JP2009286895A - Prepreg and method for forming fiber-reinforced composite material - Google Patents

Prepreg and method for forming fiber-reinforced composite material Download PDF

Info

Publication number
JP2009286895A
JP2009286895A JP2008140709A JP2008140709A JP2009286895A JP 2009286895 A JP2009286895 A JP 2009286895A JP 2008140709 A JP2008140709 A JP 2008140709A JP 2008140709 A JP2008140709 A JP 2008140709A JP 2009286895 A JP2009286895 A JP 2009286895A
Authority
JP
Japan
Prior art keywords
prepreg
fine particles
polyamide
fiber
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008140709A
Other languages
Japanese (ja)
Other versions
JP5532549B2 (en
Inventor
Kaoru Usami
馨 宇佐美
Kazuki Koga
一城 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2008140709A priority Critical patent/JP5532549B2/en
Publication of JP2009286895A publication Critical patent/JP2009286895A/en
Application granted granted Critical
Publication of JP5532549B2 publication Critical patent/JP5532549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg which can form a fiber-reinforced composite material having excellent compression strength after impact application and interlaminar shear strength and a method for forming a fiber-reinforced composite material. <P>SOLUTION: The prepreg contains the following constitution components (A), (B) and (C), wherein the constitution component (C) is distributed near the surface at concentration higher than the concentration at the inner side of the prepreg. (A) A reinforcing fiber; (B) a base resin composed mainly of a thermosetting resin; and (C) fine particles of a polyamide 12 having a melting point of ≥180°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、プリプレグおよび繊維強化複合材料の成形方法に関する。   The present invention relates to a method for forming a prepreg and a fiber-reinforced composite material.

繊維強化複合材料は、軽量かつ高強度で高剛性の特徴を生かし、スポーツ・レジャー用途から自動車や航空機等の産業用途まで、幅広く用いられている。特に近年では、より軽量かつより高強度・高剛性の繊維強化複合材料が航空機や他産業分野に用いられることが多い。
繊維強化複合材料は、強化繊維とマトリックス樹脂を必須の構成要素とする材料であり、その強化繊維の繊維軸方向の強度・弾性率は共に極めて高いが、それに対して直角方向は低いという異方性材料である。
Fiber reinforced composite materials are widely used from sports / leisure applications to industrial applications such as automobiles and aircrafts, taking advantage of their light weight, high strength and high rigidity. In recent years, in particular, fiber reinforced composite materials that are lighter and have higher strength and rigidity are often used in aircraft and other industrial fields.
A fiber reinforced composite material is a material that has reinforced fibers and a matrix resin as essential components. The strength and elastic modulus in the fiber axis direction of the reinforced fibers are both extremely high, but the direction perpendicular to them is low. Material.

繊維強化複合材料の製造においては、強化繊維に未硬化の熱硬化性樹脂を含浸させた、プリプレグと呼ばれるシート状の前駆体を積層、成形後、硬化する手法が広く用いられている。
プリプレグから繊維強化複合材料を得る場合、強化繊維を織物にしたプリプレグを用いる手法、一方向に配列した強化繊維からなるプリプレグの繊維軸方向を異方向に組み合わせて積層する手法を用いることで、異方性材料である繊維強化複合材料の各方向における物性の制御が行われている。
In the production of fiber reinforced composite materials, a method of laminating a sheet-like precursor called a prepreg, in which reinforcing fibers are impregnated with an uncured thermosetting resin, molding, and curing is widely used.
When obtaining a fiber reinforced composite material from a prepreg, a method using a prepreg made of reinforced fibers in a woven fabric, or a method of laminating prepregs composed of reinforced fibers arranged in one direction in different directions are laminated. Control of physical properties in each direction of a fiber reinforced composite material which is an isotropic material is performed.

しかし、このようにプリプレグを積層すると、どのような積層構成をとる場合でも、繊維強化複合材料の衝撃後圧縮強度などは層間での破壊が支配的であるため、強化繊維の強度を向上させても抜本的な改良には結びつかないことが知られている。ここで繊維強化複合材料の層間とは、プリプレグを積層するときのプリプレグ間の界面に相当する面の近傍をいう。この領域は、強化繊維の分率が小さく、その両側での強化繊維の配向が異なるため、応力が集中しやすくなる。特に熱硬化性樹脂をマトリックス樹脂とする場合、コスト、生産性、耐熱性といった種々の利点を有する一方で、靭性に乏しいという欠点を有するため、繊維強化複合材料の衝撃後圧縮強度も不十分なものとなる。   However, when the prepregs are laminated in this way, the interlaminar fracture is dominant in the post-impact compression strength of the fiber reinforced composite material in any laminate configuration, so the strength of the reinforced fiber is improved. Is not known to lead to drastic improvements. Here, the interlayer of the fiber reinforced composite material means the vicinity of the surface corresponding to the interface between the prepregs when the prepregs are laminated. In this region, since the fraction of the reinforcing fibers is small and the orientation of the reinforcing fibers on the both sides is different, the stress tends to concentrate. In particular, when a thermosetting resin is used as a matrix resin, it has various advantages such as cost, productivity, and heat resistance, but also has a disadvantage of poor toughness, so that the fiber-reinforced composite material has insufficient compressive strength after impact. It will be a thing.

繊維強化複合材料の衝撃後圧縮強度を改良する方法として、種々の方法が提案されている。その中でも、繊維強化複合材料の層間にマトリックス樹脂とは異なる材料を配置し、破壊エネルギーを吸収させる手法が多く提案されている。
例えば、特許文献1では、樹脂からなる微粒子を層間に配置することで衝撃後圧縮強度の改良を行っている。
また、特許文献2や特許文献3では、比較的剛性の高い粒子を用いて、層間剪断強度や耐熱性を維持させ衝撃後圧縮強度を改良する技術が開示されている。
特開昭63−162732号公報 特開2001−114915号公報 特開2005−105151号公報
Various methods have been proposed as methods for improving the post-impact compressive strength of fiber reinforced composite materials. Among them, many methods have been proposed in which a material different from the matrix resin is disposed between the layers of the fiber reinforced composite material to absorb the breaking energy.
For example, in Patent Document 1, the compression strength after impact is improved by arranging fine particles made of resin between layers.
Patent Documents 2 and 3 disclose techniques for improving compression strength after impact while maintaining interlayer shear strength and heat resistance using particles having relatively high rigidity.
Japanese Unexamined Patent Publication No. 63-162732 JP 2001-114915 A JP 2005-105151 A

しかしながら、特許文献1に記載の手法では、衝撃後圧縮強度向上効果の高い微粒子を用いた場合、層間剪断強度や耐熱性等、他の物性が低下することがあった。複数のプリプレグを積層して得られる繊維強化複合材料には、高い層間剪断強度が求められる。
また、特許文献2、3に記載の技術では、近年のより高い衝撃後圧縮強度の要求を必ずしも満足するものではなかった。
However, in the method described in Patent Document 1, when fine particles having a high effect of improving compressive strength after impact are used, other physical properties such as interlaminar shear strength and heat resistance may be deteriorated. A fiber reinforced composite material obtained by laminating a plurality of prepregs is required to have high interlayer shear strength.
Further, the techniques described in Patent Documents 2 and 3 do not always satisfy the recent demand for higher compressive strength after impact.

本発明は上記事情を鑑みてなされたものであり、衝撃後圧縮強度、および層間剪断強度に優れる繊維強化複合材料を成形できるプリプレグおよび繊維強化複合材料の成形方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the shaping | molding method of the prepreg and fiber reinforced composite material which can shape | mold the fiber reinforced composite material which is excellent in the compressive strength after impact, and interlayer shear strength.

本発明のプリプレグは、以下に示す構成要素(A)、(B)および(C)を含むプリプレグであって、前記構成要素(C)が、当該プリプレグの内部よりも表面近傍に高濃度に分布したことを特徴とする。
(A):強化繊維。
(B):熱硬化性樹脂を主成分とするベース樹脂。
(C):融点が180℃以上のポリアミド12の微粒子。
The prepreg of the present invention is a prepreg including the following components (A), (B), and (C), and the component (C) is distributed at a higher concentration near the surface than the inside of the prepreg. It is characterized by that.
(A): Reinforcing fiber.
(B): Base resin mainly composed of thermosetting resin.
(C): Fine particles of polyamide 12 having a melting point of 180 ° C. or higher.

