JP2012036347A - Benzoxazine resin composition and fiber-reinforced composite material - Google Patents

Benzoxazine resin composition and fiber-reinforced composite material Download PDF

Info

Publication number
JP2012036347A
JP2012036347A JP2010180355A JP2010180355A JP2012036347A JP 2012036347 A JP2012036347 A JP 2012036347A JP 2010180355 A JP2010180355 A JP 2010180355A JP 2010180355 A JP2010180355 A JP 2010180355A JP 2012036347 A JP2012036347 A JP 2012036347A
Authority
JP
Japan
Prior art keywords
component
mass
epoxy resin
benzoxazine
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180355A
Other languages
Japanese (ja)
Other versions
JP5584047B2 (en
Inventor
Yoshihiro Fukuda
欣弘 福田
Yoshihiro Ihara
啓裕 伊原
Takayuki Matsumoto
隆之 松本
Naoyuki Sekine
尚之 関根
Yoshikatsu Yamaguchi
栄勝 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp, Fuji Heavy Industries Ltd filed Critical JX Nippon Oil and Energy Corp
Priority to JP2010180355A priority Critical patent/JP5584047B2/en
Publication of JP2012036347A publication Critical patent/JP2012036347A/en
Application granted granted Critical
Publication of JP5584047B2 publication Critical patent/JP5584047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material simultaneously achieving excellent CAI (compression strength after impact), ILSS (interlayer shear strength) and bending fracture toughness at high levels, and keeping a high glass transition temperature of the resin material; and a prepreg and a benzoxazine resin composition to be used therein.SOLUTION: This benzoxazine resin composition comprises (A) a compound having a benzoxazine ring represented by formula (1) in the molecule, (B) an epoxy resin, (C) a curing agent, (D) a toughness improver, (E1) a polyamide 12 powder with average particle diameter of 1 μm or more but less than 15 μm, or (E2) a polyamide 12 powder with average particle diameter of 15-60 μm, each by specific ratio, where the (D) component is dissolved. In the formula, Ris 1-12C chain alkyl or the like; and hydrogen is bonded to at least either one carbon atom of carbon atoms in ortho position and para position of carbon atom to which oxygen atom of an aromatic ring of the formula is bonded.

Description

本発明は、特に、航空機用途に必要な、優れた各種機械物性が高次元で達成可能なベンゾオキサジン樹脂組成物、該樹脂組成物を用いた、航空機用途、船舶用途、自動車用途、スポーツ用途、その他一般産業用途に好適で、特に、優れた各種機械物性が高次元で同時に得られることから更なる軽量化が可能な繊維強化複合材料、及び該複合材料を得るために利用可能なプリプレグに関する。   In particular, the present invention is a benzoxazine resin composition that can achieve various excellent mechanical properties necessary for aircraft applications in a high dimension, aircraft applications, marine applications, automobile applications, sports applications using the resin compositions, In addition, the present invention relates to a fiber reinforced composite material that is suitable for general industrial use and that can be further reduced in weight because various excellent mechanical properties can be obtained simultaneously in a high dimension, and a prepreg that can be used to obtain the composite material.

各種繊維とマトリックス樹脂からなる繊維強化複合材料は、その優れた力学物性から、航空機、船舶、自動車、スポーツ用品やその他一般産業用途などに広く使われている。
近年、その使用実績を積むに従い、繊維強化複合材料の適用範囲はますます拡がっている。
このような繊維強化複合材料として、ベンゾオキサジン環を有する化合物を利用したものが、例えば、特許文献1及び2に提案されている。該ベンゾオキサジン環を有する化合物は、優れた耐湿性及び耐熱性を有するが、靱性に劣る問題があり、エポキシ樹脂や各種樹脂微粒子等を配合してその欠点を補う工夫がなされている。
ところで、特に、航空機用途で必要とされる力学特性の中でも衝撃後圧縮強度(以下CAIと略す)、高温高湿時における層間剪断強度(以下ILSSと略す)及び曲げ破壊靱性等を高次元で同時に達成させることで、材料の更なる軽量化が望まれている。加えて、高温特性を維持するために、使用する樹脂材料のガラス転移温度も高く維持する必要がある。しかし、上記特許文献に具体的に記載された例では、必ずしもこれらが高次元で同時に達成できるとは言えない。
上記力学特性を向上させる技術として、例えば、特許文献3には、CAIを向上させる目的で、エポキシ樹脂等の熱硬化性樹脂にポリアミド12微粒子を配合する技術が開示されている。
このような技術を利用した繊維強化複合材料は、CAIをある程度高く維持することは可能であるが、高温高湿時におけるILSSを両立させるには至っていない。
従って、現在使用されている複合材料を代替する場合、現状よりも軽量化を進めるためにより高い各種機械物性を同時に有する材料の開発が要求されている。
Fiber reinforced composite materials composed of various fibers and matrix resins are widely used for aircraft, ships, automobiles, sporting goods and other general industrial applications because of their excellent mechanical properties.
In recent years, the application range of fiber reinforced composite materials has been expanded as the use results have been increased.
As such fiber-reinforced composite materials, those using a compound having a benzoxazine ring have been proposed in Patent Documents 1 and 2, for example. The compound having a benzoxazine ring has excellent moisture resistance and heat resistance, but has a problem of inferior toughness, and has been devised to compensate for the defects by blending epoxy resin and various resin fine particles.
By the way, in particular, among the mechanical properties required for aircraft applications, compressive strength after impact (hereinafter abbreviated as CAI), interlaminar shear strength at high temperature and high humidity (hereinafter abbreviated as ILSS), bending fracture toughness, etc. are simultaneously and at a high level. By achieving this, further weight reduction of the material is desired. In addition, in order to maintain the high temperature characteristics, it is necessary to keep the glass transition temperature of the resin material used high. However, in the example specifically described in the above patent document, it cannot be said that these can be achieved at the same time in a high dimension.
As a technique for improving the mechanical characteristics, for example, Patent Document 3 discloses a technique of blending polyamide 12 fine particles with a thermosetting resin such as an epoxy resin for the purpose of improving CAI.
A fiber reinforced composite material using such a technique can maintain CAI to some extent high, but has not yet achieved both ILSS at high temperature and high humidity.
Therefore, when a composite material currently used is replaced, development of a material having higher mechanical properties at the same time is required in order to reduce the weight as compared with the current situation.

特開2007−16121号公報JP 2007-16121 A 特開2010−13636号公報JP 2010-13636 A 特開2009−286895号公報JP 2009-286895 A

本発明の課題は、優れたCAI、ILSS及び曲げ破壊靱性を高次元で同時に達成でき、且つ樹脂材料のガラス転移温度も高く維持しうる繊維強化複合材料、それに用いるプリプレグ及びベンゾオキサジン樹脂組成物を提供することにある。   An object of the present invention is to provide a fiber reinforced composite material capable of simultaneously achieving excellent CAI, ILSS and bending fracture toughness in a high dimension and maintaining a high glass transition temperature of the resin material, and a prepreg and benzoxazine resin composition used therefor. It is to provide.

本発明者らは、上記課題を解決するために鋭意検討した結果、(A)特定のベンゾオキサジン環を有する化合物と、(B)エポキシ樹脂と、(C)硬化剤と、(D)靭性向上剤と、特定粒径のポリアミド12粒子とを、従来提案されている範囲よりも狭い特定割合で配合するとともに、且つポリアミド12粒子の平均粒径によってその配合割合を変更することにより、予想外にもトレードオフ関係にある各種機械物性を高次元で同時に達成しうることを見い出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have (A) a compound having a specific benzoxazine ring, (B) an epoxy resin, (C) a curing agent, and (D) an improvement in toughness. Unexpectedly by blending an agent and polyamide 12 particles having a specific particle size in a specific ratio narrower than the conventionally proposed range, and changing the compounding ratio depending on the average particle size of the polyamide 12 particles. In addition, the present inventors have found that various mechanical properties having a trade-off relationship can be achieved at a high level at the same time, thereby completing the present invention.

本発明によれば、(A)分子中に式(1)で表されるベンゾオキサジン環を有する化合物と、

Figure 2012036347
(式中、R1は、炭素数1〜12の鎖状アルキル基、炭素数3〜8の環状アルキル基、フェニル基、又は炭素数1〜12の鎖状アルキル基若しくはハロゲンで置換されたフェニル基を示す。また、式中の芳香環の酸素原子が結合している炭素原子のオルト位とパラ位の少なくとも一方の炭素原子には水素原子が結合している。)
(B)エポキシ樹脂と、(C)硬化剤と、(D)靭性向上剤と、(E1)平均粒径1μm以上15μm未満のポリアミド12粒子を含み、
(A)成分及び(B)成分の含有割合が合計100質量%となるように、(A)成分65〜78質量%、及び(B)成分22〜35質量%を含み、(A)成分及び(B)成分の合計100質量部に対して、(C)成分5〜20質量部、(D)成分3〜20質量部及び(E1)成分20〜30質量部含有し、(D)成分が溶解しているベンゾオキサジン樹脂組成物(以下、本発明の第1の組成物という場合がある)が提供される。
また本発明によれば、上記(A)〜(D)成分と、(E2)平均粒径15μm以上60μm以下のポリアミド12粒子を含み、
(A)成分及び(B)成分の含有割合が合計100質量%となるように、(A)成分65〜78質量%、及び(B)成分22〜35質量%を含み、(A)成分及び(B)成分の合計100質量部に対して、(C)成分5〜20質量部、(D)成分3〜20質量部及び(E1)成分5質量部以上20質量部未満含有し、(D)成分が溶解しているベンゾオキサジン樹脂組成物(以下、本発明の第2の組成物という場合がある)が提供される。
更に本発明によれば、上記本発明の第1の組成物又は本発明の第2の組成物(以下、まとめて本発明の組成物ということがある)を強化繊維基材に含浸してなるプリプレグが提供される。
更にまた本発明によれば、本発明の組成物の硬化物と繊維強化基材とからなる繊維強化複合材料が提供される。 According to the present invention, (A) a compound having a benzoxazine ring represented by formula (1) in the molecule,
Figure 2012036347
(In the formula, R 1 represents a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a phenyl group substituted with a chain alkyl group having 1 to 12 carbon atoms or a halogen. In addition, in the formula, a hydrogen atom is bonded to at least one of the ortho-position and para-position of the carbon atom to which the oxygen atom of the aromatic ring is bonded.)
(B) an epoxy resin, (C) a curing agent, (D) a toughness improver, and (E1) polyamide 12 particles having an average particle diameter of 1 μm or more and less than 15 μm,
Including (A) component 65-78 mass% and (B) component 22-35 mass% so that the content rate of (A) component and (B) component may be 100 mass% in total, (A) component and (B) 5-100 mass parts of (C) component, 3-20 mass parts of (D) component, and 20-30 mass parts of (E1) component are contained with respect to 100 mass parts of total of (D) component. A dissolved benzoxazine resin composition (hereinafter may be referred to as the first composition of the present invention) is provided.
Moreover, according to the present invention, the component (A) to (D), and (E2) polyamide 12 particles having an average particle size of 15 μm or more and 60 μm or less,
Including (A) component 65-78 mass% and (B) component 22-35 mass% so that the content rate of (A) component and (B) component may be 100 mass% in total, (A) component and (B) 5 to 20 parts by mass of component (C), 3 to 20 parts by mass of component (D) and 5 to 20 parts by mass of component (E1) with respect to 100 parts by mass of component (D) ) A benzoxazine resin composition in which the component is dissolved (hereinafter sometimes referred to as the second composition of the present invention) is provided.
Furthermore, according to the present invention, the reinforcing fiber base material is impregnated with the first composition of the present invention or the second composition of the present invention (hereinafter sometimes referred to collectively as the composition of the present invention). A prepreg is provided.
Furthermore, according to this invention, the fiber reinforced composite material which consists of hardened | cured material of the composition of this invention and a fiber reinforced base material is provided.

