JP2009280417A - Anode-joinable ceramic composition for low temperature sintering - Google Patents

Anode-joinable ceramic composition for low temperature sintering Download PDF

Info

Publication number
JP2009280417A
JP2009280417A JP2008131270A JP2008131270A JP2009280417A JP 2009280417 A JP2009280417 A JP 2009280417A JP 2008131270 A JP2008131270 A JP 2008131270A JP 2008131270 A JP2008131270 A JP 2008131270A JP 2009280417 A JP2009280417 A JP 2009280417A
Authority
JP
Japan
Prior art keywords
powder
glass
ceramic
ceramic powder
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131270A
Other languages
Japanese (ja)
Inventor
Mamoru Mori
護 毛利
Yoichi Kobayashi
洋一 小林
Naoki Kitani
直樹 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Co Ltd
Nikko KK
Original Assignee
Nikko Co Ltd
Nikko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Co Ltd, Nikko KK filed Critical Nikko Co Ltd
Priority to JP2008131270A priority Critical patent/JP2009280417A/en
Publication of JP2009280417A publication Critical patent/JP2009280417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide LTCC (low temperature co-fired ceramic), and to provide an anode-joinable ceramic composition for low temperature sintering even if a glass component is reduced. <P>SOLUTION: Disclosed is a ceramic composition for low temperature sintering comprising movable ion-containing anode-joinable glass powder and ceramic powder, and having purity and a composition with which the ceramic powder does not form a reaction crystal phase with a glass component upon sintering. The ceramic powder is preferably composed of a mixture of ceramic powder whose thermal expansion coefficient is higher than that of the glass of the glass powder and ceramic powder whose thermal expansion coefficient is lower than that of the glass of the glass powder. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は陽極接合が可能な低温焼結用磁器組成物、前記組成物からなるグリーンシート、前記組成物を成形及び焼結してなる貫通配線基板等に用いることのできる焼結基板、及びこの貫通配線基板を用いウエハレベルパッケージングしてなるMEMS(Micro Electro Mechanical Systems)素子に関する。   The present invention relates to a ceramic composition for low-temperature sintering capable of anodic bonding, a green sheet made of the composition, a sintered substrate that can be used for a through wiring board formed by molding and sintering the composition, and the like The present invention relates to a MEMS (Micro Electro Mechanical Systems) element formed by wafer level packaging using a through wiring substrate.

陽極接合は、ホウケイ酸ガラスに代表されるようなアルカリ金属を含むガラスとシリコンを接触させた状態で、ガラス中のナトリウムなどのアルカリ金属イオンが動き易い温度まで加熱し、シリコン側を正、ガラス側を負の電極に接続して数百〜千ボルト程度の直流電圧を印加することにより、ガラスとシリコンを接合する方法である。アルカリ金属イオンが負極側に移動した際に生じる非架橋酸素イオンとシリコンが静電的に引き合い、ガラス−シリコン界面で化学結合を生じることにより、強固で信頼性の高い接合が得られ、圧力センサや加速度センサなどの実装技術として多用されている。   In anodic bonding, glass containing alkali metal, such as borosilicate glass, is in contact with silicon and heated to a temperature at which alkali metal ions such as sodium in the glass can easily move. This is a method of joining glass and silicon by connecting a side to a negative electrode and applying a DC voltage of about several hundred to 1,000 volts. Non-bridging oxygen ions generated when alkali metal ions move to the negative electrode side and silicon are electrostatically attracted to form a chemical bond at the glass-silicon interface, resulting in a strong and reliable bond, and a pressure sensor It is often used as a mounting technology for sensors and acceleration sensors.

MEMSデバイスは多くがダイレベルパッケージングで製造されている。このパッケージング方法は次のようなプロセスによって製造される。
1.ウエハ状態で製造されたMEMS素子をダイシングし個片化させる。
2.個片化させたMEMS素子を接合材が塗布されている実装基板に1素子ずつ搭載し加熱処理などによって接合させる。
3.MEMS素子は可動部をもつため水分や粒子などの影響を受けるので実装基板に蓋を搭載し気密封止する。
Many MEMS devices are manufactured with die level packaging. This packaging method is manufactured by the following process.
1. The MEMS element manufactured in the wafer state is diced into individual pieces.
2. The separated MEMS elements are mounted one by one on a mounting substrate to which a bonding material is applied, and bonded by heat treatment or the like.
3. Since the MEMS element has a movable part and is affected by moisture and particles, a lid is mounted on the mounting substrate and hermetically sealed.

ダイレベルパッケージングは多くの工程があるだけでなく、可動部のような壊れ易い構造をもつMEMS素子を保護なしで流すことは歩留まりも悪くなる原因となる。またパッケージはMEMSデバイスよりもかなり大きな寸法を必要とし、小型化・低背化の観点から好ましくない。しかも、パッケージコストがMEMSデバイスコストの80%近くを占めており、普及の障害になっているといわれている。   Die level packaging not only has many processes, but flowing a MEMS element having a fragile structure such as a movable part without protection causes a decrease in yield. Further, the package requires a considerably larger size than the MEMS device, which is not preferable from the viewpoint of miniaturization and low profile. Moreover, the package cost accounts for nearly 80% of the MEMS device cost, which is said to be an obstacle to popularization.

