JP2010040942A - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
JP2010040942A
JP2010040942A JP2008204761A JP2008204761A JP2010040942A JP 2010040942 A JP2010040942 A JP 2010040942A JP 2008204761 A JP2008204761 A JP 2008204761A JP 2008204761 A JP2008204761 A JP 2008204761A JP 2010040942 A JP2010040942 A JP 2010040942A
Authority
JP
Japan
Prior art keywords
charge transfer
transfer electrode
insulating film
solid
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008204761A
Other languages
English (en)
Inventor
Koji Tanaka
浩司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008204761A priority Critical patent/JP2010040942A/ja
Publication of JP2010040942A publication Critical patent/JP2010040942A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】チップ面積及びスミアを増大させずに、高感度化を実現する。
【解決手段】本発明に係る固体撮像装置は、半導体基板1と、半導体基板1に形成され、光を信号電荷に変換するフォトダイオード2と、半導体基板1に形成され、フォトダイオード2により変換された信号電荷を転送する垂直転送チャネル3と、半導体基板1の表面に形成される絶縁膜4と、垂直転送チャネル3の上方に絶縁膜4を介して形成される電荷転送電極15と、電荷転送電極15上に形成される層間絶縁膜16aと、電荷転送電極15の上方に層間絶縁膜16aを介して形成され、垂直転送チャネル3の転送方向に垂直な方向において、少なくとも一方の端部が、電荷転送電極15が形成される領域上に形成される遮光膜17と、電荷転送電極15と、遮光膜17とを接続するコンタクト18と、入射光をフォトダイオード2に集光するマイクロレンズ8bとを備える。
【選択図】図2

Description

本発明は、固体撮像装置及びその製造方法に関し、特に、電荷転送電極と、電荷転送電極の上方に形成される遮光膜とを備える固体撮像装置に関する。
近年、固体撮像装置において、高解像度化及び多画素化の要求によりますますセルの小型化が進んで行いる。一方で、固体撮像装置の感度特性は従来と同レベルが要求されている。
以下、従来の固体撮像装置について説明する。
図7は、従来の固体撮像装置の構成を示す図である。
図7に示す固体撮像装置は、CCD(Charge Coupled Device)イメージセンサであり、行列状に配置された複数のフォトダイオード2と、列毎に設けられた複数の垂直転送チャネル3と、水平転送チャネル10とを備える。
複数のフォトダイオード2は、入射光を信号電荷に光電変換する。垂直転送チャネル3は、対応する列に配置される複数のフォトダイオード2により光電変換された信号電荷を垂直方向(列方向)に転送する。
水平転送チャネル10は、複数の垂直転送チャネル3により転送された信号電荷を水平方向(行方向)に転送する。
図8は、図7に示す領域20の拡大図である。また、図9は、図8のX2−X3面における断面図である。
図8及び図9に示すように、従来の固体撮像装置は、半導体基板1と、フォトダイオード2と、垂直転送チャネル3と、ゲート絶縁膜4と、電荷転送電極5と、層間絶縁膜6a及び6bと、反射防止膜6cと、遮光膜7と、カラーフィルタ層8aと、マイクロレンズ8bとを備える。
マイクロレンズ8bを通過した光は、遮光膜7の開口部7aを通過してフォトダイオード2に入射する。フォトダイオード2は、入射した光を信号電荷に変換する。
ここで、遮光膜7の開口部7aの幅(以下、開口幅)L6が狭いと斜め入射光9a及び9bは遮光膜7で反射されフォトダイオード2に入らない。つまり固体撮像装置の感度特性を向上させるためには開口幅L6を大きくすることが必要となっている。
これに対して、特許文献1に、開口幅を大きくすることにより、入射光量を増大させる技術が開示されている。
特許文献1記載の固体撮像装置では、遮光膜7は、電荷転送電極5上のみに形成される。これにより、開口幅は、L6+2×L7となる。つまり、開口幅を2×L7だけ大きくできる。
