒径 3.0 xm以下の炭化物の個数の全炭化物個数に対する割合が 85%超であると、 応力分散サイ トとして機能する炭化物の効果をさらに高めるこ とになり、 より一層加工性が改善される。 さらに好ましくは、粒径 1. 5 m以下の 炭化物の個数の全炭化物個数に対する割合が 55%以上であり、 かつ粒径 3. 0 μ m 以下の炭化物の個数の全炭化物個数に対する割合が 90%以上である。 In addition, the ratio of the number of carbides with a particle size of 1.5 / zm or less to the total number of carbides is more than 52%, and the ratio of the number of carbides with a particle size of 3.0 xm or less to the total number of carbides is If it exceeds 85%, the effect of the carbide functioning as a stress dispersion site is further enhanced, and the workability is further improved. More preferably, the ratio of the number of carbides having a particle size of 1.5 m or less to the total number of carbides is 55% or more, and the ratio of the number of carbides having a particle size of 3.0 μm or less to the total number of carbides is 90%. That's it.
また/上記炭化物の密度および割合は、 冷間圧延後の銅板を所定の条件で焼鈍 処理することによって制御することができる。 具体的には、 冷間圧延後の連続焼 鈍工程において、 鋼板の熱履歴を所定の範囲内に調整して過時効処理を行う。 さらに、 表 3は、 N含有量を 0. 0065%、 0. 0043%と好適範囲: 0. 01 %未満とし た実施例である。 表 3より、 N含有量を 0. 01%未満とすることで、 スラブ割れが 全く確認されず、 スラブ割れが防止されているのがわかる。 本発明によれば、 5 0 O M P a以上の T Sを有し、 板幅方向と圧延方向の耐カ 差が 2 O M P a以下であり、 かつ、 フランジ加工やネッキング加工時に割れが生 じない加工性に優れた高強度容器用鋼板が得られる。  In addition, the density and ratio of the carbides can be controlled by annealing the copper sheet after cold rolling under predetermined conditions. Specifically, in the continuous annealing process after cold rolling, an overaging treatment is performed by adjusting the thermal history of the steel sheet within a predetermined range. Further, Table 3 is an example in which the N content is 0.0055% and 0.0039% and the preferable range is less than 0.01%. From Table 3, it can be seen that when the N content is less than 0.01%, no slab cracking is confirmed and slab cracking is prevented. According to the present invention, the workability has a TS of 50 OMPa or more, the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less, and no cracking occurs during flange processing or necking processing. A high strength steel plate for containers is obtained.
さらに、 本発明では、 P含有量を調整し、 かつ 2回目の冷間圧延での圧下率を 2 0 - 5 0 %として高強度化し、圧延後の外観の問題や幅方向と圧延方向での耐カ差 の問題が解消される。 Furthermore, in the present invention, the P content is adjusted, and the reduction ratio in the second cold rolling is increased to 20 to 50% to increase the strength, and the appearance problems after rolling, the width direction and the rolling direction are increased. The problem of resistance to resistance is eliminated.
また、 N成分を好適範囲である 0. 01%未満とすることで、 スラブ割れを防止し、 製品での歩留まり低下を抑えることができる。 産業上の利用可能性 In addition, by making the N component less than the preferable range of 0.01%, it is possible to prevent slab cracking and to suppress a decrease in yield in products. Industrial applicability
本発明の容器用鋼板は、 ネッキング加工やフランジ加工において割れを生じる ことなく優れた強度が得られるので、 例えば、 缶などの食品容器、 オイルフ ィルターなど非食品容器、 バッテリ一などの電子パーツなどを中心に容 器用素材と して好適に使用できる。  The steel plate for containers of the present invention can provide excellent strength without cracking in necking and flange processing. For example, it can be used for food containers such as cans, non-food containers such as oil filters, and electronic parts such as batteries. It can be suitably used as a container material in the center.