また、前記構成要素(C)が、再沈殿法により得られたポリアミド12の微粒子、または再沈殿法により得られた微粒子をさらに凍結粉砕して得られたポリアミド12の微粒子であることが好ましい。
さらに、本発明の繊維強化複合材料の成形方法は、前記プリプレグを用い、硬化温度180℃以下の温度で硬化することを特徴とする。
The component (C) is preferably polyamide 12 fine particles obtained by a reprecipitation method or polyamide 12 fine particles obtained by further freeze-pulverizing fine particles obtained by a reprecipitation method.
Furthermore, the method for molding a fiber-reinforced composite material of the present invention is characterized in that the prepreg is used and cured at a curing temperature of 180 ° C. or lower.

本発明のプリプレグによれば、衝撃後圧縮強度、および層間剪断強度に優れる繊維強化複合材料が得られる。   According to the prepreg of the present invention, a fiber-reinforced composite material excellent in compressive strength after impact and interlaminar shear strength can be obtained.

以下、本発明を詳細に説明する。
[プリプレグ]
本発明のプリプレグは、構成要素(A):強化繊維、構成要素(B):熱硬化性樹脂を主成分とするベース樹脂、構成要素(C):融点が180℃以上のポリアミド12の微粒子を含む。
Hereinafter, the present invention will be described in detail.
[Prepreg]
The prepreg of the present invention comprises component (A): reinforcing fiber, component (B): base resin mainly composed of thermosetting resin, component (C): fine particles of polyamide 12 having a melting point of 180 ° C. or higher. Including.

<構成要素(A)>
本発明に用いる構成要素(A)は強化繊維であり、繊維強化複合材料の使用目的に応じて様々なものが使用できる。本発明に用いる強化繊維の具体例としては、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、ガラス繊維など、通常の繊維強化複合材料に用いられる強化繊維が挙げられる。強化繊維は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
これらの強化繊維のうち、比強度、比弾性率が高く軽量化に大きな効果のある炭素繊維や黒鉛繊維が本発明に好適である。炭素繊維や黒鉛繊維は用途に応じてあらゆる種類の炭素繊維や黒鉛繊維を用いることができる。
<Component (A)>
The component (A) used for this invention is a reinforced fiber, and various things can be used according to the intended purpose of a fiber reinforced composite material. Specific examples of the reinforcing fibers used in the present invention include reinforcing fibers used for ordinary fiber-reinforced composite materials such as carbon fibers, graphite fibers, aramid fibers, boron fibers, and glass fibers. The reinforcing fibers may be used alone or in combination of two or more.
Among these reinforcing fibers, carbon fibers and graphite fibers having high specific strength and specific elastic modulus and having a great effect on weight reduction are suitable for the present invention. Any type of carbon fiber or graphite fiber can be used as the carbon fiber or graphite fiber depending on the application.

強化繊維はその形状や配列を限定されず、例えばミルド、チョップ、長繊維などの形状の強化繊維を使用できる。また、単一方向、ランダム方向、シート状、マット状、織物状、組み紐状といった配列の強化繊維を使用できる。さらに、特に、比強度や非弾性率が高いことが繊維強化複合材料に要求される場合には、強化繊維が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易な織物状の配列も本発明には適している。   The shape and arrangement of the reinforcing fibers are not limited. For example, reinforcing fibers having a shape such as milled, chop, or long fiber can be used. In addition, reinforcing fibers having an arrangement such as a single direction, a random direction, a sheet shape, a mat shape, a fabric shape, and a braided shape can be used. Furthermore, particularly when a fiber-reinforced composite material is required to have a high specific strength and high inelastic modulus, an array in which reinforcing fibers are aligned in a single direction is most suitable. An array of shapes is also suitable for the present invention.

<構成要素(B)>
本発明に用いる構成要素(B)は熱硬化性樹脂を主成分とするベース樹脂であり、一般に硬化剤や硬化助剤と組み合わせて用いられる。なお、本発明において「主成分」とは、ベース樹脂100質量%中、70質量%以上含まれていることを意味する。ただし、熱硬化性樹脂の含有量は、硬化剤および硬化助剤を含めた値であるものとする。
硬化剤、および硬化助剤を含めた熱硬化性樹脂の含有量は、ベース樹脂100質量%中、80質量%以上が好ましい。
<Component (B)>
The component (B) used in the present invention is a base resin containing a thermosetting resin as a main component, and is generally used in combination with a curing agent or a curing aid. In the present invention, “main component” means that 70% by mass or more is contained in 100% by mass of the base resin. However, the content of the thermosetting resin is a value including the curing agent and the curing aid.
The content of the thermosetting resin including the curing agent and the curing aid is preferably 80% by mass or more in 100% by mass of the base resin.

熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、マレイミド樹脂などが挙げられる。中でもエポキシ樹脂は低コストであり、かつ耐熱性や機械特性に優れた繊維強化複合材料が得られやすいため好ましい。   Examples of the thermosetting resin include an epoxy resin, a phenol resin, an unsaturated polyester resin, a vinyl ester resin, a urethane resin, a urea resin, a melamine resin, and a maleimide resin. Among these, an epoxy resin is preferable because it is low-cost and a fiber-reinforced composite material excellent in heat resistance and mechanical properties can be easily obtained.

エポキシ樹脂としては、アミン類、フェノール類、炭素炭素二重結合を有する化合物を前駆体とするものが好ましい。具体的には、アミン類を前駆体とするエポキシ樹脂として、テトラグルシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、トリグリシジル−m−アミノフェノール、トリグリシジルアミノクレゾールの各種異性体が挙げられる。
フェノール類を前駆体とするエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が挙げられる。
炭素炭素二重結合を有する化合物を前駆体とするエポキシ樹脂としては、脂環式エポキシ樹脂等が挙げられる。
エポキシ樹脂はこれらに限定されるものではない。また、上述したエポキシ樹脂をブロム化したブロム化エポキシ樹脂を用いることもできる。これらの中でも、特にテトラグリシジルジアミノジフェニルメタンに代表される芳香族アミンを前駆体とするエポキシ樹脂は、耐熱性に優れた繊維強化複合材料が得られやすいため好ましい。
As the epoxy resin, an amine, a phenol, or a compound having a carbon-carbon double bond as a precursor is preferable. Specific examples of epoxy resins having amines as precursors include various isomers of tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, triglycidyl-m-aminophenol, and triglycidylaminocresol.
Examples of the epoxy resin having a phenol as a precursor include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
An alicyclic epoxy resin etc. are mentioned as an epoxy resin which uses the compound which has a carbon carbon double bond as a precursor.
The epoxy resin is not limited to these. Moreover, the brominated epoxy resin which brominated the epoxy resin mentioned above can also be used. Among these, an epoxy resin having an aromatic amine represented by tetraglycidyldiaminodiphenylmethane as a precursor is particularly preferable because a fiber-reinforced composite material having excellent heat resistance can be easily obtained.

エポキシ樹脂は、エポキシ硬化剤と組み合わせて用いるのが好ましい。エポキシ硬化剤としてはエポキシ基と反応しうる活性基を有する化合物、あるいは、エポキシ基同士の反応性を向上する化合物が好ましい。例えば、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、メチルヘキサヒドロフタル酸無水物、カルボン酸アミド、ポリフェノール化合物、ノボラック樹脂、ポリメルカプトン、また三フッ化ホウ素モノエチルアミン錯体等のルイス酸錯体などが挙げられるが、これらに限定されるものではない。好ましくは、アミノ基、酸無水物基、アジド基を有する化合物が適している。具体的には、ジシアンジアミド、ジアミノジフェニルスルホンの各種異性体、ジアミノジフェニルメタンの各種誘導体、アミノ安息香酸エステル類が適している。具体的に説明すると、ジシアンジアミドはプリプレグの保存性に優れるため好んで用いられる。また、ジアミノジフェニルスルホンの各種異性体は、耐熱性の良好な硬化物を与えるため本発明には最も適している。   The epoxy resin is preferably used in combination with an epoxy curing agent. As the epoxy curing agent, a compound having an active group capable of reacting with an epoxy group or a compound improving the reactivity between epoxy groups is preferable. For example, aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone, aliphatic amines, imidazole derivatives, dicyandiamide, tetramethylguanidine, thiourea addition amine, methylhexahydrophthalic anhydride, carboxylic acid amide, polyphenol compound, novolac resin, Examples include, but are not limited to, polymercaptons and Lewis acid complexes such as boron trifluoride monoethylamine complex. Preferably, a compound having an amino group, an acid anhydride group, or an azide group is suitable. Specifically, dicyandiamide, various isomers of diaminodiphenylsulfone, various derivatives of diaminodiphenylmethane, and aminobenzoic acid esters are suitable. Specifically, dicyandiamide is preferably used because it has excellent prepreg storage stability. Further, various isomers of diaminodiphenylsulfone are most suitable for the present invention because they give a cured product having good heat resistance.