しかしながら、特許文献1記載の固体撮像装置では、遮光膜7と半導体基板1との間の距離がt6からt7と大きくなることにより、垂直転送チャネル3に入射する光が増加する。例えば、遮光膜7を電荷転送電極5の側面にも形成する構造では、図9に示す斜め入射光9cが、電荷転送電極5の側面に形成された遮光膜7により反射されることにより、斜め入射光9cは、垂直転送チャネル3には入射しない。一方、特許文献1記載の固体撮像装置では、斜め入射光9cは、遮光膜7の下を通過して直接垂直転送チャネル3に入射してしまう。これにより、スミアが発生する。
これに対して特許文献1では、スミア成分の増加に対して、フレーム・インターライン・トランスファ構造(以下FIT構造と記す)を採用することを提案している。
図10は、FIT構造の固体撮像装置の構成を示す図である。図10に示すようにFIT構造の固体撮像装置は、さらに、1画面分の信号電荷を蓄積する電荷蓄積領域11を備える。このFIT構造の固体撮像装置では、フォトダイオード2で光電変換された信号電荷を、電荷蓄積領域11に高速転送することにより、垂直転送の際に垂直転送チャネル3への光漏れを減少できる。これにより、スミアの発生を低減できる。
このFIT構造を用いることにより、特許文献1記載の固体撮像装置は、上述したスミア成分の増加を抑制できる。
特開2004−311778号公報
しかしながら、FIT構造を用いた場合、電荷蓄積領域11を設ける必要がありチップ面積が増加するという別の問題が生じる。
つまり、従来の固体撮像装置は、チップ面積及びスミアを増大させずに、高感度化を実現できないという課題がある。
本発明は上記問題点に鑑みてなされたもので、チップ面積及びスミアを増大させずに、高感度化を実現できる固体撮像装置及びその製造方法を提供することを目的とする。
上記目的を達成するために、本発明に係る固体撮像装置は、半導体基板と、前記半導体基板に形成され、光を信号電荷に変換する受光部と、前記半導体基板に形成され、前記受光部により変換された信号電荷を転送するための電荷転送チャネルと、前記半導体基板の表面に形成される絶縁膜と、前記電荷転送チャネル上方に前記絶縁膜を介して形成される電荷転送電極と、前記電荷転送電極上に形成される層間絶縁膜と、前記電荷転送電極上方に前記層間絶縁膜を介して形成され、前記電荷転送チャネルの転送方向に垂直な方向において、少なくとも一方の端部が、前記電荷転送電極が形成される領域上に形成される遮光膜と、前記電荷転送電極と前記遮光膜とを接続するコンタクトと、前記受光部上方に形成され、入射光を前記受光部に集光するレンズとを備える。
この構成によれば、本発明に係る固体撮像装置は、遮光膜の少なくとも一方の端部が電荷転送電極上に形成される。つまり、遮光膜の少なくとも一方の端部は、電荷転送電極の側面を覆わない。これにより、遮光膜の開口幅が広くなるので、受光部への入射光量が増加される。よって、本発明に係る固体撮像装置は、チップ面積を増加させることなく高感度化を実現できる。
さらに、本発明に係る固体撮像装置は、電荷転送電極と遮光膜とを接続するコンタクトを備える。これにより、電荷転送電極に電荷転送パルスを印加する経路(配線)の抵抗値が低減されるので、本発明に係る固体撮像装置は、垂直転送速度を向上できる。よって、本発明に係る固体撮像装置は、FIT構造等を用いなくても、遮光膜が電荷転送電極を覆わないことにより生じるスミアの増加を抑制できる。
このように、本発明に係る固体撮像装置は、チップ面積及びスミアを増大させずに、高感度化を実現できる。
また、前記遮光膜の前記一方の端部下における、前記電荷転送電極下の前記絶縁膜と、前記電荷転送電極と、前記電荷転送電極上の層間絶縁膜との膜厚の総和は、150nm以下であってもよい。
この構成によれば、遮光膜の底面と半導体基板の表面との距離が短くなるので、電荷転送チャネルへの光漏れを低減できる。これにより、本発明に係る固体撮像装置は、さらに、スミアを低減できる。
また、前記遮光膜は、前記電荷転送チャネルの転送方向に垂直な方向において、両端部が、前記電荷転送電極が形成される領域上に形成されてもよい。
この構成によれば、遮光膜の両端部が電荷転送電極を覆わないことにより、遮光膜の開口幅をさらに広くできる。よって、本発明に係る固体撮像装置は、受光部への入射光量をさらに増加でき、これにより高感度化を実現できる。
また、前記遮光膜は、前記電荷転送チャネルの転送方向に垂直な方向において、一方の端部が、前記電荷転送電極が形成される領域上に形成され、他方の端部が、前記電荷転送電極が形成される領域外に形成されてもよい。
この構成によれば、遮光膜の他方の端部は、電荷転送電極の側面を覆って形成される。よって、本発明に係る固体撮像装置は、電荷転送チャネルへの光漏れを低減でき、これによりスミアを低減できる。
また、前記遮光膜と前記電荷転送電極とに挟まれる前記層間絶縁膜は、第1の膜厚を有する第1領域と、前記遮光膜の前記一方の端部下を含み、かつ前記第1の膜厚より薄い第2の膜厚を有する第2領域とを含んでもよい。