Claims

請求の範囲 The scope of the claims
1. 質量%で、 C:0.01〜0.05%、 Si:0.04%以下、 n: 0.1~ 1.2%, S:0.10% 以下、 A1 : 0.001〜 0.100%、 N:0.10%以下、 P: 0.0020〜 0.100¾を含有し、 残部が Feおよび不可避的不純物からなり、引張強度 T Sが 5 0 OMP a以上、か つ板幅方向と圧延方向の耐カ差が 2 OMP a以下である高強度容器用鋼板。 1. By mass%, C: 0.01 to 0.05%, Si: 0.04% or less, n: 0.1 to 1.2%, S: 0.10% or less, A1: 0.001 to 0.100%, N: 0.10% or less, P: 0.0020 to 0.100 A steel plate for high-strength containers, containing ¾, the balance being Fe and inevitable impurities, the tensile strength TS is 50 OMPa or more, and the difference in resistance between the sheet width direction and the rolling direction is 2 OMPa or less.
2. 質量0 /0で、 C:0.01〜0.05%、 Si:0.04%以下、 Mn: 0.1~ 1.2%, S:0.10% 以下、 A1 : 0.001〜 0.100%、 N:0.10%以下、 P: 0.0020〜 0.020%を含有し、 残部が Feおよび不可避的不純物からなり、引張強度 T Sが 5 0 OMP a以上、か つ板幅方向と圧延方向の耐カ差が 2 OMP a以下である高強度容器用鋼板。 2. Mass 0/0, C: 0.01~0.05% , Si: 0.04% or less, Mn: 0.1 ~ 1.2%, S: 0.10% or less, A1: 0.001~ 0.100%, N : 0.10% or less, P: 0.0020 For high-strength containers that contain ~ 0.020%, the balance is Fe and inevitable impurities, the tensile strength TS is 50 OMPa or more, and the difference in resistance between the plate width direction and the rolling direction is 2 OMPa or less steel sheet.
3. 質量0 /oで、 C:0.01~0.05%、 Si:0.04%以下、 Mn: 0.1〜 1.2%、 S: 0.10% 以下、 A1 : 0.001~ 0.100%、 N:0, 10%以下、 P: 0.0020〜 0.100%を含有し、 残部が Feおよび不可避的不純物からなる銅を、 仕上げ温度 : (Ar3変態点温 度一 30) °C以上、 巻き取り温度 : 400〜750でで熱間圧延し、 .酸洗、 冷間 圧延を行った後、 過時効処理を含む連続焼鈍を行い、 次いで、 圧下率 : 20〜 50%で 2回目 の冷間圧延を行う こと を特徴とする高強度容器用鋼板 の製造方法。 3. At mass 0 / o, C: 0.01 ~ 0.05%, Si: 0.04% or less, Mn: 0.1 ~ 1.2%, S: 0.10% or less, A1: 0.001 ~ 0.100%, N: 0, 10% or less, P : Copper containing 0.0020-0.100%, the balance being Fe and inevitable impurities, Finishing temperature: (Ar 3 transformation temperature 1-30) ° C or higher, Winding temperature: Hot rolling at 400-750 A high-strength container characterized by performing pickling and cold rolling, followed by continuous annealing including overaging, and then performing a second cold rolling at a rolling reduction of 20 to 50%. Steel plate manufacturing method.
4. 質量0 /oで、 C:0.01〜0.05%、 Si:0.04%以下、 Mn: 0.1~ 1.2%, S:0.10% 以下、 A1: 0.001— 0.100%, N:0.10%以下、 P: 0.0020〜 0.020%を含有し、 残部が Feおよび不可避的不純物からなる鋼を、 仕上げ温度 : (Ar3変態点温 度一 30) で以上、 卷き取り温度 : 400〜750 で熱間圧延し、 酸洗、 冷間 圧延を行った後、 過時効処理を含む連続焼鈍を行い、 次いで、 圧下率 : 20〜50%で 2回目の冷間庄延を行う こ とを特徴とする高強度容器用鋼板 の製造方法。 4. At mass 0 / o, C: 0.01 to 0.05%, Si: 0.04% or less, Mn: 0.1 to 1.2%, S: 0.10% or less, A1: 0.001—0.100%, N: 0.10% or less, P: 0.0020 Steel containing ~ 0.020%, the balance being Fe and unavoidable impurities, hot-rolled at a finishing temperature of (Ar 3 transformation temperature 1-30) or more at a scraping temperature of 400 to 750, acid Washing and cold rolling, followed by continuous annealing including overaging treatment, followed by second cold rolling at a rolling reduction of 20 to 50% Manufacturing method.
PCT/JP2009/057717 2008-04-11 2009-04-10 High-strength steel sheet for container and process for production thereof WO2009125876A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801127859A CN101999009B (en) 2008-04-11 2009-04-10 Steel sheet for high-strength container, and method for manufacturing therefor
KR1020137017399A KR20130083487A (en) 2008-04-11 2009-04-10 High-strength steel sheet for container and process for production thereof
US12/936,681 US20110168303A1 (en) 2008-04-11 2009-04-10 High tensile strength steel for container and producing method of the same
BRPI0909012A BRPI0909012A2 (en) 2008-04-11 2009-04-10 high tensile strength steel for container and production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-103303 2008-04-11
JP2008103303 2008-04-11
JP2008-185660 2008-07-17
JP2008185660 2008-07-17

Publications (1)

Publication Number Publication Date
WO2009125876A1 true WO2009125876A1 (en) 2009-10-15

Family

ID=41162006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057717 WO2009125876A1 (en) 2008-04-11 2009-04-10 High-strength steel sheet for container and process for production thereof