これらのエポキシ硬化剤には、硬化活性を高めるために、適当な硬化助剤を組み合わせることができる。好ましい例としては、ジシアンジアミドに、3−フェニル−1,1−ジメチル尿素、3−(3,4−ジクロロフェニル)−1,1−ジメチル尿素(DCMU)、3−(3−クロロ−4−メチルフェニル)−1,1−ジメチル尿素、2,4−ビス(3,3−ジメチルウレイド)トルエン等の尿素誘導体を硬化助剤として組み合わせる例;カルボン酸無水物やノボラック樹脂に三級アミンを硬化助剤として組み合わせる例;ジアミノジフェニルスルホンにイミダゾール化合物、フェニルジメチルウレア(PDMU)等のウレア化合物、三フッ化ホウ素モノエチルアミン、三塩化アミン錯体等のアミン錯体を硬化助剤として組み合わせる例などが挙げられる。   These epoxy curing agents can be combined with an appropriate curing aid in order to increase the curing activity. Preferred examples include dicyandiamide, 3-phenyl-1,1-dimethylurea, 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU), 3- (3-chloro-4-methylphenyl). ) Examples of combining urea derivatives such as 1,1-dimethylurea and 2,4-bis (3,3-dimethylureido) toluene as curing aids; Curing aids with tertiary amines on carboxylic anhydrides and novolak resins Examples of combining diaminodiphenyl sulfone with urea compounds such as imidazole compounds and phenyldimethylurea (PDMU), and amine complexes such as boron trifluoride monoethylamine and amine trichloride complexes as curing aids.

また、ベース樹脂には、熱硬化性樹脂の他に、反応性希釈剤、熱可塑性樹脂、エラストマー等の改質剤、充填剤、安定剤、難燃剤、顔料などの各種添加剤を含有させてもよい。   In addition to thermosetting resins, the base resin contains various additives such as reactive diluents, thermoplastic resins, elastomers and other modifiers, fillers, stabilizers, flame retardants, and pigments. Also good.

熱硬化性樹脂と熱可塑性樹脂との混合物は、熱硬化性樹脂を単独で用いた場合よりさらに良好な結果を与える。すなわち、熱硬化性樹脂の脆さを熱可塑性樹脂の強靱さによって補い、さらにタック性の向上を与えると共に、熱可塑性樹脂の成形困難性を熱硬化性樹脂が補い、バランスのとれたベース樹脂となる。
特に、熱可塑性樹脂として、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリイミドから選ばれた1種以上の樹脂が、ベース樹脂中に、混合、溶解していることが好適である。さらに、熱硬化性樹脂と反応しうる官能基を末端または分子鎖中に有する熱可塑性樹脂がさらに好ましい。
A mixture of a thermosetting resin and a thermoplastic resin gives even better results than when the thermosetting resin is used alone. In other words, the brittleness of the thermosetting resin is compensated by the toughness of the thermoplastic resin, and further, tackiness is improved, and the thermosetting resin compensates for the molding difficulty of the thermoplastic resin. Become.
In particular, as the thermoplastic resin, it is preferable that at least one resin selected from polysulfone, polyethersulfone, polyetherimide, and polyimide is mixed and dissolved in the base resin. Furthermore, the thermoplastic resin which has the functional group which can react with a thermosetting resin in the terminal or molecular chain is further more preferable.

また、ベース樹脂には、レオロジー特性制御、剛性、靭性等の機械特性改善のために、微粉末状シリカなどの無機フィラーを添加することも好ましい。   It is also preferable to add an inorganic filler such as finely divided silica to the base resin in order to improve mechanical properties such as rheological property control, rigidity, and toughness.

<構成要素(C)>
本発明に用いる構成要素(C)は、融点が180℃以上のポリアミド12の微粒子である。ポリアミド12の微粒子の融点が180℃以上であれば、航空機用途として一般的な硬化温度(177、180℃)以上の融点を有することになる。
本発明において、融点が180℃以上のポリアミド12の微粒子を用いる理由は、以下の通りである。
<Component (C)>
The component (C) used in the present invention is a fine particle of polyamide 12 having a melting point of 180 ° C. or higher. If the melting point of the polyamide 12 fine particles is 180 ° C. or higher, it will have a melting point of a curing temperature (177 ° C., 180 ° C.) or higher that is general for aircraft use.
In the present invention, the reason for using the fine particles of polyamide 12 having a melting point of 180 ° C. or higher is as follows.

ポリアミド12の微粒子がベース樹脂に溶解することでポリアミド12の微粒子の体積が減少したり、融解によってポリアミド12の微粒子が融着したりするなどして、ポリアミド12の微粒子の表面積が減少すると、層間のエネルギー吸収能力が低下する。一方、ポリアミド12の微粒子がベース樹脂に溶解するとベース樹脂の剛性が低下するため、層間剪断強度の低下を引き起こしやすくなる。
そのため、衝撃後圧縮強度や層間剪断強度を発現するためには、硬化過程においてポリアミド12の微粒子の大部分がベース樹脂に溶解せず、粒子の形状を保持することが重要である。
ポリアミド12の微粒子の融点を180℃以上とすると硬化中にポリアミド12の微粒子が完全に融解することなく、ベース樹脂中で粒子形状を維持できる。
一方、ポリアミド12の微粒子の融点が必要以上に高すぎる場合、硬化温度でポリアミド12の微粒子が全く融解せず、ポリアミド12の微粒子とベース樹脂との界面での接着性が弱くなる。そのため、衝撃後圧縮強度の低下を招くおそれがある。従って、ポリアミド12の微粒子の融点は、180〜190℃が好ましく、180〜185℃がより好ましい。
なお、本発明における「融点」とは、示差走査熱量計により昇温速度10℃/分で測定し、融解熱がピークとなるときの温度のことである。
When the surface area of the polyamide 12 fine particles decreases due to the polyamide 12 fine particles being dissolved in the base resin, the volume of the polyamide 12 fine particles is reduced, or the polyamide 12 fine particles are fused by melting. The energy absorption capacity of the is reduced. On the other hand, when the fine particles of polyamide 12 are dissolved in the base resin, the rigidity of the base resin is lowered, so that the interlaminar shear strength is easily lowered.
Therefore, in order to express the compressive strength after impact and the interlaminar shear strength, it is important that most of the fine particles of polyamide 12 are not dissolved in the base resin during the curing process and the shape of the particles is maintained.
When the melting point of the polyamide 12 fine particles is 180 ° C. or higher, the particle shape can be maintained in the base resin without completely melting the polyamide 12 fine particles during curing.
On the other hand, when the melting point of the polyamide 12 fine particles is too higher than necessary, the polyamide 12 fine particles are not melted at all at the curing temperature, and the adhesion at the interface between the polyamide 12 fine particles and the base resin is weakened. Therefore, there is a possibility that the compressive strength after impact is reduced. Accordingly, the melting point of the polyamide 12 fine particles is preferably 180 to 190 ° C, more preferably 180 to 185 ° C.
The “melting point” in the present invention is a temperature at which the heat of fusion reaches a peak when measured with a differential scanning calorimeter at a rate of temperature increase of 10 ° C./min.

融点が180℃以上のポリアミド12の微粒子は、再沈殿法により、または再沈殿法により得られた微粒子をさらに凍結粉砕することで容易に得られる。再沈殿法や凍結粉砕の方法としては、公知の方法を採用できる。   The fine particles of polyamide 12 having a melting point of 180 ° C. or higher can be easily obtained by reprecipitation method or by further freeze-pulverizing fine particles obtained by reprecipitation method. As the reprecipitation method and the freeze pulverization method, known methods can be employed.

