JP2010024476A5 - Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product - Google Patents

Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product Download PDF

Info

Publication number
JP2010024476A5
JP2010024476A5 JP2008184765A JP2008184765A JP2010024476A5 JP 2010024476 A5 JP2010024476 A5 JP 2010024476A5 JP 2008184765 A JP2008184765 A JP 2008184765A JP 2008184765 A JP2008184765 A JP 2008184765A JP 2010024476 A5 JP2010024476 A5 JP 2010024476A5
Authority
JP
Japan
Prior art keywords
diamond
carbon
substrate
discharge plasma
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008184765A
Other languages
Japanese (ja)
Other versions
JP2010024476A (en
JP4704453B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008184765A priority Critical patent/JP4704453B2/en
Priority claimed from JP2008184765A external-priority patent/JP4704453B2/en
Publication of JP2010024476A publication Critical patent/JP2010024476A/en
Publication of JP2010024476A5 publication Critical patent/JP2010024476A5/en
Application granted granted Critical
Publication of JP4704453B2 publication Critical patent/JP4704453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

更に、特許文献2には、基板上にN層、I層、P層の半導体層を積層した太陽電池の全ての層、或いは何れかの層をDLC薄膜で形成する技術が開示されている。本実施例では、P層を形成するためにボロン化合物を、N層を形成するために燐化合物をドーピングする技術が開示されている。しかし、不純物ドーピングではその抵抗率が十分低いDLC膜が得られないという課題があった。 Further, Patent Document 2 discloses a technique of forming all or any layer of a solar cell in which N, I, and P semiconductor layers are stacked on a substrate with a DLC thin film. In this embodiment, a technique of doping a boron compound to form a P layer and a phosphorus compound to form an N layer is disclosed. However, there is a problem that the resistivity impurity doping can not be obtained sufficiently low have D LC film.

電気伝導がp形伝導で抵抗率が1オームセンチメートル以下、ビッカース硬度2000以上のDLC膜は得られていない。
本発明が解決しようとする課題は、抵抗率が1オームセンチメートル以下で、且つ高硬度のDLCを得るためのDLC製造方法を提供することにある。
また、大面積基板表面に高速度で製膜できるDLC膜製造装置を提供することを目的としている。
Electrical conductivity is resistivity p-type conduction is 1 ohm-cm or less, a Vickers hardness of 2000 or more DLC films are not obtained.
The problem to be solved by the present invention is to provide a DLC manufacturing method for obtaining a DLC having a resistivity of 1 ohm centimeter or less and high hardness.
It is another object of the present invention to provide a DLC film manufacturing apparatus capable of forming a film on a large area substrate surface at a high speed.

