JP2018059196A - High strength ultrathin steel sheet and manufacturing method therefor - Google Patents

High strength ultrathin steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2018059196A
JP2018059196A JP2017187300A JP2017187300A JP2018059196A JP 2018059196 A JP2018059196 A JP 2018059196A JP 2017187300 A JP2017187300 A JP 2017187300A JP 2017187300 A JP2017187300 A JP 2017187300A JP 2018059196 A JP2018059196 A JP 2018059196A
Authority
JP
Japan
Prior art keywords
less
temperature
rolling
strength
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017187300A
Other languages
Japanese (ja)
Other versions
JP6540769B2 (en
Inventor
芳恵 椎森
Yoshie Shiimori
芳恵 椎森
佑哉 河合
Yuya Kawai
佑哉 河合
勇人 齋藤
Isato Saito
勇人 齋藤
房亮 假屋
Fusaaki Kariya
房亮 假屋
克己 小島
Katsumi Kojima
克己 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018059196A publication Critical patent/JP2018059196A/en
Application granted granted Critical
Publication of JP6540769B2 publication Critical patent/JP6540769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength ultrathin steel sheet having excellent ductility and a manufacturing method therefor.SOLUTION: A component composition contains, by mass%, C:over 0.020% and 0.080% or less, Si:0.04% or less, Mn:0.10% to 1.20%, P:over 0.020% and 0.20% or less, S:0.020% or less, Al:0.10% or less, N:over 0.0120% and 0.020% or less, Nb:0.005% to 0.030% and the balance iron with inevitable impurities. A structure mainly contains a ferrite structure and has average crystal particle diameter of 8 μm or less, and ferrite particle with particle size number of 12.5 or more of 10% by area% based on whole ferrite structure. Upper yield strength after a galling seizure treatment or after a heating treatment equivalent to the galling seizure treatment is 550 MPa or more, total elongation is 15% or more and sheet thickness is 0.4 mm or less.SELECTED DRAWING: None

Description

本発明は、容器用鋼板に代表される高強度極薄鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength ultrathin steel plate represented by a steel plate for containers and a method for producing the same.

近年、スチール缶の需要を拡大するため、製缶コストを低減する策がとられている。   In recent years, in order to increase the demand for steel cans, measures have been taken to reduce can manufacturing costs.

製缶コストの低減策としては、素材の低コスト化が挙げられる。そのため、使用する鋼板の薄肉化が進められている。   One way to reduce can manufacturing costs is to reduce the cost of materials. Therefore, thinning of the steel plate to be used has been promoted.

ただし、単に鋼板を薄肉化すると缶体強度が低下する。したがって、溶接缶の缶胴部のような高強度材が用いられている箇所には、単に薄肉化したのみの鋼板を用いることができない。そこで、高強度で極薄の鋼板が望まれている。   However, simply reducing the thickness of the steel sheet will reduce the strength of the can body. Therefore, it is not possible to use a thinned steel plate in a place where a high-strength material such as a can body portion of a welded can is used. Therefore, a high-strength and extremely thin steel sheet is desired.

現在、高強度で極薄な鋼板は、焼鈍後に2次冷間圧延を施すDouble Reduce法(以下、DR法と称す)で製造されている。DR法を利用して製造した鋼板(以下、DR材とも称する。)は高強度であるが、2次冷間圧延に伴う加工硬化により全伸びが小さく(延性に乏しく)加工性が劣るという特徴がある。また、通常の焼鈍後調質圧延を行う鋼板に比べて通過工程数が多いため、コストが高くなる。   Currently, high strength and ultra-thin steel plates are manufactured by the Double Reduce method (hereinafter referred to as DR method) in which secondary cold rolling is performed after annealing. A steel sheet produced by using the DR method (hereinafter also referred to as a DR material) has high strength, but has a feature that the total elongation is small (poor ductility) and workability is inferior due to work hardening accompanying secondary cold rolling. There is. Moreover, since there are many passage processes compared with the steel plate which performs normal temper rolling after annealing, cost becomes high.

このようなDR材の欠点を回避するため、種々の強化法を用いて、2次冷間圧延工程を省略し、1次冷間圧延と焼鈍工程で特性を制御するSingle Reduce法 (SR法) により高強度鋼板を製造する方法が提案されている。   In order to avoid such defects of the DR material, a single reduction method (SR method) is employed in which the secondary cold rolling process is omitted by using various strengthening methods, and the characteristics are controlled by the primary cold rolling and annealing processes. Has proposed a method for producing a high-strength steel sheet.

特許文献1では、焼鈍工程において再結晶が完了する高温ではなく、再結晶率:60〜90%の部分再結晶状態となるように焼鈍を行うことで、塗装焼付処理後の降伏応力:550MPa以上の高強度を得る技術が開示されている。   In Patent Document 1, the yield stress after the paint baking process is 550 MPa or more by performing annealing so as to be in a partially recrystallized state with a recrystallization rate of 60 to 90%, not at a high temperature at which recrystallization is completed in the annealing process. A technique for obtaining a high strength is disclosed.

特許文献2では、Nb、Ti、Bによる析出強化および結晶粒微細化の複合的な組み合わせにより、450〜550MPaの高強度と20%以上の全伸びを両立する鋼板を得る技術が開示されている。   Patent Document 2 discloses a technique for obtaining a steel sheet that has both a high strength of 450 to 550 MPa and a total elongation of 20% or more by a combined combination of precipitation strengthening by Nb, Ti, and B and refinement of crystal grains. .

特許文献3では、Nによる固溶強化、Nb析出物による析出強化、および1〜19%の二次圧延による加工硬化を組み合わせることで、450〜630MPaの上降伏応力と13%以上の全伸びを両立する鋼板を得る技術が開示されている。   In Patent Document 3, by combining solid solution strengthening by N, precipitation strengthening by Nb precipitates, and work hardening by secondary rolling of 1 to 19%, an upper yield stress of 450 to 630 MPa and a total elongation of 13% or more are obtained. A technique for obtaining a compatible steel sheet is disclosed.

特開2001−107187号公報JP 2001-107187 A 特開2008−274332号公報JP 2008-274332 A 特許第5939368号公報Japanese Patent No. 5939368

上述したように、薄ゲージ化(薄肉化)するためには缶体の強度確保のために、鋼板強度を高めることが必要である。一方、加工度が高い缶胴加工により成形される缶(例えば、拡缶加工のような缶胴加工により成形される缶体、ビード加工のような缶胴加工により成形される缶体、フランジ加工により成形される缶体)に素材として鋼板を用いる場合には、鋼板の割れが発生しないように、高延性の鋼板を適用する必要がある。   As described above, in order to reduce the gauge (thin), it is necessary to increase the strength of the steel sheet in order to ensure the strength of the can body. On the other hand, cans formed by can body processing with a high degree of processing (for example, can bodies formed by can body processing such as can expansion processing, can bodies formed by can body processing such as bead processing, flange processing When a steel plate is used as a raw material for the can body formed by the above method, it is necessary to apply a highly ductile steel plate so that cracking of the steel plate does not occur.

以上の特性について、上記従来技術では、高強度、高延性 (全伸び) の両立が達成されていない。   With respect to the above characteristics, the above-described conventional technology has not achieved both high strength and high ductility (total elongation).

特許文献1では、再結晶率:60〜90%の部分再結晶状態となるよう焼鈍を行うことで高強度を達成している。しかし、部分再結晶状態であるため、延性が低下する。   In patent document 1, high intensity | strength is achieved by performing annealing so that it may become a partial recrystallization state of recrystallization rate: 60-90%. However, since it is in a partially recrystallized state, ductility is reduced.