本発明の繊維強化複合材料は、本発明の組成物を採用するので、優れたCAI、ILSS及び曲げ破壊靱性を高次元で同時に達成でき、且つ樹脂材料のガラス転移温度も高く維持することができる。従って、本発明の繊維強化複合材料は、航空機用途、船舶用途、自動車用途、スポーツ用途、その他一般産業用途に好適に利用でき、特に、航空機用途に有用である。   Since the fiber-reinforced composite material of the present invention employs the composition of the present invention, excellent CAI, ILSS and bending fracture toughness can be achieved simultaneously in a high dimension, and the glass transition temperature of the resin material can be maintained high. . Therefore, the fiber-reinforced composite material of the present invention can be suitably used for aircraft applications, marine applications, automobile applications, sports applications, and other general industrial applications, and is particularly useful for aircraft applications.

以下本発明について詳細に説明する。
本発明の組成物に用いる(A)成分は、上記式(1)で表されるベンゾオキサジン樹脂である。
式(1)において、R1は、炭素数1〜12の鎖状アルキル基、炭素数3〜8の環状アルキル基、フェニル基、又は炭素数1〜12の鎖状アルキル基若しくはハロゲンで置換されたフェニル基を示す。
炭素数1〜12の鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基が挙げられる。
炭素数3〜8の環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。
炭素数1〜12の鎖状アルキル基若しくはハロゲンで置換されたフェニル基としては、例えば、フェニル基、o−メチルフェニル基、m−メチルフェニル基、p−メチルフェニル基、o−エチルフェニル基、m−エチルフェニル基、p−エチルフェニル基、o−t−ブチルフェニル基、m−t−ブチルフェニル基、p−t−ブチルフェニル基、o−クロロフェニル基、o−ブロモフェニル基が挙げられる。
1としては、上記例示の中でも、良好な取り扱い性を与えることから、メチル基、エチル基、プロピル基、フェニル基、o−メチルフェニル基が好ましい。
The present invention will be described in detail below.
The component (A) used in the composition of the present invention is a benzoxazine resin represented by the above formula (1).
In the formula (1), R 1 is substituted with a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a chain alkyl group having 1 to 12 carbon atoms or a halogen. Represents a phenyl group.
Examples of the chain alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
Examples of the cyclic alkyl group having 3 to 8 carbon atoms include a cyclopentyl group and a cyclohexyl group.
Examples of the phenyl group substituted with a chain alkyl group having 1 to 12 carbon atoms or halogen include, for example, a phenyl group, an o-methylphenyl group, an m-methylphenyl group, a p-methylphenyl group, an o-ethylphenyl group, Examples include m-ethylphenyl group, p-ethylphenyl group, ot-butylphenyl group, mt-butylphenyl group, pt-butylphenyl group, o-chlorophenyl group, and o-bromophenyl group.
Among R 1 , R 1 is preferably a methyl group, an ethyl group, a propyl group, a phenyl group, or an o-methylphenyl group among the above examples.

(A)成分のベンゾオキサジン樹脂としては、例えば、以下の式で表されるモノマー、該モノマーが数分子重合したオリゴマー、これらモノマーとは異なる構造を有するベンゾオキサジン環を有する化合物とこれらモノマーの少なくとも1種との反応物が好ましく挙げられる。   As the benzoxazine resin of component (A), for example, a monomer represented by the following formula, an oligomer obtained by polymerizing several monomers of the monomer, a compound having a benzoxazine ring having a structure different from these monomers, and at least of these monomers A reaction product with one kind is preferred.

Figure 2012036347
Figure 2012036347

Figure 2012036347
Figure 2012036347

Figure 2012036347
Figure 2012036347

(A)成分は、ベンゾオキサジン環が開環重合することにより、フェノール樹脂と同様の骨格をつくるために、難燃性に優れる。また、その緻密な構造から、低吸水率や、高弾性率といった優れた機械特性が得られる。   The component (A) is excellent in flame retardancy because the benzoxazine ring undergoes ring-opening polymerization to form the same skeleton as the phenol resin. In addition, excellent mechanical properties such as low water absorption and high elastic modulus can be obtained from the dense structure.

本発明の組成物に用いるエポキシ樹脂である(B)成分は、組成物の粘度をコントロールし、また、組成物の硬化性を高める成分である。
(B)成分としては、例えば、アミン類、フェノール類、カルボン酸、分子内不飽和炭素等の化合物を前駆体とするエポキシ樹脂が好ましい。
Component (B), which is an epoxy resin used in the composition of the present invention, is a component that controls the viscosity of the composition and increases the curability of the composition.
As the component (B), for example, an epoxy resin having a precursor such as an amine, a phenol, a carboxylic acid, or an intramolecular unsaturated carbon is preferable.

アミン類を前駆体とするエポキシ樹脂としては、例えば、テトラグリシジルジアミノジフェニルメタン、キシレンジアミンのグリシジル化合物、トリグリシジルアミノフェノールや、グリシジルアニリンのそれぞれの位置異性体やアルキル基やハロゲンでの置換体が挙げられる。
以下、市販品を例示する場合、液状のものには、後述の動的粘弾性測定装置により得られる25℃における複素粘弾性率η*を粘度として記載している。
Examples of epoxy resins having amines as precursors include tetraglycidyldiaminodiphenylmethane, glycidyl compounds of xylenediamine, triglycidylaminophenol, and glycidylanilines, their respective positional isomers, and substitution with alkyl groups or halogens. It is done.
Hereinafter, in the case of exemplifying commercially available products, in the liquid product, the complex viscoelastic modulus η * at 25 ° C. obtained by a dynamic viscoelasticity measuring device described later is described as the viscosity.

テトラグリシジルジアミノジフェニルメタンの市販品としては、例えば、「スミエポキシ」(登録商標。以下同じ)ELM434(住友化学(株)製)、「アラルダイト」(登録商標、以下同じ)MY720、「アラルダイト」MY721、「アラルダイト」MY9512、「アラルダイト」MY9612、「アラルダイト」MY9634、「アラルダイト」MY9663(以上ハンツマン・アドバンスト・マテリアルズ社製)、「jER」(登録商標、以下同じ)604(三菱化学(株)製)が挙げられる。   Commercially available products of tetraglycidyldiaminodiphenylmethane include, for example, “Sumiepoxy” (registered trademark, hereinafter the same) ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), “Araldite” (registered trademark, the same hereinafter) MY720, “Araldite” MY721, “ "Araldite" MY9512, "Araldite" MY9612, "Araldite" MY9634, "Araldite" MY9663 (above Huntsman Advanced Materials), "jER" (registered trademark, the same shall apply hereinafter) 604 (Mitsubishi Chemical Corporation) Can be mentioned.

トリグリシジルアミノフェノールの市販品としては、例えば、「jER」630(粘度:750mPa・s)(三菱化学(株)製)、「アラルダイト」MY0500(粘度:3500mPa・s)、MY0510(粘度:600mPa・s)(以上ハンツマン・アドバンスト・マテリアルズ社製)、ELM100(粘度:16000mPa・s)(住友化学製)が挙げられる。
グリシジルアニリン類の市販品としては、例えば、GAN(粘度:120mPa・s)、GOT(粘度:60mPa・s)(以上日本化薬(株)製)が挙げられる。
Commercially available products of triglycidylaminophenol include, for example, “jER” 630 (viscosity: 750 mPa · s) (manufactured by Mitsubishi Chemical Corporation), “Araldite” MY0500 (viscosity: 3500 mPa · s), MY0510 (viscosity: 600 mPa · s). s) (manufactured by Huntsman Advanced Materials), ELM100 (viscosity: 16000 mPa · s) (manufactured by Sumitomo Chemical).
Examples of commercially available glycidyl anilines include GAN (viscosity: 120 mPa · s) and GOT (viscosity: 60 mPa · s) (manufactured by Nippon Kayaku Co., Ltd.).

フェノールを前駆体とするグリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、トリスフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ジフェニルフルオレン型エポキシ樹脂やそれぞれの各種異性体やアルキル基、ハロゲン置換体が挙げられる。
また、フェノールを前駆体とするエポキシ樹脂をウレタンやイソシアネートで変性したエポキシ樹脂も、このタイプに含まれる。
Examples of the glycidyl ether type epoxy resin having phenol as a precursor include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, epoxy resin having a biphenyl skeleton, phenol novolak type epoxy resin, cresol novolak type Epoxy resin, resorcinol type epoxy resin, epoxy resin having naphthalene skeleton, trisphenylmethane type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, diphenylfluorene type epoxy resin and various isomers and alkyl groups thereof, Examples include halogen substitution products.
Moreover, an epoxy resin obtained by modifying an epoxy resin having a phenol precursor with urethane or isocyanate is also included in this type.

液状のビスフェノールA型エポキシ樹脂の市販品としては、例えば、「jER」825(粘度:5000mPa・s)、「jER」826(粘度:8000mPa・s)、「jER」827(粘度:10000mPa・s)、「jER」828(粘度:13000mPa・s)、(以上三菱化学(株)製)、「エピクロン」(登録商標、以下同じ)850(粘度:13000mPa・s)(DIS(株)製)、「エポトート」(登録商標、以下同じ)YD−128(粘度:13000mPa・s)(新日鐵化学(株)製)、DER−331(粘度:13000mPa・s)、DER−332(粘度:5000mPa・s)(ダウケミカル社製)が挙げられる。
固形もしくは半固形のビスフェノールA型エポキシ樹脂の市販品としては、例えば、「jER」834、「jER」1001、「jER」1002、「jER」1003、「jER」1004、「jER」1004AF、「jER」1007、「jER」1009(以上三菱化学(株)製)が挙げられる。
Examples of commercially available liquid bisphenol A type epoxy resins include “jER” 825 (viscosity: 5000 mPa · s), “jER” 826 (viscosity: 8000 mPa · s), and “jER” 827 (viscosity: 10,000 mPa · s). , “JER” 828 (viscosity: 13000 mPa · s), (manufactured by Mitsubishi Chemical Corporation), “Epiclon” (registered trademark, the same applies hereinafter) 850 (viscosity: 13000 mPa · s) (manufactured by DIS Corporation), “ “Epototo” (registered trademark, the same applies hereinafter) YD-128 (viscosity: 13000 mPa · s) (manufactured by Nippon Steel Chemical Co., Ltd.), DER-331 (viscosity: 13000 mPa · s), DER-332 (viscosity: 5000 mPa · s) ) (Manufactured by Dow Chemical Company).
Examples of commercially available solid or semi-solid bisphenol A type epoxy resins include “jER” 834, “jER” 1001, “jER” 1002, “jER” 1003, “jER” 1004, “jER” 1004AF, and “jER”. "1007", "jER" 1009 (manufactured by Mitsubishi Chemical Corporation).