また、本発明において「微粒子」とは、平均粒子径が2〜90μmの粒子のことを意味する。
ポリアミド12の平均粒子径が2μm以上であれば、強化繊維の繊維間に粒子(ポリアミド12)が潜り込むことなく、プリプレグ積層体の層間に局在化でき、粒子の存在効果が十分に発揮され衝撃後圧縮強度をより向上できる。一方、平均粒子径が90μm以下であれば、強化繊維の配列を乱したり、積層して得られる繊維強化複合材料の層間を必要以上に厚くしたりして、物性を低下させるなどの悪影響を軽減できる。ポリアミド12の平均粒子径は5〜40μmが特に好ましく、5〜25μmが最も好ましい。
平均粒子径は、走査型電子顕微鏡(SEM)にて200〜500倍に拡大した粒子の写真から求められる。本発明においては、任意に選択した100個の粒子について測定すれば十分であり、各粒子について長さ(粒子径)を測定し、その平均値を平均粒子径とする。
In the present invention, “fine particles” mean particles having an average particle diameter of 2 to 90 μm.
If the average particle diameter of the polyamide 12 is 2 μm or more, the particles (polyamide 12) can be localized between the layers of the reinforcing fibers and can be localized between the layers of the prepreg laminate, and the presence effect of the particles can be sufficiently exerted and impact Post compression strength can be further improved. On the other hand, if the average particle diameter is 90 μm or less, the arrangement of the reinforcing fibers is disturbed, or the layers of the fiber reinforced composite material obtained by lamination are thickened more than necessary, and thus adverse effects such as lowering the physical properties. Can be reduced. The average particle size of the polyamide 12 is particularly preferably 5 to 40 μm, and most preferably 5 to 25 μm.
An average particle diameter is calculated | required from the photograph of the particle | grains expanded 200-500 times with the scanning electron microscope (SEM). In the present invention, it is sufficient to measure 100 arbitrarily selected particles. The length (particle diameter) is measured for each particle, and the average value is taken as the average particle diameter.

180℃以上の融点を有するポリアミド12の微粒子としては、例えばVESTOSINT1111、VESTOSINT2070、VESTOSINT2157、VESTOSINT2158、VESTOSINT2159(以上、ダイセル・エボニック株式会社製)などが挙げられる。これらの微粒子は一般に市販されているものであり、入手性やコストに優れ好ましいが、ここに挙げた微粒子に限定されるものではない。   Examples of the fine particles of polyamide 12 having a melting point of 180 ° C. or higher include VESTOSINT1111, VESTOSINT2070, VESTOSINT2157, VESTOSINT2158, VESTOSINT2159 (manufactured by Daicel-Evonik). These fine particles are generally commercially available, and are excellent in availability and cost, but are not limited to the fine particles listed here.

ポリアミド12の微粒子の外形形状、表面あるいは内部形態は、球状粒子でも、非球状粒子でもよい。
球状粒子の方が、上述したベース樹脂の流動特性を低下させないという点で好ましいが、特定の粒径を有するポリアミド12の微粒子を用いる目的が、この微粒子を積層体の層間に局在化することにより衝撃下での層間剥離の進展を抑制することにあるため、ポリアミド12の微粒子の外形形状、表面あるいは内部形態は、特には限定されない。
The outer shape, surface or internal form of the polyamide 12 fine particles may be either spherical or non-spherical particles.
Spherical particles are preferred in that they do not reduce the flow characteristics of the base resin described above, but the purpose of using polyamide 12 microparticles having a specific particle size is to localize these microparticles between the layers of the laminate. Therefore, the outer shape, surface or internal form of the polyamide 12 fine particles is not particularly limited.

ポリアミド12の微粒子は、プリプレグの内部よりも表面近傍に高濃度に分布している。ポリアミド12の微粒子が高濃度に分布している面は、プリプレグの片面であってもよく、両面であってもよい。ポリアミド12の微粒子が表面近傍に高濃度に分布していることで、複数のプリプレグを積層した際に、層間にポリアミド12の微粒子が局在化する。その結果、ポリアミド12の微粒子が破壊エネルギーを吸収するので、繊維強化複合材料の衝撃後圧縮強度が向上する。
プリプレグの表面近傍におけるポリアミド12の微粒子の添加量は、プリプレグの単位面積あたり1〜20g/mが好ましく、7.5〜15g/mがより好ましい。
なお、本発明において「表面近傍」とは、プリプレグの厚さ100%に対し、表面から0〜30%の範囲内の領域のことである。本発明においては、この領域に90質量%以上のポリアミド12の微粒子が局在化しているものとする。
The fine particles of polyamide 12 are distributed at a higher concentration near the surface than inside the prepreg. The surface on which the fine particles of the polyamide 12 are distributed at a high concentration may be one side of the prepreg or both sides. Since the polyamide 12 fine particles are distributed at a high concentration in the vicinity of the surface, the polyamide 12 fine particles are localized between the layers when a plurality of prepregs are laminated. As a result, the fine particles of polyamide 12 absorb the breaking energy, so that the compressive strength after impact of the fiber-reinforced composite material is improved.
The addition amount of the polyamide 12 fine particles in the vicinity of the surface of the prepreg is preferably 1 to 20 g / m 2 and more preferably 7.5 to 15 g / m 2 per unit area of the prepreg.
In the present invention, “near the surface” refers to a region within a range of 0 to 30% from the surface with respect to a thickness of 100% of the prepreg. In the present invention, it is assumed that 90% by mass or more of polyamide 12 fine particles are localized in this region.

プリプレグ中のポリアミド12の微粒子の局在化の程度は、以下のようにして確認できる。
まずプリプレグを2枚の平滑な支持板の間にはさんで密着させ、長時間かけて徐々に温度を挙げて硬化させる。この時に重要なのは可能な限り低温でゲル化させることである。ゲル化しないうちに温度を上げるとプリプレグ中の樹脂が流動し、ポリアミド12の微粒子が移動するため元のプリプレグ中における正確な粒子分布の評価が困難となる。
ゲル化した後、さらに時間をかけて徐々に温度をかけてプリプレグを硬化させる。硬化したプリプレグを用いて、その断面を顕微鏡にて200倍以上に拡大して200mm×200mm以上の写真を撮影する。
得られた断面写真を用い、まず平均的なプリプレグ厚みを求める。プリプレグ1層の平均厚みは写真上で任意に選んだ少なくとも5ヶ所で測り、その平均をとる。
次に、両方の支持板に接していた面からプリプレグの厚みの30%の位置にプリプレグの両方向と平行に線を引く。支持板に接していた面と30%の平行線の間に存在するポリアミド12の微粒子の断面積をプリプレグの両面について定量し、これとプリプレグ全幅に渡って存在するポリアミド12の微粒子の断面積を定量し、その比をとることによりプリプレグ表面からプリプレグの厚さの30%以内に存在する粒子量が算出される。
The degree of localization of the fine particles of polyamide 12 in the prepreg can be confirmed as follows.
First, the prepreg is closely adhered between two smooth support plates, and is cured by gradually raising the temperature over a long period of time. What is important at this time is to make the gel as low as possible. If the temperature is raised before gelation, the resin in the prepreg flows and the fine particles of the polyamide 12 move, making it difficult to accurately evaluate the particle distribution in the original prepreg.
After gelation, the prepreg is cured by gradually applying temperature over time. Using the cured prepreg, the cross section is magnified 200 times or more with a microscope and a photograph of 200 mm × 200 mm or more is taken.
First, an average prepreg thickness is obtained using the obtained cross-sectional photograph. The average thickness of one prepreg layer is measured at at least five points arbitrarily selected on the photograph, and the average is taken.
Next, a line is drawn in parallel to both directions of the prepreg at a position 30% of the thickness of the prepreg from the surface in contact with both support plates. The cross-sectional area of the polyamide 12 fine particles existing between the surface in contact with the support plate and 30% parallel lines is quantified on both sides of the prepreg, and the cross-sectional area of the polyamide 12 fine particles existing over the entire width of the prepreg is calculated. By quantifying and taking the ratio, the amount of particles existing within 30% of the thickness of the prepreg is calculated from the prepreg surface.