特許文献2では、Nb、Ti、Bによる析出強化および結晶粒微細化の複合的な組み合わせにより高強度と高延性の両立を達成している。しかし、本発明で解決しようとしている550MPa以上の高強度には達していない。   In Patent Document 2, both high strength and high ductility are achieved by a combined combination of precipitation strengthening by Nb, Ti, and B and refinement of crystal grains. However, it does not reach the high strength of 550 MPa or more which is to be solved by the present invention.

特許文献3では、Nによる固溶強化、Nb析出物による析出強化、および1〜19%の二次圧延による加工硬化を組み合わせることで高強度と高延性を両立している。しかし、実施例では、550MPa以上の高強度と15%以上の全伸びの両立を達成している例はない。   In Patent Document 3, high strength and high ductility are achieved by combining solid solution strengthening with N, precipitation strengthening with Nb precipitates, and work hardening by secondary rolling of 1 to 19%. However, in the examples, there is no example that achieves both high strength of 550 MPa or more and total elongation of 15% or more.

本発明は、かかる事情に鑑みなされたもので、優れた延性を有する高強度極薄鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength ultrathin steel sheet having excellent ductility and a method for producing the same.

本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

析出強化、結晶粒微細化強化、固溶強化の複合的な組み合わせに着目した。そして、Nb析出物による析出強化、固溶元素およびNb析出物のピン止め効果による結晶粒微細化強化、固溶N、Pによる固溶強化を組み合わせることで延性が劣ることなく高強度化できることを見出した。   We focused on the combined combination of precipitation strengthening, grain refinement strengthening, and solid solution strengthening. It is possible to increase the strength without inferior ductility by combining the precipitation strengthening by Nb precipitates, the strengthening of crystal grains by the pinning effect of solid solution elements and Nb precipitates, and the solid solution strengthening by solid solutions N and P. I found it.

また、鋼板の組織を一部に微細なフェライト粒を含む組織とすることで、微細なフェライト粒による強度上昇と、比較的粗なフェライト粒による延性向上の両立が図れることを見出した。具体的には、粒度番号12.5以上の微細なフェライト粒を面積%で10%以上有する組織とすることで、高強度の達成と高い延性との両立が図れることを見出した。   Further, it has been found that by making the structure of the steel sheet partly a structure containing fine ferrite grains, it is possible to achieve both an increase in strength due to the fine ferrite grains and an improvement in ductility due to relatively coarse ferrite grains. Specifically, it has been found that achieving high strength and high ductility can be achieved by using a structure having fine ferrite grains having a grain size number of 12.5 or more in an area percentage of 10% or more.

さらに、製造方法においては、焼鈍工程における550℃から最高到達板温までの平均昇温速度を適切に調整することで、目的とする組織を有する極薄鋼板が得られることも見出した。   Furthermore, in the manufacturing method, it discovered that the ultra-thin steel plate which has the target structure | tissue could be obtained by adjusting appropriately the average temperature increase rate from 550 degreeC in the annealing process to the highest ultimate plate temperature.

以上のように、本発明は、成分組成、製造方法をトータルで管理することで、高強度と高延性を両立する極薄鋼板が製造可能であることを知見し、本発明を完成するに至った。   As described above, the present invention has been found that an ultra-thin steel sheet having both high strength and high ductility can be manufactured by managing the component composition and manufacturing method in total, and has led to the completion of the present invention. It was.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]成分組成は、質量%で、C:0.020%超え0.080%以下、Si:0.04%以下、Mn:0.10%以上1.20%以下、P:0.020%超え0.20%以下、S:0.020%以下、Al:0.10%以下、N:0.0120%超え0.020%以下、Nb:0.005%以上0.030%以下を含有し、残部が鉄および不可避的不純物からなり、組織は、フェライト組織を主体とし、該フェライト組織の平均結晶粒径が8μm以下であり、粒度番号12.5以上のフェライト粒をフェライト組織全体に対し面積%で10%以上有し、塗装焼付処理後または塗装焼き付け相当の加熱処理後の上降伏応力が550MPa以上、全伸びが15%以上である、板厚0.4mm以下の高強度極薄鋼板。
[2]上記[1]に記載の高強度極薄鋼板の製造方法であって、鋼スラブを仕上げ圧延温度:820℃以上で圧延し、巻取温度:500〜720℃で巻取る熱間圧延工程と、前記熱間圧延後、圧下率:80%以上で冷間圧延する一次冷間圧延工程と、前記一次冷間圧延工程後、550℃から最高到達板温まで平均昇温速度:5℃/sec.以上で昇温し、最高到達板温:650〜800℃とし、650〜800℃の温度域での保持時間:55sec.以下で加熱を行い、前記加熱後冷却するにあたり、650℃から350℃までの温度範囲を19sec.以内とする焼鈍工程と、前記焼鈍工程後、圧下率:5%以下で調質圧延を行う調質圧延工程とを有する高強度極薄鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
また、本発明において、高強度極薄鋼板とは、上降伏応力が550MPa以上の鋼板である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Component composition is mass%, C: more than 0.020% and 0.080% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.20% or less, P: 0.020 %: 0.20% or less, S: 0.020% or less, Al: 0.10% or less, N: 0.0120% or more and 0.020% or less, Nb: 0.005% or more and 0.030% or less And the balance is composed of iron and inevitable impurities, the structure is mainly composed of a ferrite structure, the average crystal grain size of the ferrite structure is 8 μm or less, and ferrite grains having a grain size number of 12.5 or more are included in the entire ferrite structure. High-strength ultra-thin with a thickness of 0.4 mm or less, having an area yield of 10% or more, an upper yield stress of 550 MPa or more, a total elongation of 15% or more after paint baking or after heat treatment equivalent to paint baking. steel sheet.
[2] A method for producing a high-strength ultrathin steel plate according to [1] above, wherein the steel slab is rolled at a finish rolling temperature of 820 ° C. or higher and wound at a winding temperature of 500 to 720 ° C. Step, after the hot rolling, a primary cold rolling step of cold rolling at a reduction rate of 80% or more, and after the primary cold rolling step, an average rate of temperature increase from 550 ° C. to a maximum plate temperature: 5 ° C. / sec. The temperature was raised as described above, the maximum plate temperature was 650 to 800 ° C., and the holding time in the temperature range of 650 to 800 ° C. was 55 sec. In the following heating, the temperature range from 650 ° C. to 350 ° C. is 19 sec. A method for producing a high-strength ultrathin steel plate having an annealing step within the range and a temper rolling step in which temper rolling is performed at a reduction rate of 5% or less after the annealing step.
In addition, in this specification,% which shows the component of steel is mass% altogether.
In the present invention, the high-strength ultrathin steel plate is a steel plate having an upper yield stress of 550 MPa or more.

本発明によれば、550MPa以上の上降伏応力、15%以上の全伸びを有する高強度と高延性を両立する極薄鋼板が得られる。   According to the present invention, an ultrathin steel sheet having both high strength and high ductility having an upper yield stress of 550 MPa or more and a total elongation of 15% or more can be obtained.

さらに、本発明であれば、鋼板の高強度化により、缶を薄ゲージ化しても高い缶体強度を確保することが可能となる。また、高延性により、溶接缶で用いられるビード加工、拡缶加工のような缶胴加工、フランジ加工などの加工度の高い加工を行うことが可能となる。   Furthermore, according to the present invention, by increasing the strength of the steel sheet, it is possible to ensure high strength of the can even if the can is made thinner. Further, due to the high ductility, it is possible to perform processing with a high degree of processing such as bead processing used in welded cans, can barrel processing such as can expansion processing, and flange processing.