液状のビスフェノールF型エポキシ樹脂の市販品としては、例えば、「jER」806(粘度:2000mPa・s)、「jER」807(粘度:3500mPa・s)、「jER」1750(粘度:1300mPa・s)、「jER」(以上三菱化学(株)製)、「エピクロン」830(粘度:3500mPa・s)(DIC(株)製)、「エポトート」YD−170(粘度:3500mPa・s)、「エポトート」YD−175(粘度:3500mPa・s)、(以上、新日鐵化学(株)製)が挙げられる。
固形のビスフェノールF型エポキシ樹脂の市販品としては、例えば、4004P、「jER」4007P、「jER」4009P(以上三菱化学(株)製)、「エポトート」YDF2001、「エポトート」YDF2004(以上新日鐵化学(株)製)が挙げられる。
Examples of commercially available liquid bisphenol F-type epoxy resins include “jER” 806 (viscosity: 2000 mPa · s), “jER” 807 (viscosity: 3500 mPa · s), and “jER” 1750 (viscosity: 1300 mPa · s). , “JER” (manufactured by Mitsubishi Chemical Corporation), “Epiclon” 830 (viscosity: 3500 mPa · s) (manufactured by DIC Corporation), “Epototo” YD-170 (viscosity: 3500 mPa · s), “Epototo” YD-175 (viscosity: 3500 mPa · s) (manufactured by Nippon Steel Chemical Co., Ltd.).
Commercially available products of solid bisphenol F type epoxy resins include, for example, 4004P, “jER” 4007P, “jER” 4009P (manufactured by Mitsubishi Chemical Corporation), “Epototo” YDF2001, “Epototo” YDF2004 (above Nippon Steel) Chemical Co., Ltd.).

ビスフェノールS型エポキシ樹脂としては、例えば、EXA−1515(DIC(株)製)が挙げられる。
ビフェニル骨格を有するエポキシ樹脂の市販品としては、例えば、「jER」YX4000H、「jER」YX4000、「jER」YL6616(以上、三菱化学(株)製)、NC−3000(日本化薬(株)製)が挙げられる。
Examples of the bisphenol S type epoxy resin include EXA-1515 (manufactured by DIC Corporation).
Examples of commercially available epoxy resins having a biphenyl skeleton include “jER” YX4000H, “jER” YX4000, “jER” YL6616 (manufactured by Mitsubishi Chemical Corporation), NC-3000 (manufactured by Nippon Kayaku Co., Ltd.). ).

フェノールノボラック型エポキシ樹脂の市販品としては、例えば、「jER」152、「jER」154(以上三菱化学(株)製)、「エピクロン」N−740、「エピクロン」N−770、「エピクロン」N−775(以上、DIC(株)製)が挙げられる。
クレゾールノボラック型エポキシ樹脂の市販品としては、例えば、「エピクロン」N−660、「エピクロン」N−665、「エピクロン」N−670、「エピクロン」N−673、「エピクロン」N−695(以上、DIC(株)製)、EOCN−1020、EOCN−102S、EOCN−104S(以上、日本化薬(株)製)が挙げられる。
Examples of commercially available phenol novolac epoxy resins include “jER” 152, “jER” 154 (manufactured by Mitsubishi Chemical Corporation), “Epicron” N-740, “Epicron” N-770, “Epicron” N -775 (manufactured by DIC Corporation).
Examples of commercially available products of the cresol novolac type epoxy resin include “Epicron” N-660, “Epicron” N-665, “Epicron” N-670, “Epicron” N-673, “Epicron” N-695 (above, DIC Co., Ltd.), EOCN-1020, EOCN-102S, EOCN-104S (Nippon Kayaku Co., Ltd.).

レゾルシノール型エポキシ樹脂の市販品としては、例えば、「デナコール」(登録商標、以下同じ)EX−201(粘度:250mPa・s)(ナガセケムテックス(株)製)が挙げられる。
ナフタレン骨格を有するエポキシ樹脂の市販品としては、例えば、「エピクロン」HP4032(DIC(株)製)、NC−7000、NC−7300(以上、日本化薬(株)製)が挙げられる。
トリスフェニルメタン型エポキシ樹脂の市販品としては、例えば、TMH−574(住友化学(株)製)が挙げられる。
As a commercial item of a resorcinol type epoxy resin, “Denacol” (registered trademark, the same applies hereinafter) EX-201 (viscosity: 250 mPa · s) (manufactured by Nagase ChemteX Corporation) can be mentioned.
Examples of commercially available epoxy resins having a naphthalene skeleton include “Epiclon” HP4032 (manufactured by DIC Corporation), NC-7000, and NC-7300 (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available trisphenylmethane type epoxy resins include TMH-574 (manufactured by Sumitomo Chemical Co., Ltd.).

ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えば、「エピクロン」HP7200、「エピクロン」HP7200L、「エピクロン」HP7200H(以上、DIC(株)製)、「Tactix」(登録商標)558(ハンツマン・アドバンスト・マテリアルズ社製)、XD−1000−1L、XD−1000−2L(以上、日本化薬(株)製)が挙げられる。
ウレタンおよびイソシアネート変性エポキシ樹脂の市販品としては、例えば、オキサゾリドン環を有するAER4152(旭化成イーマテリアルズ(株)製)が挙げられる。
Commercially available dicyclopentadiene type epoxy resins include, for example, “Epicron” HP7200, “Epicron” HP7200L, “Epicron” HP7200H (above, manufactured by DIC Corporation), “Tactix” (registered trademark) 558 (Huntsman Advanced) -Materials company make), XD-1000-1L, XD-1000-2L (above, Nippon Kayaku Co., Ltd. product) is mentioned.
Examples of commercially available urethane and isocyanate-modified epoxy resins include AER4152 (produced by Asahi Kasei E-Materials Co., Ltd.) having an oxazolidone ring.

カルボン酸を前駆体とするエポキシ樹脂としては、例えば、フタル酸のグリシジル化合物や、ヘキサヒドロフタル酸、ダイマー酸のグリシジル化合物やそれぞれの各種異性体が挙げられる。   Examples of the epoxy resin having a carboxylic acid as a precursor include glycidyl compounds of phthalic acid, glycidyl compounds of hexahydrophthalic acid and dimer acid, and various isomers thereof.

フタル酸ジグリシジルエステルの市販品としては、例えば、「エポミック」(登録商標、以下同じ)R508(粘度:4000mPa・s)(三井化学(株)製)、「デナコール」EX−721(粘度:980mPa・s)(ナガセケムテックス(株)製)が挙げられる。
ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、例えば、「エポミック」R540(粘度:350mPa・s)(三井化学(株)製)、AK−601(粘度:300mPa・s)(日本化薬(株)製)が挙げられる。
ダイマー酸ジグリシジルエステルの市販品としては、例えば、「jER」871(粘度:650mPa・s)(三菱化学(株)製)、「エポトート」YD−171(粘度:650mPa・s)(新日鐵化学(株)製)が挙げられる。
Examples of commercially available products of diglycidyl phthalate include “Epomic” (registered trademark, the same applies hereinafter) R508 (viscosity: 4000 mPa · s) (manufactured by Mitsui Chemicals), “Denacol” EX-721 (viscosity: 980 mPas). S) (manufactured by Nagase ChemteX Corporation).
Commercially available products of hexahydrophthalic acid diglycidyl ester include, for example, “Epomic” R540 (viscosity: 350 mPa · s) (manufactured by Mitsui Chemicals), AK-601 (viscosity: 300 mPa · s) (Nippon Kayaku ( Co., Ltd.).
Examples of commercially available dimer acid diglycidyl ester include “jER” 871 (viscosity: 650 mPa · s) (manufactured by Mitsubishi Chemical Corporation), “Epototo” YD-171 (viscosity: 650 mPa · s) (Nippon Steel). Chemical Co., Ltd.).

分子内不飽和炭素を前駆体とするエポキシ樹脂としては、例えば、脂環式エポキシ樹脂が挙げられる。
具体的には、(3',4'−エポキシシクロヘキサン)メチル−3,4−エポキシシクロヘキサンカルボキシレートの市販品としては、例えば、「セロキサイド」(登録商標、以下同じ)2021P(粘度:250mPa・s)(ダイセル化学工業(株)製)、CY179(粘度:400mPa・s)(ハンツマン・アドバンスドマテリアルズ社製)、(3',4'−エポキシシクロヘキサン)オクチル3,4−エポキシシクロヘキサンカルボキシレートの市販品としては、例えば、「セロキサイド」2081(粘度:100mPa・s)(ダイセル化学工業(株)製)、1−メチル−4−(2−メチルオキシラニル)−7−オキサビシクロ[4.1.0]ヘプタンの市販品としては、例えば、「セロキサイド」3000(粘度:20mPa・s)(ダイセル化学工業(株)製)が挙げられる。
As an epoxy resin which uses intramolecular unsaturated carbon as a precursor, an alicyclic epoxy resin is mentioned, for example.
Specifically, as a commercially available product of (3 ′, 4′-epoxycyclohexane) methyl-3,4-epoxycyclohexanecarboxylate, for example, “Celoxide” (registered trademark, the same shall apply hereinafter) 2021P (viscosity: 250 mPa · s) ) (Manufactured by Daicel Chemical Industries, Ltd.), CY179 (viscosity: 400 mPa · s) (manufactured by Huntsman Advanced Materials), (3 ′, 4′-epoxycyclohexane) octyl 3,4-epoxycyclohexanecarboxylate Examples of the product include “Celoxide” 2081 (viscosity: 100 mPa · s) (manufactured by Daicel Chemical Industries, Ltd.), 1-methyl-4- (2-methyloxiranyl) -7-oxabicyclo [4.1. .0] Commercially available heptane includes, for example, “Celoxide” 3000 (viscosity: 20 mPa · s). (Daicel Chemical Industries, Ltd.).

25℃で液状のエポキシ樹脂の25℃における粘度は、低ければ低いほどタックやドレープ性の観点から好ましく、エポキシ樹脂の市販品として得られる下限である5mPa・s以上20000mPa・s以下が好ましく、5mPa・s以上15000mPa・s以下がより好ましい。20000mPa・sを超えると、タックやドレープ性が低下することがある。
25℃で固形のエポキシ樹脂としては、芳香族含有量の高いエポキシ樹脂が難燃性を高めるために好ましく、例えば、ビフェニル骨格をもつエポキシ樹脂や、ナフタレン骨格をもつエポキシ樹脂、フェノールアラルキル型エポキシ樹脂が挙げられる。
The lower the viscosity at 25 ° C. of the epoxy resin which is liquid at 25 ° C., the more preferable from the viewpoint of tack and draping properties, and 5 mPa · s or more and 20000 mPa · s or less, which is the lower limit obtained as a commercially available epoxy resin, is preferable. * More preferably, it is s or more and 15000 mPa * s or less. When it exceeds 20000 mPa · s, tack and drape properties may deteriorate.
As an epoxy resin solid at 25 ° C., an epoxy resin having a high aromatic content is preferable in order to increase flame retardancy. For example, an epoxy resin having a biphenyl skeleton, an epoxy resin having a naphthalene skeleton, or a phenol aralkyl type epoxy resin. Is mentioned.