この構成によれば、遮光膜の端部下(第2領域)の層間絶縁膜の膜厚は、層間絶縁膜の中央部等(第1領域)の膜厚より薄い。このように遮光膜の端部下(第2領域)の層間絶縁膜の膜厚を薄くすることにより、電荷転送チャネルへの光漏れが低減される。これにより、本発明に係る固体撮像装置は、スミアを低減できる。
さらに、層間絶縁膜の中央部等を厚くすることにより、遮光膜と、当該遮光膜と裏打ちされていない(コンタクトを介して接続されていない)電荷転送電極との間の寄生容量を低減できる。これにより、本発明に係る固体撮像装置は、遮光膜に印加される電荷転送パルスが、当該遮光膜と裏打ちされていない電荷転送電極に与える影響を低減できる。
また、前記遮光膜は金属膜であってもよい。
この構成によれば、遮光膜の抵抗値を低減できるので、電荷転送電極に電荷転送パルスを印加する経路(配線)の抵抗値を低減できる。よって、本発明に係る固体撮像装置は、垂直転送速度を向上でき、これによりスミアの増加を抑制できる。
また、本発明に係る固体撮像装置の製造方法は、半導体基板に、光を信号電荷に変換する受光部を形成する工程と、前記半導体基板に、前記受光部により変換された信号電荷を転送する電荷転送チャネルを形成する工程と、前記半導体基板の表面に絶縁膜を形成する工程と、前記電荷転送チャネル上方に前記絶縁膜を介して電荷転送電極を形成する工程と、前記電荷転送電極上に層間絶縁膜を形成する工程と、前記電荷転送電極上方に前記層間絶縁膜を介して、前記電荷転送チャネルの転送方向に垂直な方向において、少なくとも一方の端部が、前記電荷転送電極が形成される領域上に形成される遮光膜を形成する工程と、前記電荷転送電極と前記遮光膜とを接続するコンタクトを形成する工程と、前記受光部上方に、入射光を前記受光部に集光するレンズを形成する工程とを含む。
これによれば、本発明に係る製造方法により製造された固体撮像装置は、遮光膜の少なくとも一方の端部が電荷転送電極上に形成される。つまり、遮光膜の少なくとも一方の端部は、電荷転送電極の側面を覆わない。これにより、遮光膜の開口幅が広くなるので、受光部への入射光量が増加される。よって、本発明に係る製造方法は、チップ面積を増加させることなく高感度化を実現できる固体撮像装置を製造できる。
さらに、本発明に係る製造方法により製造された固体撮像装置は、電荷転送電極と遮光膜とを接続するコンタクトを備える。これにより、電荷転送電極に電荷転送パルスを印加する経路(配線)の抵抗値が低減されるので、本発明に係る製造方法により製造された固体撮像装置は、垂直転送速度を向上できる。よって、本発明に係る製造方法により製造された固体撮像装置は、FIT構造等を用いなくても、遮光膜が電荷転送電極を覆わないことにより生じるスミアの増加を抑制できる。
このように、本発明に係る固体撮像装置の製造方法は、チップ面積及びスミアを増大させずに、高感度化を実現できる固体撮像装置を製造できる。
また、前記層間絶縁膜を形成する前記工程は、平坦に、前記層間絶縁膜の一部である第1層間絶縁膜を形成する工程と、前記電荷転送電極上であり、かつ前記電荷転送電極の前記一方の端部下を含まない第1領域の前記第1層間絶縁膜を残して、前記電荷転送電極上の前記第1領域以外の第2領域の前記第1層間絶縁膜を除去する工程と、前記第1領域の前記第1層間絶縁膜上、及び前記第2領域の前記電荷転送電極上に前記層間絶縁膜の一部である第2層間絶縁膜を形成する工程とを含んでもよい。
これによれば、遮光膜の端部下(第2領域)の層間絶縁膜の膜厚は、層間絶縁膜の中央部等(第1領域)の膜厚より薄い。このように遮光膜の端部下(第2領域)の層間絶縁膜の膜厚を薄くすることにより、電荷転送チャネルへの光漏れが低減される。これにより、本発明に係る製造方法により製造された固体撮像装置は、スミアを低減できる。
さらに、層間絶縁膜の中央部等を厚くすることにより、遮光膜と、当該遮光膜と裏打ちされていない(コンタクトを介して接続されていない)電荷転送電極との間の寄生容量を低減できる。これにより、本発明に係る製造方法により製造された固体撮像装置は、遮光膜に印加される電荷転送パルスが、当該遮光膜と裏打ちされていない電荷転送電極に与える影響を低減できる。
以上より、本発明は、チップ面積及びスミアを増大させずに、高感度化を実現できる固体撮像装置及びその製造方法を提供できる。
以下に本発明の実施の形態に係る固体撮像装置ついて、図面を参照して具体的に説明する。
(実施の形態1)
本発明の実施の形態1に係る固体撮像装置は、遮光膜17を電荷転送電極15上のみに形成する。これにより、遮光膜17の開口幅を広くできるので、チップ面積を増加させることなく、フォトダイオード2への入射光量を増加できる。
さらに、本発明の実施の形態1に係る固体撮像装置は、遮光膜17と電荷転送電極15とを裏打ち構造とすることにより、電荷転送電極15に印加される電荷転送パルスの経路の抵抗値を低減できるので、垂直転送速度を向上できる。これにより、本発明の実施の形態1に係る固体撮像装置は、スミアの増加を抑制できる。
さらに、本発明の実施の形態1に係る固体撮像装置は、遮光膜17の底面と半導体基板1の表面との距離を短くすることにより、垂直転送チャネル3への光漏れを低減できる。これにより、本発明の実施の形態1に係る固体撮像装置は、スミアの増加を抑制できる。