粒子断面積の定量はイメージアナライザーにより行ってもよく、断面写真から所定の領域に存在する粒子部分をすべて切り取りその質量を秤ることにより行ってもよい。ポリアミド12の微粒子の部分的な分布のばらつきの影響を排除するため、この評価は得られた写真の幅全域に渡って行い、かつ、任意に選んだ5ヶ所以上の写真について同様の評価を行い、その平均をとる必要がある。
ポリアミド12の微粒子とベース樹脂との見分けがつきにくい時は、一方を選択的に染色して観察すればよい。
顕微鏡としては光学顕微鏡を用いてもよく、走査型電子顕微鏡を用いてもよく、ポリアミド12の微粒子の大きさや染色方法によって使い分ければよい。
The quantification of the particle cross-sectional area may be performed by an image analyzer, or may be performed by cutting out all the particle portions existing in a predetermined region from the cross-sectional photograph and weighing the mass. In order to eliminate the influence of the dispersion of the partial distribution of polyamide 12 fine particles, this evaluation is performed over the entire width of the obtained photograph, and the same evaluation is performed for five or more arbitrarily selected photographs. It is necessary to take the average.
When it is difficult to distinguish between the polyamide 12 fine particles and the base resin, one of them may be selectively dyed and observed.
As the microscope, an optical microscope or a scanning electron microscope may be used, and it may be properly used depending on the size of the polyamide 12 fine particles and the staining method.

<その他の構成要素>
本発明のプリプレグは、上述した構成要素(A)、(B)、および(C)以外にも、本発明の効果を損なわない範囲で、その他の構成要素を含有してもよい。
その他の構成要素としては、例えば熱可塑性樹脂、有機・無機フィラーなどが挙げられる。これらは、粒子、ミルド、チョップ、ウィスカ状など形状は問わない。
<Other components>
The prepreg of the present invention may contain other components in addition to the components (A), (B), and (C) described above as long as the effects of the present invention are not impaired.
Examples of other components include thermoplastic resins and organic / inorganic fillers. These may have any shape such as particles, milled, chops, whiskers and the like.

<プリプレグの製造方法>
構成要素(C)が、プリプレグの片面または両面の表面近傍に高濃度に分布するプリプレグは、例えば以下の方法で製造することができるが、これらに限定されるものではない。
第一の方法は、構成要素(B)を離型紙などの上にコーティングしたフィルム(F1)を用いて、シート状にした構成要素(A)の両側あるいは片側から構成要素(B)を含浸させて一次プリプレグを作製し、構成要素(C)をその両面、または片面に散布する方法である。
<Method for producing prepreg>
The prepreg in which the component (C) is distributed at a high concentration in the vicinity of one or both surfaces of the prepreg can be produced by, for example, the following method, but is not limited thereto.
The first method is to impregnate the component (B) from both sides or one side of the sheet-shaped component (A) using a film (F1) in which the component (B) is coated on a release paper or the like. The primary prepreg is prepared and the component (C) is dispersed on both sides or one side.

構成要素(A)に構成要素(B)を含浸させる方法は、公知の方法を採用でき、例えば加熱プレスロールで加圧する方法などが挙げられる。
また、プリプレグの厚さ、繊維目付、ベース樹脂含有率等は、プリプレグの用途に応じて、適宜設定すればよい。ベース樹脂含有率は、例えばフィルム(F1)の樹脂目付けや構成要素(A)の繊維目付けを調整することで調節できる。
As a method for impregnating the constituent element (A) with the constituent element (B), a known method can be adopted, and examples thereof include a method of pressurizing with a hot press roll.
Moreover, what is necessary is just to set suitably the thickness of a prepreg, fiber fabric weight, base resin content rate, etc. according to the use of a prepreg. The base resin content can be adjusted, for example, by adjusting the resin basis weight of the film (F1) and the fiber basis weight of the component (A).

第二の方法は、構成要素(B)を離型紙などの上にコーティングし、さらに構成要素(B)上に構成要素(C)を散布して作製したフィルム(F2)と、第一の方法と同様にして作製した一次プリプレグとを用い、フィルム(F2)の構成要素(C)側と一次プリプレグの構成要素(B)とが接するように、一次プリプレグの両面または片面にフィルム(F2)を貼着する方法である。
一次プリプレグの構成要素(B)と、フィルム(F2)の構成要素(B)は、同じ組成であってもよく、異なる組成であってもよい。
The second method is a film (F2) produced by coating the component (B) on a release paper and the like, and further dispersing the component (C) on the component (B). Using the primary prepreg produced in the same manner as above, the film (F2) is placed on both sides or one side of the primary prepreg so that the component (C) side of the film (F2) and the component (B) of the primary prepreg are in contact with each other. It is a method of sticking.
The component (B) of the primary prepreg and the component (B) of the film (F2) may have the same composition or different compositions.

第三の方法は、構成要素(C)を混練した構成要素(B)を離型紙などの上にコーティングして作製したフィルム(F3)と、第一の方法と同様にして作製した一次プリプレグを用い、一次プリプレグの両面または片面にフィルム(F3)を貼着する方法である。
一次プリプレグの構成要素(B)と、フィルム(F3)の構成要素(B)は、同じ組成であってもよく、異なる組成であってもよい。
In the third method, a film (F3) produced by coating the component (B) kneaded with the component (C) on a release paper or the like, and a primary prepreg produced in the same manner as in the first method, It is a method of using and sticking a film (F3) to both sides or one side of a primary prepreg.
The component (B) of the primary prepreg and the component (B) of the film (F3) may have the same composition or different compositions.

第四の方法は、構成要素(C)を混練した構成要素(B)を離型紙などの上にコーティングしたフィルム(F4)を用いて、シート状にした構成要素(A)の両側あるいは片側から構成要素(B)を含浸させて、構成要素(A)に濾されることで表面近傍に構成要素(C)を残す方法である。   The fourth method uses a film (F4) in which a component (B) kneaded with the component (C) is coated on a release paper or the like, from both sides or one side of the component (A) formed into a sheet. In this method, the component (B) is impregnated and filtered by the component (A) to leave the component (C) near the surface.

なお、プリプレグにその他の構成要素を含有させる場合、その他の構成要素は、構成要素(B)と共に用いてもよく、構成要素(C)と共に散布したり、構成要素(B)に混練したりしてもよい。   When other components are included in the prepreg, the other components may be used together with the component (B), and are dispersed together with the component (C) or kneaded into the component (B). May be.

このようにして得られる本発明のプリプレグは、特定の構成要素(A)、(B)および(C)を含み、かつ、構成要素(C)がプリプレグの内部よりも表面近傍に高濃度に分布しているので、衝撃後圧縮強度、および層間剪断強度に優れる繊維強化複合材料を成形でき、高い衝撃後圧縮強度が求められる繊維強化複合材料の前駆体として好適である。   The prepreg of the present invention thus obtained contains specific components (A), (B) and (C), and the component (C) is distributed at a higher concentration near the surface than inside the prepreg. Therefore, a fiber-reinforced composite material having excellent post-impact compressive strength and interlaminar shear strength can be formed, and it is suitable as a precursor of a fiber-reinforced composite material that requires high post-impact compressive strength.

[繊維強化複合材料]
本発明の繊維強化複合材料は、本発明のプリプレグを用い、硬化温度180℃以下の温度で硬化することで成形される。硬化時間は、硬化温度や成形方法に依存するので一概には決められないが、例えば1〜4時間が好ましい。
成形方法としては、オートクレーブ成形、オーブン成形、プレス成形などが挙げられる。
本発明においては、硬化温度を180℃以下に設定することで、成形に用いる設備、副資材として一般的なものを使用できるため、コスト面で利点がある。
[Fiber-reinforced composite materials]
The fiber-reinforced composite material of the present invention is molded by curing at a curing temperature of 180 ° C. or less using the prepreg of the present invention. The curing time depends on the curing temperature and the molding method and cannot be determined unconditionally. For example, 1 to 4 hours is preferable.
Examples of the molding method include autoclave molding, oven molding, and press molding.
In the present invention, by setting the curing temperature to 180 ° C. or lower, it is possible to use general equipment as the equipment and auxiliary materials used for molding, which is advantageous in terms of cost.