本発明の組成物において、(A)成分及び(B)成分の含有割合は、これらの合計が100質量%となるように、(A)成分65〜78質量%、好ましくは70〜75質量%、及び(B)成分22〜35質量%、好ましくは25〜30質量%である。(A)成分の含有割合が65質量%未満、即ち、(B)成分の含有割合が35質量%を超える場合には、得られる強化繊維複合体のILSSが低下し、また樹脂硬化物のガラス転移温度が低下するおそれがある。   In the composition of the present invention, the content ratio of the component (A) and the component (B) is 65 to 78% by mass, preferably 70 to 75% by mass, so that the total of these components is 100% by mass. And (B) component 22-35 mass%, Preferably it is 25-30 mass%. When the content ratio of the component (A) is less than 65% by mass, that is, when the content ratio of the component (B) exceeds 35% by mass, the ILSS of the resulting reinforcing fiber composite is lowered, and the glass of the resin cured product The transition temperature may be lowered.

本発明の組成物において(C)成分の硬化剤としては、例えば、ジエチルトルエンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、メタキシレンジアミン、これらの各種誘導体等の芳香族アミン、トリエチレンテトラミン、イソホロンジアミン等の脂肪族アミン、イミダゾール誘導体、ジシアンジアミド、テトラメチルグアニジン、メチルヘキサヒドロフタル酸無水物等のカルボン酸無水物、アジピン酸ヒドラジド等のカルボン酸ヒドラジド、カルボン酸アミド、単官能フェノールやビスフェノールAのような多官能フェノール化合物、ビス(4−ヒドロキシフェニル)スルフィド、ポリフェノール化合物、ポリメルカプタン、カルボン酸塩、三フッ化ホウ素エチルアミン錯体等のルイス酸錯体等の単独あるいは2以上の混合物が使用でき、なかでも芳香族アミン、スルホン酸エステル、単官能フェノールやビスフェノールAのような多官能フェノール化合物、ポリフェノール化合物の単独あるいは2以上の混合物が好ましい。
これら硬化剤は(A)成分のベンゾオキサジンや(B)成分のエポキシ樹脂と反応することで、耐熱・耐湿性に優れる樹脂組成物あるいは繊維強化複合材料を得ることができる。
Examples of the curing agent of the component (C) in the composition of the present invention include, for example, diethyltoluenediamine, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, metaxylenediamine, aromatic amines such as various derivatives thereof, and triethylenetetramine. , Aliphatic amines such as isophoronediamine, imidazole derivatives, dicyandiamide, tetramethylguanidine, carboxylic acid anhydrides such as methylhexahydrophthalic anhydride, carboxylic acid hydrazides such as adipic hydrazide, carboxylic acid amides, monofunctional phenols and bisphenols A polyfunctional phenolic compound such as A, bis (4-hydroxyphenyl) sulfide, polyphenolic compound, polymercaptan, carboxylate, Lewis acid complex such as boron trifluoride ethylamine complex, etc. German or mixtures of two or more can be used, inter alia aromatic amines, sulfonic acid esters, polyfunctional phenolic compounds, such as monofunctional phenols and bisphenol A, alone or mixtures of two or more polyphenol compounds are preferable.
These curing agents react with the benzoxazine as the component (A) or the epoxy resin as the component (B) to obtain a resin composition or fiber reinforced composite material having excellent heat resistance and moisture resistance.

本発明の組成物において(C)成分の含有割合は、(A)成分+(B)成分100質量部に対して、5〜20質量部、好ましくは7〜15質量部である。5質量部未満では、硬化反応が遅いために、樹脂組成物全体の硬化度を上げるために、高温、長時間を要する。20質量部を超えると、硬化物のガラス転移温度等の機械物性が低下するおそれがある。   In the composition of the present invention, the content ratio of the component (C) is 5 to 20 parts by mass, preferably 7 to 15 parts by mass with respect to 100 parts by mass of the component (A) + the component (B). If the amount is less than 5 parts by mass, the curing reaction is slow, so that a high temperature and a long time are required to increase the degree of curing of the entire resin composition. If it exceeds 20 parts by mass, mechanical properties such as glass transition temperature of the cured product may be lowered.

本発明の組成物において、(D)成分の靭性向上剤は、本発明の組成物に溶解する成分であって、有機微粒子、または有機微粒子を液状樹脂あるいは樹脂モノマー中に溶解させたものからなる群より選択される少なくとも1種が挙げられる。
ここで溶解とは、(D)成分の微粒子が組成物中に分散し、当該微粒子と組成物を構成する物質とが相互に親和性を有し、均一または混和した状態となっていることを意味する。
液状樹脂あるいは樹脂モノマーとしては、例えば、反応性エラストマー、ハイカーCTBN変性エポキシ樹脂、ハイカーCTB変性エポキシ樹脂、ウレタン変性エポキシ樹脂、ニトリルゴム添加エポキシ樹脂、架橋アクリルゴム微粒子添加エポキシ樹脂、シリコーン変性エポキシ樹脂、熱可塑性エラストマー添加エポキシ樹脂が使用できる。
In the composition of the present invention, the toughness improver of component (D) is a component that dissolves in the composition of the present invention, and consists of organic fine particles or those obtained by dissolving organic fine particles in a liquid resin or resin monomer. There may be mentioned at least one selected from the group.
Here, dissolution means that the fine particles of component (D) are dispersed in the composition, and the fine particles and the substances constituting the composition have an affinity for each other and are in a uniform or mixed state. means.
Examples of liquid resins or resin monomers include reactive elastomers, hiker CTBN-modified epoxy resins, hiker CTB-modified epoxy resins, urethane-modified epoxy resins, nitrile rubber-added epoxy resins, crosslinked acrylic rubber fine particle-added epoxy resins, silicone-modified epoxy resins, A thermoplastic elastomer-added epoxy resin can be used.

有機微粒子としては、例えば、熱硬化性樹脂微粒子、熱可塑性樹脂微粒子またはこれらの混合物を用いることができる。
熱硬化性樹脂微粒子としては、例えば、エポキシ樹脂微粒子、フェノール樹脂微粒子、メラミン樹脂微粒子、ウレア樹脂微粒子、シリコーン樹脂微粒子、ウレタン樹脂微粒子またはこれらの混合物等が挙げられる。
As the organic fine particles, for example, thermosetting resin fine particles, thermoplastic resin fine particles, or a mixture thereof can be used.
Examples of the thermosetting resin fine particles include epoxy resin fine particles, phenol resin fine particles, melamine resin fine particles, urea resin fine particles, silicone resin fine particles, urethane resin fine particles, or a mixture thereof.

熱可塑性樹脂微粒子としては、例えば、共重合ポリエステル樹脂微粒子、フェノキシ樹脂微粒子、ポリイミド樹脂微粒子、ポリアミド樹脂微粒子、アクリル系微粒子、ブタジエン−アクリロニトリル樹脂微粒子、スチレン系微粒子、オレフィン系微粒子、ナイロン系微粒子、ブタジエン・メタクリル酸アルキル・スチレン共重合物、アクリル酸エステル・メタクリル酸エステル共重合体またはこれらの混合物が挙げられる。
またアクリル系微粒子としては、メタクリル酸メチル・ブチルアクリレート・メタクリル酸メチルからなる共重合体として市販されている、Nanostrength M22(商品名、アルケマ社製)を利用することもできる。
コア/シェル型微粒子の市販されているものとして、スタフィロイドAC3355(商品名、ガンツ化成(株)製)、MX120(商品名、カネカ社製)等も利用することができる。
Examples of the thermoplastic resin fine particles include copolymerized polyester resin fine particles, phenoxy resin fine particles, polyimide resin fine particles, polyamide resin fine particles, acrylic fine particles, butadiene-acrylonitrile resin fine particles, styrene fine particles, olefin fine particles, nylon fine particles, butadiene. -Alkyl methacrylate / styrene copolymer, acrylic ester / methacrylic ester copolymer, or a mixture thereof.
As the acrylic fine particles, Nanostrength M22 (trade name, manufactured by Arkema Co., Ltd.), which is commercially available as a copolymer comprising methyl methacrylate / butyl acrylate / methyl methacrylate, can also be used.
As commercially available core / shell type fine particles, Staphyloid AC3355 (trade name, manufactured by Ganz Kasei Co., Ltd.), MX120 (trade name, manufactured by Kaneka Corporation) and the like can be used.

アクリル系微粒子の製法としては、(1)モノマーの重合、(2)ポリマーの化学処理法、(3)ポリマーの機械的粉砕法などがあるが、(3)の方法では微細なものが得られず、形状が不定形なため好ましくない。
重合法としては、例えば、乳化重合、ソープフリー乳化重合、分散重合、シード重合、懸濁重合またはこれらを互いに併用した方法があり、粒径が微細で、一部架橋構造、コア/シェル構造、中空構造、極性構造(エポキシ基、カルボキシル基、水酸基など)を有する微粒子が得られる、乳化重合、シード重合が用いられる。
コア/シェル型微粒子の市販されているものとして、スタフィロイドAC3355(商品名、武田薬品工業社製)、F351(商品名、日本ゼオン社製)、クレハパラロイドEXL−2655(商品名、呉羽化学工業社製)、MX120(商品名、カネカ社製)等が挙げられる。
The acrylic fine particles can be produced by (1) monomer polymerization, (2) polymer chemical treatment, (3) polymer mechanical pulverization, etc., but the method (3) gives a fine product. Therefore, it is not preferable because the shape is irregular.
Examples of the polymerization method include emulsion polymerization, soap-free emulsion polymerization, dispersion polymerization, seed polymerization, suspension polymerization, or a method in which these are used in combination with each other, the particle size is fine, partially crosslinked structure, core / shell structure, Emulsion polymerization and seed polymerization are used in which fine particles having a hollow structure and a polar structure (epoxy group, carboxyl group, hydroxyl group, etc.) are obtained.
As commercially available core / shell type fine particles, Staphyloid AC3355 (trade name, manufactured by Takeda Pharmaceutical Company Limited), F351 (trade name, manufactured by Nippon Zeon Co., Ltd.), Kureha Paraloid EXL-2655 (trade name, Kureha Chemical) Kogyo Co., Ltd.), MX120 (trade name, manufactured by Kaneka Corporation) and the like.