なお、本発明の実施の形態1に係る固体撮像装置の概略構成は、図7と同様であり、説明は省略する。
図1は、本発明の実施の形態1に係る固体撮像装置の平面図であり、図7の領域20の拡大図である。図2は、図1のX0−X1面における断面図である。なお、図8及び図9と同様の要素には同一の符号を付している。
図1及び図2に示すように、本発明の実施の形態1に係る固体撮像装置は、半導体基板1と、フォトダイオード2と、垂直転送チャネル3と、ゲート絶縁膜4と、電荷転送電極15と、層間絶縁膜16a及び6bと、反射防止膜6cと、遮光膜17と、カラーフィルタ層8aと、マイクロレンズ8bと、コンタクト18とを備える。
半導体基板1は、例えば、シリコン基板である。
フォトダイオード2は、半導体基板1内に形成される受光部であり、光を信号電荷に光電変換する。
垂直転送チャネル3は、フォトダイオード2により光電変換された信号電荷を垂直方向に転送するための垂直電荷転送チャネルである。
絶縁膜4は、半導体基板1の表面上に形成され、例えば、シリコン酸化膜である。
電荷転送電極5は、垂直転送を行うための転送ゲート電極であり、絶縁膜4上に形成される。つまり、電荷転送電極5は、垂直転送チャネル3の上方に絶縁膜4を介して形成される。この電荷転送電極5は、例えば、多結晶シリコン(ポリシリコン)で形成される。
反射防止膜6は、絶縁膜4上に形成され、フォトダイオード2へ入射される光の反射を防止する。
層間絶縁膜16aは、電荷転送電極15を覆うように、電荷転送電極15上に形成される。例えば、層間絶縁膜16aは、シリコン酸化膜である。
遮光膜17は、垂直転送チャネル3への光の入射を防止するための金属膜であり、電荷転送電極15の上方のみに層間絶縁膜16aを介して形成される。また、遮光膜17の水平方向の幅(図2の横方向の長さ)は、電荷転送電極15の水平方向の幅(図2の横方向の長さ)より短い。つまり、水平方向(図2の横方向)において、遮光膜17の両端部は、電荷転送電極15が形成される領域上(電荷転送電極15の両端部より内側)に形成され、電荷転送電極15の側面を覆わない。
また、遮光膜17には、電荷転送電極15を駆動する電荷転送パルスが印加される。
コンタクト18は、層間絶縁膜16aを貫通し、遮光膜17と電荷転送電極15とを電気的に接続する。なお、コンタクト18は、対応する電荷転送パルスが印加される遮光膜17と、電荷転送電極15とを接続する。
例えば、4相の電荷転送パルスが用いられる場合には、各列の遮光膜17には、4相の電荷転送パルスのうちいずれかが印加される。また、複数の電荷転送電極15は、それぞれ4相の電荷転送パルスのいずれかに対応し、対応する電荷転送パルスが印加される遮光膜17とコンタクト18を介して接続される。つまり、各遮光膜17には、四つの電荷転送電極15ごとに一つのコンタクト18が形成される。
層間絶縁膜6bは、層間絶縁膜16a及び遮光膜17上に形成され、上面が平坦化されている。
カラーフィルタ層8aは、層間絶縁膜6b上に形成され、所定の波長帯域の光を透過する。
マイクロレンズ8bは、フォトダイオード2の上方、かつカラーフィルタ層8a上に形成され、入射光をフォトダイオード2に集光する。
マイクロレンズ8bによって集光された入射光は、カラーフィルタ層8a及び遮光膜17の開口部17aを通過してフォトダイオード2に入射される。
ここで、遮光膜17は電荷転送電極15の側壁を覆わない構造である。よって、遮光膜17の開口幅L1と電荷転送電極15の幅とは相互に依存しないで決定できるため、開口幅L1と電荷転送電極15の幅とは各々の最適幅に設定が可能である。
また、図9に示す従来の構成と比べて電荷転送電極5の側壁を覆っている遮光膜7の張り出し部を省略することによって、本発明の実施の形態1に係る固体撮像装置は、同一セルサイズであれば開口面積を従来の構成と比べ約1.5倍に拡大できる。これにより、本発明の実施の形態1に係る固体撮像装置は、チップ面積を増加させることなく、従来の構成と比べて、感度特性を1.5倍にできる。
ここで、図9に示す従来の構成では、遮光膜7が電荷転送電極5上のみに形成された場合、遮光膜7と半導体基板1との間の距離が大きくなり遮光膜7の端部における斜め入射光漏れによるスミアの増加が課題となる。
一方、本発明の実施の形態1に係る固体撮像装置では、遮光膜17の底面と半導体基板1の表面との間の距離t1を図9に示す従来の構造と同等以下にすることにより、斜め入射光9dが垂直転送チャネル3に光漏れすることを防止できるので、スミア特性の低下を防止できる。
具体的には、本発明の実施の形態1に係る固体撮像装置では、遮光膜17と半導体基板1との間の距離t1は、従来と同等の150nm以下となるように設定している。
ここで、距離t1は、電荷転送電極15下の絶縁膜4(ゲート絶縁膜)と、電荷転送電極15と、電荷転送電極15上の層間絶縁膜16aとの膜厚の総和である。本発明の実施の形態1に係る固体撮像装置では、ゲート絶縁膜4の膜厚は従来構造と同様であり約40nmである。