まず、本発明の高強度極薄鋼板の成分組成について説明する。   First, the component composition of the high-strength ultrathin steel plate of the present invention will be described.

C:0.020%超え0.080%以下
本発明の極薄鋼板においては、550MPaの上降伏応力の達成が必要である。そのためには、Nbを含有させることで生ずるNb析出物 (NbC等) による析出強化を利用することが重要となる。Nb析出物の生成には鋼板のC量が重要であり、具体的には、0.020%超えのC含有量が必要である。一方で、C量の増加は鉄炭化物の生成を促進し、伸びの低下の要因となる。そのため、C含有量は0.080%以下とする。
C: 0.020% to 0.080% or less In the ultrathin steel plate of the present invention, it is necessary to achieve an upper yield stress of 550 MPa. For that purpose, it is important to use precipitation strengthening by Nb precipitates (NbC or the like) generated by containing Nb. The amount of C in the steel sheet is important for the generation of Nb precipitates. Specifically, the C content exceeding 0.020% is required. On the other hand, an increase in the amount of C promotes the formation of iron carbide and causes a decrease in elongation. Therefore, the C content is 0.080% or less.

Si:0.04%以下
Siは固溶強化により鋼の強度を増加させる元素であるが、多量に添加するとめっき性を損ない、耐食性が著しく低下する。よって、Si含有量は0.04%以下とする。
Si: 0.04% or less Si is an element that increases the strength of the steel by solid solution strengthening, but if added in a large amount, the plating property is impaired and the corrosion resistance is remarkably lowered. Therefore, the Si content is set to 0.04% or less.

Mn:0.10%以上1.20%以下
Mnは固溶強化により鋼の強度を増加させる元素である。目標とする上降伏応力を得るためには、Mn含有量を0.10%以上とする必要がある。よって、Mn含有量の下限は0.10%とする。一方、Mn含有量が1.20%を超えると、表面に濃化してMn酸化物が生成し、耐食性に悪影響を及ぼす。よって、Mn含有量の上限は1.20%とする。
Mn: 0.10% or more and 1.20% or less Mn is an element that increases the strength of steel by solid solution strengthening. In order to obtain the target upper yield stress, the Mn content needs to be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%. On the other hand, if the Mn content exceeds 1.20%, it concentrates on the surface and Mn oxide is generated, which adversely affects the corrosion resistance. Therefore, the upper limit of the Mn content is 1.20%.

P:0.020%超え0.20%以下
Pは固溶強化能の大きな元素である。また、Pはフェライト粒界に作用し、フェライト粒の成長を阻害する役割を担うため、後述する粒度番号12.5以上の微細粒の生成に重要な元素である。十分な固溶強化を得る観点から、目標とする上降伏応力を得るためには、P含有量を0.020%超えとする必要がある。一方、Pは過剰に含有することで、耐食性を劣化させる元素であり、0.20%を超えると耐食性が劣る。以上より、P含有量は0.020%超え0.20%以下とする。なお、好ましくは、P含有量は0.040%以上とする。好ましくは、P含有量は0.180%以下とする。より好ましくは、P含有量は0.160%以下とする。
P: 0.020% to 0.20% or less P is an element having a large solid solution strengthening ability. Further, P acts on the ferrite grain boundary and plays a role of inhibiting the growth of ferrite grains, and is therefore an important element for the generation of fine grains having a grain size number of 12.5 or more, which will be described later. From the viewpoint of obtaining sufficient solid solution strengthening, it is necessary to make the P content exceed 0.020% in order to obtain the target upper yield stress. On the other hand, P is an element that deteriorates the corrosion resistance by containing excessively, and if it exceeds 0.20%, the corrosion resistance is inferior. From the above, the P content is made 0.020% and 0.20% or less. Preferably, the P content is 0.040% or more. Preferably, the P content is 0.180% or less. More preferably, the P content is 0.160% or less.

S:0.020%以下
本発明鋼はN、C含有量が高く、また、スラブ割れの原因となる析出物を形成するNbを含むため、連続鋳造時矯正帯でスラブエッジが割れやすくなる。スラブエッジ割れを防止する点から、S含有量は0.020%以下とする。好ましくは、S含有量は0.010%以下である。
S: 0.020% or less The steel according to the present invention has a high N and C content and includes Nb that forms precipitates that cause slab cracking, so that the slab edge tends to crack in the straightening zone during continuous casting. From the point of preventing slab edge cracking, the S content is set to 0.020% or less. Preferably, the S content is 0.010% or less.

Al:0.10%以下
Al含有量が増加すると、再結晶温度の上昇がもたらされるため、焼鈍温度を高く設定する必要がある。本発明においては、強度を増加させるために含有する他の元素で再結晶温度の上昇がもたらされ、焼鈍温度が高くなるため、Alによる再結晶温度の上昇は極力回避することが必要である。よって、Alの含有量は0.10%以下とする。
Al: 0.10% or less When the Al content is increased, the recrystallization temperature is increased, so that the annealing temperature needs to be set high. In the present invention, an increase in recrystallization temperature is brought about by other elements contained in order to increase the strength, and the annealing temperature becomes high. Therefore, it is necessary to avoid an increase in the recrystallization temperature due to Al as much as possible. . Therefore, the Al content is 0.10% or less.

N:0.0120%超え0.020%以下
Nは固溶強化能が大きく、固溶強化による強度上昇に必要な元素である。Nの固溶強化により十分な強度上昇を得るためには、N含有量は0.0120%超えとする必要がある。よって、N含有量の下限は0.0120%超えとする。一方、Nを過剰に添加すると、連続鋳造時、温度が低下する下部矯正帯でスラブエッジ割れが生じやすくなる。よって、N含有量の上限は0.020%以下とする。なお、好ましくは、N含有量は0.0130%以上とする。好ましくは、N含有量は0.0180%以下とする。より好ましくは、N含有量は0.0170%以下とする。
N: 0.0120% to 0.020% or less N is an element necessary for increasing the strength due to solid solution strengthening because of its large solid solution strengthening ability. In order to obtain a sufficient strength increase by solid solution strengthening of N, the N content needs to exceed 0.0120%. Therefore, the lower limit of the N content is over 0.0120%. On the other hand, when N is added excessively, slab edge cracking is likely to occur in the lower straightening zone where the temperature decreases during continuous casting. Therefore, the upper limit of N content is 0.020% or less. In addition, Preferably, N content shall be 0.0130% or more. Preferably, the N content is 0.0180% or less. More preferably, the N content is 0.0170% or less.