本発明の組成物において樹脂の靭性等を向上させるために用いられる(D)成分の含有割合は、(A)成分+(B)成分100質量部に対して、3〜20質量部、好ましくは5〜15質量部である。3質量部未満では、樹脂組成物の靭性が低く、樹脂組成物硬化中にクラックが発生するおそれがあり、20質量部を超える場合には、樹脂組成物の耐熱性が低下するおそれがある。   The content ratio of the component (D) used for improving the toughness of the resin in the composition of the present invention is 3 to 20 parts by mass, preferably 100 parts by mass of the component (A) + the component (B), preferably 5 to 15 parts by mass. If the amount is less than 3 parts by mass, the resin composition has low toughness and cracks may occur during curing of the resin composition. If the amount exceeds 20 parts by mass, the heat resistance of the resin composition may decrease.

本発明の組成物に用いる(E1)成分又は(E2)成分のポリアミド12粒子は、本発明の組成物中において粉末状態を維持しうる、好ましくは融点が170℃以上のものが好ましく、特に、175〜185℃のものが望ましい。ここで、融点は、示差走査熱量計により昇温速度10℃/分で測定し、融解熱がピークとなる温度である。
(E1)成分のポリアミド12粉末の平均粒径は、1μm以上15μm未満、好ましくは5μm以上15μm未満である。(E2)成分のポリアミド12粉末の平均粒径は、15μm以上60μm以下、好ましくは15μm以上30μm以下である。このように、平均粒径により(E1)成分と(E2)成分とを分けている理由は、後述するこれら成分の含有割合を異なるように制御しないと、本発明の所望の効果が得られないからである。
ここで、平均粒径は、走査型電子顕微鏡(SEM)にて200〜500倍に拡大した粒子の任意に選択した100個の粒子について測定した、各粒子の長径の長さの平均値を意味する。
The polyamide 12 particles of the component (E1) or component (E2) used in the composition of the present invention can maintain a powder state in the composition of the present invention, preferably those having a melting point of 170 ° C. or more, The thing of 175-185 degreeC is desirable. Here, the melting point is a temperature at which the heat of fusion reaches a peak when measured with a differential scanning calorimeter at a rate of temperature increase of 10 ° C./min.
The average particle size of the polyamide 12 powder of component (E1) is 1 μm or more and less than 15 μm, preferably 5 μm or more and less than 15 μm. The average particle size of the polyamide 12 powder of component (E2) is 15 μm or more and 60 μm or less, preferably 15 μm or more and 30 μm or less. Thus, the reason why the (E1) component and the (E2) component are separated according to the average particle diameter is that the desired effect of the present invention cannot be obtained unless the content ratio of these components described later is controlled to be different. Because.
Here, the average particle diameter means the average value of the lengths of the long diameters of each particle measured with 100 particles arbitrarily selected from particles enlarged 200 to 500 times with a scanning electron microscope (SEM). To do.

本発明に用いるポリアミド12粒子としては、市販品を用いることができ、例えば、「VESTOSINT1111、VESTOSINT2070、VESTOSINT2157、VESTOSINT2158、VESTOSINT2159(以上、登録商標、ダイセル・エボニック株式会社製)が挙げられる。
ポリアミド12粒子は、本発明の組成物の流動特性を低下させない点から球状粒子が好ましいが、非球状粒子でもよい。
Commercially available products can be used as the polyamide 12 particles used in the present invention, and examples thereof include “VESTOSINT1111, VESTOSINT2070, VESTOSINT2157, VESTOSINT2158, and VESTOSINT2159 (registered trademark, manufactured by Daicel Evonik Co., Ltd.).
The polyamide 12 particles are preferably spherical particles from the viewpoint of not reducing the flow characteristics of the composition of the present invention, but may be non-spherical particles.

本発明の第1の組成物において(E1)成分の含有割合は、(A)成分+(B)成分100質量部に対して、20〜30質量部、好ましくは20〜25質量部である。20質量部未満では、CAIが低下し、30質量部を超える場合には、ILSSが低下するおそれがある。
本発明の第2の組成物において(E2)成分の含有割合は、(A)成分+(B)成分100質量部に対して、5質量部以上20質量部未満、好ましくは7〜18質量部である。5質量部未満では、CAIおよび靱性が低下し、20質量部以上ではILSSが低下し、本発明の所望の効果が得られないおそれがある。
In the first composition of the present invention, the content ratio of the component (E1) is 20 to 30 parts by mass, preferably 20 to 25 parts by mass with respect to 100 parts by mass of the component (A) + the component (B). If it is less than 20 parts by mass, the CAI decreases, and if it exceeds 30 parts by mass, the ILSS may decrease.
In the second composition of the present invention, the content ratio of the component (E2) is 5 parts by mass or more and less than 20 parts by mass, preferably 7 to 18 parts by mass with respect to 100 parts by mass of the component (A) + the component (B). It is. If it is less than 5 parts by mass, the CAI and toughness are lowered, and if it is 20 parts by mass or more, the ILSS is lowered and the desired effect of the present invention may not be obtained.

本発明の組成物には、その物性を損なわない範囲で、例えば、ナノカーボンや難燃剤、離型剤等を配合することができる。
ナノカーボンとしては、例えば、カーボンナノチューブ、フラーレンやそれぞれの誘導体が挙げられる。
難燃剤としては、例えば、赤燐、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホルフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、レゾルシノールビスフェニルホスフェート、ビスフェノールAビスジフェニルホスフェート等のリン酸エステルや、ホウ酸エステル等が挙げられる。
離型剤としては、例えば、シリコンオイル、ステアリン酸エステル、カルナウバワックス等が挙げられる。
In the composition of the present invention, for example, nanocarbon, a flame retardant, a release agent, and the like can be blended within a range that does not impair the physical properties.
Examples of nanocarbon include carbon nanotubes, fullerenes, and derivatives thereof.
Examples of the flame retardant include phosphoric acid such as red phosphorus, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, resorcinol bisphenyl phosphate, bisphenol A bisdiphenyl phosphate, etc. Examples thereof include esters and boric acid esters.
Examples of the mold release agent include silicone oil, stearic acid ester, carnauba wax and the like.

本発明の組成物の混練方法は、特に限定されない。例えば、ニーダーやプラネタリーミキサー、2軸押出機などが用いられる。また、粒子成分の分散性の点から、予めホモミキサー、3本ロール、ボールミル、ビーズミルおよび超音波などで、粒子をベンゾオキサジン樹脂組成物中に配合する液状樹脂成分に拡散させておくことが好ましい。更に、マトリックス樹脂との混合時や、粒子の予備拡散時等には、必要に応じて加熱・冷却、加圧・減圧しても良い。保存安定性の観点から、混練後は、速やかに冷蔵・冷凍庫で保管することが好ましい。   The kneading method of the composition of the present invention is not particularly limited. For example, a kneader, a planetary mixer, a twin screw extruder or the like is used. Further, from the viewpoint of the dispersibility of the particle component, it is preferable that the particles are previously diffused into the liquid resin component to be blended in the benzoxazine resin composition with a homomixer, three rolls, a ball mill, a bead mill, and an ultrasonic wave. . Further, when mixing with the matrix resin or pre-diffusion of particles, heating / cooling, pressurization / depressurization may be performed as necessary. From the viewpoint of storage stability, it is preferable to store in a refrigerator / freezer immediately after kneading.

本発明の組成物の粘度は、タックやドレープ性の観点から、50℃において、10〜3000Pa・sが好ましい。より好ましくは10〜2500Pa・s、最も好ましくは100〜2000Pa・sである。10Pa・s未満では、本発明の組成物の沈み込みによるタックの経時変化が大きくなることがある。また、3000Pa・sを超えると、タックが弱くなり、また、ドレープ性も低下することがある。   The viscosity of the composition of the present invention is preferably 10 to 3000 Pa · s at 50 ° C. from the viewpoint of tack and drape. More preferably, it is 10-2500 Pa.s, Most preferably, it is 100-2000 Pa.s. If it is less than 10 Pa · s, the change with time of the tack due to the sinking of the composition of the present invention may become large. On the other hand, when it exceeds 3000 Pa · s, the tack becomes weak, and the drape property may be lowered.

本発明のプリプレグ及び繊維強化複合材料において、強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が好ましい。これらの繊維を2種以上混合して用いても構わないが、より軽量で、より耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いるのが良い。
本発明においては、用途に応じてあらゆる種類の炭素繊維や黒鉛繊維を用いることが可能であるが、耐衝撃性に優れ、高い剛性および機械強度を有する複合材料を得られることから、ストランド引張試験における引張弾性率が150〜650GPaであることが好ましく、より好ましくは200〜550GPaであり、さらに好ましくは230〜500GPaである。
なお、ストランド引張試験とは、束状の炭素繊維に下記組成の樹脂を含浸させ、130℃の温度で35分間硬化させた後、JIS R7601(1986)に基づいて行う試験をいう。
In the prepreg and fiber-reinforced composite material of the present invention, the reinforcing fiber is preferably glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber, or the like. Two or more kinds of these fibers may be mixed and used, but carbon fibers and graphite fibers are preferably used in order to obtain a molded product that is lighter and more durable.
In the present invention, any type of carbon fiber or graphite fiber can be used depending on the application, but since a composite material having excellent impact resistance and high rigidity and mechanical strength can be obtained, the strand tensile test It is preferable that the tensile elasticity modulus in is 150-650 GPa, More preferably, it is 200-550 GPa, More preferably, it is 230-500 GPa.
The strand tensile test refers to a test carried out based on JIS R7601 (1986) after impregnating a bundle of carbon fibers with a resin having the following composition and curing it at a temperature of 130 ° C. for 35 minutes.

本発明のプリプレグ及び繊維強化複合材料において強化繊維の形態は特に限定されるものではなく、例えば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐、10mm未満の長さにチョップした短繊維等が用いられる。
ここで、長繊維とは実質的に10mm以上連続な単繊維もしくは繊維束である。短繊維とは10mm未満の長さに切断された繊維束である。また、特に、比強度、比弾性率が高いことを要求される用途には強化繊維束が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明には適している。
In the prepreg and the fiber reinforced composite material of the present invention, the form of the reinforcing fiber is not particularly limited. For example, the long fiber, tow, woven fabric, mat, knit, braid, and a length of less than 10 mm are aligned in one direction. Chopped short fibers or the like are used.
Here, the long fiber is a single fiber or a fiber bundle substantially continuous for 10 mm or more. A short fiber is a fiber bundle cut into a length of less than 10 mm. In particular, an array in which reinforcing fiber bundles are aligned in a single direction is most suitable for applications that require a high specific strength and specific elastic modulus. Arrangements are also suitable for the present invention.