また、電荷転送電極15上の層間絶縁膜16aの膜厚は、遮光膜17と電荷転送電極15との間の耐圧から決定される。具体的には、例えば、遮光膜17及び電荷転送電極15に最大で21V印加される場合、遮光膜17と電荷転送電極15との間の耐圧は5MV/cm以上に確保する必要がある。このために、層間絶縁膜16aの膜厚は約42nmとすることが望ましい。
また、電荷転送電極15の膜厚は、コンタクト18を形成する際のマージンと、電荷転送電極15の端部での反射防止効果を最大にするための条件により設定する。具体的には、電荷転送電極15を構成する多結晶シリコン膜は屈折率が約3.0であるので、電荷転送電極15を、λ/4の膜厚で構成することで反射防止膜としての効果をさらに高めることができる。
さらに具体的には、多結晶シリコン膜のλ=400nmにおける屈折率は約5.6、λ=700nmにおける屈折率は約3.4であるので、可視光領域400nm〜700nmにおいては、多結晶シリコン膜の場合のλ/4の膜厚は、18nm〜51nmになる。ただし、反射防止膜の下地の絶縁膜4の厚み、及び上部の層間絶縁膜16aの厚みに応じて最適な多結晶シリコン膜の膜厚を調整する必要があるため、電荷転送電極15の膜厚は、15nm〜60nmに設定することが望ましい。なお、コンタクト18を形成する際のマージンは15nm〜60nmであれば十分問題ない。
以上より遮光膜17の底面と半導体基板1の表面との距離t1の最大値は40+42+51=133nmとなり150nm以下を実現できている。
このように、本発明の実施の形態1に係る固体撮像装置は、遮光膜17と半導体基板1との距離t1を従来と同程度にすることにより、スミアの増加を抑制できる。これにより、スミアを低減のためのFIT構造を用いる必要がないので、FIT構造を用いた特許文献1記載の固体撮像装置と比較して、チップサイズを約3/4にできる。
なお、特許文献1では、電荷転送電極5に傾斜を持たせて遮光膜7と半導体基板1との間の距離を小さくしているが、電荷転送電極5の形成時のエッチングばらつきにより抵抗が変動すると共に、遮光膜7と半導体基板1との間の距離が変動しスミア特性が変動するという問題が生じる。一方、本発明の実施の形態1に係る固体撮像装置では、電荷転送電極15は成膜のみで形成されるため電荷転送電極15の抵抗の均一性と、遮光膜17と半導体基板1との間の距離t1の均一性とを向上できる。
また、上述したように、電荷転送電極15の膜厚を薄くした場合、電荷転送電極15の抵抗値が増加することになる。これに対して、本発明の実施の形態1に係る固体撮像装置では、電荷転送電極15と遮光膜17とをコンタクト18を用いた裏打ち構造にすることによって、電荷転送電極15に至る配線の抵抗値を低減できる。
具体的には、本発明の実施の形態1に係る固体撮像装置では、電荷転送電極15は多結晶シリコン膜で形成され、遮光膜17は金属膜で形成されている。ここで、金属膜の抵抗は多結晶シリコンの1/10以下であるため、電荷転送電極15と遮光膜17とをコンタクト18を用いた裏打ち構造にすることによって、低抵抗配線を実現できる。
さらに、電荷転送電極15に至る配線の抵抗値を低減することにより、本発明の実施の形態1に係る固体撮像装置は、垂直転送速度を向上できる。よって、本発明の実施の形態1に係る固体撮像装置は、FIT構造等を用いなくても、遮光膜17が電荷転送電極15を覆わないことにより生じるスミアの増加を抑制できる。
次に、本発明の実施の形態1に係る固体撮像装置の製造方法について、図面を参照して具体的に説明する。
図3A、図3B及び図3Cは、本発明の実施の形態1に係る固体撮像装置の製造方法を説明するための図であり、実施の形態1に係る固体撮像装置の製造過程における断面図である。
まず、半導体基板1内にフォトダイオード2を形成する。次に、半導体基板1上に絶縁膜4を形成し、絶縁膜4上に、電荷転送電極15及び反射防止膜6cを形成する。以上により図3Aに示す構造が形成される。
次に、電荷転送電極15を覆うように層間絶縁膜16aを形成し、次に、電荷転送電極15上にコンタクト18及び遮光膜17を順次形成する。以上により図3Bに示す構成が形成される。
次に、層間絶縁膜6bとなる平坦層を形成した後、カラーフィルタ層8a及びマイクロレンズ8bを順次形成する。以上により図3Cに示す構成が形成される。
(実施の形態2)
本発明の実施の形態2に係る固体撮像装置は、遮光膜27の幅方向(水平方法)の一方の端部が、電荷転送電極15の側面を覆う点が、実施の形態1に係る固体撮像装置と異なる。
図4は、本発明の実施の形態2に係る固体撮像装置の構造を示す断面図である。なお、図2と同様の要素には、同一の符号を付しており、相違点のみを説明する。