この解決策としてウエハレベルパッケージングが提案され活発に開発されている。このパッケージング方法はウエハ状態のMEMS素子をそのまま実装基板に接合させ,その後ダイシングし個片化することで製造される。最小に簡略化されたプロセスでありパッケージ寸法もチップと同等にできる。
このウエハレベルパッケージングでMEMSデバイスを製造するためには、実装基板に貫通配線が必要である。MEMSデバイスの電極と接合した実装基板側の電極を裏面に取り出す必要があるからである。この貫通配線基板材料としてガラスやシリコンに貫通孔をあけ導体材料を埋めたものが使われている。
Wafer level packaging has been proposed and actively developed as a solution. This packaging method is manufactured by bonding a wafer-state MEMS element to a mounting substrate as it is, and then dicing into individual pieces. The process is minimally simplified and the package dimensions can be made the same as the chip.
In order to manufacture a MEMS device by this wafer level packaging, a through wiring is required on the mounting substrate. This is because it is necessary to take out the electrode on the mounting substrate side bonded to the electrode of the MEMS device to the back surface. As the through wiring board material, a glass or silicon having a through hole and filled with a conductive material is used.

ガラスへの孔加工として用いられているドリル加工は孔形状はよいものの孔サイズとピッチの微細化に限界があり、またウエハ中の穴数が増えると削れなくなるために孔数に限界がある。またサンドブラスト加工は一度に多くの孔加工が同時にできるものの孔形状が悪く孔サイズやピッチにも限界がある。孔加工後貫通配線処理を行うことになるが、複雑な工程が必要である。実用化されている例では孔側面の金属化処理、導電用金属芯材の挿入、ロウ材の流し込み、鏡面研磨の順で仕上げられる。コストが高く微細化・大口径化に限界がある。   Although the drilling used for drilling glass has a good hole shape, there is a limit to the refinement of the hole size and pitch, and there is a limit to the number of holes because the number of holes in the wafer cannot be reduced. In addition, although sand blasting can simultaneously process many holes at the same time, the hole shape is poor and the hole size and pitch are limited. Although through wiring processing is performed after drilling, a complicated process is required. In an example that is put into practical use, finishing is performed in the order of metallization treatment of the hole side surface, insertion of a conductive metal core material, pouring of a brazing material, and mirror polishing. Cost is high and there is a limit to miniaturization and large diameter.

シリコンはDeep RIE装置を用いて微細な孔加工が可能であるが、Deep RIE装置は非常に高価で処理時間もかかる。孔加工後ガラスと同様複雑な工程で貫通配線基板が作られている。絶縁のための酸化処理、電気めっき用のシード層形成、電気めっきによる穴埋め、鏡面研磨の順で仕上げられる。また陽極接合できないのでプラズマ金属活性化法や常温接合などでシリコンMEMSウエハと接合されるが、接合装置がかなり高価で接合処理時間もかかる。微細な基板が作れるが、設備投資が相当必要でコストも高い点が課題である。   Silicon can be drilled with a deep RIE apparatus, but the Deep RIE apparatus is very expensive and takes a long processing time. Through-hole wiring boards are made in the same complicated process as glass after hole processing. It is finished in the order of oxidation treatment for insulation, seed layer formation for electroplating, hole filling by electroplating, and mirror polishing. In addition, since anodic bonding cannot be performed, the silicon MEMS wafer is bonded to the silicon MEMS wafer by plasma metal activation or room temperature bonding. However, the bonding apparatus is quite expensive and takes a long time for bonding. Although a fine substrate can be made, the problem is that it requires considerable capital investment and the cost is high.

多層配線基板として、低温同時焼成セラミックス(LTCC)基板が広く知られている。LTCC基板は、一般には、セラミックス材料にガラス等を加えた混合材料に有機バインダーを加えてシート化したグリーンシートを用い、そのシートに上下に接続するための貫通孔を開け、導体を含んだペーストを貫通孔の中およびグリーンシート表面に印刷し、ついでこれらのグリーンシートを正確に積み重ね、加熱加圧により積層して一体化した後、焼成することにより製造される。
LTCC基板への孔あけはグリーンシートにパンチピンもしくはレーザー加工により行なうことができるため容易で量産性も高い。また孔あけされたグリーンシートへの導体充填も汎用技術であるスクリーン印刷で容易に行うことができる。
ガラスやシリコンでは多層配線が困難であるが、LTCC基板はグリーンシートを何枚も積み重ねて製造するので容易に多層基板とすることができる。内層で再配線設計が可能なのでMEMSチップ側の電極パッド位置と2次実装側の電極パッドの位置を気にする必要がなく配線設計の自由度があがる。必要があればLTCC基板でよく用いられているようにコンデンサやコイルなどの受動部品を内蔵させて高機能化させることも可能である。このようにLTCC基板は現在使われているMEMS貫通配線電極基板材料であるガラスやシリコンと比べると製造が容易でコストも低減できると考えられる。
しかし、熱膨張係数がシリコンと整合性していなかったり、シリコンとの接合方法が半田、ロウ材、ガラス、有機系接着剤など介在物を用いる方法しかないためウエハと接合させる際の信頼性の観点で採用が難しかった。
As a multilayer wiring board, a low temperature co-fired ceramic (LTCC) substrate is widely known. The LTCC substrate is generally a paste containing a conductor using a green sheet made by adding an organic binder to a mixed material in which glass or the like is added to a ceramic material, and through-holes are formed in the sheet to connect up and down. Are printed in the through holes and on the surface of the green sheet, and then these green sheets are accurately stacked, laminated by heating and pressurizing, and then fired.
Since drilling in the LTCC substrate can be performed on the green sheet by punch pins or laser processing, it is easy and has high mass productivity. Also, conductor filling into the perforated green sheet can be easily performed by screen printing, which is a general-purpose technique.
Although multilayer wiring is difficult with glass or silicon, the LTCC substrate is manufactured by stacking a number of green sheets, so that it can be easily formed into a multilayer substrate. Since rewiring design is possible in the inner layer, it is not necessary to care about the position of the electrode pad on the MEMS chip side and the position of the electrode pad on the secondary mounting side, and the degree of freedom in wiring design is increased. If necessary, it is possible to increase the functionality by incorporating passive components such as capacitors and coils, as is often used in LTCC substrates. Thus, it is considered that the LTCC substrate is easy to manufacture and can be reduced in cost as compared with glass and silicon, which are currently used MEMS through wiring electrode substrate materials.
However, the thermal expansion coefficient is not consistent with silicon, or the only bonding method with silicon is the use of inclusions such as solder, brazing material, glass, and organic adhesives. It was difficult to adopt from a viewpoint.

