JP2007012677A - 固体撮像素子およびその製造方法 - Google Patents

固体撮像素子およびその製造方法 Download PDF

Info

Publication number
JP2007012677A
JP2007012677A JP2005188225A JP2005188225A JP2007012677A JP 2007012677 A JP2007012677 A JP 2007012677A JP 2005188225 A JP2005188225 A JP 2005188225A JP 2005188225 A JP2005188225 A JP 2005188225A JP 2007012677 A JP2007012677 A JP 2007012677A
Authority
JP
Japan
Prior art keywords
solid
film
imaging device
state imaging
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188225A
Other languages
English (en)
Inventor
Sadaji Yasuumi
貞二 安海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005188225A priority Critical patent/JP2007012677A/ja
Publication of JP2007012677A publication Critical patent/JP2007012677A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】 高度の微細化に際しても高感度で信頼性の高い固体撮像素子を提供する。
【解決手段】 光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子において、前記電荷転送電極が、金属材料膜で構成され、前記光電変換部の受光領域が前記電荷転送電極の外方端で規定されたことを特徴とする。
【選択図】図1

Description

本発明は、固体撮像素子およびその製造方法にかかり、特に、電荷転送電極の低抵抗化をはかり、微細化に耐えうる構造の固体撮像素子の製造方法に関する。
エリアセンサ等に用いられるCCDを用いた固体撮像素子は、フォトダイオードなどの光電変換部と、この光電変換部からの信号電荷を転送するための電荷転送電極を備えた電荷転送部とを有する。電荷転送電極は、半導体基板に形成された電荷転送路上に複数個隣接して配置され、順次駆動される。
近年、固体撮像素子においては、高解像度化、高感度化への要求は高まる一方であり、ギガピクセル以上まで撮像画素数の増加が進んでいる。このような状況の中で、チップサイズを大型化することなく高解像度を得るためには、単位画素あたりの面積を縮小し、高集積化を図る必要がある。このように微細化が進むにつれて、感度とスミアを維持することが困難になってきている。特に感度を維持するために遮光膜の開口面積を可能な限り広くするのが望ましいが、転送路の幅とトレードオフであり、電荷検出感度を大きくしてもS/N比を改善することができないという問題があった。
このように、光電変換部を構成するフォトダイオードの面積を小さくすると感度が低下するため、フォトダイオード領域の面積は確保しなければならない。そこで、電荷転送部および周辺回路部の配線の微細化をはかり、配線の面積比率を低減することにより、フォトダイオード領域の占有面積を確保しつつチップの微細化をはかるべく種々の研究がなされている。
このような状況の中で配線の微細化により、高集積化を実現するためには配線層間の層間絶縁膜の平坦性を保つことは重要な技術課題となる。さらにまた、固体撮像素子の作りこまれた基板(シリコン基板)は、フィルタやレンズを積層して、実装される。このため、レンズと光電変換部との位置精度が重要となり、またその距離すなわち高さ方向の距離も、製造工程における位置精度と、使用時における感度(光電変換効率)面での大きな問題となる。
そこで平坦性の向上のために、電荷転送部を単層電極構造とした構造が提案されている。CCDにおいては電極間ギャップが転送効率を決定する重要な要因となっており、この電極間ギャップをいかに小さくとるかが重要である。しかしながら通常のフォトリソグラフィ技術による電極パターンの形成では、0.2μmが限度であり、これよりも小さく形成するのは困難であった。また電極間距離の微細化においてはアスペクト比も大きくならざるを得ず、このように微細でかつアスペクト比の大きな電極間ギャップに絶縁膜を埋め込む技術も極めて難しい。