本発明によるDLC製造装置は、炭化水素系原料ガス雰囲気の容器(1)内に、放電プラズマを発生させる放電プラズマ発生手段と、前記容器(1)の内部で支持用電極(5)により支持されている被加工基材(6)を、摂氏200度以上に加熱するとともに、加熱温度を一定の温度範囲に保持する加熱手段(8,9)と、前記被加工基材(6)に前記支持用電極(5)を通じて1kV以上のパルス電圧を印加するパルス電圧印加手段(7)とを備え、前記容器(1)内で前記放電プラズマに接触し且つ前記加熱手段(8,9)によって加熱されている前記被加工基材(6)に、前記パルス電圧を所定時間印加することにより、当該被加工基材(6)の表面にグラファイト微結晶とダイヤモンド微結晶とが混在した、その抵抗率が1キロオームセンチメートル以下となるDLC、好ましくはp形伝導の特性を示すDLCを堆積させることを特徴とする
p形伝導とは、熱プローブ測定でp形伝導を示すもの又はホール測定等でn形伝導を示さないもので、その電気伝導機構が非晶質炭素膜中に存在するsp3結合のダイヤモンド微結晶の格子欠陥に基づく正孔の伝導と考えられるものを云う。このDLCは、周期律表の3族元素又は2族元素であるボロンやマグネシウム等のp形ドーパントをドーピングしなくとも、p形伝導となる
A DLC production apparatus according to the present invention is supported by a discharge plasma generating means for generating discharge plasma in a vessel (1) of a hydrocarbon-based source gas atmosphere, and a support electrode (5) inside the vessel (1). The substrate to be processed (6) is heated to 200 degrees Celsius or higher, and the heating means (8, 9) for maintaining the heating temperature in a certain temperature range, and the support to the substrate to be processed (6) Pulse voltage applying means (7) for applying a pulse voltage of 1 kV or more through the electrode (5), contacting the discharge plasma in the vessel (1) and being heated by the heating means (8, 9). By applying the pulse voltage to the workpiece substrate (6) for a predetermined time, graphite microcrystals and diamond crystallites are mixed on the surface of the workpiece substrate (6). DLC less than 1 kilohm centimeter, preferably p-type conductivity It is characterized by depositing DLC exhibiting characteristics .
The p-type conduction is one that shows p-type conduction by thermal probe measurement or one that does not show n-type conduction by hole measurement or the like, and its electrical conduction mechanism is a sp3 bonded diamond microcrystal existing in an amorphous carbon film. This is what is considered to be hole conduction based on lattice defects. This DLC has p-type conduction without doping with a p-type dopant such as boron or magnesium which is a group 3 element or group 2 element of the periodic table.

本発明のDLC製造装置における実施の一態様では、前記放電プラズマ発生手段は、前記容器内で前記支持用導電体に対向して配置された誘導結合型の高周波アンテナ(2)と、この高周波アンテナ(2)に前記容器(1)の外部から高周波電力を給電する高周波電力供給手段(3,4)とを含み、前記支持用電極(5)により支持された前記被加工基材(6)の表面と前記高周波アンテナ(2)との間の空間に、放電プラズマを発生させるように構成されている。
より好ましくは、前記放電プラズマ発生手段(2,3,4)は、単位立方センチメートル当たり5×10 10 個以上の密度の放電プラズマを前記空間に発生させるものである
In one embodiment of the DLC manufacturing apparatus of the present invention, the discharge plasma generating means includes an inductively coupled high-frequency antenna (2) disposed opposite to the support conductor in the container, and the high-frequency antenna. (2) includes high-frequency power supply means (3,4) for supplying high-frequency power from the outside of the container (1), and the workpiece base (6) supported by the support electrode (5). A discharge plasma is generated in a space between the surface and the high-frequency antenna (2).
More preferably, the discharge plasma generating means (2,3,4) is a discharge plasma of the unit cubic centimeter per 5 × 10 10 or more a density which is generated in the space.

本発明のDLC製造装置における前記パルス電圧印加手段(7)は、例えば、マイクロ秒オーダのパルス幅を有する負極性のパルス電圧又は前記パルス幅を有する負極性の交番パルス電圧を印加し、前記加熱手段(8,9)は、前記被加工基材(6)をイオン照射、又はイオン照射と電気ヒータとにより加熱するように構成する。The pulse voltage applying means (7) in the DLC manufacturing apparatus of the present invention applies, for example, a negative pulse voltage having a pulse width on the order of microseconds or a negative alternating pulse voltage having the pulse width, and the heating The means (8, 9) is configured to heat the substrate (6) to be processed by ion irradiation or ion irradiation and an electric heater.

本発明のDLC製造装置により堆積した前記DLCは、ダイヤモンド微結晶がグラファイト微結晶よりも多いことが好ましい The DLC deposited by the DLC manufacturing apparatus of the present invention preferably has more diamond crystallites than graphite crystallites .