特許文献1にはシリコンと陽極接合可能なガラスセラミック(LTCC)、具体的には、アルカリ金属を含むガラス粉末とアルミナとコージェライト及び/またはシリカガラスとからなるセラミック粉末を用いた低温焼結セラミックスが記載されている。ガラス粉末としては2.6%程度のNa成分を含む硼珪酸ガラスを用いており、熱膨張係数はシリコンとほぼ同等な3.4ppm/℃であるとしている。組成は硼珪酸ガラス:60〜70wt%、アルミナ:10〜20wt%、コーディエライトもしくはシリカガラス:8〜25%でありNa成分の含有量は1.5%以上である。   Patent Document 1 discloses a glass ceramic (LTCC) capable of anodic bonding with silicon, specifically, a low-temperature sintered ceramic using a glass powder containing an alkali metal and a ceramic powder made of alumina, cordierite and / or silica glass. Is described. As the glass powder, borosilicate glass containing about 2.6% of Na component is used, and the thermal expansion coefficient is 3.4 ppm / ° C. which is almost equivalent to silicon. The composition is borosilicate glass: 60 to 70 wt%, alumina: 10 to 20 wt%, cordierite or silica glass: 8 to 25%, and the content of Na component is 1.5% or more.

WO2005/042426WO2005 / 042426

陽極接合はシリコンだけでなくGaAsやコバール、Al、Tiなどとも接合可能な技術であり、より多角的な低温セラミックス組成が望まれる。またLTCCに用いられるガラスは高価であり強度や熱伝導率の観点からも、その使用量はできるだけ少量とすべきである。
したがって、本発明の課題は、貫通配線基板が容易に作れる低温焼結基板に用いる磁器組成物であって、陽極接合を可能としガラス成分を出来るだけ少量とした磁器組成物を提供とすることにある。
Anodic bonding is a technique that can bond not only silicon but also GaAs, Kovar, Al, Ti, and the like, and a more versatile low-temperature ceramic composition is desired. Moreover, the glass used for LTCC is expensive, and its usage should be as small as possible from the viewpoint of strength and thermal conductivity.
Accordingly, an object of the present invention is to provide a porcelain composition used for a low-temperature sintered substrate from which a through wiring substrate can be easily produced, and capable of anodic bonding and having a glass component as small as possible. is there.

本発明者らは、陽極接合できるガラス及びセラミックスを含有する低温焼結用磁器組成において、ガラスが有する陽極接合性を阻害しない組成が重要であること、そのような組成は焼結によってガラスがセラミックス等と反応することなく非晶質な状態を保てるものとすべきこと、そして焼結によりガラスとセラミックスまたは不純物等との反応生成物(反応結晶相)が生じると、陽極接合時に可動イオンとして働くアルカリ金属イオンが結晶中に固定化されるために接合電流が流れず、陽極接合が十分に行なわれないことを見出した。
また、陽極接合は固相−固相の直接接合なので、用いる磁器組成物は陽極接合する相手方の材質と熱膨張物性が近似していることが重要であり、そのためにガラス粉末よりも熱膨張の大きなセラミックス材料と小さなセラミックス材料を複合して用いることで熱膨張物性を容易に調整できることを見出した。
In the low-temperature sintering porcelain composition containing glass and ceramics that can be anodically bonded, the present inventors consider that a composition that does not hinder the anodic bondability of glass is important, and that such a composition is obtained by sintering glass to ceramics. It should be able to maintain an amorphous state without reacting with the material, and if a reaction product (reaction crystal phase) between glass and ceramics or impurities is generated by sintering, it acts as a mobile ion during anodic bonding It has been found that since the alkali metal ions are fixed in the crystal, the junction current does not flow and anodic bonding is not sufficiently performed.
In addition, since anodic bonding is a solid-solid direct bonding, it is important that the porcelain composition used has similar thermal expansion properties to the material of the other party to be anodic bonded, and therefore the thermal expansion of glass composition is higher than that of glass powder. It has been found that the physical properties of thermal expansion can be easily adjusted by combining a large ceramic material and a small ceramic material.