Nb:0.005%以上0.030%以下
Nbは析出物生成能の高い元素であり、微細な析出物を生じ、上降伏応力を上昇させる。また、微細なNb析出物はフェライト粒を細粒化し、強度の上昇をもたらす。後述する、粒度番号12.5以上の微細なフェライト粒を得るためには、上記Pに加えてNbの含有が必要となる。本発明において、目標の強度を得るためには0.005%以上のNbの含有が必要である。よって、Nb含有量の下限は0.005%以上とする。一方、Nbは再結晶温度の上昇をもたらすため、0.030%超えでNbを含有すると、本発明で記載している最高到達板温:650〜800℃、650〜800℃の温度域での保持時間:55sec.以下の加熱での焼鈍では未再結晶粒が残存する。よってNb含有量の上限は0.030%以下とする。なお、好ましくは、Nb含有量は0.007%以上とする。好ましくは、Nb含有量は0.028%以下とする。より好ましくは、Nb含有量は0.010%以上とする。より好ましくは、Nb含有量は0.025%以下とする。
Nb: 0.005% or more and 0.030% or less Nb is an element having a high precipitate-forming ability, generates fine precipitates, and increases the upper yield stress. In addition, fine Nb precipitates refine ferrite grains and increase strength. In order to obtain fine ferrite grains having a grain size number of 12.5 or more, which will be described later, it is necessary to contain Nb in addition to P. In the present invention, the Nb content of 0.005% or more is necessary to obtain the target strength. Therefore, the lower limit of the Nb content is set to 0.005% or more. On the other hand, Nb brings about an increase in the recrystallization temperature. Therefore, when Nb is contained in an amount exceeding 0.030%, the maximum plate temperature described in the present invention: 650 to 800 ° C., in the temperature range of 650 to 800 ° C. Holding time: 55 sec. Unrecrystallized grains remain in the annealing with the following heating. Therefore, the upper limit of the Nb content is 0.030% or less. In addition, Preferably, Nb content shall be 0.007% or more. Preferably, the Nb content is 0.028% or less. More preferably, the Nb content is 0.010% or more. More preferably, the Nb content is 0.025% or less.

上記以外の残部はFeおよび不可避的不純物とする。   The balance other than the above is Fe and inevitable impurities.

次に、本発明の組織、特性について説明する。   Next, the structure and characteristics of the present invention will be described.

本発明の高強度極薄鋼板は、フェライト組織を主体とする。強度と延性の確保の観点から、本発明の高強度極薄鋼板では、フェライト組織の面積率が組織全体の70%以上であることが好ましい。より好ましくはフェライト組織の面積率が90%以上であり、さらに好ましくは95%以上である。フェライト組織の他には、セメンタイト、パーライト等の組織が含まれていてもよい。また、全伸びを15%以上とする観点から、本発明鋼のフェライト組織は、好ましくは再結晶組織である。   The high-strength ultrathin steel sheet of the present invention is mainly composed of a ferrite structure. From the viewpoint of securing strength and ductility, in the high-strength ultrathin steel sheet of the present invention, the area ratio of the ferrite structure is preferably 70% or more of the entire structure. More preferably, the area ratio of the ferrite structure is 90% or more, and more preferably 95% or more. In addition to the ferrite structure, a structure such as cementite and pearlite may be included. From the viewpoint of setting the total elongation to 15% or more, the ferrite structure of the steel of the present invention is preferably a recrystallized structure.

フェライト組織の平均結晶粒径が8μm以下
フェライト組織の平均結晶粒径は、鋼板の上降伏応力に影響を及ぼす。フェライト組織の平均結晶粒径が8μmを超えると目的とする上降伏応力を確保できないため、フェライト組織の平均結晶粒径は8μm以下とする。好ましくは6μm以下である。なお、フェライト組織の平均結晶粒径は、例えばJIS G 0551の切断法によるフェライト組織の平均結晶粒径に準じて測定するものとする。また、フェライト組織の平均結晶粒径は成分、冷間圧下率、焼鈍条件等により目標値に制御することが可能である。
The average crystal grain size of the ferrite structure is 8 μm or less. The average crystal grain size of the ferrite structure affects the upper yield stress of the steel sheet. If the average crystal grain size of the ferrite structure exceeds 8 μm, the desired upper yield stress cannot be secured, so the average crystal grain size of the ferrite structure is set to 8 μm or less. Preferably it is 6 micrometers or less. Note that the average crystal grain size of the ferrite structure is measured according to the average crystal grain size of the ferrite structure by the cutting method of JIS G 0551, for example. Further, the average crystal grain size of the ferrite structure can be controlled to a target value by the component, the cold reduction rate, the annealing conditions, and the like.

粒度番号12.5以上のフェライト粒がフェライト組織全体に対し面積%で10%以上
粒度番号12.5以上のフェライト粒を10%以上有する組織とすることにより、粒度番号12.5以上の微細粒による強度上昇と、比較的粗なフェライト粒による延性向上の両立が達成される。粒度番号12.5以上のフェライト粒の割合が10%を下回ると、目標とする強度と延性を共に達成することが困難となる。よって、粒度番号12.5以上のフェライト粒の割合はフェライトフェライト組織全体に対し面積%で10%以上とする。好ましくは15%以上である。一方、25%を超えるとフェライト粒の微細化により高強度は得られるものの、組織全体に対する微細なフェライト粒の占める割合が極端に大きくなることで、全伸びが低下し、高強度と高延性の両立が困難となる恐れがある。よって25%以下が好ましい。なお、フェライト粒の粒度番号は、JIS G 0551の定義に従うものとする。また、粒度番号12.5以上のフェライト粒の割合は、後述する実施例記載の方法にて求めることができる。
Fine grains having a grain size number of 12.5 or more are obtained by making the ferrite grains having a grain size number of 12.5 or more into a structure having 10% or more of ferrite grains having a grain size number of 12.5 or more in terms of area% of the entire ferrite structure. It is possible to achieve both an increase in strength due to the increase in ductility and an improvement in ductility due to relatively coarse ferrite grains. If the ratio of ferrite grains having a particle size number of 12.5 or more is less than 10%, it becomes difficult to achieve both the target strength and ductility. Therefore, the ratio of the ferrite grains having a grain size number of 12.5 or more is 10% or more in area% with respect to the entire ferrite ferrite structure. Preferably it is 15% or more. On the other hand, if it exceeds 25%, high strength can be obtained by refining ferrite grains, but the proportion of fine ferrite grains with respect to the entire structure becomes extremely large, so that the total elongation is reduced, and high strength and high ductility are reduced. It may be difficult to achieve both. Therefore, 25% or less is preferable. In addition, the particle size number of a ferrite grain shall follow the definition of JISG0551. Further, the ratio of ferrite grains having a particle size number of 12.5 or more can be determined by the method described in the examples described later.

上降伏応力550MPa以上
本発明鋼の適用対象である溶接缶のデント強度等を確保するために、塗装焼付処理後または塗装焼き付け相当の加熱処理後の上降伏応力は550MPa以上とする。上記成分組成を採用するとともに、例えば後述する製造条件を採用することで、鋼板の上降伏応力を550MPa以上に制御可能である。上降伏応力は、製缶されてから550MPaを達成していればよいが、通常、缶製造時に塗装焼き付けを行うため塗装焼付処理後または塗装焼き付け相当の加熱処理後の上降伏応力は550MPa以上とする。なお、塗装は鋼板に比較して薄いため、上降伏応力の測定値に影響はない。
Upper yield stress of 550 MPa or more In order to ensure the dent strength of the welding can to which the steel of the present invention is applied, the upper yield stress is set to 550 MPa or more after the coating baking process or after the heating process corresponding to the coating baking process. The upper yield stress of the steel sheet can be controlled to 550 MPa or more by adopting the above component composition and adopting the manufacturing conditions described later, for example. The upper yield stress only needs to achieve 550 MPa after the can is manufactured, but usually the upper yield stress is 550 MPa or more after the paint baking process or after the heat treatment equivalent to the paint baking because the paint baking is performed at the time of manufacturing the can. To do. In addition, since the coating is thinner than the steel plate, the measured value of the upper yield stress is not affected.