本発明のプリプレグは、本発明の組成物を繊維機材に含浸させてなるものである。
含浸させる方法としては、本発明の組成物をメチルエチルケトン、メタノール等の溶媒に溶解して低粘度化し、含浸させるウェット法、加熱により低粘度化し、含浸させるホットメルト法(ドライ法)等を挙げることができる。
ウェット法は、強化繊維をベンゾオキサジン樹脂組成物の溶液に浸漬した後、引き上げ、オーブン等を用いて溶媒を蒸発させる方法であり、ホットメルト法は、加熱により低粘度化したベンゾオキサジン樹脂組成物を直接強化繊維に含浸させる方法、又は一旦ベンゾオキサジン樹脂組成物を離型紙等の上にコーティングしたフィルムを作製しておき、次いで強化繊維の両側又は片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。
ホットメルト法においては、プリプレグ中に残留する溶媒が実質上皆無となるため好ましい。
The prepreg of the present invention is obtained by impregnating a fiber material with the composition of the present invention.
Examples of the impregnation method include a wet method in which the composition of the present invention is dissolved in a solvent such as methyl ethyl ketone and methanol to lower the viscosity and impregnation, a hot melt method in which the viscosity is reduced by heating and impregnation (dry method), and the like. Can do.
The wet method is a method in which the reinforcing fiber is immersed in a solution of the benzoxazine resin composition, then pulled up, and the solvent is evaporated using an oven or the like. The hot melt method is a benzoxazine resin composition whose viscosity is reduced by heating. By directly impregnating the reinforcing fiber into the fiber, or by preparing a film once coated with a benzoxazine resin composition on a release paper, etc., and then superposing the film from both sides or one side of the reinforcing fiber and heating and pressing. This is a method of impregnating a reinforcing fiber with a resin.
The hot melt method is preferable because substantially no solvent remains in the prepreg.

本発明のプリプレグは、単位面積あたりの強化繊維量が70〜3000g/m2であることが好ましい。強化繊維量が70g/m2未満では、繊維強化複合材料成形の際に所定の厚みを得るために積層枚数を多くする必要があり、作業が繁雑となることがある。一方、強化繊維量が3000g/m2を超えると、プリプレグのドレープ性が悪くなる傾向にある。なお、プリプレグが平面もしくは単純な局面であれば、強化繊維量は3000g/m2を超えても良い。また、繊維重量含有率は、好ましくは30〜90質量%であり、より好ましくは35〜85質量%であり、更に好ましくは40〜80質量%である。繊維重量含有率が30質量%未満では、樹脂の量が多すぎて、比強度と比弾性率に優れる繊維強化複合材料の利点が得られなかったり、繊維強化複合材料の成形の際、硬化時の発熱量が大きくなりすぎることがある。繊維重量含有率が90重量%を超えると、樹脂の含浸不良が生じ、得られる複合材料はボイドの多いものとなる恐れがある。 The prepreg of the present invention, it is preferable that the reinforcing fiber content per unit area is 70~3000g / m 2. When the amount of reinforcing fibers is less than 70 g / m 2, it is necessary to increase the number of laminated layers in order to obtain a predetermined thickness when forming a fiber reinforced composite material, and the work may be complicated. On the other hand, when the amount of reinforcing fibers exceeds 3000 g / m 2 , the prepreg drapability tends to deteriorate. If the prepreg is flat or simple, the amount of reinforcing fibers may exceed 3000 g / m 2 . The fiber weight content is preferably 30 to 90% by mass, more preferably 35 to 85% by mass, and still more preferably 40 to 80% by mass. When the fiber weight content is less than 30% by mass, the amount of the resin is too large to obtain the advantages of the fiber reinforced composite material excellent in specific strength and specific elastic modulus, or when the fiber reinforced composite material is molded at the time of curing. The amount of heat generated may be too large. When the fiber weight content exceeds 90% by weight, resin impregnation failure occurs, and the resulting composite material may have many voids.

本発明のプリプレグは、積層後、積層物に圧力を付与しながら樹脂を加熱硬化させる方法等により、本発明の繊維強化複合材料とすることができる。
ここで熱及び圧力を付与する方法には、例えば、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法が挙げられる。
ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、繊維強化複合材料製の管状体を成形する方法であり、ゴルフシャフト、釣り竿等の棒状体を作製する際に好適な方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定及び圧力付与のため、プリプレグの外側に熱可塑性フィルムからなるラッピングテープを捲回し、オーブン中で樹脂を加熱硬化させた後、芯金を抜き取って管状体を得る方法である。
The prepreg of the present invention can be made into the fiber-reinforced composite material of the present invention by, for example, a method of heat-curing resin while applying pressure to the laminate after lamination.
Examples of methods for applying heat and pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method.
The wrapping tape method is a method of winding a prepreg around a mandrel or other core metal to form a tubular body made of a fiber-reinforced composite material, and is a method suitable for producing a rod-shaped body such as a golf shaft or fishing rod. . More specifically, a prepreg is wound around a mandrel, a wrapping tape made of a thermoplastic film is wound around the outside of the prepreg for fixing and applying pressure, and the resin is heated and cured in an oven, and then a cored bar. This is a method for extracting a tube to obtain a tubular body.

内圧成型法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いで内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、成形する方法である。この方法は、ゴルフシャフト、バッド、テニスやバドミントン等のラケットの如き複雑な形状物を成形する際に好ましく用いられる。   In the internal pressure molding method, a preform obtained by winding a prepreg on an internal pressure applying body such as a tube made of a thermoplastic resin is set in a mold, and then a high pressure gas is introduced into the internal pressure applying body to apply pressure and at the same time In this method, the mold is heated and molded. This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.

本発明の繊維強化複合材料は、基材に直接、樹脂組成物を含浸させ硬化させることによっても得られる。例えば、強化繊維基材を型内に配置し、その後、本発明の組成物を流し込み含浸させ硬化させる方法や、強化繊維基材および本発明の組成物からなるフィルムを積層し、該積層体を加熱・加圧する方法によっても製造できる。
本発明の組成物からなるフィルムとは、予め離型紙や離型フィルム上に所定量の組成物を均一な厚みで塗布したものを指す。ここで強化繊維基材としては、一方向に引き揃えた長繊維、二方向織物、不織布、マット、ニット、組み紐などが挙げられる。
積層とは、単に繊維基材を重ね合わせる場合のみならず、各種型やコア材に貼り付けてプリフォームする場合も含むものである。
コア材としては、フォームコアやハニカムコアなどが好ましく用いられる。フォームコアとしては、ウレタンやポリイミドが好ましく用いられる。ハニカムコアとしてはアルミコアやガラスコア、アラミドコアなどが好ましく用いられる。
The fiber-reinforced composite material of the present invention can also be obtained by directly impregnating a base material with a resin composition and curing it. For example, a method of placing a reinforcing fiber base in a mold and then pouring, impregnating and curing the composition of the present invention, laminating a film comprising the reinforcing fiber base and the composition of the present invention, and laminating the laminate It can also be produced by a method of heating and pressurizing.
The film made of the composition of the present invention refers to a film obtained by applying a predetermined amount of the composition in a uniform thickness on a release paper or a release film in advance. Here, examples of the reinforcing fiber base include long fibers arranged in one direction, two-way woven fabric, non-woven fabric, mat, knit, braided string, and the like.
Lamination includes not only simply superimposing fiber base materials, but also includes cases where they are attached to various molds and core materials to be preformed.
As the core material, a foam core or a honeycomb core is preferably used. As the foam core, urethane or polyimide is preferably used. As the honeycomb core, an aluminum core, a glass core, an aramid core, or the like is preferably used.

本発明の繊維強化複合材料は、後述する実施例における条件で測定した、衝撃後圧縮強度(CAI)が、通常250MPa以上、好ましくは290MPa以上、層間せん断強度(ILSS)が、通常45MPa以上、好ましくは50MPa以上、曲げ破壊靱性が通常1.0MPa・m1/2以上、好ましくは1.2MPa・m1/2以上であり、かつ本発明の組成物を180℃、2時間の条件で硬化させた硬化物のガラス転移温度が通常180℃以上、好ましくは190℃以上であり、優れたCAI、ILSS及び曲げ破壊靱性を高次元で同時に達成でき、且つ樹脂材料のガラス転移温度にも優れるので、鉄道車両、航空機、建築部材や、その他一般産業用途に好適に用いられる。 The fiber reinforced composite material of the present invention has a post-impact compressive strength (CAI) of usually 250 MPa or more, preferably 290 MPa or more, and an interlayer shear strength (ILSS) of usually 45 MPa or more, preferably measured under the conditions in Examples described later. Is 50 MPa or more, the bending fracture toughness is usually 1.0 MPa · m 1/2 or more, preferably 1.2 MPa · m 1/2 or more, and the composition of the present invention is cured at 180 ° C. for 2 hours. Since the glass transition temperature of the cured product is usually 180 ° C. or higher, preferably 190 ° C. or higher, excellent CAI, ILSS and bending fracture toughness can be achieved at a high level at the same time, and the glass transition temperature of the resin material is also excellent. It is suitably used for railway vehicles, aircraft, building members, and other general industrial applications.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。各種物性の測定は次の方法によった。結果を表1及び表2に示す。
実施例1〜5、比較例1〜9
各実施例、比較例について、表1及び表2に示す割合で原料を混合し、ベンゾオキサジン樹脂組成物を得た。
なお、ここで用いた原料は以下に示す通りである。
(A)成分:ベンゾオキサジン樹脂
F−a(ビスフェノールF−アニリン型、四国化成(株)製)
P−a(フェノール−アニリン型、四国化成(株)製)
(B)成分:エポキシ樹脂
「セロキサイド」(登録商標)2021P(ダイセル化学工業(株)製)
ビスフェノールA型ジグリシジルエーテル(YD−128、新日鐵化学(株)製)
(C)成分:硬化剤
ビス(4−ヒドロキシフェニル)スルフィド(東京化成(株)製)
(D)成分:靭性向上剤
Nanostrength (M22、アルケマ社製)
フェノキシ樹脂(YP−70、新日鐵化学(株)製)
(E)成分
「VESTOSINT」(登録商標)2157(平均粒径55μmのポリアミド12、ダイセル・エボニック株式会社製)
「VESTOSINT」(登録商標)2158(平均粒径20μmのポリアミド12、ダイセル・エボニック株式会社製)
「VESTOSINT」(登録商標)2159(平均粒径10μmのポリアミド12、ダイセル・エボニック株式会社製)
「VESTOSINT」(登録商標)2170(平均粒径5μmのポリアミド12、ダイセル・エボニック株式会社製)
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Various physical properties were measured by the following methods. The results are shown in Tables 1 and 2.
Examples 1-5, Comparative Examples 1-9
About each Example and the comparative example, the raw material was mixed in the ratio shown in Table 1 and Table 2, and the benzoxazine resin composition was obtained.
The raw materials used here are as shown below.
Component (A): benzoxazine resin Fa (bisphenol F-aniline type, manufactured by Shikoku Kasei Co., Ltd.)
Pa (phenol-aniline type, manufactured by Shikoku Kasei Co., Ltd.)
Component (B): Epoxy resin “Celoxide” (registered trademark) 2021P (manufactured by Daicel Chemical Industries, Ltd.)
Bisphenol A type diglycidyl ether (YD-128, manufactured by Nippon Steel Chemical Co., Ltd.)
Component (C): curing agent bis (4-hydroxyphenyl) sulfide (manufactured by Tokyo Chemical Industry Co., Ltd.)
Component (D): Toughness improver Nanostrength (M22, manufactured by Arkema)
Phenoxy resin (YP-70, manufactured by Nippon Steel Chemical Co., Ltd.)
Component (E) “VESTOSINT” (registered trademark) 2157 (polyamide 12 having an average particle size of 55 μm, manufactured by Daicel Evonik Co., Ltd.)
“VESTOSINT” (registered trademark) 2158 (polyamide 12 having an average particle diameter of 20 μm, manufactured by Daicel Evonik Co., Ltd.)
“VESTOSINT” (registered trademark) 2159 (polyamide 12 having an average particle diameter of 10 μm, manufactured by Daicel Evonik Co., Ltd.)
“VESTOSINT” (registered trademark) 2170 (polyamide 12 having an average particle diameter of 5 μm, manufactured by Daicel Evonik Co., Ltd.)