すなわち、本発明は以下の構成からなる。
[1]可動イオンを含む陽極接合可能なガラス粉末とセラミック粉末とを含み、前記セラミック粉末が焼結時にガラス成分と反応結晶相を形成しない純度および組成を有することを特徴とする低温焼結用磁器組成物。
[2]前記セラミック粉末は、ガラス粉末のガラスよりも熱膨張係数の大きなセラミック粉末と熱膨張係数の小さなセラミック粉末との混合物である前記1に記載の磁器組成物。
[3]セラミック粉末が、アルミナ粉末とコージェライト粉末の混合物である前記2に記載の磁器組成物。
[4]可動イオンが、ナトリウムイオンまたはリチウムイオンである前記1〜3のいずれかに記載の磁器組成物。
[5]Na2Oを2質量%以上5質量%以下含むガラス粉末を55質量%以上60質量%以下、アルミナ粉末を8質量%以上25質量%以下、コージェライト粉末を18質量%以上34質量%以下含有することを特徴とする低温焼結用磁器組成物。
[6]組成が、酸化物の質量%表示で
Al23:21〜33%
SiO2:55〜65%
23:5〜7%
MgO:2〜5%
Na2O:1〜3%
である前記5に記載の磁器組成物。
[7]前記1〜6のいずれかに記載の磁器組成物及び有機バインダーを含むことを特徴とするグリーンシート。
[8]前記1〜6のいずれかに記載の磁器組成物を成形及び焼成してなり、熱膨張係数が3.0〜4.0ppm/℃であることを特徴とする焼結基板。
[9]前記7に記載のグリーンシートを1枚または複数枚用いてなる貫通配線基板。
[10]前記9に記載の貫通配線基板とMEMS素子が形成されたシリコンウェハとを陽極接合した後ダイシングしてなるMEMS素子。
That is, the present invention has the following configuration.
[1] For low-temperature sintering, comprising an anodic bondable glass powder containing mobile ions and a ceramic powder, wherein the ceramic powder has a purity and composition that does not form a reaction crystal phase with a glass component during sintering. Porcelain composition.
[2] The porcelain composition according to 1 above, wherein the ceramic powder is a mixture of a ceramic powder having a larger thermal expansion coefficient than a glass powder glass and a ceramic powder having a smaller thermal expansion coefficient.
[3] The porcelain composition according to 2, wherein the ceramic powder is a mixture of alumina powder and cordierite powder.
[4] The porcelain composition according to any one of the above items 1 to 3, wherein the movable ions are sodium ions or lithium ions.
[5] 55 to 60% by weight of glass powder containing 2 to 5% by weight of Na 2 O, 8 to 25% by weight of alumina powder, and 18 to 34% by weight of cordierite powder % Or less of the porcelain composition for low-temperature sintering.
[6] The composition is expressed by mass% of the oxide. Al 2 O 3 : 21 to 33%
SiO 2: 55~65%
B 2 O 3: 5~7%
MgO: 2-5%
Na 2 O: 1-3%
6. The porcelain composition according to 5 above.
[7] A green sheet comprising the porcelain composition according to any one of 1 to 6 and an organic binder.
[8] A sintered substrate obtained by molding and firing the porcelain composition according to any one of 1 to 6, and having a thermal expansion coefficient of 3.0 to 4.0 ppm / ° C.
[9] A through wiring substrate using one or a plurality of the green sheets as described in 7 above.
[10] A MEMS element formed by anodically bonding the through wiring substrate according to 9 and a silicon wafer on which the MEMS element is formed, and then dicing.

また本発明は以下の方法をも提供する。
[11]陽極接合するための低温焼結用磁器組成をスクリーニングする方法であって、可動イオンを含み陽極接合可能なガラス粉末とセラミック粉末からなる磁器組成物を成形および焼成した基板とシリコンとを陽極接合したときの接合の程度に基づいてセラミック粉末の純度、配合割合および/または種類を変更し、所定の接合程度となる組成をスクリーニングする方法。
[12]ガラス粉末の配合量が全体の65質量%以下である前記11に記載のスクリーニング方法。
The present invention also provides the following method.
[11] A method for screening a ceramic composition for low-temperature sintering for anodic bonding, comprising a substrate formed by molding and firing a ceramic composition comprising glass powder and ceramic powder containing movable ions and anodic bonding, and silicon A method of screening a composition that achieves a predetermined bonding degree by changing the purity, blending ratio and / or type of ceramic powder based on the degree of bonding when anodic bonding is performed.
[12] The screening method according to 11 above, wherein the amount of the glass powder blended is 65% by mass or less.