なお、本発明において、塗装焼付処理または塗装焼き付け相当の加熱処理とは、通常、当業者が行う方法で行うことができる。例えば、150〜300℃、5〜30分の塗装焼付け処理または塗装焼き付け相当の熱処理である。好ましくは、210℃、10分の塗装焼付け処理または塗装焼き付け相当の熱処理とする。   In the present invention, the paint baking treatment or the heat treatment equivalent to paint baking can be usually performed by a method performed by those skilled in the art. For example, a paint baking process at 150 to 300 ° C. for 5 to 30 minutes or a heat treatment equivalent to paint baking. Preferably, the heat treatment is equivalent to 210 ° C. for 10 minutes, or a heat treatment equivalent to paint baking.

全伸び15%以上
全伸びが15%を下回ると、例えば、本発明鋼の適用対象である、拡缶加工、ビード加工、フランジ加工等の高い加工性の加工を伴う缶への適用が困難となる。従って、全伸びの下限は15%以上とする。なお、全伸びは、上記成分組成を採用するとともに、例えば後述する製造条件を採用することで目標値に制御可能である。
When the total elongation is 15% or more and less than 15%, for example, it is difficult to apply to a can with high workability processing such as can expansion processing, bead processing, and flange processing, which is an object of application of the steel of the present invention. Become. Therefore, the lower limit of total elongation is 15% or more. Note that the total elongation can be controlled to a target value by employing the above-described component composition and adopting, for example, manufacturing conditions described later.

板厚が0.4mm以下
現在、製缶コストの低減を目的として、鋼板の薄肉化が進められている。しかしながら、鋼板の薄肉化、すなわち、鋼板板厚の低減に伴って、缶体強度の低下が懸念される。これに対して、本発明の高強度極薄鋼板は、板厚が薄い場合でも、缶体強度を低下させることがない。板厚が薄い場合に、高延性かつ高強度という本発明の効果が顕著にでる。この点から、板厚は0.4mm以下とする。好ましくは0.3mm以下、より好ましくは0.2mm以下である。
Currently, the thickness of steel sheets is being reduced for the purpose of reducing can manufacturing costs. However, there is a concern that the strength of the can may be reduced as the thickness of the steel plate is reduced, that is, the thickness of the steel plate is reduced. On the other hand, the high-strength ultrathin steel plate of the present invention does not decrease the strength of the can even when the plate thickness is thin. When the plate thickness is thin, the effects of the present invention, such as high ductility and high strength, are significant. From this point, the plate thickness is 0.4 mm or less. Preferably it is 0.3 mm or less, More preferably, it is 0.2 mm or less.

次に、本発明の高強度極薄鋼板の製造方法の一例について説明する。
本発明の高強度極薄鋼板の製造方法は、上記成分組成からなる鋼スラブを仕上げ圧延温度:820℃以上で圧延し、巻取温度:500〜720℃で巻取る熱間圧延工程と、前記熱間圧延後、必要に応じて酸洗し、圧下率:80%以上で冷間圧延する一次冷間圧延工程と、前記一次冷間圧延工程後、550℃から最高到達板温までの平均昇温速度:5℃/sec.以上で昇温し、最高到達板温:650〜800℃とし、650〜800℃の温度域での保持時間:55sec.以下で加熱を行い、前記加熱後冷却するにあたり、650℃から350℃までの温度範囲を19sec.以内とする焼鈍工程と、前記焼鈍工程後、圧下率:5%以下で調質圧延を行う調質圧延工程とを有する。
Next, an example of the manufacturing method of the high intensity | strength ultra-thin steel plate of this invention is demonstrated.
The method for producing a high-strength ultrathin steel sheet of the present invention includes a hot rolling step in which a steel slab having the above component composition is rolled at a finish rolling temperature of 820 ° C. or more and wound at a winding temperature of 500 to 720 ° C., After hot rolling, pickling is performed as necessary, and a primary cold rolling process in which cold rolling is performed at a reduction rate of 80% or more, and an average increase from 550 ° C. to the maximum plate temperature after the primary cold rolling process. Temperature rate: 5 ° C / sec. The temperature was raised as described above, the maximum plate temperature was 650 to 800 ° C., and the holding time in the temperature range of 650 to 800 ° C. was 55 sec. In the following heating, the temperature range from 650 ° C. to 350 ° C. is 19 sec. And an temper rolling step of performing temper rolling at a rolling reduction of 5% or less after the annealing step.

圧延素材となる鋼について説明する。鋼は、上述の成分組成に調整された溶鋼を、転炉等を用いた公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とすることで得られる。   The steel used as a rolling material will be described. Steel is obtained by melting molten steel adjusted to the above-described component composition by a known melting method using a converter or the like, and then forming a rolled material by a commonly used casting method such as a continuous casting method. It is done.

上記により得られた鋼に対して、仕上げ圧延温度:820℃以上で圧延し、巻取温度:500〜720℃で巻取る熱間圧延を施し、熱延鋼板を製造する。熱間圧延の圧延開始時には、鋼の温度を1200℃以上1250℃以下(スラブ加熱温度)にするのが好ましい。   The steel obtained as described above is rolled at a finish rolling temperature of 820 ° C. or higher and hot rolled at a winding temperature of 500 to 720 ° C. to produce a hot rolled steel sheet. At the start of hot rolling, the steel temperature is preferably set to 1200 ° C. or more and 1250 ° C. or less (slab heating temperature).

仕上げ圧延温度:820℃以上
仕上げ圧延温度が820℃未満では、オーステナイト相とフェライト相の2層域での圧延となるため粒成長し、熱間圧延後の鋼板の組織が粗大粒となる。そして、冷間圧延し焼鈍した後の鋼板の結晶粒が粗大化することで、上降伏応力が低下するため目標とする上降伏応力が得られない。よって、熱間圧延工程における仕上げ圧延温度は820℃以上とする。また、熱間圧延時の仕上げ圧延温度が990℃を超えた場合、スケールが発生するため、仕上げ圧延温度は990℃以下が好ましい。
Finishing rolling temperature: 820 ° C. or more When the finishing rolling temperature is less than 820 ° C., grain growth occurs due to rolling in a two-layer region of an austenite phase and a ferrite phase, and the structure of the steel sheet after hot rolling becomes coarse grains. And since the upper yield stress falls because the crystal grain of the steel plate after cold rolling and annealing coarsens, the target upper yield stress cannot be obtained. Therefore, the finish rolling temperature in the hot rolling process is set to 820 ° C. or higher. Moreover, when the finish rolling temperature at the time of hot rolling exceeds 990 degreeC, since a scale will generate | occur | produce, finish rolling temperature has preferable 990 degreeC or less.

巻取温度:500〜720℃
巻取温度が500℃未満では、ランナウトテーブルで急冷されることにより幅方向の温度分布が不均一となり、材質の不均一や幅方向の形状不良の要因となる。そのため、巻取温度の下限は500℃以上とする。一方、巻取温度が720℃を超えると、鋼板のスケール厚みが増大し、次工程の酸洗時の脱スケール性が悪化する可能性がある。そのため、巻取温度の上限は720℃以下とする。
Winding temperature: 500-720 ° C
When the coiling temperature is less than 500 ° C., the temperature distribution in the width direction becomes non-uniform due to the rapid cooling by the run-out table, which causes non-uniform materials and shape defects in the width direction. Therefore, the lower limit of the coiling temperature is 500 ° C. or higher. On the other hand, when the coiling temperature exceeds 720 ° C., the scale thickness of the steel sheet increases, and the descaling property at the time of pickling in the next process may be deteriorated. Therefore, the upper limit of the coiling temperature is 720 ° C. or less.