このようにして得られる繊維強化複合材料は、本発明のプリプレグを前駆体として用いるので、衝撃後圧縮強度、および層間剪断強度に優れる。このような繊維強化複合材料は、特に航空機等の分野に好適に用いられる。   The fiber-reinforced composite material thus obtained is excellent in compressive strength after impact and interlaminar shear strength because the prepreg of the present invention is used as a precursor. Such a fiber-reinforced composite material is suitably used particularly in the field of aircraft and the like.

以下、実施例により本発明を具体的に説明するが、本発明はこれらによってなんら限定されるものではない。
本実施例および比較例において、各種試験は下記に従って行った。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these.
In the examples and comparative examples, various tests were performed according to the following.

(1)衝撃後圧縮強度(CAI)の測定
プリプレグを[+45°/0°/−45°/90°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層物と、[90°/−45°/0°/+45°]の方向に4枚積層したものを3セット重ね合わせた12枚の積層物を、それぞれ90°方向が合わさるように重ね、合計24枚の積層物としてバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板(繊維強化複合材料)を作製した。この間オートクレーブ内を0.7MPaに加圧し、バッグ内を真空に保った。
得られた成形板から試験片を切り出し、この試験片の中心に25Jの落錘衝撃を与えた後、Airbus Industries Test Method AITM 1.0010に準拠し、試験片の衝撃後圧縮強度を測定した。
尚、本試験では試験片のVf(繊維体積含有率)の影響が小さいため、測定値はVf換算しない実測値として計算した。
(1) Measurement of compressive strength after impact (CAI) 12 laminates obtained by superposing 3 sets of 4 prepregs laminated in the direction of [+ 45 ° / 0 ° / −45 ° / 90 °], and [ 90 laminates of 4 laminates in the direction of 90 ° / -45 ° / 0 ° / + 45 °] are stacked so that the 90 ° direction is aligned with each other, and a total of 24 laminates. Was put in a bag and heated in an autoclave at 180 ° C. for 2 hours and cured to produce a molded plate (fiber reinforced composite material). During this time, the inside of the autoclave was pressurized to 0.7 MPa, and the inside of the bag was kept in vacuum.
A test piece was cut out from the resulting molded plate, and a falling weight impact of 25 J was applied to the center of the test piece, and then the post-impact compression strength of the test piece was measured according to Airbus Industries Test Method AITM 1.0010.
In this test, since the influence of Vf (fiber volume content) of the test piece is small, the measured value was calculated as an actually measured value not converted to Vf.

(2)層間剪断強度(ILSS)の測定
約2mmの厚さの成形板を得るため、プリプレグを単一方向に12枚積層してバッグ内に入れ、これをオートクレーブ内で180℃にて2時間加熱し、硬化させて成形板を作製した。この間オートクレーブ内を0.7MPaに加圧し、バッグ内を真空に保った。
得られた成形板から試験片を切り出し、AECMA EN2563に準拠し、環境温度23℃と70℃において試験片の層間剪断強度を測定した。
(2) Measurement of interlaminar shear strength (ILSS) In order to obtain a molded plate having a thickness of about 2 mm, 12 prepregs were laminated in a single direction and placed in a bag, which was placed in an autoclave at 180 ° C. for 2 hours. A molded plate was prepared by heating and curing. During this time, the inside of the autoclave was pressurized to 0.7 MPa, and the inside of the bag was kept in vacuum.
A test piece was cut out from the resulting molded plate, and the interlaminar shear strength of the test piece was measured at ambient temperatures of 23 ° C. and 70 ° C. in accordance with AECMA EN2563.

(3)融点(Tm)の測定
構成要素(C)として用いた微粒子を5mg程度採取し、これをアルミパンに入れ、示差走査熱量計(TA Instruments株式会社製、「Q−1000」)にて昇温速度10℃/分で測定を行った。得られた吸熱曲線の融解におけるピークトップ温度を融点とした。
(3) Measurement of melting point (Tm) About 5 mg of the fine particles used as component (C) were collected, put in an aluminum pan, and a differential scanning calorimeter (TA Instruments, “Q-1000”). Measurement was carried out at a heating rate of 10 ° C./min. The peak top temperature in melting of the obtained endothermic curve was taken as the melting point.

(4)平均粒子径の測定
構成要素(C)として用いた微粒子の平均粒子径は、走査型電子顕微鏡(日本電子株式会社製、「JSM−6390」)にて測定を行った。具体的には、カーボンテープに微粒子を貼り付け、オートファインコータ(日本電子株式会社製、「JFC−1600」)を用いてプラチナでスパッタコーティングし、試料を作製した。上記で処理した試料を走査型電子顕微鏡にて200倍から500倍に拡大し、写真を撮影した。写真中の任意に選択した少なくとも100個の粒子について長さを測定し、その平均を微粒子の平均粒子径とした。粒子が真球型でない場合は、任意に選択した粒子の長軸長と短軸長をそれぞれ測定し、長軸長と短軸長を合わせて少なくとも100箇所でそれぞれ測定し、その平均を微粒子の平均粒子径とした。
(4) Measurement of average particle diameter The average particle diameter of the fine particles used as the component (C) was measured with a scanning electron microscope ("JSM-6390" manufactured by JEOL Ltd.). Specifically, fine particles were affixed to a carbon tape and sputter coated with platinum using an auto fine coater (manufactured by JEOL Ltd., “JFC-1600”) to prepare a sample. The sample processed above was magnified 200 to 500 times with a scanning electron microscope, and a photograph was taken. The length of at least 100 particles arbitrarily selected in the photograph was measured, and the average was taken as the average particle size of the fine particles. When the particles are not spherical, the major axis length and minor axis length of the arbitrarily selected particles are measured, and the major axis length and minor axis length are measured in at least 100 locations. The average particle size was taken.

(5)ポリアミド12の微粒子の局在化程度の測定
プリプレグを2枚の平滑な支持板の間にはさんで密着させ、長時間かけて徐々に温度を挙げて硬化させた。ゲル化した後、さらに時間をかけて徐々に温度をかけてプリプレグを硬化させた。硬化したプリプレグを用いてその断面を光学顕微鏡にて200倍に拡大して200mm×200mmの写真を撮影した。
得られた断面写真を用い、まず平均的なプリプレグ厚みを求めた。プリプレグ1層の平均厚みは写真上で任意に選んだ少なくとも5ヶ所で測り、その平均をとった。
次に両方の支持板に接していた面からプリプレグの厚みの30%の位置にプリプレグの両方向と平行に線を引き、支持板に接していた面と30%の平行線の間に存在するポリアミド12の微粒子の断面積をプリプレグの両面について定量した。同様に、プリプレグ全幅に渡って存在するポリアミド12の微粒子の断面積を定量し、その比をとることによりプリプレグ表面からプリプレグの厚さの30%以内に存在する粒子量を算出した。
粒子断面積の定量は断面写真から所定の領域に存在する粒子部分をすべて切り取りその質量を秤ることにより行った。なお、ポリアミド12の微粒子の部分的な分布のばらつきの影響を排除するため、この評価は得られた写真の幅全域に渡って行い、かつ、任意に選んだ5ヶ所の写真について同様の評価を行い、その平均をとった。
(5) Measurement of the degree of localization of the fine particles of polyamide 12 The prepreg was put in close contact between two smooth support plates, and was cured by gradually raising the temperature over a long period of time. After gelation, the prepreg was cured by gradually applying temperature over a period of time. A cross section of the cured prepreg was magnified 200 times with an optical microscope, and a photograph of 200 mm × 200 mm was taken.
First, an average prepreg thickness was determined using the obtained cross-sectional photograph. The average thickness of one prepreg layer was measured at at least 5 points arbitrarily selected on the photograph, and the average was taken.
Next, a line parallel to both directions of the prepreg is drawn from the surface in contact with both support plates to a position of 30% of the thickness of the prepreg, and the polyamide existing between the surface in contact with the support plate and 30% parallel lines The cross-sectional area of 12 fine particles was quantified on both sides of the prepreg. Similarly, the cross-sectional area of the polyamide 12 fine particles existing over the entire width of the prepreg was quantified, and the ratio was calculated to calculate the amount of particles existing within 30% of the prepreg thickness from the prepreg surface.
The particle cross-sectional area was quantified by cutting out all the particle portions existing in a predetermined region from the cross-sectional photograph and weighing the mass. In order to eliminate the influence of the dispersion of the partial distribution of the polyamide 12 fine particles, this evaluation is performed over the entire width of the obtained photograph, and the same evaluation is performed for five arbitrarily selected photographs. Performed and averaged.