このため、電極間ギャップの微細化は極めて深刻であり、十分なパターン精度を得られない場合、感度ばらつき、迷光によるスミアの悪化などを引き起こし、パターン精度の向上は深刻な問題となっている。また周辺回路部の微細化も同様に求められている。
従来の単層構造の電荷転送電極を用いた固体撮像素子では、電極間ギャップの微細化に際し、フォトリソグラフィの解像度を超えた微細化をはかるために、第1層導電性膜のパターンを形成した後、電極間絶縁膜を形成し、この上層に第2層導電性膜を積層したのち、レジストエッチバックあるいはCMP(化学的機械研磨)法により、平坦化をはかる方法も提案されている(特許文献1)。
特開2004−179608号公報
このように、従来の固体撮像素子では、微細化に伴い、スミアの低減と高感度を維持するために光電変換部を最大限に大きくする必要があるが、遮光膜の開口面積を大きくとることと、転送路の幅を最大限に大きくとることとの両立は極めて困難であり、電荷検出感度を向上したとしても、SN比を改善することができないという問題があった。
本発明は前記実情に鑑みてなされたもので、高度の微細化に際しても高感度で信頼性の高い固体撮像素子を提供することを目的とする。
そこで本発明の固体撮像素子は、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子において、前記電荷転送電極が、金属材料膜を含み、前記光電変換部の受光領域が前記電荷転送電極の外方端で規定されたことを特徴とする。
この構成によれば、低抵抗の電荷転送電極を得ることができるとともに、電荷転送電極そのものが遮光性を有することから、遮光膜が不要となる。したがって、金属材料で構成された電荷転送電極によって確実な遮光を実現しつつ、電荷転送電極の端縁と自己整合的に光電変換領域が規定されることになり、最大限に光電変換領域を広げることが可能となる。
また、本発明の固体撮像素子は、前記金属材料膜は単層構造であるものを含む。
この構成によれば、製造が容易である。
また、本発明の固体撮像素子は、前記金属材料膜は積層構造であるものを含む。
この構成によれば、より遮光性を高めることができ、また材料の選択が容易である。
また、本発明の固体撮像素子は、前記金属材料膜はタングステンを含む。
この構成によれば、遮光性が高く低抵抗の電荷転送電極を形成することが可能となる。
また、本発明の固体撮像素子は、前記金属材料膜は窒化チタン層とタングステン層との積層構造であるものを含む。
この構成によれば、下地層との密着性が良好で遮光性の高い電荷転送電極を得ることができる。
また、本発明の固体撮像素子は、前記電荷転送電極が、第1の電極と、前記第1の電極の側壁を覆う電極間絶縁膜を介して形成される第2の電極との単層電極構造を有し、前記電極間絶縁膜が、低温プラズマによるラジカル酸化膜と、CVD膜との2層膜構造で構成されたものを含む。
この構成によれば、上記効果に加え、微細化に伴い、電極間ギャップを小さくしても緻密で高品質の絶縁膜を形成することができるため、微細化が可能となる。
また、本発明の固体撮像素子は、前記CVD膜は酸化シリコン膜であるものを含む。
この構成によれば、遮光性が高く低抵抗の電荷転送電極を形成することが可能となる。
また、本発明の固体撮像素子は、前記CVD膜は窒化シリコン膜であるものを含む。
この構成によれば、遮光性が高く低抵抗の電荷転送電極を形成することが可能となる。
また、本発明の固体撮像素子は、前記電荷転送電極の周縁には遮光膜を介することなく、光電変換部が配置されているものを含む。
この構成によれば、光電変換部を最大限に大きくとることができ、遮光性が高く低抵抗の電荷転送電極を形成することが可能となる。
また、本発明の固体撮像素子は、前記光電変換部上に層内レンズが一体的に形成されたものを含む。
この構成によれば、縦方向の寸法をより低減することができ、信頼性の高い固体撮像素子を提供することが可能となる。
また本発明の方法は、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子の製造方法において、前記電荷転送電極の形成工程が、ゲート酸化膜が形成された半導体基板表面に、電極間絶縁膜を形成する工程と、前記電極間絶縁膜で囲まれた領域に金属材料を充填する工程とを含み、前記光電変換部の受光領域が前記電荷転送電極の外方端によって規定されるようにしたものである。