遮光膜27は、垂直転送チャネル3への光の入射を防止するための金属膜であり、電荷転送電極15の上方に形成される。また、水平方向(図4の横方向)において、遮光膜17の一方の端部は、電荷転送電極15が形成される領域上(電荷転送電極15の一方の端部より内側)に形成され、遮光膜17の他方の端部は、電荷転送電極15が形成される領域外(電荷転送電極15の他方の端部より外側)に形成される。つまり、遮光膜27の水平方向の一方の端部は電荷転送電極15の一方の側面を覆い、遮光膜27の水平方向の他方の端部は電荷転送電極15の他方の側面を覆わない。
以上の構成により、遮光膜27の底面と半導体基板1の表面との間の距離は、遮光膜27が電荷転送電極15を覆う側において、t2となり、t1と比較して電荷転送電極15の厚さ分小さくなる。これにより、本発明の実施の形態2に係る固体撮像装置は、実施の形態1に係る固体撮像装置と比較して、スミアを低減できる。
なお、実施の形態2に係る固体撮像装置では、遮光膜27の開口幅L2は、実施の形態1の遮光膜17の開口幅L1より狭くなるが、図6に示す従来の固体撮像装置の開口幅L6よりは広くなる。
また、本発明の実施の形態2に係る固体撮像装置では、電荷転送電極15の薄膜化により遮光膜27の形成時の下地の段差が小さくできる。これにより、遮光膜27の加工精度を向上できる。
また、本発明の実施の形態2に係る固体撮像装置の製造方法は、遮光膜27のパターンが異なる点以外は、実施の形態1に係る固体撮像装置の製造方法と同一であり、説明は省略する。
(実施の形態3)
本発明の実施の形態3に係る固体撮像装置は、電荷転送電極15上の層間絶縁膜36aの膜厚が遮光膜17の端部と中央部とで異なる点が、実施の形態1に係る固体撮像装置と異なる。
図5は、本発明の実施の形態3に係る固体撮像装置の構造を示す断面図である。なお、図2と同様の要素には、同一の符号を付しており、相違点のみを説明する。
図5に示すように、層間絶縁膜36aは、遮光膜17の端部に近い領域では、膜厚h1を有し、遮光膜17の中央部に近い領域では、膜厚h1より厚い膜厚h2を有する。ここで、遮光膜17の端部に近い領域とは、少なくとも遮光膜17の端部下を含む領域であり、遮光膜17の中央部に近い領域とは、遮光膜17下の領域のうち上記遮光膜17の端部に近い領域以外の領域である。
例えば、膜厚h1は約42nmであり、膜厚h2は、約42〜200nmである。なお、膜厚h2は、従来の構成と同程度の150nmに設定することが好ましい。
このように、層間絶縁膜36aの中央部に近い領域の膜厚h2を厚くすることにより、遮光膜17と電荷転送電極15との間の配線容量を低減できる。これにより、遮光膜17に印加される電荷転送パルスが、当該遮光膜17と裏打ちされていない電荷転送電極15に与える影響を低減できる。
さらに、遮光膜17の端部下の層間絶縁膜36aの膜厚h1は、実施の形態1に係る固体撮像装置と同じであるので、遮光膜17の端部における遮光膜17の底面と半導体基板1の表面との距離t1は、実施の形態1と同様に150nm以下となる。
つまり、本発明の実施の形態3に係る固体撮像装置は、実施の形態1と同等のスミア低減効果を維持したまま、さらに、遮光膜17と電荷転送電極15との間の配線容量を低減できる。
次に、本発明の実施の形態3に係る固体撮像装置の製造方法について説明する。
図6A〜図6Fは、本発明の実施の形態3に係る固体撮像装置の製造方法を説明するための図であり、実施の形態3に係る固体撮像装置の製造過程における断面図である。
まず、実施の形態1に係る固体撮像装置の製造方法と同様に、半導体基板1内にフォトダイオード2を形成し、次に、半導体基板1上に絶縁膜4を形成し、次に、絶縁膜4上に、電荷転送電極15及び反射防止膜6cを形成する。以上により図6Aに示す構造が形成される。
次に、図6Aに示す構造の表面に、上面が平坦な層間絶縁膜40を形成する。次に、レジストパターン41を用いて選択敵にドライエッチングを行うことにより、電荷転送電極15上における中央部の領域の層間絶縁膜40を残して、他の領域の層間絶縁膜40を除去する。当該ドライエッチングでは、多結晶シリコン(電荷転送電極15)の表面が露出した時点でエッチングをストップする。また、例えば、電荷転送電極15上における中央部の領域の層間絶縁膜40の膜厚は約150nmである。以上により図6Bに示す構造が形成される。
次に、図6Bに示す構造の表面に、膜厚h1に相当する約42nmの層間絶縁膜42を形成する。つまり、層間絶縁膜40上、及び露出した電荷転送電極15上に層間絶縁膜42を形成する。以上により図6Cに示す構造が形成される。ここで、層間絶縁膜40及び層間絶縁膜42は、層間絶縁膜36aの一部であり、層間絶縁膜40と層間絶縁膜42との膜厚の合計が、膜厚h2に相当する。
次に、コンタクト18を形成するためのコンタクトホール43を形成することにより、図6Dに示す構造が形成される。
次に、コンタクト18及び遮光膜17を順次形成することにより、図6Eに示す構造が形成される。
次に、層間絶縁膜6bとなる平坦層を形成した後、カラーフィルタ層8a及びマイクロレンズ8bを順次形成する。以上により図6Fに示す構成が形成される。