本発明で使用するガラス粉末は、陽極接合可能なものであれば特に限定されず、市販のものも含め広く使用が可能である。陽極接合可能なガラス粉末は可動イオンを含んでおり、可動イオンとしてはナトリウムイオン、リチウムイオンなどのアルカリ金属イオンが挙げられる。可動イオンの量は、他の組成とも関連するが、通常、ガラス中に2〜6質量%、全無機物中に1〜3質量%程度が好ましい。
ガラスの一例を挙げると、例えば、ホウケイ酸ガラス(化学組成:SiO2−B23−Na2O)、SiO2−B23−Li2Oなどが挙げられる。
The glass powder used in the present invention is not particularly limited as long as it can be anodically bonded, and can be widely used including commercially available ones. The glass powder capable of anodic bonding contains mobile ions, and examples of the mobile ions include alkali metal ions such as sodium ions and lithium ions. Although the amount of mobile ions is related to other compositions, it is usually preferably about 2 to 6% by mass in the glass and about 1 to 3% by mass in the total inorganic matter.
As an example of glass, for example, borosilicate glass (chemical composition: SiO 2 -B 2 O 3 -Na 2 O), etc. SiO 2 -B 2 O 3 -Li 2 O and the like.

本発明で使用するセラミック粉末としては、アルミナ粉末、コージェライト粉末、ジルコニア粉末、ステアタイト粉末、フォルステライト粉末、ジルコン粉末等が挙げられ、これを単独であるいは二種以上混合して用いることができるが、焼結時にガラス成分と反応結晶相を形成するような成分(不純物を含む)を含まないものであることが必要である。反応結晶相を形成し得る成分の量が多くなると、ガラス粉末を多量に使用しなければ陽極接合強度が低下するか、あるいは接合することができなくなる。
コージェライト粉末を例にとると、コージェライト粉末は天然原料から合成されるものが多いが、含まれる不純物の影響でガラス粉末と混合・焼成した場合、反応結晶相が形成されやすい。そのため、精製された原料粉末から合成されたコーディエライト粉末を用いることが好ましい。
Examples of the ceramic powder used in the present invention include alumina powder, cordierite powder, zirconia powder, steatite powder, forsterite powder, zircon powder, and the like, which can be used alone or in combination of two or more. However, it is necessary not to include a component (including impurities) that forms a reaction crystal phase with a glass component during sintering. When the amount of the component capable of forming the reaction crystal phase is increased, the anodic bonding strength is reduced or the bonding cannot be performed unless a large amount of glass powder is used.
Taking cordierite powder as an example, cordierite powder is often synthesized from natural raw materials, but when it is mixed and fired with glass powder under the influence of impurities contained, a reaction crystal phase is likely to be formed. Therefore, it is preferable to use cordierite powder synthesized from purified raw material powder.

ガラス粉末とセラミック粉末の組成は、焼結時にガラス成分と反応結晶相を形成しないものであればよいが、ガラスの量を低減するという観点からは、ガラス量は全無機物中の65質量%以下が好ましく、さらに好ましくは60質量%以下、特に好ましくは60質量%未満である。その結果、セラミック粉末の配合割合は相対的に増加することとなる。セラミック粉末は陽極接合には貢献せず、陽極接合においてセラミックス部分は未接合部分となり、セラミック粉末の配合割合が増加するにつれて陽極接合は行われにくくなる。本発明はそのような範囲においても陽極接合が十分に行われるような組成物とし得るように、各種材料種や組成、不純物量を選択する。   The composition of the glass powder and the ceramic powder is not limited as long as it does not form a reaction crystal phase with the glass component at the time of sintering. From the viewpoint of reducing the amount of glass, the glass amount is 65% by mass or less in the total inorganic matter. Is preferable, more preferably 60% by mass or less, and particularly preferably less than 60% by mass. As a result, the mixing ratio of the ceramic powder is relatively increased. The ceramic powder does not contribute to the anodic bonding, and the ceramic portion becomes an unbonded portion in the anodic bonding, and the anodic bonding becomes difficult to be performed as the mixing ratio of the ceramic powder increases. In the present invention, various kinds of materials, compositions, and amounts of impurities are selected so that the composition can sufficiently perform anodic bonding even in such a range.

また、陽極接合において、相手材との熱膨張による位置ずれ等の問題から、本発明の焼結基板用の磁器組成物の熱膨張挙動は、相手材の熱膨張挙動と近似することが求められる。その観点からも、本発明組成物の組成としてセラミック粉末の種類および量が調整される。具体的には、本発明の組成物は、成形焼成後の材料の熱膨張率が相手材の熱膨張率の0.5%以内となるように調整されることが好ましい。相手材がシリコンの場合には本発明組成物の熱膨張係数は3.0〜4.0ppm/℃が望ましく、さらには3.2〜3.8ppm/℃が望ましく、特に望ましくは3.2〜3.5ppm/℃である。
本発明の組成物の熱膨張係数を調整する方法としては、セラミック粉末として、ガラス粉末のガラスよりも熱膨張係数の大きなセラミック粉末と熱膨張係数の小さなセラミック粉末との混合物を用い、その配合量を調整することにより容易に行うことができる。
なお、本明細書において熱膨張係数は石英(SiO2)標準試料を用いた示差膨張方式に基づいて測定したものである。
Further, in anodic bonding, due to problems such as misalignment due to thermal expansion with the counterpart material, the thermal expansion behavior of the ceramic composition for the sintered substrate of the present invention is required to approximate the thermal expansion behavior of the counterpart material. . Also from that viewpoint, the kind and amount of the ceramic powder are adjusted as the composition of the composition of the present invention. Specifically, the composition of the present invention is preferably adjusted so that the coefficient of thermal expansion of the material after molding and firing is within 0.5% of the coefficient of thermal expansion of the counterpart material. When the counterpart material is silicon, the thermal expansion coefficient of the composition of the present invention is preferably 3.0 to 4.0 ppm / ° C, more preferably 3.2 to 3.8 ppm / ° C, and particularly preferably 3.2. 3.5 ppm / ° C.
As a method for adjusting the coefficient of thermal expansion of the composition of the present invention, as a ceramic powder, a mixture of a ceramic powder having a thermal expansion coefficient larger than that of glass of glass powder and a ceramic powder having a small thermal expansion coefficient is used. This can be easily done by adjusting.
In this specification, the thermal expansion coefficient is measured based on a differential expansion method using a quartz (SiO 2 ) standard sample.