この構成によれば、低抵抗の電荷転送電極を得ることができるとともに、電荷転送電極そのものが遮光性を有することから、遮光膜が不要となる。したがって、工数の低減をはかることができるとともに、金属材料で構成された電荷転送電極によって確実な遮光を実現しつつ、電荷転送電極の端縁と自己整合的に光電変換領域が規定されることになり、最大限に光電変換領域を広げることが可能となる。
また本発明の方法は、上記方法において、前記電荷転送電極の形成工程が、前記半導体基板表面に、ゲート酸化膜を形成する工程と、前記ゲート酸化膜が形成された半導体基板表面に、第1層シリコン系導電性膜のパターンを形成する工程と、前記第1層シリコン系導電性膜の側壁に低温プラズマによるラジカル酸化膜を形成し、電極間絶縁膜を形成する工程と、この上層に第2層シリコン系導電性膜を形成する工程と、前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とが、前記電極間絶縁膜をはさんで並置されるように、前記第2層シリコン系導電性膜を平坦化する工程と、前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とをエッチング除去する工程と、前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とがエッチングされた領域に、金属材料を充填する工程とを含む。
この構成によれば、高密度の低温プラズマによるラジカル酸化によって絶縁膜を形成しているため、従来のように900から950℃の高温下にさらすことなく、緻密で高品質の酸化膜を形成することができることになり、低温下での形成が可能であるため、下地の不純物領域の拡散長の伸びを生じることなく、信頼性の高い膜形成を行うことが可能となる。ラジカル酸化膜の上層にCVD膜を形成しても、絶縁耐性の高い高品質の絶縁膜を得ることができる。
また本発明の方法は、電荷転送電極の形成工程が、第1の電極を構成する第1層導電性膜のパターンを形成する工程と、前記第1の電極の少なくとも側壁に電極間絶縁膜となる絶縁膜を形成する工程と、前記第1の電極および前記電極間絶縁膜の形成された前記半導体基板表面に第2の電極を構成する第2層導電性膜を形成する工程と、少なくとも前記第1の電極上の前記第2層導電性膜を除去し、前記第2の導電性膜の形成された前記半導体基板表面を平坦化する工程とを含み、電極間絶縁膜の形成に際し、低温プラズマによるラジカル酸化を用い、層間酸化を行うことで結晶方位依存性のない酸化が可能となり、通常の熱酸化にみられるような電荷転送電極幅のばらつきを低減することができる。
この構成によれば、電極間絶縁膜を低温プラズマによるラジカル酸化膜を形成する工程によって形成するようにしているため、下地基板に形成された不純物領域の拡散長の伸びを生じることなく形成可能である。
特に電極間絶縁膜の形成に際し、低温プラズマによるラジカル酸化を用い、層間酸化を行うことで結晶方位依存性のない酸化が可能となり、通常の熱酸化にみられるような電荷転送電極幅のばらつきを低減することができる。
また、かかる構成によれば、自己整合的に側壁絶縁膜を形成し、こののち、この側壁絶縁膜を残してシリコン系導電性膜を除去し、再度金属材料を充填するようにしているため、フォトリソ工程での合わせずれや金属材料特有の表面での反射によるハレーションの影響を受けることなく電極の低抵抗化をはかることが可能となる。
また、金属層などの低抵抗層の形成に必要なフォトリソ工程やエッチング工程が不要となり、工程数削減による歩留まりの向上が可能となる。
このように、シリコン系導電性膜のパターニング工程でフォトリソグラフィプロセスを用いるのみでよく、このパターンの端部に側壁絶縁膜を形成し、この側壁絶縁膜を残して一旦シリコン系導電性膜を除去した後、自己整合的に、金属シリサイド膜が形成され、容易に低抵抗の電荷転送電極を形成することが可能となる。
また本発明の固体撮像素子の製造方法は、前記電極間絶縁膜を形成する工程が、低温プラズマによるラジカル酸化膜を形成する工程と、CVD膜の形成工程との2工程で形成されるものを含む。
この構成によれば、緻密で高品質の絶縁膜を形成することが可能となる。
また本発明の方法は、前記CVD工程は窒化シリコン膜を形成する工程であるものを含む。
この構成によれば、緻密で高品質の絶縁膜を形成することが可能となる。