[実施例1]
ベース樹脂(構成要素(B))としてエポキシ樹脂(三菱レイヨン株式会社製、「#1054X樹脂」)を離型紙上に目付50.5g/mでフィルムコーティングしたフィルムを2枚作製した。コーティング面が向かい合うように2枚のフィルムを並べ、2枚のフィルムの間に、強化繊維(構成要素(A))として炭素繊維(三菱レイヨン株式会社製、「MR60H」)を配置し、加熱プレスロールで加圧して炭素繊維にエポキシ樹脂を含浸させて一方向の一次プリプレグを作製した。この一次プリプレグは、炭素繊維目付196g/m、ベース樹脂含有率34.0質量%であった。
上記一次プリプレグの片面に、構成要素(C)としてポリアミド12の微粒子(ダイセル・エボニック株式会社製、「VESTOSINT2159」)を散布し、プリプレグを得た。単位面積あたりの微粒子の添加量は11g/mであった。また、プリプレグの表面近傍に微粒子が高濃度に分布していることを確認した。
得られたプリプレグを用い、衝撃後圧縮強度および層間剪断強度の測定を行った。得られた結果を表1に示す。なお、得られた成形板の厚み方向の断面を光学顕微鏡にて確認したところ、ポリアミド12の微粒子は微粒子同士が数個融着している状態も幾らか観察されたものの、大部分は粒子形状を維持していることが確認された。
また、構成要素(C)として用いた微粒子について融点および粒子径の測定を行った。その結果を表1に示す。
[Example 1]
Two films were prepared by coating an epoxy resin (“# 1054X resin” manufactured by Mitsubishi Rayon Co., Ltd.) as a base resin (component (B)) on a release paper with a basis weight of 50.5 g / m 2 . Two films are arranged so that the coating surfaces face each other, and carbon fiber (manufactured by Mitsubishi Rayon Co., Ltd., “MR60H”) is placed as a reinforcing fiber (component (A)) between the two films, and heated press A unidirectional primary prepreg was produced by pressurizing with a roll and impregnating carbon fiber with an epoxy resin. This primary prepreg had a carbon fiber basis weight of 196 g / m 2 and a base resin content of 34.0% by mass.
A fine particle of polyamide 12 (manufactured by Daicel-Evonik Co., Ltd., “VESTOINT 2159”) as a component (C) was sprayed on one side of the primary prepreg to obtain a prepreg. The amount of fine particles added per unit area was 11 g / m 2 . It was also confirmed that fine particles were distributed at a high concentration near the surface of the prepreg.
Using the obtained prepreg, the compression strength after impact and the interlaminar shear strength were measured. The obtained results are shown in Table 1. In addition, when the cross section of the thickness direction of the obtained molded plate was confirmed with an optical microscope, some of the fine particles of polyamide 12 were observed to be fused to each other, but most of them were in the shape of particles. It was confirmed that
Further, the melting point and the particle diameter of the fine particles used as the component (C) were measured. The results are shown in Table 1.

[実施例2〜3]
構成要素(C)として、表1に示す微粒子を用いた以外は、実施例1と同様にしてプリプレグを作製した。単位面積あたりの微粒子の添加量は11g/mであった。また、プリプレグの表面近傍に微粒子が高濃度に分布していることを確認した。
得られたプリプレグを用い、衝撃後圧縮強度および層間剪断強度の測定を行った。得られた結果を表1に示す。なお、得られた成形板の厚み方向の断面を光学顕微鏡にて確認したところ、ポリアミド12の微粒子は微粒子同士が数個融着している状態も観察されたものの、大部分は粒子形状を維持していることが確認された。
また、構成要素(C)として用いた微粒子について融点および粒子径の測定を行った。その結果を表1に示す。
[Examples 2-3]
A prepreg was produced in the same manner as in Example 1 except that the fine particles shown in Table 1 were used as the component (C). The amount of fine particles added per unit area was 11 g / m 2 . It was also confirmed that fine particles were distributed at a high concentration near the surface of the prepreg.
Using the obtained prepreg, the compression strength after impact and the interlaminar shear strength were measured. The obtained results are shown in Table 1. In addition, when the cross section of the thickness direction of the obtained molding board was confirmed with the optical microscope, the fine particle of the polyamide 12 was observed in the state that several fine particles were fused, but most maintained the particle shape. It was confirmed that
Further, the melting point and the particle diameter of the fine particles used as the component (C) were measured. The results are shown in Table 1.

[比較例1]
構成要素(C)として、表1に示す微粒子を用いた以外は、実施例1と同様にしてプリプレグを作製した。単位面積あたりの微粒子の添加量は11g/mであった。また、プリプレグの表面近傍に微粒子が高濃度に分布していることを確認した。
得られたプリプレグを用い、衝撃後圧縮強度および層間剪断強度の測定を行った。得られた結果を表1に示す。なお、得られた成形板の厚み方向の断面を光学顕微鏡にて確認したところ、ポリアミド12の微粒子は微粒子同士が融着しており、積層方向に広く連続しているフィルム形状のような形態であることを確認した。
また、構成要素(C)として用いた微粒子について融点および粒子径の測定を行った。その結果を表1に示す。
[Comparative Example 1]
A prepreg was produced in the same manner as in Example 1 except that the fine particles shown in Table 1 were used as the component (C). The amount of fine particles added per unit area was 11 g / m 2 . It was also confirmed that fine particles were distributed at a high concentration near the surface of the prepreg.
Using the obtained prepreg, the compression strength after impact and the interlaminar shear strength were measured. The obtained results are shown in Table 1. In addition, when the cross section of the thickness direction of the obtained molded plate was confirmed with an optical microscope, the fine particles of polyamide 12 were fused with each other, and in a form like a film shape that was widely continuous in the lamination direction. I confirmed that there was.
Further, the melting point and the particle diameter of the fine particles used as the component (C) were measured. The results are shown in Table 1.

Figure 2009286895
Figure 2009286895

表1中の微粒子は下記の通りである。
VESTOSINT2159:ポリアミド12、ダイセル・エボニック株式会社製、
VESTOSINT2158:ポリアミド12、ダイセル・エボニック株式会社製、
VESTOSINT1111:ポリアミド12、ダイセル・エボニック株式会社製、
Orgasol 2002D NAT1:ポリアミド12、アルケマ株式会社製。
The fine particles in Table 1 are as follows.
VESTOSINT 2159: Polyamide 12, manufactured by Daicel Evonik,
VESTOSINT 2158: Polyamide 12, manufactured by Daicel Evonik,
VESTOSINT 1111: Polyamide 12, manufactured by Daicel Evonik,
Orgasol 2002D NAT1: Polyamide 12, manufactured by Arkema Co., Ltd.

表1から明らかなように、各実施例のプリプレグより得られた繊維強化複合材料は、衝撃後圧縮強度および層間剪断強度が比較例に比べて良好であり、衝撃後圧縮強度と層間剪断強度の両立を実現できた。   As is clear from Table 1, the fiber-reinforced composite materials obtained from the prepregs of each example have better post-impact compressive strength and interlaminar shear strength than the comparative examples, and the post-impact compressive strength and interlaminar shear strength are higher. We were able to achieve both.

本発明のプリプレグは、衝撃後圧縮強度、および層間剪断強度に優れる繊維強化複合材料を成形できる。このようにして得られた繊維強化複合材料は、近年のより高い衝撃後圧縮強度の要求に答えると共に、層間剪断強度をも維持できるため、適用可能な用途範囲を大きく拡大できる。   The prepreg of the present invention can form a fiber-reinforced composite material excellent in compressive strength after impact and interlaminar shear strength. The fiber-reinforced composite material thus obtained can meet the recent demand for higher compressive strength after impact and can maintain the interlaminar shear strength. Therefore, the applicable range of application can be greatly expanded.