本発明のDLCの製造方法は、支持用電極(5)で支持された被加工基材(6)が配置された容器(1)内を炭化水素系原料ガス雰囲気で所定気圧に維持するとともに、その容器(1)内に放電プラズマを発生させ、さらに、前記被加工基材(6)を、摂氏200度以上の温度範囲で加熱した状態で、前記被加工基材(6)に前記支持用電極(5)を通じて1kV以上のパルス電圧を所定時間印加することにより、当該被加工基材(6)の表面に、グラファイト微結晶とダイヤモンド微結晶とが混在した、その抵抗率が1キロオームセンチメートル以下となるDLCを堆積させることを特徴とする。The method for producing DLC of the present invention maintains the inside of the container (1) in which the substrate to be processed (6) supported by the supporting electrode (5) is disposed at a predetermined pressure in a hydrocarbon-based source gas atmosphere, In the container (1), discharge plasma is generated, and further, the substrate to be processed (6) is heated in a temperature range of 200 degrees Celsius or more, and the substrate to be processed (6) is used for the support. By applying a pulse voltage of 1 kV or more for a predetermined time through the electrode (5), graphite microcrystals and diamond crystallites are mixed on the surface of the substrate to be processed (6), and the resistivity is 1 kilohm centimeter. The following DLC is deposited.

本発明の製造方法における実施の一態様では、前記炭化水素系原料ガスが、六員環を含まない低分子量炭化水素ガス、メタン、エタン、プロパン、アセチレン、エチレンガスの少なくとも一つを含む。  In one embodiment of the production method of the present invention, the hydrocarbon-based source gas contains at least one of a low molecular weight hydrocarbon gas not containing a six-membered ring, methane, ethane, propane, acetylene, and ethylene gas.

より好ましい態様では、前記炭化水素系原料ガスが、さらに、アルゴンガスと水素ガスの少なくとも一方をさらに混合したガスである。In a more preferred embodiment, the hydrocarbon-based source gas is a gas obtained by further mixing at least one of argon gas and hydrogen gas.

本発明の製造方法において、より好ましくは、堆積した前記DLCを、その抵抗率が1キロオームセンチ以下、その硬度がビッカース硬度2000以上、その含有水素量が10アトミックパーセント以下となるまで、アニール処理を行う。  In the production method of the present invention, more preferably, the deposited DLC is annealed until the resistivity is 1 kilohm centimeter or less, the hardness is 2000 Vickers hardness or more, and the hydrogen content is 10 atomic percent or less. Do.

本発明は、上記製造方法により製造されるDLCを工業製品に適用することができる。In the present invention, DLC produced by the above production method can be applied to industrial products.
この工業製品は、上述した本発明のダイヤモンドライクカーボン製造装置によって製造された、sp2結合のグラファイト微結晶とsp3結合のダイヤモンド微結晶とが混在したダイヤモンドライクカーボンによりコーティングされたものである。  This industrial product is coated with diamond-like carbon in which sp2-bonded graphite crystallites and sp3-bonded diamond crystallites are mixed, manufactured by the above-described diamond-like carbon manufacturing apparatus of the present invention.

本発明によれば、その抵抗率が1キロオームセンチメートル以下、ビッカース硬度2000以上のDLC膜が得られる。また、大面積基材表面に前記DLC膜を高速度で製造することができ、生産性の高いDLC膜製造装置を提供することができる。 According to the present invention, the resistivity of 1 kg ohm-cm or less, a Vickers hardness of 2000 or more DLC film can be obtained. Moreover, the said DLC film can be manufactured on a large area base-material surface at high speed, and a DLC film manufacturing apparatus with high productivity can be provided.