また本発明の固体撮像素子の製造方法は、前記電荷転送電極の上層にプラズマCVD法により窒化シリコン膜を形成する工程と、この上層に層内レンズを形成する工程とを含む。
この構成によれば、容易に縦方向のシュリンクを達成することができる。
また本発明の固体撮像素子の製造方法は、前記層内レンズ上にカラーフィルタ層を形成する工程を含む。
この構成によれば、より平坦な電荷転送部表面にカラーフィルタ層が形成されるため、より薄型化が可能となる。
上記構成によれば、電荷転送電極材料が遮光膜をかねることで、光電変換部の開口を最大限に広くすることができ、高感度化をはかることができる。
また、低抵抗配線が達成でき、高速駆動が可能なセンサを得ることが可能となる。
さらにまた非球面状の層内レンズを形成することにより、さらなる集光効率の改善を図り、高感度のセンサを提供することができる。
また、隣接電極間のギャップ形成を、シリコン系導電性膜のパターンに低温プラズマによるラジカル酸化を行うことで、より緻密で高品質の電極間絶縁膜を形成することができることから、ギャップ幅の微細化をはかることができ、ひいては電極の微細化につながることになる。
以下本発明の実施の形態について図面を参照しつ説明する。
(実施の形態1)
本実施の形態の固体撮像素子は、図1および図2(図1は図2のA−A断面を示す図)に示すように、光電変換部としてのフォトダイオード領域30と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部40とを具備した固体撮像素子において、前記電荷転送電極3が、窒化チタンとタングステンとの2層膜からなる金属膜(金属材料膜)で構成された単層電極構造を有し、前記光電変換部の受光領域が前記電荷転送電極3の外方端で規定されたことを特徴とする。また電荷転送電極を個々に規定するための電極間絶縁膜5はラジカル酸化膜とCVD法によって形成した窒化シリコン膜との2層膜で構成され、極めて微細な間隔で電荷転送電極が配列されている。
なお、図1および2に示すように、シリコン基板1には、光電変換部を構成する複数のフォトダイオード領域30が形成され、フォトダイオードで検出した信号電荷を転送するための電荷転送部40が、フォトダイオード領域30の間に形成される。
電荷転送部以外の部分については、通例の固体撮像素子と同様に形成されている。
ここで有効撮像領域は、光電変換部と垂直転送路(電荷転送部の一部)を含む受光領域と水平転送路(電荷転送部の一部)とで構成されており、その外側に周辺回路としての出力回路が形成されている。
ここでは、ゲート酸化膜2は、ラジカル酸化膜とCVD膜との合計膜厚50nm程度となるように形成される。また、図示しないがシリコン基板1の非撮像領域および電荷転送部の素子分離領域上には、信号電荷を水平方向に転送する水平転送レジスタや信号処理回路および配線が形成されている。
すなわち、図1および図2に固体撮像素子チップの断面概要図および平面図(図1は図2のA−A断面図)を示すように、シリコン基板1内には、有効撮像領域(受光領域)内にフォトダイオードを備えた光電変換部および電荷転送部が形成され、その上層は絶縁膜で被覆されている。
電荷転送部40は、複数のフォトダイオード列の各々に対応してシリコン基板1表面部の列方向に形成された複数本の垂直電荷転送チャネル33と、垂直電荷転送チャネル33の上層に形成された電荷転送電極3と、フォトダイオード30で発生した電荷を垂直電荷転送チャネル33に読み出すための電荷読み出し領域34とを含む。電荷転送電極3は、行方向に配設された複数のフォトダイオード30からなる複数のフォトダイオード行の間を全体として行方向に延在する蛇行形状となっている。
図1に示すように、シリコン基板1の表面にはpウェル層1Pが形成され、pウェル層1P内に、pn接合を形成するn領域30bが形成されると共に表面にp領域30aが形成され、フォトダイオード30を構成しており、このフォトダイオード30で発生した信号電荷は、n領域30bに蓄積される。
そしてこのフォトダイオード30の右方には、少し離間してn領域からなる電荷転送チャネル33が形成される。n領域30bと電荷転送チャネル33の間のpウェル層1Pに電荷読み出し領域34が形成される。
電荷読み出し領域34と電荷転送チャネル33の上には、ゲート酸化膜2を介して、電荷転送電極3が形成される。そして電極間には電極間絶縁膜5が形成されている。垂直転送チャネル33の右側にはp領域からなるチャネルストップ32が設けられ、隣接するフォトダイオード30との分離がなされている。
