JP2009293998A - 干渉断層撮影装置 - Google Patents

干渉断層撮影装置 Download PDF

Info

Publication number
JP2009293998A
JP2009293998A JP2008146077A JP2008146077A JP2009293998A JP 2009293998 A JP2009293998 A JP 2009293998A JP 2008146077 A JP2008146077 A JP 2008146077A JP 2008146077 A JP2008146077 A JP 2008146077A JP 2009293998 A JP2009293998 A JP 2009293998A
Authority
JP
Japan
Prior art keywords
light
interference
measurement
unit
interference light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008146077A
Other languages
English (en)
Inventor
Masami Tamura
雅巳 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shofu Inc
Original Assignee
Shofu Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shofu Inc filed Critical Shofu Inc
Priority to JP2008146077A priority Critical patent/JP2009293998A/ja
Priority to US12/475,862 priority patent/US20090296102A1/en
Priority to DE102009023774A priority patent/DE102009023774A1/de
Publication of JP2009293998A publication Critical patent/JP2009293998A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】干渉断層撮影装置において、ペネトレーションを大きくする。
【解決手段】干渉断層映像装置は、光源1と、光源1から出射した光源光を参照光と計測光とに分ける光分割部2aと、被計測体Tで後方散乱した後方散乱光と、参照ミラーで反射した参照光とを干渉させて干渉光とする干渉部2aと、干渉光を計測する光検出部4と、被計測体Tに対し超音波または音波または振動を与えることにより、前記後方散乱光および前記干渉光に変調を加える振動子91と、光検出部4で計測された前記干渉光を復調する復調部53と、復調された前記干渉光に基づいて、被計測体Tの光学的後方散乱特性を示す特性データを生成し、被計測体Tの画像データを生成する解析部52とを備える。
【選択図】図1