Claims (10)

炭化水素系原料ガス雰囲気の容器(1)内に、放電プラズマを発生させる放電プラズマ発生手段と、
前記容器(1)の内部で支持用電極(5)により支持されている被加工基材(6)を、摂氏200度以上に加熱するとともに、加熱温度を一定の温度範囲に保持する加熱手段(8,9)と、
前記被加工基材(6)に前記支持用電極(5)を通じて1kV以上のパルス電圧を印加するパルス電圧印加手段(7)とを備え、
前記容器(1)内で前記放電プラズマに接触し且つ前記加熱手段(8,9)によって加熱されている前記被加工基材(6)に、前記パルス電圧を所定時間印加することにより、当該被加工基材(6)の表面にグラファイト微結晶とダイヤモンド微結晶とが混在した、その抵抗率が1キロオームセンチメートル以下となるダイヤモンドライクカーボンを堆積させる、
ダイヤモンドライクカーボン製造装置。
A discharge plasma generating means for generating a discharge plasma in a vessel (1) of a hydrocarbon-based source gas atmosphere;
Heating means for heating the workpiece substrate (6) supported by the supporting electrode (5) inside the container (1) to 200 degrees Celsius or higher and maintaining the heating temperature within a certain temperature range ( 8,9) and
Pulse voltage applying means (7) for applying a pulse voltage of 1 kV or more to the workpiece substrate (6) through the support electrode (5);
By applying the pulse voltage to the workpiece substrate (6) in contact with the discharge plasma in the vessel (1) and heated by the heating means (8, 9) for a predetermined time, Depositing diamond-like carbon with graphite microcrystals and diamond microcrystals mixed on the surface of the processed substrate (6) and having a resistivity of 1 kilohm centimeter or less;
Diamond-like carbon production equipment.
前記放電プラズマ発生手段は、前記容器内で前記支持用導電体に対向して配置された誘導結合型の高周波アンテナ(2)と、この高周波アンテナ(2)に前記容器(1)の外部から高周波電力を給電する高周波電力供給手段(3,4)とを含み、前記支持用電極(5)により支持された前記被加工基材(6)の表面と前記高周波アンテナ(2)との間の空間に、放電プラズマを発生させるように構成されている、
請求項1記載のダイヤモンドライクカーボン製造装置。
The discharge plasma generating means includes an inductive coupling type high frequency antenna (2) disposed opposite to the supporting conductor in the container, and a high frequency from the outside of the container (1) to the high frequency antenna (2). High frequency power supply means (3, 4) for supplying power, and a space between the surface of the substrate (6) to be processed supported by the support electrode (5) and the high frequency antenna (2) Is configured to generate a discharge plasma,
The diamond-like carbon manufacturing apparatus according to claim 1.
前記放電プラズマ発生手段(2,3,4)は、単位立方センチメートル当たり5×1010個以上の密度の放電プラズマを前記空間に発生させる、
請求項2記載のダイヤモンドライクカーボン製造装置。
The discharge plasma generating means (2, 3, 4) generates discharge plasma having a density of 5 × 10 10 or more per cubic centimeter in the space.
The diamond-like carbon manufacturing apparatus according to claim 2.
前記パルス電圧印加手段(7)は、マイクロ秒オーダのパルス幅を有する負極性のパルス電圧又は前記パルス幅を有する負極性の交番パルス電圧を印加し、
前記加熱手段(8,9)は、前記被加工基材(6)をイオン照射、又はイオン照射と電気ヒータとにより加熱する、
請求項1、2又は3記載のダイヤモンドライクカーボン製造装置。
The pulse voltage application means (7) applies a negative pulse voltage having a pulse width on the order of microseconds or a negative alternating pulse voltage having the pulse width,
The heating means (8, 9) is to heat the substrate to be processed (6) by ion irradiation, or ion irradiation and an electric heater.
The diamond-like carbon manufacturing apparatus according to claim 1, 2 or 3.