そして電荷転送電極3の上層には、酸化シリコン膜7(パッシベーション膜)、BPSG(borophospho silicate glass)からなる絶縁膜8、P−SiNからなる層内レンズ73、透明樹脂等からなるフィルタ下平坦化膜74が形成される。さらにこれらの上方には、カラーフィルタ50(赤色フィルタ50R、緑色フィルタ50G、青色フィルタ:図示せず、)とマイクロレンズ60が設けられる。
また、電荷転送電極によって転送される信号電荷が移動する垂直電荷転送チャネル33が、電荷転送部40が延在する方向と交差する方向に、形成されている。
なお、図2では、いわゆるハニカム構造の固体撮像素子を示しているが、正方格子型の固体撮像素子にも適用可能であることはいうまでもない。
次に本実施の形態の固体撮像素子の製造工程について図3乃至図8を参照しつつ説明する。図3乃至図8は図2のB−B断面での説明図である。
まず、n型のシリコン基板1を用意し、図1に記載の電荷転送チャネル33、チャネルストップ領域32、電荷読み出し領域34が形成された、不純物濃度1.0×1016cm−3程度のn型のシリコン基板1表面に、低温プラズマによるラジカル酸化による酸化膜厚15〜35nmの酸化シリコン膜と、CVD法による酸化シリコン膜とからなる、2層構造のゲート酸化膜2を形成する。
続いて、このゲート酸化膜2上に、減圧CVD法により、ドープトアモルファスシリコン膜D1を形成するとともに、減圧CVD法により酸化シリコン膜と、窒化シリコン膜5との2層膜D4を形成し、レジストパターンR1を形成する(図3(a))。このレジストパターンは1個おきの電荷転送電極のパターンに相当するように形成する。
続いて、反応性イオンエッチングにより、この2層膜D4をエッチングし、ドープトアモルファスシリコン膜D1のパターニング用のマスクパターンを形成する(図3(b))。
そしてアッシングによりレジストパターンを剥離除去する(図3(c))。
続いて、電極パターンの表面に低温プラズマによるラジカル酸化を行うとともにCVD法による成膜を行い2層構造のゲート酸化膜と同じ厚さの酸化シリコン膜からなる電極間絶縁膜5(正確にはここでは電極間絶縁膜5の芯となる部分5aであるが電極間絶縁膜5aとする)を形成する(図4(a))。
続いて、再度、減圧CVD法により、ドープトアモルファスシリコン膜D2を形成するとともに、CMPにより平坦化する(図4(b))。この後、電荷転送電極の形状をなすようにフォトリソグラフィによりこれらドープトアモルファスシリコン膜D2をパターニング後、エッチングする(図4(c))。
そして、ラジカル酸化を行い酸化シリコン膜4Sを形成し(図5(a))、反射防止膜6としての窒化シリコン膜を形成した後、フォトダイオード部を形成するためのイオン注入を行う。この後、注入したイオンを活性化するためのフラッシュランプアニールを行う。そしてCVD法により表面に酸化シリコン膜7を形成する(図5(b))。
そしてこの上層に、膜厚700nmのBPSG膜8を形成し、850℃でリフローし平坦化する(図5(c))。
次に、反射防止膜としての窒化シリコン膜6を研磨防止層としてCMPを行う。この後窒化シリコン膜と酸化シリコン膜とを異方性エッチングによりエッチング除去し(図6(a))、露呈したドープトアモルファスシリコン層D1,D2をエッチング除去し(図6(b))、電極間絶縁膜5aを隔てて電荷転送電極形成領域が露呈した形状を得る。
続いて低温プラズマによるラジカル酸化後、プラズマCVD法による窒化シリコン膜5bを形成し、さらにこの窒化シリコン膜5b表面をラジカル酸化し、酸化シリコン膜5cを形成することにより、電極間絶縁膜5を形成する(図6(c))。
次に、CVD法によりTiN層とW層との2層膜を形成し、CMP法により平坦化し、金属電極3を形成する。このときCMP工程における研磨防止層としての窒化シリコン膜5bを除去した後プラズマCVD法により酸化シリコン膜7を形成する(図7)。
次に、プラズマCVD法によりレンズ材料としての窒化シリコン膜73を形成する。そしてレジストを塗布しフォトリソグラフィによりパターンを形成し、加熱してメルトした後、イオン注入により、レンズ状の第1のレジストパターンR1を硬化させる(図8(a))。
この後、第2のレジストパターンR2を形成し、非球面状の外表面とする(図8(b))。そして、第1および第2のレジストパターンからなる表面部材とエッチング速度が同一である窒化シリコン膜73をエッチバックし、層内レンズを形成する(図8(c))。そして平坦化膜74、カラーフィルタ50、マイクロレンズ60などを形成して、図1および図2に示すような固体撮像素子を得る。なお図2では主要部のみを示し、光学系などは省略した。