Country Status (8)

Country Link
US (1) US20110168303A1 (en)
JP (1) JP5434212B2 (en)
KR (2) KR20100122115A (en)
CN (2) CN103409706B (en)
BR (1) BRPI0909012A2 (en)
MY (1) MY168642A (en)
TW (1) TWI390053B (en)
WO (1) WO2009125876A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof
JP2013133483A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength high-processability steel sheet for can, and method for manufacturing the same
KR20210141612A (en) 2019-03-29 2021-11-23 제이에프이 스틸 가부시키가이샤 Steel plate for can and manufacturing method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same
US9315877B2 (en) 2010-12-06 2016-04-19 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
KR20140108214A (en) * 2012-04-19 2014-09-05 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
CN103290312B (en) * 2013-06-05 2015-01-21 首钢总公司 Production method for increasing work hardening value of 440MPa-level carbon structural steel
CN103757534B (en) * 2013-12-27 2016-01-20 首钢总公司 A kind of cold-rolled steel sheet and production method thereof with good flange welding property
WO2015166653A1 (en) 2014-04-30 2015-11-05 Jfeスチール株式会社 High strength steel sheet for container, and method for producing same
US11359255B2 (en) * 2017-07-31 2022-06-14 Jfe Steel Corporation Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
CN109423577B (en) 2017-08-30 2021-01-12 宝山钢铁股份有限公司 High-strength multi-phase steel tinning raw plate and manufacturing method thereof
CN110541123B (en) * 2019-09-05 2021-06-15 首钢集团有限公司 Cold-rolled strip steel for battery case and preparation method thereof
JP6897878B1 (en) * 2020-02-17 2021-07-07 日本製鉄株式会社 Steel sheet for cans and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH10110244A (en) * 1996-10-08 1998-04-28 Nippon Steel Corp Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030041932A1 (en) * 2000-02-23 2003-03-06 Akio Tosaka High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
CN1145709C (en) * 2000-02-29 2004-04-14 川崎制铁株式会社 High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP4023106B2 (en) * 2001-05-09 2007-12-19 住友金属工業株式会社 Ferritic heat resistant steel with low softening of heat affected zone
JP4179024B2 (en) * 2003-04-09 2008-11-12 日立金属株式会社 High speed tool steel and manufacturing method thereof
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
CN101144138B (en) * 2007-11-01 2011-05-25 济南钢铁股份有限公司 Producing method of steel plate for low temperature pressure container and thereof
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0734192A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH10110244A (en) * 1996-10-08 1998-04-28 Nippon Steel Corp Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011048274A1 (en) * 2009-10-23 2011-04-28 Rautaruukki Oyj Method for producing high-strength steel product and steel product
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof
JP2013133483A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength high-processability steel sheet for can, and method for manufacturing the same
KR20210141612A (en) 2019-03-29 2021-11-23 제이에프이 스틸 가부시키가이샤 Steel plate for can and manufacturing method thereof

Also Published As

Publication number Publication date
KR20100122115A (en) 2010-11-19
JP5434212B2 (en) 2014-03-05
TW201000649A (en) 2010-01-01
KR20130083487A (en) 2013-07-22
CN103409706B (en) 2015-12-02
CN101999009B (en) 2013-07-17
CN103409706A (en) 2013-11-27
BRPI0909012A2 (en) 2015-09-22
MY168642A (en) 2018-11-27
US20110168303A1 (en) 2011-07-14
TWI390053B (en) 2013-03-21
JP2010043349A (en) 2010-02-25
CN101999009A (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
CN109642294B (en) Steel sheet and method for producing same
TWI390052B (en) High tensile strength steel sheet for can and its production method
TWI460307B (en) High-tensile, hot-dip galvanized steel sheet with improved workability, and method of manufacturing the same
WO2017110579A1 (en) High - strength steel plate and production method for same
WO2008136290A1 (en) Steel sheet for use in can, and method for production thereof
JP2006199979A (en) Bake hardenable hot rolled steel sheet with excellent workability, and its manufacturing method
TW201335386A (en) Galvanized steel sheet and method for manufacturing the same
TWI617677B (en) Steel plate for can and method for producing steel plate for can
WO2013088692A1 (en) Steel sheet with excellent aging resistance, and method for producing same
TWI609976B (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP4943244B2 (en) Steel sheet for ultra-thin containers
WO2017164139A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
JP6699310B2 (en) Cold rolled steel sheet for squeezer and method for manufacturing the same
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP6819838B1 (en) Steel sheet for cans and its manufacturing method
JP5849666B2 (en) High-strength, high-formability steel plate for cans and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112785.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09729438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: PI 2010004425

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20107022588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12936681

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09729438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0909012

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101011