以下に、本発明の組成物の一例として、セラミック粉末としてアルミナ粉末とコージェライト粉末を用いた場合について説明する。
ガラス粉末としてはNa2O等の可動イオン成分を2質量%以上5質量%以下含むものが好ましく、そのガラス粉末を全無機物の量に対して好ましくは53質量%以上62質量%以下、さらに好ましくは55質量%以上60質量%以下使用する。ガラス粉末の量が多くなると、経済的にも不利である上に強度が不十分となりやすいなどの問題がある。可動イオンの量が少なすぎると陽極接合時の接合強度が弱く、多すぎると絶縁性の低下が懸念される。
アルミナ粉末の配合量は、全無機物の量に対して5〜30質量%が好ましく、さらに好ましくは8〜25質量%である。アルミナ粉末の量が少なすぎると熱膨張係数が低くなりすぎ、多すぎると熱膨張係数が大きくなりすぎる。
コージェライト粉末の配合量は、全無機物の量に対して15〜36質量%が好ましく、さらに好ましくは18〜34質量%である。コージェライト粉末の量が少なすぎると熱膨張係数が大きくなりすぎ、多すぎると熱膨張係数が低くなりすぎる。
The case where alumina powder and cordierite powder are used as ceramic powder will be described below as an example of the composition of the present invention.
The glass powder preferably contains 2% by mass or more and 5% by mass or less of a mobile ion component such as Na 2 O, and the glass powder is preferably 53% by mass or more and 62% by mass or less, more preferably based on the amount of all inorganic substances. Is used in an amount of 55% by mass to 60% by mass. When the amount of the glass powder is increased, there are problems such as economical disadvantages and insufficient strength. If the amount of mobile ions is too small, the bonding strength at the time of anodic bonding is weak, and if it is too large, there is a concern that the insulating property will be lowered.
5-30 mass% is preferable with respect to the quantity of all the inorganic substances, and, as for the compounding quantity of an alumina powder, More preferably, it is 8-25 mass%. If the amount of alumina powder is too small, the thermal expansion coefficient is too low, and if it is too large, the thermal expansion coefficient is too large.
The blending amount of the cordierite powder is preferably 15 to 36% by mass, more preferably 18 to 34% by mass with respect to the total amount of inorganic substances. If the amount of cordierite powder is too small, the thermal expansion coefficient becomes too large, and if too much, the thermal expansion coefficient becomes too low.

これらの粉末は用途に適した粒径を有していればよく、例えば平均粒子径(D50)で0.05〜10μm、好ましくは0,5〜5μmの範囲であればよい。   These powders only have to have a particle size suitable for the application. For example, the average particle size (D50) may be 0.05 to 10 μm, preferably 0.5 to 5 μm.

得られた組成物は酸化物の質量%表示とした場合、たとえば以下のようになる。
Al23:21〜33%
SiO2:55〜65%
23:5〜7%
MgO:2〜5%
Na2O:1〜3%
When the obtained composition is expressed by mass% of the oxide, for example, it is as follows.
Al 2 O 3 : 21 to 33%
SiO 2: 55~65%
B 2 O 3: 5~7%
MgO: 2-5%
Na 2 O: 1-3%

以上説明した磁器組成物は、有機バインダーと複合することでグリーンシートとすることができる。
本発明のグリーンシートの製造は常法により行うことができ、例えば、所定のガラス粉末とセラミック粉末の混合粉末にトルエン、イソプロピルアルコールなどの溶剤を加えてボールミル中で分散した後、無機粉末の合計100質量部に対してポリビニルアルコール等の有機バインダーを1〜20質量部および可塑剤(例えばジブチルフタレート)1〜10質量部を加え、さらに必要に応じて分散剤等を加えて分散させスラリーを製造する。得られたスラリーをドクターブレード法等の成形法にてシート状に成形し、乾燥することによりグリーンシートを得る。グリーンシートの厚みは用途等に応じて設計すればよいが、通常は80〜150μm程度である。
The porcelain composition described above can be made into a green sheet by combining with an organic binder.
The production of the green sheet of the present invention can be performed by a conventional method. For example, after adding a solvent such as toluene and isopropyl alcohol to a predetermined mixed powder of glass powder and ceramic powder and dispersing in a ball mill, the total of inorganic powder Add 1 to 20 parts by weight of an organic binder such as polyvinyl alcohol and 1 to 10 parts by weight of a plasticizer (for example, dibutyl phthalate) to 100 parts by weight, and further add a dispersing agent or the like as needed to produce a slurry. To do. The obtained slurry is formed into a sheet by a forming method such as a doctor blade method and dried to obtain a green sheet. The thickness of the green sheet may be designed according to the application and the like, but is usually about 80 to 150 μm.