この構成によれば、低抵抗の電荷転送電極を得ることができるとともに、電荷転送電極そのものが遮光性を有することから、遮光膜が不要となる。したがって、金属材料で構成された電荷転送電極によって確実な遮光を実現しつつ、電荷転送電極の端縁と自己整合的に受光領域が規定されることになり、最大限に光電変換領域を広げることが可能となる。
この方法によれば、ドープトアモルファスシリコンなどのシリコン系導電性膜の酸化によって形成した絶縁膜を基体とする電極間絶縁膜によって電極間ギャップが決まるため、解像限界を超えて微細な電極間ギャップを形成することができる。また、ラジカル酸化を用いることにより低温形成が可能でありながら、緻密で高耐圧の絶縁膜を得ることができるため、拡散長の伸びを防ぎ、高精度で信頼性の高い固体撮像素子を形成することができる。特に、ゲート酸化膜をはじめ電極間絶縁膜を低温プラズマによるラジカル酸化による酸化シリコン膜とCVD膜の2層膜によって形成しているため低温形成が可能で、下地の拡散長の伸びを招くことなく、高品質の絶縁膜を形成することができ、高精度で高耐圧の電極間絶縁膜を形成することができ、信頼性の高い固体撮像素子を形成することが可能となる。また、ラジカル酸化は、低温プロセスであるため、何度も繰り返しても拡散長の伸びはほとんどなく、確実に高耐圧化をはかることができる。
前記実施の形態1では、電極間絶縁膜5の形成に低温プラズマによるラジカル酸化による酸化シリコン膜とCVD法による窒化シリコン膜と低温プラズマによるラジカル酸化による酸化シリコン膜との3層膜によって形成したが、単層膜でもよいことはいうまでもない。
(実施の形態2)
また、ゲート酸化膜2上に、リンドープのドープトアモルファスシリコン膜D1のパターンを形成し、低温プラズマによるラジカル酸化による酸化シリコン膜5aとCVD法による窒化シリコン膜5bとを形成した後、反応性イオンエッチングにより、D1の側壁にのみ残留させ、これを電極間絶縁膜として用いてもよい。
(実施の形態3)
また、前記実施の形態では、ダミー電極としてアモルファスシリコンなどのシリコン系導電性膜を用いて、これを酸化することにより電極間絶縁膜を形成したが、直接金属膜に対しパターニングを行い電極間ギャップを形成しこの電極間ギャップに絶縁膜を充填し電極間絶縁膜を形成するようにしてもよい。
以上説明してきたように、本発明の方法によれば、電荷転送電極を遮光性材料で構成し、遮光膜の形成が不要となるため、光電変換部の開口を最大限に広くすることができることから、光電変換部の微細化が可能となる。また、電荷転送電極を金属材料膜で構成することにより、低抵抗化が可能となり、膜厚および電極面積の微細化が可能となる。
なお、前記電荷転送電極は、金属材料膜に限定されることなく、タングステンシリサイド、多結晶シリコン膜とタングステン膜との積層膜などの複合膜であってもよく、遮光性の導電層を含む構造であればよい。
この構成によれば、光電変換部の開口を最大限に広くすることができ、高感度化をはかることができるとともに、低抵抗配線が達成でき、高速駆動が可能なセンサを得ることが可能となることから、次世代の携帯電話やディジタルカメラなどの電子機器における固体撮像素子として有用である。
本発明の実施の形態1の固体撮像素子を示す図である。 本発明の実施の形態1の固体撮像素子を示す図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。 本発明の実施の形態1の固体撮像素子の製造工程を示す断面図である。
符号の説明
1 シリコン基板
2 ゲート酸化膜
3 垂直電荷転送電極
5a 酸化シリコン膜
5b 窒化シリコン膜
5c 酸化シリコン膜
5 電極間絶縁膜
7 酸化シリコン膜
8 BPSG膜
30 光電変換部
40 電荷転送部
50 カラーフィルタ
60 レンズ
8 BPSG膜
71M 遮光膜
73 層内レンズ
74 平坦化膜

Claims (15)

  1. 光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子において、
    前記電荷転送電極が、金属材料膜を含み、前記光電変換部の受光領域が前記電荷転送電極の外方端で規定された固体撮像素子。
  2. 請求項1に記載の固体撮像素子であって、
    前記金属材料膜は単層構造である固体撮像素子。
  3. 請求項1に記載の固体撮像素子であって、