Claims (3)

以下に示す構成要素(A)、(B)および(C)を含むプリプレグであって、
前記構成要素(C)が、当該プリプレグの内部よりも表面近傍に高濃度に分布したことを特徴とするプリプレグ。
(A):強化繊維。
(B):熱硬化性樹脂を主成分とするベース樹脂。
(C):融点が180℃以上のポリアミド12の微粒子。
A prepreg comprising the following components (A), (B) and (C),
The prepreg characterized in that the component (C) is distributed in a higher concentration near the surface than in the prepreg.
(A): Reinforcing fiber.
(B): Base resin mainly composed of thermosetting resin.
(C): Fine particles of polyamide 12 having a melting point of 180 ° C. or higher.
前記構成要素(C)が、再沈殿法により得られたポリアミド12の微粒子、または再沈殿法により得られた微粒子をさらに凍結粉砕して得られたポリアミド12の微粒子である、請求項1に記載のプリプレグ。   The component (C) is a polyamide 12 microparticles obtained by further freeze-pulverizing polyamide 12 microparticles obtained by a reprecipitation method or microparticles obtained by a reprecipitation method. Prepreg. 請求項1または2に記載のプリプレグを用い、硬化温度180℃以下の温度で硬化する、繊維強化複合材料の成形方法。   A method for molding a fiber-reinforced composite material, wherein the prepreg according to claim 1 or 2 is used and cured at a curing temperature of 180 ° C or lower.
JP2008140709A 2008-05-29 2008-05-29 Method for forming prepreg and fiber-reinforced composite material Active JP5532549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140709A JP5532549B2 (en) 2008-05-29 2008-05-29 Method for forming prepreg and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140709A JP5532549B2 (en) 2008-05-29 2008-05-29 Method for forming prepreg and fiber-reinforced composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013270200A Division JP2014111772A (en) 2013-12-26 2013-12-26 Method for forming fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JP2009286895A true JP2009286895A (en) 2009-12-10
JP5532549B2 JP5532549B2 (en) 2014-06-25

Family

ID=41456431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140709A Active JP5532549B2 (en) 2008-05-29 2008-05-29 Method for forming prepreg and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP5532549B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036347A (en) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp Benzoxazine resin composition and fiber-reinforced composite material
WO2013046434A1 (en) 2011-09-30 2013-04-04 Jx日鉱日石エネルギー株式会社 Benzoxazine resin composition, and fiber-reinforced composite material
WO2013122032A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2013122034A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2013122033A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2014002991A1 (en) 2012-06-29 2014-01-03 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2014157099A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Production method for fiber-reinforced composite material
WO2014157098A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157101A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157097A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157100A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
JP2015098534A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098535A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
US20170165928A1 (en) * 2015-12-11 2017-06-15 MTU Aero Engines AG Method of repairing damage of aircraft engine components made of weldable thermoplastic materials
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
WO2018174250A1 (en) 2017-03-24 2018-09-27 三菱ケミカル株式会社 Prepreg and fiber-reinforced composite material
CN109406630A (en) * 2018-10-15 2019-03-01 成都飞机工业(集团)有限责任公司 A kind of reference block and preparation method thereof for coating composite material structure ultrasound detection
US11292883B2 (en) 2016-10-04 2022-04-05 Mitsubishi Chemical Corporation Prepreg, prepreg laminate, and fiber-reinforced composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162732A (en) * 1986-12-25 1988-07-06 Toray Ind Inc Prepreg

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162732A (en) * 1986-12-25 1988-07-06 Toray Ind Inc Prepreg

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012036347A (en) * 2010-08-11 2012-02-23 Jx Nippon Oil & Energy Corp Benzoxazine resin composition and fiber-reinforced composite material
WO2013046434A1 (en) 2011-09-30 2013-04-04 Jx日鉱日石エネルギー株式会社 Benzoxazine resin composition, and fiber-reinforced composite material
WO2013122032A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2013122034A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
WO2013122033A1 (en) 2012-02-15 2013-08-22 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
JP2013166855A (en) * 2012-02-15 2013-08-29 Jx Nippon Oil & Energy Corp Fiber-reinforced composite material
JP2013166854A (en) * 2012-02-15 2013-08-29 Jx Nippon Oil & Energy Corp Fiber-reinforced composite material
JP2013166853A (en) * 2012-02-15 2013-08-29 Jx Nippon Oil & Energy Corp Fiber-reinforced composite material
US10081157B2 (en) 2012-02-15 2018-09-25 Jx Nippon Oil & Energy Corporation Fiber-reinforced composite material
WO2014002991A1 (en) 2012-06-29 2014-01-03 Jx日鉱日石エネルギー株式会社 Fiber-reinforced composite material
CN105073852A (en) * 2013-03-29 2015-11-18 吉坤日矿日石能源株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
JPWO2014157101A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
WO2014157097A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157100A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
US10577470B2 (en) 2013-03-29 2020-03-03 Subaru Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157099A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Production method for fiber-reinforced composite material
WO2014157098A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
CN105102513A (en) * 2013-03-29 2015-11-25 吉坤日矿日石能源株式会社 Production method for fiber-reinforced composite material
JPWO2014157097A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JPWO2014157099A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Manufacturing method of fiber reinforced composite material
JPWO2014157098A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
WO2014157101A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
CN105073852B (en) * 2013-03-29 2018-01-19 吉坤日矿日石能源株式会社 Prepreg, fiber reinforced composite material and the resin combination containing particle
US9745471B2 (en) 2013-03-29 2017-08-29 Jx Nippon Oil & Energy Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
JP2015098535A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JP2015098534A (en) * 2013-11-19 2015-05-28 Jx日鉱日石エネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
US20170165928A1 (en) * 2015-12-11 2017-06-15 MTU Aero Engines AG Method of repairing damage of aircraft engine components made of weldable thermoplastic materials
US10532524B2 (en) * 2015-12-11 2020-01-14 MTU Aero Engines AG Method of repairing damage of aircraft engine components made of weldable thermoplastic materials
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
US11292883B2 (en) 2016-10-04 2022-04-05 Mitsubishi Chemical Corporation Prepreg, prepreg laminate, and fiber-reinforced composite material
WO2018174250A1 (en) 2017-03-24 2018-09-27 三菱ケミカル株式会社 Prepreg and fiber-reinforced composite material
US10920031B2 (en) 2017-03-24 2021-02-16 Mitsubishi Chemical Corporation Prepreg and fiber-reinforced composite material
CN109406630A (en) * 2018-10-15 2019-03-01 成都飞机工业(集团)有限责任公司 A kind of reference block and preparation method thereof for coating composite material structure ultrasound detection

Also Published As

Publication number Publication date
JP5532549B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5532549B2 (en) Method for forming prepreg and fiber-reinforced composite material
US10723087B2 (en) Prepreg and method for manufacturing same
EP2691199B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
EP2794272B1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
JP5115675B2 (en) Prepreg and fiber reinforced composite materials
US11192985B2 (en) Composite material and resin composition containing metastable particles
KR20140127868A (en) Fiber-reinforced composite material
KR20140127869A (en) Fiber-reinforced composite material
WO2018003694A1 (en) Prepreg and production method therefor
JP2019504128A (en) Hybrid veil as an intermediate layer of composite material
KR20140127867A (en) Fiber-reinforced composite material
JP2012211255A (en) Resin composition, cured matter, prepreg and fiber-reinforced composite material
WO2016111190A1 (en) Prepreg
JP2012149237A (en) Thermosetting resin composition, prepreg and fiber-reinforced composite material
JPWO2016125779A1 (en) Preform, fiber reinforced composite material and method for producing fiber reinforced composite material
JP6637503B2 (en) Epoxy resin composition for composite materials
JP2008174610A (en) Impact-resistant prepreg and method for producing the same
JP2008050587A (en) Prepreg and composite material
JP6907468B2 (en) Manufacturing method of fiber reinforced composite material
JP2021516705A (en) Manufacturing method of prepreg, laminate, fiber reinforced composite material, and fiber reinforced composite material
JP2021513578A (en) Prepreg stacks useful for the production of prepreg sheets and low void content fiber reinforced composites
JP2014111772A (en) Method for forming fiber-reinforced composite material
JP7143473B2 (en) Prepreg, its manufacturing method, and fiber-reinforced composite material
JP2019163348A (en) Prepreg for member to be bolted or riveted, and reinforced fiber composite material for member to be bolted or riveted
JPH01104626A (en) Prepreg having high-toughness fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131226

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5532549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250