Description

本発明は、生物体の表面および内部の3次元空間における特性値を、干渉の原理を使って測定し、測定結果のデータを処理して、生物体内部の2次元または3次元の構造、組成、材料等を表す画像データを生成する干渉断層撮影装置に関する。
従来、医療分野における検査や診断において、X線撮影装置、カメラ、超音波断層診断装置、X線CT、MRI等が使用されてきた。また最近、光干渉断層撮影装置で内部の断層画像を計測する考案もなされてきている。
X線撮影装置で得られる像は、あくまで透過像であり、被計測体のX線進行方向の情報は重ね合わされて検出される。そのため、被計測体の内部構造を3次元的に知ることは困難である。また、X線は人体に有害であるため、年間被爆線量が決められており、資格を持った術者しか装置を扱えない上に、鉛・鉛ガラスなどの遮蔽部材に囲まれた部屋でしか使用できない。
カメラは、生体組織の表面のみを撮像するので、生体内部情報が得られない。X線CTは、X線撮影装置と同様人体に有害である上に、分解能が悪く、装置も大型かつ高価である。通常使用されているMRI装置は、分解能が悪く、装置が大型かつ高価である上に、水分のない骨や歯等の硬組織の内部構造は撮影できない。
ところで、光干渉断層撮影装置は、人体に無害で、被計測体の3次元情報が高分解能で得られる。そのため、光干渉断層撮影装置は、角膜や網膜の断層計測等の眼科の分野で応用されている。また、内視鏡のタイプの光干渉断層撮影装置も考案されてきている。さらに、歯科分野においても光干渉断層撮影装置を用いる例が開示されている(特許文献1〜8、非特許文献1〜10参照)。なお、光学干渉断層撮影装置は、光コヒーレンストモグラフィー装置と呼ばれることもある。以下では、光学干渉断層撮影装置を略してOCT装置を称する。OCTは、Optical coherence tomographyの略である。
上記従来のOCTは、光源、フィイバーカップラ(分光器)、参照ミラー、光検出器、演算部を備える。光源から出射した光は、フィイバーカップラで参照光と計測光にの2系統に分岐する。参照光は、参照ミラーで鏡面反射して再びファイバカップラに戻り、計測光は、被計測体で反射・散乱・透過作用を受け、その一部である後方散乱光(z方向反射光)がファイバカップラに戻る。ここで、計測光の照射方向をz方向とする。このようにして、再びファイバカップラに戻ってきた後方散乱光と、参照光とが干渉しあって干渉光となり、光検出器で検出される。演算部は、光検出器で検出された干渉光に基づいて、被計測体の断層画像データを生成し、出力する。
この様なOCT装置によって、非破壊、非接触で被計測体内部の高分解能な画像を得ることができる。用途としては一般の物体から、生体、人体、医用、眼科・皮膚科・内視鏡分野・歯科分野への適用有用性が発表されている。
特許文献1〜3は、OCT装置を歯科に適用する場合に、従来の歯科用の設備に組み込む方法を開示している。例えば、光ファイバケーブルあるいは電力・信号線を用いて計測用のプローブの把持位置および方向を自由に設定できる構成が開示されている。また、深さ方向(z方向)の走査をプローブ内でいかに行なうか、プローブから計測光をいかに射出するかについて言及している。特許文献4は、光源の波長を走査するフーリエドメイン方式の光干渉断層撮影装置を開示し、さらに、その波長域やプローブの構成等についても言及している。特許文献5〜8では、歯科用のハンドピースにプローブを組み込む提案がなされている。非特許文献1〜10では、光干渉断層撮影装置を歯科に適用した場合の描像性能についての報告が成されている。
これらの歯科用途に用いられるOCT装置は、全て眼科をはじめとする歯科以外において実用または研究開発発表されているOCT装置を歯科に適用したものである。これらのOCT装置の基本構成は、上述の従来のOCT装置の基本構成と同じである。
特開2004−344260号公報 特開2004−344262号公報 特開2004−347380号公報 特開2006−191937号公報 実用新案登録第3118718号 実用新案登録第3118823号 実用新案登録第3118824号 実用新案登録第3118839号 レーザー研究 2003年10月号:医療を中心とする光コヒーレンストモグラフィーの技術展開 Journal of Biomedical Optics, October 2002, Vol.7 No.4:Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography APPLIED OPTICS, Vol.37, No.16, 1 June 1998: Imaging of hard-and soft-tissue structure In the oral cavity by optical coherence tomography OPTICS EXPRESS, Vol.3,No.6,14 September 1998: Dental OCT OPTICS EXPRESS, Vol.3,No.6,14 September 1998: In vivo OCT Imaging of hard and soft tissue of the oral cavity 2004年度日本光学会年次学術講演会予稿集、5aF6、フーリエドメイン光コヒーレンストモグラフィーによる歯科試料計測 2005年度日本光学会年次学術講演会予稿集、24pE5、3次元歯科計測へのスペクトル干渉断層法の応用 Photonics West 2006, 6079-66, In-Vivo three dimensional Fourier-Domain Optical Coherence Tomography for soft and hard oral tissue measurements Photonics West 2006, 6137-03, Assessment of dental-caries using optical coherence tomography Journal of Dental Research 85(9)2006,Remineralization of Enamel Caries Can Decrease Optical Reflectivity
上記のOCTでは、計測可能な被計測体の深さ(ペネトレーション:penetration)を大きくすることが求められている。そこで、OCT装置におけるペネトレーションの計算例を以下に示す。
ここでは、被計測体が均質である場合を想定する。光源強度I0の光が被計測体に入射した場合の計測深さzにおける後方散乱光の強度Iは、I=RI0exp(−μz)exp(−μz)と計算することができる(Rは後方散乱率、μは減衰係数を示す)。そのため、光源強度I0であり、後方散乱光の強度がS/N限界強度IS=Nとなる場合の計測深さをz1とすると、IS=Nは、例えば、下記式(1)で表される。
Figure 2009293998
同様に、光源強度がK倍(光源強度=KI0)の場合の、後方散乱光のS/N限界強度IKは、下記式(2)で表すことができる。なお、下記式(2)において、zKは、S/N限界強度IKとなる場合の計測深さである。
Figure 2009293998
上記式(1)および式(2)から、以下のような関係式が得られる。
Figure 2009293998
上記の最終的な式(3)は、計測光をK倍した場合のペネトレーションの増加Δzが減衰係数μに大きく依存することを示す。