    前記金属材料膜は積層構造である固体撮像素子。
  4. 請求項1に記載の固体撮像素子であって、
    前記金属材料膜はタングステンを含む固体撮像素子。
  5. 請求項1に記載の固体撮像素子であって、
    前記金属材料膜は窒化チタン層とタングステン層との積層構造である固体撮像素子。
  6. 請求項1乃至5のいずれかに記載の固体撮像素子であって、
    前記電荷転送電極が、第1の電極と、前記第1の電極の側壁を覆う電極間絶縁膜を介して形成される第2の電極との単層電極構造を有し、
    前記電極間絶縁膜が、低温プラズマによるラジカル酸化膜を含む固体撮像素子。
  7. 請求項6に記載の固体撮像素子であって、
    前記電極間絶縁膜が、低温プラズマによるラジカル酸化膜と、CVD膜との2層膜構造で構成された固体撮像素子。
  8. 請求項7に記載の固体撮像素子であって、
    前記CVD膜は窒化シリコン膜である固体撮像素子。
  9. 請求項1乃至8のいずれかに記載の固体撮像素子であって、
    前記電荷転送電極の周縁には遮光膜を介することなく、光電変換部が配置されている固体撮像素子。
  10. 請求項1乃至9のいずれかに記載の固体撮像素子であって、
    前記光電変換部上に層内レンズが一体的に形成された固体撮像素子。
  11. 半導体基板表面に、光電変換部と、前記光電変換部で生起せしめられた電荷を転送する電荷転送電極を備えた電荷転送部とを具備した固体撮像素子の製造方法において、
    前記電荷転送電極の形成工程が、
    ゲート酸化膜が形成された半導体基板表面に、電極間絶縁膜を形成する工程と、
    前記電極間絶縁膜で囲まれた領域に金属材料を充填する工程とを含み、
    前記光電変換部の受光領域が前記電荷転送電極の外方端によって規定されるようにした固体撮像素子の製造方法。
  12. 請求項11に記載の固体撮像素子の製造方法であって、
    前記電荷転送電極の形成工程が、
    前記半導体基板表面に、ゲート酸化膜を形成する工程と、
    前記ゲート酸化膜が形成された半導体基板表面に、第1層シリコン系導電性膜のパターンを形成する工程と、
    前記第1層シリコン系導電性膜の側壁に低温プラズマによるラジカル酸化膜を形成し、電極間絶縁膜を形成する工程と、
    この上層に第2層シリコン系導電性膜を形成する工程と、
    前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とが、前記電極間絶縁膜をはさんで並置されるように、前記第2層シリコン系導電性膜を平坦化する工程と、
    前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とをエッチング除去する工程と、
    前記第1層シリコン系導電性膜と第2層シリコン系導電性膜とがエッチングされた領域に、金属材料を充填する工程とを含む固体撮像素子の製造方法。
  13. 請求項12記載の固体撮像素子の製造方法であって、
    前記電極間絶縁膜を形成する工程が、低温プラズマによるラジカル酸化膜を形成する工程と、CVD膜の形成工程との2工程で形成される固体撮像素子の製造方法。
  14. 請求項13に記載の固体撮像素子の製造方法であって、
    前記電荷転送電極の上層にプラズマCVD法により窒化シリコン膜を形成する工程と、
    この上層に層内レンズを形成する工程とを含む固体撮像素子の製造方法。
  15. 請求項14に記載の固体撮像素子の製造方法であって、
    前記層内レンズ上にカラーフィルタ層を形成する工程を含む固体撮像素子の製造方法。
JP2005188225A 2005-06-28 2005-06-28 固体撮像素子およびその製造方法 Pending JP2007012677A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188225A JP2007012677A (ja) 2005-06-28 2005-06-28 固体撮像素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188225A JP2007012677A (ja) 2005-06-28 2005-06-28 固体撮像素子およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007012677A true JP2007012677A (ja) 2007-01-18