<ガラス転移温度の測定>
得られたベンゾオキサジン樹脂組成物を、180℃のオーブン中で2時間硬化して樹脂硬化物を得た。得られた硬化物を、示差熱量計(DSC)を用いて、JIS K7121(1987)に基づいて求めた中間点温度をガラス転移温度として測定した。
<Measurement of glass transition temperature>
The obtained benzoxazine resin composition was cured in an oven at 180 ° C. for 2 hours to obtain a cured resin. Using the differential calorimeter (DSC), the obtained cured product was measured as the glass transition temperature at the midpoint temperature determined based on JIS K7121 (1987).

<プリプレグタック性試験>
得られたベンゾオキサジン樹脂組成物を用いて離型紙上に塗布し、樹脂フィルムを得た。該樹脂フィルムを、一方向に引き揃えた炭素繊維の上下から供給して含浸し、プリプレグを作製した。このプリプレグの単位面積当たりの炭素繊維量は150g/m2、マトリックス樹脂量は67g/m2であった。
得られたプリプレグのタックを触感法で判定した。プリプレグ表面から離型紙を引き剥がした直後に指でプリプレグを押さえタックの程よいものを○、やや強すぎるもしくはやや弱いものを△、タックが強すぎて指から剥がれないものや全くタックがなく指につかないものを×とした。
<Prepreg tackiness test>
The obtained benzoxazine resin composition was applied onto release paper to obtain a resin film. The resin film was supplied from above and below carbon fibers aligned in one direction and impregnated to prepare a prepreg. The amount of carbon fiber per unit area of this prepreg was 150 g / m 2 , and the amount of matrix resin was 67 g / m 2 .
The tack of the obtained prepreg was determined by a tactile sensation method. Immediately after peeling the release paper from the surface of the prepreg, press the prepreg with your finger and hold it with a good tack, △ if it is slightly too strong or weak, △, if the tack is too strong and does not peel off from your finger Those that do not have a cross.

<CAIの測定>
得られたプリプレグを、[+45°/0°/−45°/90°]4s構成で、擬似等方的に32プライ積層し、オートクレーブにて、温度180℃、圧力0.6MPaで2時間加熱硬化し、CFRPを得た。このCFRPについて、SACMA SRM 2R−94に従い、縦150mm×横100mmのサンプルを切り出し、サンプルの中心部に6.7J/mmの落錘衝撃を与え、衝撃後圧縮強度を求めた
<Measurement of CAI>
The obtained prepreg was quasi-isotropically laminated with 32 plies in a [+ 45 ° / 0 ° / −45 ° / 90 °] 4s configuration, and heated in an autoclave at a temperature of 180 ° C. and a pressure of 0.6 MPa for 2 hours. Cured to obtain CFRP. With respect to this CFRP, in accordance with SACMA SRM 2R-94, a sample having a length of 150 mm × width of 100 mm was cut out, a drop weight impact of 6.7 J / mm was applied to the center of the sample, and the compressive strength after impact was obtained.

<ILSSの測定>
得られたプリプレグを、0度方向に12層積層し、オートクレーブ中で温度180℃、圧力0.6MPaで2時間加熱硬化し、CFRPを得た。このCFRPについて、ASTM D2402−07に従い、0度方向が13mm、幅方向が6.35mmの長方形に切り出し、ASTM D2402―07に従って、71℃の温水中に2週間浸漬し、充分に吸水させた後、82℃の環境下で層間剪断強度を測定した。
<Measurement of ILSS>
12 layers of the obtained prepreg were laminated in the 0 degree direction, and heat-cured in an autoclave at a temperature of 180 ° C. and a pressure of 0.6 MPa for 2 hours to obtain CFRP. This CFRP is cut out into a rectangle having a 0 degree direction of 13 mm and a width direction of 6.35 mm in accordance with ASTM D2402-07, and is immersed in warm water at 71 ° C. for 2 weeks in accordance with ASTM D2402-07 to sufficiently absorb water. The interlaminar shear strength was measured under an environment of 82 ° C.

<曲げ破壊靱性の測定>
180℃の温度で2時間硬化させ、厚さ6mmの樹脂硬化物を得た。この樹脂硬化物を2.7 ×150mmでカットし、試験片を得た。インストロン万能試験機(インストロン社製) を用い、ASTEM D5045に従って試験片を加工・実験をおこなった。ここで言う、樹脂硬化物の靱性とは、変形モード1( 開口型)の臨界応力強度のことをさしている。
<Measurement of bending fracture toughness>
Curing was performed at a temperature of 180 ° C. for 2 hours to obtain a cured resin product having a thickness of 6 mm. The cured resin was cut at 2.7 × 150 mm to obtain a test piece. Using an Instron universal testing machine (manufactured by Instron), test pieces were processed and tested according to ASTM D5045. Here, the toughness of the cured resin refers to the critical stress strength of deformation mode 1 (opening type).

Figure 2012036347
Figure 2012036347

Figure 2012036347
Figure 2012036347

表2より、比較例1では、(E)成分を含まないのでCAI及び曲げ破壊靱性が低いこと、比較例2では、(D)成分を含まず、(E)成分の含有割合が高いのでILSS及び曲げ破壊靱性が低く、プリプレグタック性も悪いこと、比較例3では、(D)成分を含まないので曲げ破壊靱性が低いこと、比較例4では、(A)成分の含有割合が低く、(B)成分の含有割合が高いのでILSS及びガラス転移温度が低いこと、比較例5ではビスフェノールA型エポキシ樹脂の含有割合が高いので、ガラス転移温度が低いこと、比較例6では(A)成分の含有割合が高く、(B)成分の含有割合が低いので粘度が高くてプリプレグの作製ができないこと、比較例7では、(D)成分の含有割合が高いのでガラス転移温度が低いこと、比較例8及び9では、(E)成分の含有割合が高いのでILSSが低いことがそれぞれわかった。   From Table 2, Comparative Example 1 does not contain (E) component and therefore has low CAI and bending fracture toughness, and Comparative Example 2 does not contain (D) component and has a high content of (E) component, so ILSS In addition, the bending fracture toughness is low and the prepreg tackiness is poor. In Comparative Example 3, since the component (D) is not included, the bending fracture toughness is low. In Comparative Example 4, the content ratio of the component (A) is low. B) Since the content ratio of the component is high, the ILSS and the glass transition temperature are low. In Comparative Example 5, the content ratio of the bisphenol A type epoxy resin is high, so that the glass transition temperature is low. In Comparative Example 6, the component (A) Since the content ratio is high and the content ratio of the component (B) is low, the viscosity is high and a prepreg cannot be prepared. In Comparative Example 7, the content ratio of the component (D) is high, so the glass transition temperature is low. In 8 and 9, since the content of component (E) is high, I SS it was found, respectively low.

Claims (8)