次いで、必要に応じて酸洗し、圧下率:80%以上で1次圧延する1次冷間圧延を施す。   Next, pickling is performed as necessary, and a primary cold rolling is performed in which rolling is performed at a rolling reduction of 80% or more.

なお、必要に応じて行う酸洗はスケールを除去する目的であり、酸洗方法は特に限定しない。鋼板の表層スケールが除去できればよく、通常行われる方法により酸洗することができる。また、酸洗以外の化学的除去や、機械的除去等の方法でスケールを除去してもよい。   In addition, the pickling performed as needed is for the purpose of removing scale, and the pickling method is not particularly limited. What is necessary is just to be able to remove the surface layer scale of the steel sheet, and pickling can be performed by a usual method. Further, the scale may be removed by a method other than pickling, such as chemical removal or mechanical removal.

1次冷間圧延における圧下率:80%以上
1次冷間圧延における圧下率は、本発明において重要な要件の一つである。1次冷間圧延での圧下率が80%未満では、上降伏応力が550MPa以上の鋼板を製造することは困難である。従って、圧下率は80%以上とする。好ましくは、85%以上である。
Reduction ratio in primary cold rolling: 80% or more The reduction ratio in primary cold rolling is one of the important requirements in the present invention. If the rolling reduction in primary cold rolling is less than 80%, it is difficult to produce a steel sheet having an upper yield stress of 550 MPa or more. Therefore, the rolling reduction is 80% or more. Preferably, it is 85% or more.

なお、熱間圧延工程後1次冷間圧延工程前に適宜他の工程が含まれても良い。また、熱間圧延工程の直後に酸洗を行わずに1次冷間圧延工程を行っても良い。   In addition, another process may be appropriately included after the hot rolling process and before the primary cold rolling process. Moreover, you may perform a primary cold rolling process, without performing pickling immediately after a hot rolling process.

次いで、一次冷間圧延工程後、550℃から最高到達板温まで平均昇温速度:5℃/sec.以上で昇温し、最高到達板温:650〜800℃とし、650〜800℃の温度域での保持時間:55sec.以下で加熱を行い、加熱後冷却するにあたり、650℃から350℃までの温度範囲を19sec.以内とする焼鈍を行う。   Next, after the primary cold rolling step, the average rate of temperature increase from 550 ° C. to the maximum reached plate temperature: 5 ° C./sec. The temperature was raised as described above, the maximum plate temperature was 650 to 800 ° C., and the holding time in the temperature range of 650 to 800 ° C. was 55 sec. In the following heating, the temperature range from 650 ° C. to 350 ° C. is 19 sec. Annealing within the range is performed.

550℃から最高到達板温まで平均昇温速度5℃/sec.以上で昇温
上記のP、Nbの添加に加え、焼鈍時の550℃から最高到達板温までの平均昇温速度を5℃/sec.以上に制御することにより、粒度番号12.5以上の微細粒を面積%で10%以上有する組織を得ることが可能となる。これは、鋼板の加熱速度が大きくなることにより、鋼板中に固溶元素の濃度勾配が生じ、固溶元素の濃度が濃い部分では粒成長が極端に抑制されるためである。550℃から最高到達板温までの平均昇温速度が5℃/sec.未満の場合では、鋼板中の固溶元素が均一となり、固溶元素が濃化する領域を作ることが出来ず、微細粒を含む組織を得ることが出来ない。よって、焼鈍時の550℃から最高到達板温までの平均昇温速度は5℃/sec.以上とする。平均昇温速度を制御する温度域は550℃から最高到達板温までである。再結晶はFe原子の拡散を伴うため、再結晶組織を制御するためには、Fe原子が拡散可能な550℃以上の温度域の昇温速度を制御することが重要となる。そのため、平均昇温速度を制御する温度域を550℃から最高到達板温までとする。
Average heating rate from 550 ° C to the maximum plate temperature 5 ° C / sec. In addition to the addition of P and Nb described above, the average rate of temperature rise from 550 ° C. during annealing to the maximum plate temperature was 5 ° C./sec. By controlling as described above, it is possible to obtain a structure having 10% or more of fine particles having a particle size number of 12.5 or more in area%. This is because when the heating rate of the steel plate is increased, a concentration gradient of the solid solution element is generated in the steel plate, and grain growth is extremely suppressed in a portion where the concentration of the solid solution element is high. The average rate of temperature increase from 550 ° C. to the maximum temperature reached 5 ° C./sec. If it is less than the range, the solid solution element in the steel sheet becomes uniform, and a region where the solid solution element is concentrated cannot be formed, and a structure containing fine grains cannot be obtained. Therefore, the average rate of temperature increase from 550 ° C. during annealing to the maximum plate temperature is 5 ° C./sec. That's it. The temperature range for controlling the average heating rate is from 550 ° C. to the maximum plate temperature. Since recrystallization involves diffusion of Fe atoms, in order to control the recrystallization structure, it is important to control the rate of temperature rise in a temperature range of 550 ° C. or higher where Fe atoms can diffuse. Therefore, the temperature range for controlling the average rate of temperature rise is from 550 ° C. to the maximum plate temperature.

焼鈍時の最高到達板温:650〜800℃
鋼板の組織をより均一とするために、焼鈍時の最高到達板温は650℃以上とする。一方、焼鈍時の最高到達板温が800℃を超える条件で連続焼鈍するためには、鋼板の破断を防止するために、鋼板の搬送速度を低下させる必要があり、生産性が低下する。そのため、焼鈍時の最高到達板温は650℃以上800℃以下とする。好ましくは、660℃以上760℃以下である。
Maximum plate temperature during annealing: 650-800 ° C
In order to make the structure of the steel plate more uniform, the maximum temperature reached during annealing is set to 650 ° C. or higher. On the other hand, in order to perform continuous annealing under conditions where the maximum plate temperature during annealing exceeds 800 ° C., it is necessary to reduce the conveying speed of the steel sheet in order to prevent breakage of the steel sheet, and productivity is reduced. Therefore, the maximum reached plate temperature at the time of annealing shall be 650 degreeC or more and 800 degrees C or less. Preferably, it is 660 degreeC or more and 760 degreeC or less.

焼鈍時の650〜800℃の温度域での保持(加熱)時間:55sec.以下
焼鈍時の650〜800℃の温度域での保持時間が55sec.を超えるような搬送速度の条件では生産性を確保できないため、焼鈍時の650〜800℃の温度域での保持時間は55sec.以下とする。また、保持時間の下限については規定をしていないが、保持時間を短縮するために搬送速度を速くすると、蛇行させずに安定的に搬送することが困難となる。そのため、10sec.を下限とすることが好ましい。
Holding (heating) time in a temperature range of 650 to 800 ° C. during annealing: 55 sec. The holding time in the temperature range of 650 to 800 ° C. during annealing is 55 sec. Since the productivity cannot be ensured under the condition of the conveyance speed exceeding 60 ° C., the holding time in the temperature range of 650 to 800 ° C. during annealing is 55 sec. The following. Further, although the lower limit of the holding time is not defined, if the carrying speed is increased in order to shorten the holding time, it becomes difficult to carry stably without meandering. Therefore, 10 sec. Is preferably the lower limit.