堆積した前記ダイヤモンドライクカーボン内のダイヤモンド微結晶が前記グラファイト微結晶よりも多い、
請求項1乃至4のいずれかの項記載のダイヤモンドライクカーボン製造装置。
More diamond crystallites in the deposited diamond-like carbon than the graphite crystallites,
The diamond-like carbon manufacturing apparatus according to any one of claims 1 to 4.
支持用電極(5)で支持された被加工基材(6)が配置された容器(1)内を炭化水素系原料ガス雰囲気で所定気圧に維持するとともに、その容器(1)内に放電プラズマを発生させ、さらに、前記被加工基材(6)を、摂氏200度以上の温度範囲で加熱した状態で、前記被加工基材(6)に前記支持用電極(5)を通じて1kV以上のパルス電圧を所定時間印加することにより、当該被加工基材(6)の表面に、グラファイト微結晶とダイヤモンド微結晶とが混在した、その抵抗率が1キロオームセンチメートル以下となるダイヤモンドライクカーボンを堆積させる、
ダイヤモンドライクカーボンの製造方法。
The inside of the container (1) in which the substrate to be processed (6) supported by the supporting electrode (5) is arranged is maintained at a predetermined pressure in a hydrocarbon-based raw material gas atmosphere, and discharge plasma is contained in the container (1). In addition, a pulse of 1 kV or higher is applied to the substrate to be processed (6) through the support electrode (5) in a state where the substrate to be processed (6) is heated in a temperature range of 200 degrees Celsius or higher. By applying a voltage for a predetermined time, a diamond-like carbon having a resistivity of 1 kilohm centimeter or less, in which graphite crystallites and diamond crystallites are mixed, is deposited on the surface of the substrate (6). ,
A method for producing diamond-like carbon.
前記炭化水素系原料ガスが、六員環を含まない低分子量炭化水素ガス、メタン、エタン、プロパン、アセチレン、エチレンガスの少なくとも一つを含む、
請求項6記載の製造方法。
The hydrocarbon-based source gas contains at least one of a low molecular weight hydrocarbon gas not containing a six-membered ring, methane, ethane, propane, acetylene, and ethylene gas.
The manufacturing method of Claim 6.
前記炭化水素系原料ガスが、さらに、アルゴンガスと水素ガスの少なくとも一方をさらに混合したガスである、
請求項7記載の製造方法。
The hydrocarbon-based source gas is a gas obtained by further mixing at least one of argon gas and hydrogen gas.
The manufacturing method of Claim 7.
堆積した前記ダイヤモンドライクカーボンを、その抵抗率が1キロオームセンチ以下、その硬度がビッカース硬度2000以上、その含有水素量が10アトミックパーセント以下となるまで、アニール処理を行う、
請求項7又は8記載のダイヤモンドライクカーボンの製造方法。
The deposited diamond-like carbon is annealed until the resistivity is 1 kilohm centimeter or less, the hardness is Vickers hardness 2000 or more, and the hydrogen content is 10 atomic percent or less.
The method for producing diamond-like carbon according to claim 7 or 8.
請求項1乃至5のいずれかの項記載のダイヤモンドライクカーボン製造装置によって製造された、sp2結合のグラファイト微結晶とsp3結合のダイヤモンド微結晶とが混在したダイヤモンドライクカーボンによりコーティングされた工業製品。   An industrial product coated with diamond-like carbon in which sp2-bonded graphite crystallites and sp3-bonded diamond crystallites are mixed, manufactured by the diamond-like carbon manufacturing apparatus according to any one of claims 1 to 5.
JP2008184765A 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product Expired - Fee Related JP4704453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184765A JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184765A JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Publications (3)