Family

ID=37750831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188225A Pending JP2007012677A (ja) 2005-06-28 2005-06-28 固体撮像素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007012677A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140922A (ja) * 2008-12-09 2010-06-24 Sony Corp 固体撮像素子及び固体撮像素子の製造方法
US8319878B2 (en) 2009-04-23 2012-11-27 Sony Corporation Solid-state imaging device and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010140922A (ja) * 2008-12-09 2010-06-24 Sony Corp 固体撮像素子及び固体撮像素子の製造方法
JP4743265B2 (ja) * 2008-12-09 2011-08-10 ソニー株式会社 固体撮像素子及び固体撮像素子の製造方法
US8247847B2 (en) 2008-12-09 2012-08-21 Sony Corporation Solid-state imaging device and manufacturing method therefor
US8319878B2 (en) 2009-04-23 2012-11-27 Sony Corporation Solid-state imaging device and its production method

Similar Documents

Publication Publication Date Title
US20060231898A1 (en) CMOS image sensor and method of manufacturing the same
JP2007150087A (ja) 固体撮像素子およびその製造方法
JP4486043B2 (ja) Cmosイメージセンサー及びその製造方法
TWI679755B (zh) 用於全局式快門的互補式金屬氧化物半導體影像感測器
JP2007088057A (ja) 固体撮像素子およびその製造方法
JP2007305683A (ja) 固体撮像素子の製造方法および固体撮像素子
JP2006049834A (ja) 固体撮像素子およびその製造方法
KR100804100B1 (ko) 고체 촬상 소자의 제조방법 및 고체 촬상 소자
US20140124888A1 (en) Image Sensor and Method for Manufacturing the Same
JP2007194498A (ja) 固体撮像装置およびその製造方法
JP2007012677A (ja) 固体撮像素子およびその製造方法
JP2006351759A (ja) 固体撮像素子およびその製造方法
JP2007067212A (ja) 固体撮像素子およびその製造方法
JP2006222366A (ja) 固体撮像素子およびその製造方法
JP2007188964A (ja) 固体撮像素子およびその製造方法
JP2006351787A (ja) 固体撮像素子およびその製造方法
KR20080018041A (ko) 씨모스 이미지 센서 및 그 제조 방법
WO2011101935A1 (ja) 固体撮像素子とその製造方法
KR20050105586A (ko) 이미지센서 및 그 제조방법
JP2007012676A (ja) 固体撮像素子の製造方法および固体撮像素子
JP2006351788A (ja) 固体撮像素子およびその製造方法
JP4500667B2 (ja) 固体撮像素子およびその製造方法
JP2008135636A (ja) 固体撮像素子およびその製造方法
JP2006344656A (ja) 固体撮像素子及びその製造方法
JP2006216655A (ja) 電荷転送素子及びその製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061127

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126