焼鈍の加熱後冷却:650℃から350℃までの温度範囲を19sec.以内に急冷
焼鈍の加熱後に急冷処理を行う。650℃から350℃までの冷却速度の制御により、Cの析出を抑制し、固溶Cによる固溶強化を積極的に利用することで、目標とする上降伏応力を得る。
650℃から350℃までの温度範囲は急速に冷却することが重要であり、19sec.以内に急冷する。好ましくは10sec.以内で急冷する。一方、1sec.未満では著しい急冷により通板中の鋼板が破断する恐れがある。よって、1sec.以上が好ましい。なお、350℃未満の領域の冷却速度は特に限定するものではないが、350℃から150℃まで200sec.以内に冷却することが好ましい。
Annealing cooling after heating: The temperature range from 650 ° C. to 350 ° C. is 19 sec. Within a rapid quenching treatment after rapid annealing. By controlling the cooling rate from 650 ° C. to 350 ° C., the precipitation of C is suppressed, and the solid solution strengthening by the solid solution C is actively used to obtain the target upper yield stress.
It is important to rapidly cool the temperature range from 650 ° C. to 350 ° C., and 19 sec. Quench within. Preferably 10 sec. Quench within. On the other hand, 1 sec. If it is less than this, there is a risk that the steel plate in the plate will break due to remarkably rapid cooling. Therefore, 1 sec. The above is preferable. The cooling rate in the region below 350 ° C. is not particularly limited, but is 200 sec. From 350 ° C. to 150 ° C. It is preferable to cool within.

なお、焼鈍には連続焼鈍装置を用いればよい。また、1次冷間圧延工程後焼鈍工程前に適宜他の工程が含まれても良いし、1次冷間圧延工程の直後に焼鈍工程を行っても良い。   In addition, what is necessary is just to use a continuous annealing apparatus for annealing. Moreover, another process may be appropriately included before the annealing process after the primary cold rolling process, or the annealing process may be performed immediately after the primary cold rolling process.

調質圧延工程
焼鈍工程後、圧下率:5%以下の調質圧延を行う。圧下率を大きくすると、加工時に導入される歪みが大きくなり、全伸びが低下する。本発明では、極薄材において15%以上の全伸びを確保する必要があるため、調質圧延工程における圧下率は5%以下とする。また、圧下率の下限については規定をしていないが、調質圧延工程には鋼板の表面粗さを付与する役割があり、鋼板に表面粗さを均一に付与するために、圧下率は1%以上とすることが好ましい。
Temper rolling process After the annealing process, temper rolling is performed at a rolling reduction of 5% or less. When the rolling reduction is increased, the strain introduced during processing increases and the total elongation decreases. In the present invention, since it is necessary to ensure a total elongation of 15% or more in the ultrathin material, the rolling reduction in the temper rolling process is set to 5% or less. Although the lower limit of the rolling reduction is not specified, the temper rolling process has a role of imparting the surface roughness of the steel sheet, and the rolling reduction is 1 in order to uniformly impart the surface roughness to the steel sheet. % Or more is preferable.

なお、焼鈍工程後調質圧延工程前に適宜他の工程が含まれても良いし、焼鈍工程の直後に調質圧延工程を行っても良い。   In addition, another process may be appropriately included before the temper rolling process after the annealing process, or the temper rolling process may be performed immediately after the annealing process.

以上により、本発明の高強度極薄鋼板が得られる。なお、本発明では、調質圧延工程後に、さらに種々の工程を行うことが可能である。例えば、本発明の高強度極薄鋼板に対して、さらに鋼板表面にめっき層を有していてもよい。めっき層としては、Snめっき層、ティンフリー等のCrめっき層、Niめっき層、Sn−Niめっき層などである。また、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。   As described above, the high-strength ultrathin steel plate of the present invention is obtained. In the present invention, various processes can be further performed after the temper rolling process. For example, the high strength ultrathin steel plate of the present invention may further have a plating layer on the steel plate surface. Examples of the plating layer include a Sn plating layer, a tin plating layer such as a tin plating layer, a Ni plating layer, and a Sn—Ni plating layer. Moreover, you may perform processes, such as a coating baking process and a film lamination.

表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1200℃で再加熱した後、熱間圧延を行った。次いで、通常の方法にて酸洗後、一次冷間圧延し、冷延鋼板を製造した。得られた冷延鋼板に対して、表1に示す条件で焼鈍を行った。次いで、調質圧延を施し、極薄鋼板を得た。なお、詳細な製造条件は表2に示す。   Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated at 1200 ° C. and then hot rolled. Then, after pickling by a normal method, primary cold rolling was performed to produce a cold rolled steel sheet. The obtained cold-rolled steel sheet was annealed under the conditions shown in Table 1. Next, temper rolling was performed to obtain an ultrathin steel plate. Detailed manufacturing conditions are shown in Table 2.

以上により得られた極薄鋼板に対して、210℃、10分の塗装焼付け処理に相当する熱処理を行った後、引張試験を行い上降伏応力及び全伸びを測定した。また、フェライト組織の平均結晶粒径、粒度番号12.5以上のフェライト粒の割合を測定した。測定方法は以下の通りである。   The ultrathin steel plate obtained as described above was subjected to a heat treatment corresponding to a coating baking process at 210 ° C. for 10 minutes, and then subjected to a tensile test to measure the upper yield stress and the total elongation. Further, the average grain size of the ferrite structure and the ratio of ferrite grains having a grain size number of 12.5 or more were measured. The measuring method is as follows.

引張試験は、圧延方向に対して平行な方向を引張方向とする小型試験片 (平行部長さ:30mm、平行部幅:12.5mm、標点間距離:25mm)を採取し、210℃、10分の塗装焼付相当処理を施した後に、引張速度10mm/分で引張試験を行い、上降伏応力、全伸びを測定した。   In the tensile test, a small test piece (parallel portion length: 30 mm, parallel portion width: 12.5 mm, distance between gauge points: 25 mm) having a direction parallel to the rolling direction as the tensile direction was sampled at 210 ° C., 10 After performing a coating baking equivalent process, the tensile test was performed at a tensile speed of 10 mm / min, and the upper yield stress and the total elongation were measured.

ミクロ組織は、サンプルを研磨して、ナイタル液で結晶粒界を腐食させて、光学顕微鏡で観察した。   The microstructure was observed with an optical microscope by polishing the sample, corroding the grain boundaries with a night liquid.

フェライト組織の平均結晶粒径は、上記のようにして観察したミクロ組織について、JIS G 0551の切断法を用いて、圧延方向断面で測定した。   The average crystal grain size of the ferrite structure was measured on the cross section in the rolling direction using the cutting method of JIS G 0551 for the microstructure observed as described above.

粒度番号12.5以上の粒の面積率は、上記のようにして観察したミクロ組織について、観察視野内の各フェライト粒の面積から粒度番号を算出し、粒度番号12.5以上であるフェライト粒の占める面積を視野内のフェライト組織の面積で割ることにより算出した。測定は圧延方向断面で行った。なお、フェライト粒の粒度番号はJIS G 0551の定義に従うものとした。   The area ratio of grains having a grain size number of 12.5 or more is calculated by calculating the grain size number from the area of each ferrite grain in the observation field for the microstructure observed as described above, and ferrite grains having a grain size number of 12.5 or more. Was divided by the area of the ferrite structure in the field of view. The measurement was performed on a cross section in the rolling direction. In addition, the particle size number of the ferrite grain shall follow the definition of JIS G 0551.

以上により得られた結果を製造条件と併せて、表2に示す。   The results obtained above are shown in Table 2 together with the production conditions.

Figure 2018059196
Figure 2018059196

Figure 2018059196
Figure 2018059196

表2より、本発明例では、550MPa以上の上降伏応力と15%以上の全伸びとを両立する、高延性かつ高強度な極薄鋼板が得られていた。   From Table 2, in the example of this invention, the ultra-thin steel plate with high ductility and high intensity | strength which is compatible with the upper yield stress of 550 Mpa or more and the total elongation of 15% or more was obtained.