OCT装置において有用な光の波長範囲のうち、例えば人間の皮膚に対して最も減衰係数μの小さい波長1.3μの光ではμ=3[mm-1]程度となる。そのため、計測光を2倍した場合には、ペネトレーションは0.116mm深くなる。例えば、皮膚より減衰が小さいと考えられる歯芽硬組織を、仮にμ=1[1/mm]とすると、計測光を2倍にするとペネトレーションは0.346mm深くなる。逆に、ペネトレーションをΔz深くしたければ、光源強度を下記式(4)によるK倍しなければならない。
Figure 2009293998
すなわち、被計測体が皮膚の場合は、ペネトレーションを2mm大きくするためには、光源強度を163000倍にする必要がある。被計測体が歯科硬組織の場合(例えば、μ=1[1/mm]の場合)には、ペネトレーションを2mm大きくするためには、光源強度を54.6倍する必要がある。
以上のように、ペネトレーションは、被計測体の組織が持つ減衰係数μに依存する。そして、従来のOCT装置では、被計測体が比較的光をよく透過する歯牙組織である場合ですら、現状の最高出力の光源を使用してもペネトレーションは3mm程度が限界である。また、光源強度を強くしてペネトレーションを大きくするには、高価なSLD(スーパールミネッセントダイオード)や、非常に高価な可変波長光源レーザー光源を用いる必要がある。その結果、OCT装置の価格が高額になる。
ペネトレーションが制限される主な要因は、ノイズである。ノイズはOCT装置の各部で混入または発生している。例えば、干渉光を検出する光検出器(多くの場合が光ダイオードやCCDやCMOS撮像デバイス)の暗ノイズや、OCT装置に含まれる電子回路への電気的・磁気的・電磁波的ノイズが発生している。干渉光による信号がこのノイズ程度に小さくなる様な被計測体の深さがペネトレーションとなる。
そこで、本発明は、ペネトレーションを大きくすることができる、すなわち、被計測体のより深い位置の情報を得ることができる干渉断層撮影装置を提供することを目的とする。
本発明にかかる干渉断層映像装置は、光源と、前記光源から出射した光源光を参照ミラーに照射する参照光と被計測体に照射する計測光とに分ける光分割部と、前記計測光のうち前記被計測体で後方散乱した後方散乱光と、前記参照ミラーで反射した参照光とを干渉させて干渉光とする干渉部と、干渉光を計測する光検出部と、前記被計測体に対し超音波または音波または振動を与えることにより、前記後方散乱光および前記干渉光に変調を加える振動子と、前記光検出部で計測された前記干渉光を復調する復調部と、前記復調された前記干渉光に基づいて、前記被計測体の表面および内部の少なくとも一部における2次元または3次元の領域の光学的後方散乱特性を示す特性データを生成し、特性データに基づいて、前記被計測体の前記領域における構造、組成および材質の少なくとも1つに関する画像データを生成する解析部とを備える。
振動子により被計測体は振動するので、被計測体の後方散乱光は変調される。後方散乱光と参照光との干渉により生じる干渉光にも変調が加えられる。復調部により、干渉光が復調される。変調の行程では、振動子により後方散乱光および干渉光のある特性が変化し、復調の行程では、変調された干渉光から、本質的に変調前のもとの特性と同じ干渉光の情報が導出される。これにより、干渉光の強度がノイズと同レベルであったとしても、干渉光成分を抽出することができる。解析部は、このように、ノイズが除かれた干渉光に基づいて、被計測体の特性データおよび画像データを生成する。その結果、ペネトレーションを大きくすることができる。すなわち、被計測体のより深いところまで断層像を得ることができる。
本発明の干渉断層撮影装置によれば、被計測体のより深い位置の情報を得ることができる、すなわち、ペネトレーションを大きくすることができる。
本発明の実施形態において、前記復調部は、前記振動子が前記被計測体に与える振動と周波数および位相が同じ信号を用いて、前記干渉光を同期検波することにより当該干渉光を復調する態様であってもよい。
本発明の実施形態において、干渉断層映像装置は、前記振動子に駆動信号を与えることにより、前記被計測体に与える前記振動の振幅および周波数の少なくともいずれか1つを周期的に変化させて、当該振動に変調を与えることにより、前記後方散乱光および干渉光に2次変調を与える振動制御部をさらに備え、前記復調部は、前記復調に加えて、さらに、前記干渉光の前記2次変調に対して2次復調する態様であってもよい。
復調部は、干渉光を前記復調し、さらに2次復調する。すなわち、干渉光は、2重に変調をかけられ、2重に復調される。これにより、ペネトレーションをさらに深くすることができる。
本発明の実施形態において、前記復調部は、前記駆動信号による前記2次変調と周波数および位相が同じ信号を用いて、前記2次変調に対して同期検波することにより、前記2次復調をする態様であってもよい。
本発明の実施形態において、前記振動子は、超音波を前記被計測体へ出射する超音波源であり、前記解析部は、さらに、前記振動子による前記干渉光の変調の周波数に基づいて、前記被計測体における音響インピーダンス特性を示す音響特性データを生成し、当該音響特性データに基づいて、前記被計測体における構造、組成および材質の少なくとも1つに関する画像データを生成する態様であってもよい。
超音波源の振動に起因する被計測体の後方散乱光への変調は、被計測体の音響インピーダンス特性を反映したものになっている。すなわち、変調の周波数には、被計測体の音響インピーダンス特性が反映されている。そのため、音響解析部は、変調の周波数に基づいて、被計測体の音響インピーダンス特性を示す音響特性データを算出することができる。その結果、被計測体の表面または内部の、音響インピーダンス特性に起因する構造、組成または材料等の画像が得られる。
(第1の実施形態)
[OCT装置の構成例]
図1は、本実施形態にかかるOCT装置の基本構成を示す図である。図1に示すOCT装置は、OCTユニット(OCT Unit)U1、プローブユニット(Probe Unit)U2およびPCユニット(PC Unit)U3で構成される。OCTユニットは、時間的に低コヒーレントまたはコヒーレントな光源1、ファイバカップラ2a(光分割部・干渉部)、参照ミラー3、光検出器4(光検出部)およびレンズ71〜75を主に備える。
ファイバカップラ2aは、光源1が出射した光を、参照ミラー3へ向かう参照光と、被計測体Tへ向かう計測光に分割する。計測光はプローブユニットU2に出力され、被計測体Tへ照射される。被計測体Tに入射した計測光のうち反射成分(後方散乱光成分)は、再びファイバカップラ2aへ導かれる。ファイバカップラ2aは、この後方散乱光と、参照ミラー3で鏡面反射して戻ってきた参照光とを干渉させ、干渉光として光検出器4へ出力する。
以下では、光源1よりファイバカップラ2aへ至る光を光源光、ファイバカップラ2aより参照ミラー3へ至り参照ミラーから反射して再びファイバカップラ2aへ戻る光を参照光、ファイバカップラ2aより被計測体Tへ至る光を計測光、被計測体T各部より反射して再びファイバカップラ2aへ戻る光を後方散乱光、ファイバカップラ2aより光検出器4および光源1へ至る光を干渉光と称する。
また、説明の都合上、計測光の進行方向をz方向とし、z方向に垂直な面においてx方向、y方向とする(図1の被計測体T付近に示す座標系参照)。x軸とy軸は直行している。
さらに、計測光と参照光の光路差がゼロとなる干渉の中央地点のデータを得る動作をPモード、z方向の線状データを得る動作をAモード、z方向とx方向の2次元断面の断層データを得る動作をBモード、Bモードの各断層のy方向に走査して、z、xおよびy方向の3次元データを得る動作をCモードとする。