得られたグリーンシートは、パンチング加工等により孔あけ加工された後、回路の印刷および孔あけされたビアホール内への導電性ペースト充填が行われ、必要に応じて複数枚の積層の後、脱バインダー処理及び焼成処理などの常法処理がなされて貫通配線基板とすることができる。焼成は、グリーンシートと導体とが同時焼成され、その温度は950℃以下の低温で行われる。   The obtained green sheet is punched by punching or the like, and then printed with a circuit and filled with a conductive paste into the drilled via hole. Conventional processing such as binder processing and baking processing is performed to obtain a through wiring substrate. The firing is performed at the same time that the green sheet and the conductor are fired at a low temperature of 950 ° C. or lower.

得られた貫通配線基板は各種のMEMS素子が形成されたシリコンウェハとを陽極接合した後ダイシング等し、MEMSデバイスとすることができる。MEMS素子が形成されたシリコンウェハの製造および陽極接合は常法により行うことができる。
基板の熱膨張係数は、陽極接合の相手材がシリコンである場合は3.0〜4.0ppm/℃となるように調整される。この調整は前記のとおりセラミック粉末の材料選択等により行うことができる。
ここでは、陽極接合の相手材としてシリコンを提示したが、本発明の組成物はGaAs、コバール、Al、Tiなどとも接合できる磁器組成物とすることができる。
The obtained through wiring substrate can be formed into a MEMS device by performing anodic bonding with a silicon wafer on which various MEMS elements are formed, followed by dicing. Manufacture and anodic bonding of a silicon wafer on which a MEMS element is formed can be performed by conventional methods.
The thermal expansion coefficient of the substrate is adjusted to 3.0 to 4.0 ppm / ° C. when the anodic bonding partner material is silicon. This adjustment can be performed by selecting the material of the ceramic powder as described above.
Here, silicon has been presented as a material for anodic bonding, but the composition of the present invention can be a porcelain composition that can be bonded to GaAs, Kovar, Al, Ti, and the like.

本発明は、ガラス粉末とセラミック粉末からなる低温焼結用磁器組成物の組成を容易にスクリーニングする方法をも提供する。陽極接合できるか否かは実際に所定の相手材と陽極接合したときの接合の程度に基づいて判断することができ、不十分な場合はセラミック粉末の純度を向上させ、あるいは各種配合割合を変更する。この方法は特にガラス粉末の量が少ない磁器組成物の組成検討に好適に用いることができ、特にガラス粉末の配合量が全体の65質量%以下、さらには全体の60質量%未満である組成をスクリーニングする際に好適である。   The present invention also provides a method for easily screening the composition of a low-temperature sintering porcelain composition comprising glass powder and ceramic powder. Whether or not anodic bonding is possible can be judged based on the degree of bonding when anodic bonding with a specific counterpart material is actually performed. If it is insufficient, the purity of the ceramic powder is improved, or various blending ratios are changed. To do. This method can be suitably used for examining the composition of a porcelain composition having a particularly small amount of glass powder, and in particular, a composition in which the blending amount of the glass powder is 65% by mass or less, further less than 60% by mass. Suitable for screening.

陽極接合できるガラスとして市販されているガラス(SiO2:81.9〜82.4質量%、Al23:2.9〜3.2質量%、B23:10.5〜11.0質量%、Na2O:3.9〜4.7質量%、K2O、Fe23、CaO、MgOはいずれも0.1%以下)を平均粒径(D50)で0.6〜2.5μmに粉砕し、平均粒径1〜3μmのアルミナ粉末および平均粒径1〜3μmのコージェライト粉末(ガラス再結晶タイプ)とを表1に示す配合比で混合した。表2は得られた混合物を酸化物の質量%表示で示したものである。この混合物にトルエン、イソプロピルアルコールなどの溶剤を加えてボールミル中で分散したあと、バインダーとしてポリビニルアルコール、可塑剤としてジブチルフタレート(DBP)を加えスラリーを作製した。得られたスラリーをドクターブレード法でシート状に成形し、乾燥し、厚み125μmのグリーンシートを得た。 Glass commercially available as a glass capable of anodic bonding (SiO 2: 81.9 to 82.4 wt%, Al 2 O 3: 2.9~3.2 wt%, B 2 O 3: 10.5~11 . 0% by mass, Na 2 O: 3.9 to 4.7% by mass, K 2 O, Fe 2 O 3 , CaO, and MgO are all 0.1% or less) with an average particle size (D50) of 0.6 The mixture was pulverized to ˜2.5 μm, and alumina powder having an average particle diameter of 1 to 3 μm and cordierite powder (glass recrystallization type) having an average particle diameter of 1 to 3 μm were mixed at a blending ratio shown in Table 1. Table 2 shows the obtained mixture in terms of mass% of oxide. A solvent such as toluene and isopropyl alcohol was added to the mixture and dispersed in a ball mill, and then polyvinyl alcohol as a binder and dibutyl phthalate (DBP) as a plasticizer were added to prepare a slurry. The obtained slurry was formed into a sheet by a doctor blade method and dried to obtain a green sheet having a thickness of 125 μm.