本発明によれば、高延性かつ高強度な極薄鋼板が得られる。本発明は、容器用鋼板、特に高加工度の缶胴加工を伴う3ピース缶などの、高い延性と強度、また板厚が薄いことが求められる用途に最適である。   According to the present invention, an ultrathin steel sheet having high ductility and high strength can be obtained. The present invention is most suitable for applications requiring high ductility and strength, and thin plate thickness, such as steel plates for containers, particularly 3-piece cans with high formability can body processing.

Claims (2)

成分組成は、質量%で、C:0.020%超え0.080%以下、Si:0.04%以下、Mn:0.10%以上1.20%以下、P:0.020%超え0.20%以下、S:0.020%以下、Al:0.10%以下、N:0.0120%超え0.020%以下、Nb:0.005%以上0.030%以下を含有し、残部が鉄および不可避的不純物からなり、
組織は、フェライト組織を主体とし、該フェライト組織の平均結晶粒径が8μm以下であり、粒度番号12.5以上のフェライト粒をフェライト組織全体に対し面積%で10%以上有し、
塗装焼付処理後または塗装焼き付け相当の加熱処理後の上降伏応力が550MPa以上、全伸びが15%以上である、
板厚0.4mm以下の高強度極薄鋼板。
Component composition is mass%, C: more than 0.020% and less than 0.080%, Si: 0.04% or less, Mn: 0.10% or more and 1.20% or less, P: more than 0.020% and 0 20% or less, S: 0.020% or less, Al: 0.10% or less, N: 0.0120% to 0.020% or less, Nb: 0.005% or more and 0.030% or less, The balance consists of iron and inevitable impurities,
The structure is mainly composed of a ferrite structure, the average grain size of the ferrite structure is 8 μm or less, and ferrite grains having a grain size number of 12.5 or more have an area percentage of 10% or more with respect to the entire ferrite structure,
The upper yield stress is 550 MPa or more and the total elongation is 15% or more after the coating baking process or after the heating process equivalent to the coating baking process.
A high-strength ultrathin steel plate with a thickness of 0.4 mm or less.
請求項1に記載の高強度極薄鋼板の製造方法であって、鋼スラブを仕上げ圧延温度:820℃以上で圧延し、巻取温度:500〜720℃で巻取る熱間圧延工程と、
前記熱間圧延後、圧下率:80%以上で冷間圧延する一次冷間圧延工程と、
前記一次冷間圧延工程後、550℃から最高到達板温まで平均昇温速度:5℃/sec.以上で昇温し、最高到達板温:650〜800℃とし、650〜800℃の温度域での保持時間:55sec.以下で加熱を行い、前記加熱後冷却するにあたり、650℃から350℃までの温度範囲を19sec.以内とする焼鈍工程と、
前記焼鈍工程後、圧下率:5%以下で調質圧延を行う調質圧延工程と
を有する高強度極薄鋼板の製造方法。
It is a manufacturing method of the high intensity | strength ultra-thin steel plate of Claim 1, Comprising: The hot rolling process which rolls steel slab at finish rolling temperature: 820 degreeC or more, and winds at coiling temperature: 500-720 degreeC,
After the hot rolling, a primary cold rolling step of cold rolling at a reduction ratio of 80% or more,
After the primary cold rolling step, the average rate of temperature increase from 550 ° C. to the maximum plate temperature: 5 ° C./sec. The temperature was raised as described above, the maximum plate temperature was 650 to 800 ° C., and the holding time in the temperature range of 650 to 800 ° C. was 55 sec. In the following heating, the temperature range from 650 ° C. to 350 ° C. is 19 sec. An annealing process to be within,
A method for producing a high-strength ultrathin steel sheet, comprising a temper rolling step of temper rolling at a rolling reduction of 5% or less after the annealing step.
JP2017187300A 2016-10-04 2017-09-28 High strength ultra thin steel plate and method of manufacturing the same Active JP6540769B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016196272 2016-10-04
JP2016196272 2016-10-04

Publications (2)

Publication Number Publication Date
JP2018059196A true JP2018059196A (en) 2018-04-12
JP6540769B2 JP6540769B2 (en) 2019-07-10

Family

ID=61907670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187300A Active JP6540769B2 (en) 2016-10-04 2017-09-28 High strength ultra thin steel plate and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6540769B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045449A1 (en) * 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
WO2021009966A1 (en) * 2019-07-18 2021-01-21 Jfeスチール株式会社 Box-type annealed dr steel sheet and method for manufacturing same
EP3901300A4 (en) * 2018-12-20 2022-04-27 JFE Steel Corporation Steel plate for can and method for producing same
EP4159880A1 (en) * 2021-10-04 2023-04-05 ThyssenKrupp Rasselstein GmbH Cold rolled flat steel product for packages and method for manufacturing a flat steel product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP2005336610A (en) * 2004-04-27 2005-12-08 Jfe Steel Kk High strength and high ductility steel sheet for can and method for production thereof
JP2008214658A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Steel sheet for can, hot rolled steel sheet used for base material therefor, and their manufacturing method
WO2016031234A1 (en) * 2014-08-29 2016-03-03 Jfeスチール株式会社 Steel sheet for cans and method for producing same
WO2016157878A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP2005336610A (en) * 2004-04-27 2005-12-08 Jfe Steel Kk High strength and high ductility steel sheet for can and method for production thereof
JP2008214658A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Steel sheet for can, hot rolled steel sheet used for base material therefor, and their manufacturing method
WO2016031234A1 (en) * 2014-08-29 2016-03-03 Jfeスチール株式会社 Steel sheet for cans and method for producing same
WO2016157878A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 Steel sheet for cans and method for manufacturing steel sheet for cans

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045449A1 (en) * 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
JPWO2020045449A1 (en) * 2018-08-30 2020-09-03 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method
EP3901300A4 (en) * 2018-12-20 2022-04-27 JFE Steel Corporation Steel plate for can and method for producing same
WO2021009966A1 (en) * 2019-07-18 2021-01-21 Jfeスチール株式会社 Box-type annealed dr steel sheet and method for manufacturing same
JP6838685B1 (en) * 2019-07-18 2021-03-03 Jfeスチール株式会社 Box-type annealed DR steel sheet and its manufacturing method
EP4159880A1 (en) * 2021-10-04 2023-04-05 ThyssenKrupp Rasselstein GmbH Cold rolled flat steel product for packages and method for manufacturing a flat steel product

Also Published As

Publication number Publication date
JP6540769B2 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5943156B1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5983896B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JP5434212B2 (en) Steel plate for high-strength container and manufacturing method thereof
US10294542B2 (en) Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
WO2016021197A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP6123957B1 (en) High strength steel plate and manufacturing method thereof
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP2009263789A (en) High strength steel sheet for vessel, and method for producing the same
JP6540769B2 (en) High strength ultra thin steel plate and method of manufacturing the same
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
WO2016031166A1 (en) High-strength molten galvanized steel sheet and method for production thereof
KR20130035273A (en) High-strength metal sheet for use in cans, and manufacturing method therefor
JP6123958B1 (en) High strength steel plate and manufacturing method thereof
JP6007571B2 (en) High-strength cold-rolled steel sheet and high-strength galvanized steel sheet
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
JP6191807B1 (en) Steel plate for can and manufacturing method thereof
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP2016191111A (en) Steel sheet for high processability high strength can and manufacturing method therefor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250