上記のように、ファイバカップラ2aは、光分割部および干渉部の機能を果たす光学干渉器の一例である。光学干渉器とは、2つの入力光を干渉させて2方向に出力する入出力可換な光学部品である。ファイバカップラ2aは、光の入出力に用いられる光ファイバ6−1〜4を備える。また、光源光・参照光・干渉光をコリメートまたは集光するためのレンズ71〜75が設けられる。光学干渉器の例として、ファイバカップラの他にビームスプリッタ、ハーフミラー等が挙げられる。光検出器4は、光検出部の一例である。光検出器4は、例えば、フォトダイオードが用いられる。
プローブユニットU2は、OCTユニットU1のファイバカップラ2aから出力された計測光を被計測体Tへ導いて照射し、被計測体Tに入射した計測光のうち、後方散乱した成分(反射成分)を受光してファイバカップラ2aへ導く機能を有する。そのため、プローブユニットU2は、ガルバノミラー81、82、レンズ76、77を備える。例えば、レンズ76、77は、計測光を集光し、後方散乱光をコリメートする。
本実施形態では、一例として、ガルバノミラー81は計測光をx方向に走査し、ガルバノミラー82は計測光をy方向に走査する。これらの走査は、後述するコンピュータ5の走査制御部54cからの制御信号により制御される。なお、z方向の被計測体Tの情報を得るための走査は、参照ミラー3を光軸方向に駆動することによって行うことができる。この方法は、参照ミラー駆動法(所謂タイムドメイン方式)と称される。
プローブユニットU2には、さらに、超音波振動子91および超音波振動子91のコントローラ92が設けられている。超音波振動子91は、超音波を発生させて被計測体Tに伝える。これにより、前記後方散乱に変調が加えられる。超音波振動子91として、例えば、圧電振動子等が用いられる。なお、超音波の周波数は、1MHz〜100MHzの範囲が人体に対する超音波の透過率および反射率の観点から好ましい。
プローブユニットU2と、OCTユニットU1と間の光の伝達は、光ファイバ63によって行われる。これにより、プローブユニットU2の位置および向きは、OCTユニットU1の位置および向きに制約を受けず、被計測体Tの状態に応じて柔軟に変化することができる。
PCユニットU3は、例えば、パーソナルコンピュータ等のコンピュータ5および表示部55を含む。コンピュータ5は、記録部51、解析部52、復調部53および制御部54を備える。制御部54には、振動制御部54a、光源制御部54bおよび走査制御部54cが含まれる。これらの各機能部の機能は、コンピュータ5が備えるCPUが所定のプログラムを実行することにより実現される。記録部51は、半導体メモリ、ハードディスクなど記録媒体により実現される。表示部55は、例えば、液晶ディスプレイ、CRT、PDP、SRT等などにより実現される。
復調部53は、光検出器4が検出した、変調された干渉光を復調する。解析部52は、復調部53によって復調された干渉光を解析して、被計測体Tの表面および内部における2次元または3次元の領域の光学的後方散乱特性を示す特性データを生成する。さらに、解析部52は、特性データに基づいて、被計測体Tの前記領域における構造、組成および材質の少なくとも1つに関する画像データを生成し表示部55へ出力する。なお、上記特性データおよび画像データは適宜記録部51へ記録される。
振動制御部54aは、プローブユニットU2のコントローラ92に対して、振動子91の周波数および位相を制御する駆動信号を送る。光源制御部54bは、光源1へ制御信号を送る。走査制御部54cは、プローブユニットU2のガルバノミラー81、82、OCTユニットU1の参照ミラー3へ制御信号を送ることにより、計測光をxyzそれぞれの方向に走査する。なお、復調部53は、振動制御部54aの駆動信号を取得し、振動子91が発生した超音波と周波数および位相と等しい信号を発生させ、復調処理に用いることができる。
上述のように、本実施形態におけるOCT装置は、被計測体Tに対し超音波を伝える振動子を備える。さらに、このOCT装置は、光検出器4で検出されてOCTユニットU1から出力される干渉光を、振動子に与える駆動信号に同期して復調する復調部53を備える。これにより、干渉光を超音波で変調させ、計測された干渉光信号を変調超音波信号で復調することが可能になる。そのため、後述するように、ペネトレーションの増加が可能になる。
なお、OCT装置の構成は、上記の構成に限られない。例えば、復調部53は、コンピュータ5ではなく、OCTユニットU1に設けられてもよい。この場合、復調部53は、例えば、光検出器4が出力する干渉光強度の信号を復調して、PCユニットU3に送信する信号処理回路として設けられる。
また、例えば、OCTユニットU1、プローブユニットU2およびPCユニットU3のうちいずれか2つ、もしくは3つとも全てが、1つのユニットで形成されてもよい。
(OCT装置の動作例)
次に、本実施形態におけるOCT装置の動作例を説明する。
まず、OCTユニットU1において、光源1より出射した光源光は、レンズ71、72でコリメートされ、ファイバカップラ2aに至る。ファイバカップラ2aで光源光は参照光と計測光の2系統に分岐する。参照光は参照ミラー3によって鏡面反射して再びファイバカップラに戻る。一方、計測光は被計測体Tの表面および内部で反射・散乱・透過作用を受け、計測光の一部である後方散乱光が再びファイバカップラ2aへ戻る。この後方散乱光は、z方向の物体反射光として被計測体T表面および内部における各部(例えば、時間軸上に変換されたz方向の被計測体Tの各部)の後方散乱係数情報を担っている。
この後方散乱光と、ファイバカップラへ戻った参照光とは、ファイバカップラ2aにより干渉し、干渉光となって光源1と光検出器4へ分岐出射される。この干渉光の強度を光検出器4が検出する。
ここで、光源1は、時間的に低コヒーレンスな光源である。時間的に低コヒーレンスな光源から、異なった時刻に出た光どうしは極めて干渉しにくい。そのため、計測光および後方散乱光の光路の距離と、参照光の光路の距離がほぼ等しいときにのみ干渉信号が現れることとなる。そこで、参照ミラー3を参照光の光軸方向に動かして計測光および後方散乱光と参照光6との光路長差を変化させながら、光検出器4で干渉信号の強度を計測すると、被計測体Tの計測光入射方向(z方向)の反射率分布(後方散乱率分布)を得ることができる。つまり、光路長差走査により、被計測体Tの奥行き方向の構造が得られる。
このように、後方散乱光は、その電磁波としての波形上に被計測体Tの情報を担っているが、光の現象があまりにも速いために、光波形を時間軸上で直接計測できる光検出器は存在しない。しかし、後方散乱光を参照光と干渉させることによって、被計測体T各部の後方散乱特性情報が光の強度の変化に変換される。そのため、干渉光の強度を光検出器4が検出することで、時間軸上で、被計測体Tのz方向における後方散乱特性の分布を検出することが可能となる。
ところで、振動子91で発生した超音波は、被計測体Tの内部に浸透する。被計測体Tにおいて超音波が浸透するということはその超音波の周波数でその生体組織が振動するということである。その振動の周波数は発生超音波の周波数fである。被計測体Tの入射した部分の音響インピーダンスをZ、超音波の音圧をpとすると、被計測体Tの振動速度vrms(rms値)=p/Zとなる。そのため、被計測体Tの振動速度v(瞬時値)も音響インピーダンスによって変化する。