なお、層間絶縁膜40の形成時に多結晶シリコン(電荷転送電極15)までエッチングせずに残膜を42nm以上確保するようにエッチングストップすることにより、層間絶縁膜42の形成を省略してもよい。
また、上記実施の形態3の説明では、実施の形態1と同様に、遮光膜17が電荷転送電極15上のみに形成される場合について述べたが、実施の形態2と同様に、遮光膜17の一方の端部が電荷転送電極15の側面を覆う場合に、適用してもよい。この場合、遮光膜17と電荷転送電極15とに挟まれる層間絶縁膜36aは、少なくとも電荷転送電極15の端部を覆わない側の遮光膜17の端部下を含む膜厚h1の領域と、当該遮光膜17の端部下を含む領域以外の膜厚h2の領域とを含めばよい。
本発明は、固体撮像装置に適用でき、特に、CCDイメージセンサを備えるデジタルスチルカメラ、デジタルビデオカメラ、及び携帯電話機器等に適用できる。
本発明の実施の形態1に係る固体撮像装置の平面図である。 本発明の実施の形態1に係る固体撮像装置の断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態1に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態2に係る固体撮像装置の断面図である。 本発明の実施の形態3に係る固体撮像装置の断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 本発明の実施の形態3に係る固体撮像装置の製造過程における断面図である。 従来の固体撮像装置の構成を模式的に示す図である。 従来の固体撮像装置の平面図である。 従来の固体撮像装置の断面図である。 従来のFIT構造の固体撮像装置の構成を模式的に示す図である。
符号の説明
1 半導体基板
2 フォトダイオード
3 垂直転送チャネル
4 絶縁膜
5、15 電荷転送電極
6a、6b、16a、36a、40、42 層間絶縁膜
7、17、27 遮光膜
7a、17a 開口部
8a カラーフィルタ層
8b マイクロレンズ
9a、9b、9c、9d 斜め入射光
10 水平転送チャネル
11 電荷蓄積領域
18 コンタクト
41 レジストパターン
43 コンタクトホール

Claims (8)

  1. 半導体基板と、
    前記半導体基板に形成され、光を信号電荷に変換する受光部と、
    前記半導体基板に形成され、前記受光部により変換された信号電荷を転送するための電荷転送チャネルと、
    前記半導体基板の表面に形成される絶縁膜と、
    前記電荷転送チャネル上方に前記絶縁膜を介して形成される電荷転送電極と、
    前記電荷転送電極上に形成される層間絶縁膜と、
    前記電荷転送電極上方に前記層間絶縁膜を介して形成され、前記電荷転送チャネルの転送方向に垂直な方向において、少なくとも一方の端部が、前記電荷転送電極が形成される領域上に形成される遮光膜と、
    前記電荷転送電極と前記遮光膜とを接続するコンタクトと、
    前記受光部上方に形成され、入射光を前記受光部に集光するレンズとを備える
    固体撮像装置。
  2. 前記遮光膜の前記一方の端部下における、前記電荷転送電極下の前記絶縁膜と、前記電荷転送電極と、前記電荷転送電極上の層間絶縁膜との膜厚の総和は、150nm以下である
    請求項1に記載の固体撮像装置。
  3. 前記遮光膜は、前記電荷転送チャネルの転送方向に垂直な方向において、両端部が、前記電荷転送電極が形成される領域上に形成される
    請求項1又は2に記載の固体撮像装置。
  4. 前記遮光膜は、前記電荷転送チャネルの転送方向に垂直な方向において、一方の端部が、前記電荷転送電極が形成される領域上に形成され、他方の端部が、前記電荷転送電極が形成される領域外に形成される
    請求項1又は2に記載の固体撮像装置。
  5. 前記遮光膜と前記電荷転送電極とに挟まれる前記層間絶縁膜は、第1の膜厚を有する第1領域と、前記遮光膜の前記一方の端部下を含み、かつ前記第1の膜厚より薄い第2の膜厚を有する第2領域とを含む
    請求項1〜4のいずれか1項に記載の固体撮像装置。
  6. 前記遮光膜は金属膜である
    請求項1〜5のいずれか1項に記載の固体撮像装置。
  7. 半導体基板に、光を信号電荷に変換する受光部を形成する工程と、
    前記半導体基板に、前記受光部により変換された信号電荷を転送する電荷転送チャネルを形成する工程と、
    前記半導体基板の表面に絶縁膜を形成する工程と、
    前記電荷転送チャネル上方に前記絶縁膜を介して電荷転送電極を形成する工程と、
    前記電荷転送電極上に層間絶縁膜を形成する工程と、
    前記電荷転送電極上方に前記層間絶縁膜を介して、前記電荷転送チャネルの転送方向に垂直な方向において、少なくとも一方の端部が、前記電荷転送電極が形成される領域上に形成される遮光膜を形成する工程と、
    前記電荷転送電極と前記遮光膜とを接続するコンタクトを形成する工程と、
    前記受光部上方に、入射光を前記受光部に集光するレンズを形成する工程とを含む