Publication Number Publication Date
JP2010024476A JP2010024476A (en) 2010-02-04
JP2010024476A5 true JP2010024476A5 (en) 2010-12-09
JP4704453B2 JP4704453B2 (en) 2011-06-15

Family

ID=41730571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184765A Expired - Fee Related JP4704453B2 (en) 2008-07-16 2008-07-16 Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product

Country Status (1)

Country Link
JP (1) JP4704453B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150861B2 (en) * 2008-12-29 2013-02-27 日本アイ・ティ・エフ株式会社 Hard carbon film and method for forming the same
US9183965B2 (en) 2010-11-30 2015-11-10 Nomura Plating Co., Ltd. Conductive hard carbon film and method for forming the same
JP5603433B2 (en) * 2010-12-28 2014-10-08 キヤノンアネルバ株式会社 Carbon film manufacturing method and plasma CVD method
WO2013133110A1 (en) * 2012-03-09 2013-09-12 株式会社ユーテック Cvd device
JP6383910B2 (en) * 2012-11-27 2018-09-05 地方独立行政法人山口県産業技術センター Plasma CVD apparatus and film manufacturing method
DE102013005926B4 (en) * 2013-04-04 2015-12-03 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal assembly with different hard sliding surfaces
JP6234860B2 (en) 2014-03-25 2017-11-22 株式会社Screenホールディングス Film forming apparatus and film forming method
US10249495B2 (en) 2016-06-28 2019-04-02 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
JP2017059844A (en) * 2016-11-18 2017-03-23 株式会社大木工藝 Electric double layer capacitor
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
WO2019199681A1 (en) 2018-04-09 2019-10-17 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
SG11202009289PA (en) * 2018-05-03 2020-11-27 Applied Materials Inc Pulsed plasma (dc/rf) deposition of high quality c films for patterning
CN110965022B (en) * 2018-09-28 2021-12-24 长鑫存储技术有限公司 Method for forming semiconductor structure
CN114008761A (en) 2019-07-01 2022-02-01 应用材料公司 Tuning film properties by optimizing plasma-coupled materials
US11664226B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density carbon films for hardmasks and other patterning applications
US11664214B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361369A (en) * 1989-07-29 1991-03-18 Idemitsu Petrochem Co Ltd Manufacture of diamond like carbon film
JPH1192935A (en) * 1997-09-19 1999-04-06 Daido Steel Co Ltd Wear resistant hard carbon coating
JP4929531B2 (en) * 2001-04-27 2012-05-09 住友電気工業株式会社 Conductive hard carbon film
JP4134315B2 (en) * 2003-01-14 2008-08-20 独立行政法人産業技術総合研究所 Carbon thin film and manufacturing method thereof
JP2004277800A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Method and apparatus for depositing carbon thin film

Similar Documents

Publication Publication Date Title
JP2010024476A5 (en) Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
JP4704453B2 (en) Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
JP5705315B2 (en) Low temperature manufacturing method of graphene and direct transfer method of graphene using the same
US20200317511A1 (en) Direct graphene growing method
KR102026736B1 (en) Insulating sheet having heterogeneous laminated structure, manufacturing method thereof, and electric device including the insulating sheet
KR101310880B1 (en) Graphene sheet and process for preparing the same
US11124870B2 (en) Transfer-free method for producing graphene thin film
KR20120012271A (en) Preparing method of graphene, graphene shheet and device using the same
Geng et al. Self‐Aligned Single‐Crystal Graphene Grains
US20150136737A1 (en) Methods of growing uniform, large-scale, multilayer graphene film
EP2706130A2 (en) Method for manufacturing high quality graphene using continuous heat treatment chemical vapor deposition method
US20130266729A1 (en) Method for making strip shaped graphene layer
CN108430919B (en) Carbon nanotube bonding sheet and method for producing carbon nanotube bonding sheet
TWI386511B (en) Apparatus and method for producing aligned carbon nanotube arrays
CN107635918B (en) Graphene doping method, graphene composite electrode manufacturing method, and graphene structure including same
KR102017251B1 (en) Method for Preparation of Graphene Thin Film without Transfer Process
CN102560437A (en) Device and method for fast preparing large-area vertically aligned graphene
TW201315276A (en) Heating device comprising carbon nanotube and manufacturing method thereof
JP2017512181A (en) Graphene growth method
JP2004176132A (en) Nanodiamond film, and production method therefor
US20140193574A1 (en) Graphene manufacturing system and the method thereof
Heya et al. Fabrication of nanographene using nickel supported by a tungsten mesh
TWI404129B (en) Method for manufacturing carbon film with semiconductor properties
KR101629697B1 (en) Manufacturing method of graphene laminated structure, and graphene laminated structure using thereof
KR20130000294A (en) Apparatus for fabricating ingot