波長λの計測光が被計測体Tに照射されたときに、被計測体Tが速度vで超音波振動を行っていると、被計測体Tからの後方散乱光の波長はλ(1±v/c)にドップラーシフトする(vは瞬時値)。したがって、このドップラーシフトのrms値はλvrms/cとなる(vrmsはrms値)。このドップラーシフトは、タイムドメインのOCT装置においては参照光との干渉光の振幅変調(わずかに異なる波長の波が重ね合わさることによる振幅のうねり)をもたらす。そのため、干渉光における振幅変調のうねりの周波数は、超音波に対する生体組織の音響インピーダンス特性を反映することになる。すなわち、干渉光は、その強度(振幅)が通常のOCT装置としての被計測体Tの後方散乱特性(組織の後方散乱係数)の情報とともに、超音波に対する被計測体Tの音響インピーダンス特性の情報も担うことになる。
光検出器4は、このような振幅変調を受けた干渉光を検出し、干渉光の強度の時間的変化を表す信号に変換する。PCユニットU3は、この信号を復調して解析することで、被計測体Tのより深い位置の断層画像を得ることができる。以下、復調処理の例を詳細に説明する。
超音波は、光と同じく被計測体Tに入射してからの深さと通過した組織の音響インピーダンスに応じて減衰していく。しかし、超音波は光よりもその減衰率は小さく、光に比べて、被計測体のより深い部分まで減衰なく到達する。
一方、後方散乱光は、例え超音波によりドップラーシフトを起こしていたとしても、被計測体Tにおいて後方散乱する位置の深さに応じて減衰する。その減衰度合いは超音波に比べて大きい。そのため、上述のように、従来のOCT装置では、後方散乱光の信号強度がノイズと同等レベルになるような深さにおける後方散乱光の信号は、有効な信号として捉えることができなくなる。
ここで、後方散乱光がドップラーシフトによる変調を受けている場合、光検出器4で検出された干渉光の信号を復調(例えば、同期検波)することによって、後方散乱光強度の成分を抽出することができる。すなわち、後方散乱光の成分よりノイズの方が大きくても、干渉光信号を、同期検波することで後方散乱光の強度を捉える(もちろん参照光との干渉作用を通してであるが)ことができる。このことによりOCT装置のペネトレーションを飛躍的に増大させることができる。
干渉光信号の同期検波は、例えば、復調部53による次のような処理で実行される。復調部53には、まず、振動子91が被計測体に伝えた超音波(照射超音波)の基準となる基準信号が振動制御部54aから復調部53へ入信される。この基準信号は前記照射超音波と周波数が等しく、位相差が一定の関係(進みか遅れの角度が一定)にあり、その周波数をf、位相をθとする。すなわち、被計測体Tの振動はこの基準信号に同期する。
復調部53は、「干渉光信号(光検出器4が検出した干渉光の強度の信号)と基準信号との積の信号」と、「干渉光信号と基準信号と位相がπ/2異なる信号との積の信号」との積分信号を、複素信号として生成する。復調部53は、この複素信号の絶対値を生成することによ り、ノイズ成分を含まない干渉光信号を抽出することができる。
このように、同期検波は、基準信号に対して同一位相の成分(0度もしくは180度、180度の成分はマイナスとなる)を抽出する検波方法である。従って、90度成分のみが反射してきた場合は、反射が無い(無限遠もしくは無反射からの反射)場合と区別することができない。そのため、本実施形態本における同期検波では、0度成分(もしくは180度成分)と90度成分(もしくは270度成分)の双方を検波する方法が用いられる。すなわち、sin成分とcos成分の双方を検波する。具体的には、上記のように、復号部32は、sin成分とcos成分をそれぞれ2乗して時間積分し、双方の和を取り、平方根を求める(絶対値を求める)処理を実行する。この積分の過程で異なる周波数のノイズは時間的に打ち消され、除去される。このような同期検波は一般的には複素検波(ベクトル検波)と呼ばれる場合もある。
解析部52は、復調部53で検波されてノイズ成分が除去された干渉光信号から、被計測体Tのz方向の後方散乱率分布を得ることができる。なお、上記処理を実行するために、振動制御部54aは基準信号生成回路、復調部53は位相回路、乗算回路、積分回路、複素信号から絶対値を生成する回路等を備える構成であってもよい。もしくは、復調部53および解析部52の上記処理は、プロセッサが所定のプログラム(ソフトウエア)に従って動作することにより実現することもできる。
解析部52はさらに、ドップラーシフトによる変調(後方散乱光の波長が超音波による振動に同期して変化する)の周波数(例えば、振幅変調のうねりの周波数fU)を計測することにより、被計測体T各部の超音波による振動の瞬時値もしくはrms値を算出することができる。これにより、被計測体Tの音響インピーダンス特性分布を示すデータが得られる。このデータから、被計測体Tの音響インピーダンス特性を断層画像として得ることができる。
なお、解析部52は、被計測体Tのz方向の後方散乱率分布と、前記音響インピーダンス特性の両方を用いて1つの断層画像を生成してもよいし、前記後方散乱率分布による断層画像と、前記音響インピーダンス特性による断層画像を、それぞれ生成してもよい。 以上、本発明の一実施形態について説明したが、本発明の実施形態が上記に限られない。以下、実施形態の変形例を説明する。
(2次検波する構成)
振動制御部54aは、振動子91が被計測体Tに照射する超音波の振幅もしくは周波数に変調(2次変調)をかけてもよい。この場合、復調部53は、干渉光信号に超音波の周波数で上述のように1次検波した後の信号を、この2次変調に対応した2次検波を実行する。この2次検波は、振動制御部54aがかけた2次変調の周波数および位相に同期した基準信号を用いた同期検波とすることができる。このように2次検波することで、よりノイズに埋もれた後方散乱光の信号を捉えることができ、ペネトレーションをさらに増大させることができる。
(同期検波対象となる信号の変形例)
上記実施形態では、光検出器4が検出した干渉光信号(干渉光の強度信号)に対して同期検波がなされる構成であるが、OCTユニットU1における、その他の出力、中間出力または内部入力に対して同期検波がなされてもよい。一例として、干渉光の強度信号をコンピュータで処理可能な干渉光の強度データに変換し、この干渉光の強度データに対して、基準信号がコンピュータで処理可能に変換されて得られる基準データを用いて、同期検波することもできる。この場合、CPU等のプロセッサが所定のプログラム(ソフトウエア)により上記干渉光の強度データおよび基準データを処理することで、上述の同期検波が実行される。
(その他の変調―復調方法)
上記実施形態では、振幅変調および同期検波、ドップラー波長変調による、変調−復調方法が用いられているが、本発明に用いることができる変調―復調方法はこれに限られない。振動子91が、後方散乱光の光位相および光波長等の特性を変化させることにより、干渉光の強度および波長を、振動子91の超音波(もしくは音波)の周波数で変調する構成であり、復調部53が、変調された干渉光から、変調前のもとの特性と本質的に同じ干渉光を導出する(変調された干渉光の強度の方を検波する)構成であれば、変調の方式は特に限定されない。例えば、スーパーヘテレロダイン方式等の復調方法を用いることができる。
(振動子の変形例)
上記実施形態では、振動子91は、超音波を発生しているが、振動子91は、超音波以外で被計測体Tを振動させてもよい。例えば、振動子91は音波を発生させるスピーカーであってもよい。これにより、例えば、被計測体Tが、患者の歯の一部である場合には、患者が計測のタイミングを音により認識することができ、計測中になるべく歯(計測部位)を動かさないようにすることができる。