    固体撮像装置の製造方法。
  8. 前記層間絶縁膜を形成する前記工程は、
    平坦に、前記層間絶縁膜の一部である第1層間絶縁膜を形成する工程と、
    前記電荷転送電極上であり、かつ前記電荷転送電極の前記一方の端部下を含まない第1領域の前記第1層間絶縁膜を残して、前記電荷転送電極上の前記第1領域以外の第2領域の前記第1層間絶縁膜を除去する工程と、
    前記第1領域の前記第1層間絶縁膜上、及び前記第2領域の前記電荷転送電極上に前記層間絶縁膜の一部である第2層間絶縁膜を形成する工程とを含む
    請求項7に記載の固体撮像装置の製造方法。
JP2008204761A 2008-08-07 2008-08-07 固体撮像装置及びその製造方法 Withdrawn JP2010040942A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204761A JP2010040942A (ja) 2008-08-07 2008-08-07 固体撮像装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204761A JP2010040942A (ja) 2008-08-07 2008-08-07 固体撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010040942A true JP2010040942A (ja) 2010-02-18

Family

ID=42013139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204761A Withdrawn JP2010040942A (ja) 2008-08-07 2008-08-07 固体撮像装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010040942A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084741A (ja) * 2011-10-07 2013-05-09 Canon Inc 光電変換装置および撮像システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013084741A (ja) * 2011-10-07 2013-05-09 Canon Inc 光電変換装置および撮像システム

Similar Documents

Publication Publication Date Title
US8835981B2 (en) Solid-state image sensor
JP5521312B2 (ja) 固体撮像装置及びその製造方法、並びに電子機器
US20190088704A1 (en) Image sensors
US20200395397A1 (en) Image sensor and image-capturing device
KR20190086660A (ko) 고체 촬상 소자, 고체 촬상 소자의 제조 방법 및 촬상 장치
JP2009065098A (ja) 裏面照射型固体撮像素子及びその製造方法
CN113130522B (zh) 具有部分囊封衰减层的图像传感器
KR20200091252A (ko) 후면 조사형 이미지 센서 및 그 제조 방법
JP2010182789A (ja) 固体撮像素子、撮像装置、固体撮像素子の製造方法
JP2009088261A (ja) 裏面照射型固体撮像素子及びその製造方法
JP2007080941A (ja) 固体撮像素子およびその製造方法
JP2866328B2 (ja) 固体撮像素子
US7541631B2 (en) Solid-state imaging device
TWI525801B (zh) 具有經摻雜之傳輸閘極的影像感測器
JP2010040942A (ja) 固体撮像装置及びその製造方法
JP2010245177A (ja) 撮像素子、撮像素子の製造方法、撮像素子の駆動方法及び撮像装置
JP2006344914A (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2008193050A (ja) 固体撮像装置および撮像装置
WO2011101935A1 (ja) 固体撮像素子とその製造方法
JP4449298B2 (ja) 固体撮像素子の製造方法および固体撮像素子
JP2007194359A (ja) 固体撮像素子及び固体撮像素子の製造方法
JP4882207B2 (ja) 固体撮像素子
JP2009064982A (ja) 固体撮像素子
JP2006344656A (ja) 固体撮像素子及びその製造方法
JP2007012677A (ja) 固体撮像素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110916