(A)分子中に式(1)で表されるベンゾオキサジン環を有する化合物と、
Figure 2012036347
(式中、R1は、炭素数1〜12の鎖状アルキル基、炭素数3〜8の環状アルキル基、フェニル基、又は炭素数1〜12の鎖状アルキル基若しくはハロゲンで置換されたフェニル基を示す。また、式中の芳香環の酸素原子が結合している炭素原子のオルト位とパラ位の少なくとも一方の炭素原子には水素原子が結合している。)
(B)エポキシ樹脂と、(C)硬化剤と、(D)靭性向上剤と、(E1)平均粒径1μm以上15μm未満のポリアミド12粉末を含み、
(A)成分及び(B)成分の含有割合が合計100質量%となるように、(A)成分65〜78質量%、及び(B)成分22〜35質量%を含み、(A)成分及び(B)成分の合計100質量部に対して、(C)成分5〜20質量部、(D)成分3〜20質量部及び(E1)成分20〜30質量部含有し、(D)成分が溶解しているベンゾオキサジン樹脂組成物。
(A) a compound having a benzoxazine ring represented by formula (1) in the molecule;
Figure 2012036347
(In the formula, R 1 represents a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a phenyl group substituted with a chain alkyl group having 1 to 12 carbon atoms or a halogen. In addition, in the formula, a hydrogen atom is bonded to at least one of the ortho-position and para-position of the carbon atom to which the oxygen atom of the aromatic ring is bonded.)
(B) an epoxy resin, (C) a curing agent, (D) a toughness improver, and (E1) a polyamide 12 powder having an average particle size of 1 μm or more and less than 15 μm,
Including (A) component 65-78 mass% and (B) component 22-35 mass% so that the content rate of (A) component and (B) component may be 100 mass% in total, (A) component and (B) 5-100 mass parts of (C) component, 3-20 mass parts of (D) component, and 20-30 mass parts of (E1) component are contained with respect to 100 mass parts of total of (D) component. A dissolved benzoxazine resin composition.
(A)分子中に式(1)で表されるベンゾオキサジン環を有する化合物と、
Figure 2012036347
(式中、R1は、炭素数1〜12の鎖状アルキル基、炭素数3〜8の環状アルキル基、フェニル基、又は炭素数1〜12の鎖状アルキル基若しくはハロゲンで置換されたフェニル基を示す。また、式中の芳香環の酸素原子が結合している炭素原子のオルト位とパラ位の少なくとも一方の炭素原子には水素原子が結合している。)
(B)エポキシ樹脂と、(C)硬化剤と、(D)靭性向上剤と、(E2)平均粒径15μm以上60μm以下のポリアミド12粉末を含み、
(A)成分及び(B)成分の含有割合が合計100質量%となるように、(A)成分65〜78質量%、及び(B)成分22〜35質量%を含み、(A)成分及び(B)成分の合計100質量部に対して、(C)成分5〜20質量部、(D)成分3〜20質量部及び(E2)成分5〜20質量部含有し、(D)成分が溶解しているベンゾオキサジン樹脂組成物。
(A) a compound having a benzoxazine ring represented by formula (1) in the molecule;
Figure 2012036347
(In the formula, R 1 represents a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a phenyl group substituted with a chain alkyl group having 1 to 12 carbon atoms or a halogen. In addition, in the formula, a hydrogen atom is bonded to at least one of the ortho-position and para-position of the carbon atom to which the oxygen atom of the aromatic ring is bonded.)
(B) an epoxy resin, (C) a curing agent, (D) a toughness improver, and (E2) a polyamide 12 powder having an average particle size of 15 μm to 60 μm,
Including (A) component 65-78 mass% and (B) component 22-35 mass% so that the content rate of (A) component and (B) component may be 100 mass% in total, (A) component and (B) 5 to 20 parts by mass of component (C), 3 to 20 parts by mass of component (D) and 5 to 20 parts by mass of component (E2) with respect to 100 parts by mass of component (D) A dissolved benzoxazine resin composition.
(D)靭性向上剤が、無機微粒子、有機微粒子、あるいは無機微粒子及び/又は有機微粒子を液状樹脂あるいは樹脂モノマー中に分散させたものからなる群より選択される少なくとも1種である請求項1又は2記載のベンゾオキサジン樹脂組成物。   (D) The toughness improver is at least one selected from the group consisting of inorganic fine particles, organic fine particles, or inorganic fine particles and / or organic fine particles dispersed in a liquid resin or resin monomer. The benzoxazine resin composition according to 2. (B)エポキシ樹脂が、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、芳香族系グリシジルエステル型エポキシ樹脂、芳香族系アミン型エポキシ樹脂、レゾルシン型エポキシ樹脂、又は脂環式エポキシ樹脂からなる群から選ばれた少なくとも1種類のエポキシ樹脂である請求項1〜3のいずれかに記載のベンゾオキサジン樹脂組成物。   (B) The epoxy resin is a cresol novolac epoxy resin, a phenol novolac epoxy resin, a biphenyl epoxy resin, a naphthalene epoxy resin, an aromatic glycidyl ester epoxy resin, an aromatic amine epoxy resin, or a resorcin epoxy resin The benzoxazine resin composition according to claim 1, which is at least one epoxy resin selected from the group consisting of alicyclic epoxy resins. (C)硬化剤が、芳香族アミン、単官能フェノール、多官能フェノール化合物、又はポリフェノール化合物からなる群より選択される少なくとも1種である請求項1〜4のいずれかに記載のベンゾオキサジン樹脂組成物。   The benzoxazine resin composition according to any one of claims 1 to 4, wherein (C) the curing agent is at least one selected from the group consisting of an aromatic amine, a monofunctional phenol, a polyfunctional phenol compound, or a polyphenol compound. object. 請求項1〜5のいずれかに記載のベンゾオキサジン樹脂組成物を強化繊維基材に含浸してなるプリプレグ。   A prepreg formed by impregnating a reinforcing fiber substrate with the benzoxazine resin composition according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載のベンゾオキサジン樹脂組成物の硬化物と繊維強化基材とからなる繊維強化複合材料。   A fiber-reinforced composite material comprising a cured product of the benzoxazine resin composition according to claim 1 and a fiber-reinforced base material. SACMA SRM 2R−94に従い測定した衝撃後圧縮強度(CAI)が290MPa以上、ASTM D2402−07に従い測定した層間せん断強度(ILSS)が50MPa以上、ASTEM D5045に従い測定した曲げ破壊靱性が1.2MPa・m1/2以上であり、かつ前記ベンゾオキサジン樹脂組成物を180℃、2時間の条件で硬化させた硬化物のガラス転移温度が190℃以上である請求項7記載の繊維強化複合材料。 Compressive strength after impact (CAI) measured according to SACMA SRM 2R-94 is 290 MPa or more, Interlaminar shear strength (ILSS) measured according to ASTM D2402--07 is 50 MPa or more, and bending fracture toughness measured according to ASTM D5045 is 1.2 MPa · m is 1/2 or more, and the benzoxazine resin composition 180 ° C., fiber-reinforced composite material according to claim 7, wherein the glass transition temperature of 190 ° C. or higher of a cured product obtained by curing under conditions of 2 hours.
JP2010180355A 2010-08-11 2010-08-11 Benzoxazine resin composition and fiber reinforced composite material Active JP5584047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180355A JP5584047B2 (en) 2010-08-11 2010-08-11 Benzoxazine resin composition and fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180355A JP5584047B2 (en) 2010-08-11 2010-08-11 Benzoxazine resin composition and fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2012036347A true JP2012036347A (en) 2012-02-23
JP5584047B2 JP5584047B2 (en) 2014-09-03

Family

ID=45848679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180355A Active JP5584047B2 (en) 2010-08-11 2010-08-11 Benzoxazine resin composition and fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5584047B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157097A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157101A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157100A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157099A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Production method for fiber-reinforced composite material
WO2014157098A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2016060166A1 (en) * 2014-10-16 2016-04-21 三菱レイヨン株式会社 Resin composition and press-molded article of same
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
JP2019182897A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Thermoplastic resin composition, thermoplastic resin molded body and manufacturing method therefor
CN111372994A (en) * 2017-11-27 2020-07-03 纳美仕有限公司 Film-like semiconductor sealing material
CN111662532A (en) * 2019-03-07 2020-09-15 味之素株式会社 Resin composition
CN114573879A (en) * 2022-04-01 2022-06-03 扬州超峰汽车内饰件有限公司 Bio-based fiber composite material resin and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397596B2 (en) 2019-08-02 2023-12-13 株式会社Subaru Fiber-reinforced resin composite material and method for producing fiber-reinforced resin composite material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948914A (en) * 1995-08-03 1997-02-18 Sutaaraito Kogyo Kk Molded gear
WO1999002586A1 (en) * 1997-07-11 1999-01-21 Toray Industries, Inc. Prepreg fabric and honeycomb sandwich panel
JP2002069294A (en) * 2000-08-25 2002-03-08 Bando Chem Ind Ltd Toner-resistant sliding polyamide resin composition and resin gear using the same
JP2006233188A (en) * 2005-01-31 2006-09-07 Toray Ind Inc Prepreg for composite material and composite material
JP2007016121A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Prepreg for composite material and composite material
JP2009286895A (en) * 2008-05-29 2009-12-10 Mitsubishi Rayon Co Ltd Prepreg and method for forming fiber-reinforced composite material
JP2010013636A (en) * 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using it
JP2010505990A (en) * 2006-10-02 2010-02-25 ヘクセル コンポジット、リミテッド Composite materials with improved performance
JP2010525102A (en) * 2007-04-17 2010-07-22 ヘクセル コーポレイション Pre-impregnated composite material with improved performance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0948914A (en) * 1995-08-03 1997-02-18 Sutaaraito Kogyo Kk Molded gear
WO1999002586A1 (en) * 1997-07-11 1999-01-21 Toray Industries, Inc. Prepreg fabric and honeycomb sandwich panel
JP2002069294A (en) * 2000-08-25 2002-03-08 Bando Chem Ind Ltd Toner-resistant sliding polyamide resin composition and resin gear using the same
JP2006233188A (en) * 2005-01-31 2006-09-07 Toray Ind Inc Prepreg for composite material and composite material
JP2007016121A (en) * 2005-07-07 2007-01-25 Toray Ind Inc Prepreg for composite material and composite material
JP2010505990A (en) * 2006-10-02 2010-02-25 ヘクセル コンポジット、リミテッド Composite materials with improved performance
JP2010525102A (en) * 2007-04-17 2010-07-22 ヘクセル コーポレイション Pre-impregnated composite material with improved performance
JP2009286895A (en) * 2008-05-29 2009-12-10 Mitsubishi Rayon Co Ltd Prepreg and method for forming fiber-reinforced composite material
JP2010013636A (en) * 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using it

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980134A4 (en) * 2013-03-29 2016-11-09 Jx Nippon Oil & Energy Corp Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157100A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
EP2980137A4 (en) * 2013-03-29 2016-11-09 Jx Nippon Oil & Energy Corp Prepreg, fiber-reinforced composite material, and resin composition containing particles
EP2980136A4 (en) * 2013-03-29 2016-11-16 Jx Nippon Oil & Energy Corp Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157098A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
CN105189624A (en) * 2013-03-29 2015-12-23 吉坤日矿日石能源株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
US20160039984A1 (en) * 2013-03-29 2016-02-11 Jx Nippon Oil & Energy Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157097A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
US10577470B2 (en) 2013-03-29 2020-03-03 Subaru Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157101A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2014157099A1 (en) * 2013-03-29 2014-10-02 Jx日鉱日石エネルギー株式会社 Production method for fiber-reinforced composite material
EP2980135A4 (en) * 2013-03-29 2016-12-14 Jx Nippon Oil & Energy Corp Prepreg, fiber-reinforced composite material, and resin composition containing particles
JPWO2014157098A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JPWO2014157101A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JPWO2014157100A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
JPWO2014157099A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Manufacturing method of fiber reinforced composite material
JPWO2014157097A1 (en) * 2013-03-29 2017-02-16 Jxエネルギー株式会社 Prepreg, fiber reinforced composite material and particle-containing resin composition
US9745471B2 (en) 2013-03-29 2017-08-29 Jx Nippon Oil & Energy Corporation Prepreg, fiber-reinforced composite material, and resin composition containing particles
WO2016060166A1 (en) * 2014-10-16 2016-04-21 三菱レイヨン株式会社 Resin composition and press-molded article of same
JPWO2016060166A1 (en) * 2014-10-16 2017-04-27 三菱レイヨン株式会社 Resin composition and press-molded body thereof
JP6094686B2 (en) * 2014-10-16 2017-03-15 三菱レイヨン株式会社 Resin composition and press-molded body thereof
US10363724B2 (en) 2014-10-16 2019-07-30 Mitsubishi Chemical Corporation Resin composition and compression-molded article of same
CN106459561A (en) * 2014-10-16 2017-02-22 三菱丽阳株式会社 Resin composition and press-molded article of same
JP2017206615A (en) * 2016-05-18 2017-11-24 三菱ケミカル株式会社 Method for producing fiber-reinforced composite material
CN111372994A (en) * 2017-11-27 2020-07-03 纳美仕有限公司 Film-like semiconductor sealing material
CN111372994B (en) * 2017-11-27 2023-03-14 纳美仕有限公司 Film-like semiconductor sealing material
JP2019182897A (en) * 2018-04-02 2019-10-24 株式会社豊田中央研究所 Thermoplastic resin composition, thermoplastic resin molded body and manufacturing method therefor
JP7102870B2 (en) 2018-04-02 2022-07-20 株式会社豊田中央研究所 Thermoplastic resin composition, thermoplastic resin molded product and method for producing the same
CN111662532A (en) * 2019-03-07 2020-09-15 味之素株式会社 Resin composition
CN114573879A (en) * 2022-04-01 2022-06-03 扬州超峰汽车内饰件有限公司 Bio-based fiber composite material resin and preparation method thereof

Also Published As

Publication number Publication date
JP5584047B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5785112B2 (en) Fiber reinforced composite material
JP5584047B2 (en) Benzoxazine resin composition and fiber reinforced composite material
JP5698000B2 (en) Benzoxazine resin composition
JP5739361B2 (en) Fiber reinforced composite material
EP2762528B1 (en) Benzoxazine resin composition, and fiber-reinforced composite material
JP5785111B2 (en) Fiber reinforced composite material
JP5912920B2 (en) Fiber reinforced composite material
JP5912922B2 (en) Fiber reinforced composite material
JP6422857B2 (en) Prepreg, fiber reinforced composite material and particle-containing resin composition
JP5912921B2 (en) Fiber reinforced composite material
WO2014157101A1 (en) Prepreg, fiber-reinforced composite material, and resin composition containing particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250