(超音波伝達手段)
上記実施形態では、超音波振動子91は、被計測体Tに対して空中を介して超音波を照射する場合を想定している。しかし、超音波をよく透過する超音波透過部材を超音波振動子91と被計測体Tの間に介在させてもよい。これにより、超音波の減衰を防止することができる。さらに、被計測体Tと超音波透過部材の間にゼリー状の物質を塗って、両者の境界での超音波の反射・散乱・吸収を防ぐことも好適である。
(z方向走査手段の変形例)
上記実施形態では、光源をSLD(Super Luminescent Diode)とし、参照ミラー3を駆動して参照ミラー3の各位置で干渉光を得ることにより参照ミラー3の位置に対応した被計測体Tの深さ方向(z方向)の後方散乱計数特性を得る所謂タイムドメイン方式を用いる場合について説明した。z方向の情報(Aモード)を得るためのその他の方法として、例えば、レンズ75の出力側に回折格子を設け、z方向の時間軸情報を回折格子の回折方向の空間軸情報に変換し、光検出器4で検出するスペクトルドメイン方式(フーリエドメイン方式の一例)を用いることができる。この場合、光検出器4には、例えば、CCD等の1〜2次元の撮像素子を用いることができる。また、PCユニットU3の解析部52では、光検出器4で検出された空間軸の強度分布を示すデータを、フーリエ変換等の演算により、時間軸情報すなわちz方向情報を示すデータに再構成する処理が行われる。
また、光源1として可変波長光源を用いるスウェプトソース方式(フーリエドメイン方式の他の一例)を用いることできる。
前述の様に、これらのフーリエドメイン方式を用いた場合でも、復調部53は、上記実施形態と同様に、光検出器4で検出された干渉光強度分布の信号に対して同期検波することにより、復調することができる。例えば、光源をSLDとし、干渉光を回折格子にて波長分光して検出するタイプのスペクトルドメインOCTでは、分光された干渉光の各波長の光信号(分光した干渉光の各波長の強度信号)に対して、振動子に与える駆動信号に同期して検波することができる。
あるいは、光源を可変波長光源とし、計測光の波長を一定範囲で繰り返し走査するタイプのOCTでは、計測光の各波長に対する干渉光の光信号に対して、振動子に与える駆動信号に同期して検波することができる。
これらのフーリエドメイン方式のOCTでは、各波長に対応する干渉光信号をコンピュータで処理可能な干渉光データに変換して処理することができるが、この干渉光データに対して、振動子91に与える駆動信号に同期して検波することもできる。
さらに、これらフーリエドメイン方式のOCTでは、各波長に対応する干渉光データの波長分布を波長上でフーリエ逆変換して時系列分布のデータ(これが被計測体Tの深さ方向(z方向)の後方散乱係数の分布を示す)を得ることができるが、このフーリエ逆変換後のデータに対して振動子に与える駆動信号に同期して検波することもできる。
(x、y方向走査の変形例)
上記実施形態では、x方向とy方向の走査(BモードおよびCモードを得るための手段)は、ガルバノミラーによる走査である。これら各モードを実現する方法についてはその他、様々の方式を用いることができる。例えば、参照ミラー走査によるz方向Aモードに加えて、点光源からの点光束を、シリンドリカルレンズにより線光束としてx方向Bモード画像を得る方式(シリンドリカルレンズ方式)がある。さらに、シリンドリカルレンズによるx方向の情報取得と、ガルバノミラーによるy方向走査と組み合わせてCモードを得ることもできる。また、この方法において、Aモードの実現に参照ミラー駆動ではなく、フーリエドメイン方式を採用してもよい。
さらに、光源からの光をレンズを使って2次元面状に広げ、空中光学系を使って被計測体Tに面計測光束を照射し、参照ミラー3と同一光路長となる深さの被計測体内部のxy面(厳密にはxy面に近い球面となる)上のデータを得ることをもできる。この方式は、フルフィールド方式と称され、特殊なモードである。このフルフィールド方式に、参照ミラー駆動のAモード走査を組み合わせる特殊なCモード動作も可能である。
(ファイバカップラの変形例)
ファイバカップラの代わりにビームスプリッタ2bを用いても良い。この場合、光源1、ビームスプリッタ2b、参照ミラー3、レンズ76および光検出器4を光学的に適切に配置する必要がある。光ファイバ61〜64は必ずしも必要なくなる。また、コンパクトな配置等のために各所にミラーを用いたり場合によっては部分的に光ファイバを用いたりしてもよい。
以上、本実施形態およびその変形例について説明した。上記の実施形態によれば、COT装置は、被計測体Tに対し超音波または音波などで振動を与える振動子を備えている。OCT装置は、OCTユニットU1における出力または中間出力または内部入力を前記振動子に与える駆動信号に同期して検波する機能を備えている。さらに、前記振動子に与える駆動信号の大きさ、周波数のいずれかひとつ以上を変化させて駆動信号変調を与える構成にしてもよい。その場合、1次検波した出力を、駆動信号変調に同期して2次検波する機能が設けられる。
このように、本実施形態のOCT装置は、まず超音波で変調させ干渉計測信号を変調超音波信号で復調させる。すなわち、上記のOCT装置では、超音波を被計測体に照射することによって、z方向の後方散乱光にドップラー変調を与え、得られた信号を変調信号に基づいて復調する。これにより、光干渉信号がノイズに埋もれるほど小さくなる様な、被計測体の深い部分も撮像可能にする。
具体的には、振動子を超音波振動させ、被計測体に対し超音波または音波または振動を与え、OCT装置の出力または中間出力または内部入力を前記振動子に与える駆動信号に同期して検波する。さらに、前記振動子に与える駆動信号の大きさ、周波数のいずれかひとつ以上を変化させて駆動信号変調を与えることにより、ペネトレーションをより深くできる最適な変調方法を選択することが可能になる。また、前記検波した出力を前記駆動信号変調に同期して2次検波する、つまり2重に変調をかけ、2重に検波することにより、ペネトレーションをさらに深くすることができる。
本実施形態にかかるOCT装置は、より表面より深い部分の断層画像が必要となる分野、特に歯科を含む医療の分野においては有用である。歯科において歯は歯根周囲を含む歯周領域の内部を観察するにはX線装置が広く用いられている。また近年、X線を用いた顎顔面領域専用のCT装置も利用されつつある。また、超音波や通常の光干渉断層撮影装置を用いた研究発表や特許もいくつか発表・公開されている。しかしX線は患者や操作者の人体に対して侵襲性があり、超音波だけを利用したものは分解能に問題がある。そこで高分解能であるOCT装置が提案されつつあるが、前述の通りペネトレーションが2〜3mmと非常に小さい。歯周や歯牙内部・歯根を観察するには、さらに大きなペネトレーションが必要となる。
本実施形態によれば、現在様々な研究、発表がされ、一部眼科等で実用化されつつあるOCT装置のペネトレーションを深くすることができる。そのため、本実施形態のOCTは、歯科分野のように、深いペネトレーションを必要とする分野に利用される可能性が高い。
光干渉断層撮影装置の基本構成の一例を示す図
符号の説明
1 光源
2a ファイバカップラ(光分割部・干渉部)
3 参照ミラー
4 光検出器(光検出部)
5 コンピュータ(演算部)
61〜4 光ファイバ
71〜77 レンズ
81、82 ガルバノミラー
U1 OCTユニット
U2 プローブユニット
U3 PCユニット
91 超音波振動子
92 コントローラ

Claims (5)

  1. 光源と、
    前記光源から出射した光源光を参照ミラーに照射する参照光と被計測体に照射する計測光とに分ける光分割部と、
    前記計測光のうち前記被計測体で後方散乱した後方散乱光と、前記参照ミラーで反射した参照光とを干渉させて干渉光とする干渉部と、
    干渉光を計測する光検出部と、
    前記被計測体に対し超音波または音波または振動を与えることにより、前記後方散乱光および前記干渉光に変調を加える振動子と、
    前記光検出部で計測された前記干渉光を復調する復調部と、
    前記復調された前記干渉光に基づいて、前記被計測体の表面および内部の少なくとも一部における2次元または3次元の領域の光学的後方散乱特性を示す特性データを生成し、特性データに基づいて、前記被計測体の前記領域における構造、組成および材質の少なくとも1つに関する画像データを生成する解析部とを備える、干渉断層撮影装置。
  2. 前記復調部は、前記振動子が前記被計測体に与える振動と周波数および位相が同じ信号を用いて、前記干渉光を同期検波することにより当該干渉光を復調する、請求項1記載の干渉断層撮影装置。
  3. 前記振動子に駆動信号を与えることにより、前記被計測体に与える前記振動の振幅および周波数の少なくともいずれか1つを周期的に変化させて、当該振動に変調を与えることにより、前記後方散乱光および干渉光に2次変調を与える振動制御部をさらに備え、
    前記復調部は、前記復調に加えて、さらに、前記干渉光の前記2次変調に対して2次復調する、請求項1に記載の干渉断層撮影装置。
  4. 前記復調部は、前記駆動信号による前記2次変調と周波数および位相が同じ信号を用いて、前記2次変調に対して同期検波することにより、前記2次復調をする、請求項3記載の干渉断層撮影装置。
  5. 前記振動子は、超音波を前記被計測体へ出射する超音波源であり、
    前記解析部は、さらに、前記振動子による前記干渉光の変調の周波数に基づいて、前記被計測体における音響インピーダンス特性を示す音響特性データを生成し、当該音響特性データに基づいて、前記被計測体における構造、組成および材質の少なくとも1つに関する画像データを生成する、請求項1〜4のいずれか1項に記載の干渉断層撮影装置。
JP2008146077A 2008-06-03 2008-06-03 干渉断層撮影装置 Withdrawn JP2009293998A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008146077A JP2009293998A (ja) 2008-06-03 2008-06-03 干渉断層撮影装置
US12/475,862 US20090296102A1 (en) 2008-06-03 2009-06-01 Coherence tomography device
DE102009023774A DE102009023774A1 (de) 2008-06-03 2009-06-03 Kohärenztomographiegerät

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146077A JP2009293998A (ja) 2008-06-03 2008-06-03 干渉断層撮影装置

Publications (1)

Publication Number Publication Date
JP2009293998A true JP2009293998A (ja) 2009-12-17

Family

ID=41335155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146077A Withdrawn JP2009293998A (ja) 2008-06-03 2008-06-03 干渉断層撮影装置

Country Status (3)

Country Link
US (1) US20090296102A1 (ja)
JP (1) JP2009293998A (ja)
DE (1) DE102009023774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158848A1 (ja) * 2010-06-15 2011-12-22 富士フイルム株式会社 光断層画像化装置及び光断層画像化方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873028B2 (en) * 2010-08-26 2014-10-28 Apple Inc. Non-destructive stress profile determination in chemically tempered glass
DE102010040832B4 (de) * 2010-09-15 2012-09-13 S&N Systemhaus für Netzwerk- und Datentechnik GmbH Zahnmedizinisches Diagnosegerät
KR20150056713A (ko) * 2013-11-15 2015-05-27 삼성전자주식회사 영상표시장치의 비파괴 검사 시스템 및 방법과 이를 위한 비파괴 검사 장치
EP3362787A4 (en) * 2015-10-16 2019-05-22 Dalhousie University SYSTEMS AND METHOD FOR OPTICAL COHERENCE TOMOGRAPHIC VIBROGRAPHY WITH A HANDLED SOURCE
WO2017173330A1 (en) * 2016-04-01 2017-10-05 The Board Of Regents Of The University Of Oklahoma System and method for nanoscale photoacoustic tomography
US10687738B2 (en) * 2017-02-24 2020-06-23 Audioptics Medical Incorporated Systems and methods for performing phase-sensitive acoustic vibrations using optical coherence tomography
CN107505507B (zh) * 2017-08-16 2019-10-01 北京航空航天大学 一种用于解调含有高斯有色噪声信号的递推解调器
CN108760048B (zh) * 2018-04-13 2024-01-30 中国科学院西安光学精密机械研究所 基于声光可调谐滤波器的光学相干显微光谱成像探测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL89970A (en) 1989-04-14 1994-10-21 Weizmann Kiryat Membrane Prod Composite membranes containing a coated layer of crosslinked polyaromatic polymers and/or sulfonated poly (haloalkylenes)
JPH03118839U (ja) 1990-03-15 1991-12-09
JPH03118824U (ja) 1990-03-16 1991-12-09
JPH03118718U (ja) 1990-03-22 1991-12-06
US6002480A (en) * 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6711954B2 (en) * 2001-01-19 2004-03-30 Lockheed Martin Corporation Method and apparatus for improving the dynamic range of laser detected ultrasound in attenuative materials
JP2004344260A (ja) 2003-05-20 2004-12-09 J Morita Tokyo Mfg Corp 歯科光診断装置
JP4221579B2 (ja) 2003-05-20 2009-02-12 株式会社モリタ東京製作所 歯科光診断装置用プローブ
JP2004347880A (ja) 2003-05-22 2004-12-09 Fuji Xerox Co Ltd 画像形成装置
US20080252901A1 (en) * 2003-09-26 2008-10-16 School Jiridical Person Kitasato Gakuen Wavelength-Tunable Light Source And Optical Coherence Tomography
JP4469977B2 (ja) 2004-07-09 2010-06-02 日本電信電話株式会社 歯の光干渉トモグラフィー装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158848A1 (ja) * 2010-06-15 2011-12-22 富士フイルム株式会社 光断層画像化装置及び光断層画像化方法

Also Published As

Publication number Publication date
US20090296102A1 (en) 2009-12-03
DE102009023774A1 (de) 2009-12-24

Similar Documents

Publication Publication Date Title
JP2009293998A (ja) 干渉断層撮影装置
JP4822454B2 (ja) 歯科用光コヒーレンストモグラフィー装置
JP5340648B2 (ja) 被検体情報算出装置及び被検体情報算出方法
CN101002670B (zh) 被检体信息分析装置、内窥镜装置、被检体信息分析方法
US7835010B2 (en) Optical coherence tomography system and optical coherence tomography method
JP5183381B2 (ja) 測定装置及び測定方法
JP5009058B2 (ja) 被検体情報分析装置
JP2005224399A (ja) 光超音波断層画像測定方法及び装置
JP2005114473A (ja) 光検出方法及び生体光計測装置
JP2008194108A (ja) 位置方向検出機能付き3次元上特性測定・表示装置
WO2007083376A1 (ja) 光コヒーレンストモグラフィー装置および計測ヘッド
JP2007216001A (ja) 被検体情報分析装置、内視鏡装置及び被検体情報分析方法
JP2002153472A (ja) 画像診断装置
JP4688094B2 (ja) 光コヒーレンストモグラフィー装置
JP5062816B2 (ja) 反射型断層撮影装置
JP4704519B2 (ja) 被検体情報分析装置及び被検体情報分析方法
US11543232B2 (en) 3D intraoral camera using frequency modulation
JP2008194107A (ja) 歯科用3次元上特性測定・表示装置
JP4904209B2 (ja) 光断層画像化装置
JP6952724B2 (ja) 歯表面を撮像するための方法
JP2006322767A (ja) 光断層画像化装置
JP2006191937A (ja) 歯の光干渉トモグラフィー用可変波長光発生装置及び歯の光干渉トモグラフィー装置
JP4603100B2 (ja) 生体観測装置及び生体断層画像生成方法
WO2007083375A1 (ja) 歯科測定用フーリエドメイン光コヒーレンストモグラフィー装置
CN212679089U (zh) 基于ps-oct的牙体硬组织早期脱矿及龋病的可视化成像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110218