これを所定の大きさに切断し、8層に積層後、大気中、835℃または850℃で1時間焼成を行い、低温焼結基板を作製した。得られた基板の熱膨張係数及び吸水率を測定し、表1に示した。ここで熱膨張係数は石英(SiO2)標準試料を用いた示差膨張方式に基づいて測定し、吸水率はアルキメデス法に基づいて測定した。 This was cut into a predetermined size, laminated into 8 layers, and then fired in the atmosphere at 835 ° C. or 850 ° C. for 1 hour to produce a low-temperature sintered substrate. The thermal expansion coefficient and water absorption rate of the obtained substrate were measured and are shown in Table 1. Here, the thermal expansion coefficient was measured based on a differential expansion method using a quartz (SiO 2 ) standard sample, and the water absorption was measured based on the Archimedes method.

この基板を20mm□にダイシングで切断し3nmRa程度に鏡面研磨した。この基板とシリコンとを400℃に加熱したホットプレート上でシリコンが正極、基板が負極になるように直流電圧(600VDC)を印加して陽極接合を行った。陽極接合回路上に電圧検出用の抵抗素子を挿入しその抵抗素子にかかる電圧をモニタリングし接合電流が接合時間とともにどのように変化するかをチェックした。ガラス基板とシリコンの場合と同等な陽極接合電流が流れた。
得られた接合体にガラス切りで傷をつけて手で分割し破断面をSEMで観察したところ、シリコンと低温焼結基板が連続した破断面になっており不連続点はなく強固に接合できていることが観察された。
This substrate was cut into 20 mm □ by dicing and mirror-polished to about 3 nmRa. On this hot plate where the substrate and silicon were heated to 400 ° C., anodic bonding was performed by applying a DC voltage (600 VDC) so that silicon became a positive electrode and the substrate became a negative electrode. A resistance element for voltage detection was inserted on the anodic junction circuit, and the voltage applied to the resistance element was monitored to check how the junction current changed with the junction time. An anodic bonding current equivalent to that of the glass substrate and silicon flowed.
The obtained bonded body was scratched with glass and divided by hand, and the fracture surface was observed with SEM. Silicon and the low-temperature sintered substrate had a continuous fracture surface. It was observed that

Figure 2009280417
Figure 2009280417

Figure 2009280417
Figure 2009280417

Claims (10)

可動イオンを含む陽極接合可能なガラス粉末とセラミック粉末とを含み、前記セラミック粉末が焼結時にガラス成分と反応結晶相を形成しない純度および組成を有することを特徴とする低温焼結用磁器組成物。   A ceramic composition for low-temperature sintering, comprising a glass powder containing movable ions and an anodic bondable ceramic powder, wherein the ceramic powder has a purity and composition that does not form a reaction crystal phase with a glass component during sintering. . 前記セラミック粉末は、ガラス粉末のガラスよりも熱膨張係数の大きなセラミック粉末と熱膨張係数の小さなセラミック粉末との混合物である請求項1に記載の磁器組成物。   The porcelain composition according to claim 1, wherein the ceramic powder is a mixture of a ceramic powder having a larger thermal expansion coefficient than a glass of glass and a ceramic powder having a smaller thermal expansion coefficient. セラミック粉末が、アルミナ粉末とコージェライト粉末の混合物である請求項2に記載の磁器組成物。   The porcelain composition according to claim 2, wherein the ceramic powder is a mixture of alumina powder and cordierite powder. 可動イオンが、ナトリウムイオンまたはリチウムイオンである請求項1〜3のいずれかに記載の磁器組成物。   The porcelain composition according to any one of claims 1 to 3, wherein the movable ions are sodium ions or lithium ions. Na2Oを2質量%以上5質量%以下含むガラス粉末を55質量%以上60質量%以下、アルミナ粉末を8質量%以上25質量%以下、コージェライト粉末を18質量%以上34質量%以下含有することを特徴とする低温焼結用磁器組成物。 55 to 60% by weight glass powder containing 2 to 5% by weight of Na 2 O, 8 to 25% by weight alumina powder, and 18 to 34% by weight cordierite powder A porcelain composition for low-temperature sintering characterized by the above. 組成が、酸化物の質量%表示で
Al23:21〜33%
SiO2:55〜65%
23:5〜7%
MgO:2〜5%
Na2O:1〜3%
である請求項5に記載の磁器組成物。
The composition is expressed as mass% of oxide. Al 2 O 3 : 21 to 33%
SiO 2: 55~65%
B 2 O 3: 5~7%
MgO: 2-5%
Na 2 O: 1-3%
The porcelain composition according to claim 5.
請求項1〜6のいずれかに記載の磁器組成物及び有機バインダーを含むことを特徴とするグリーンシート。   A green sheet comprising the porcelain composition according to any one of claims 1 to 6 and an organic binder. 請求項1〜6のいずれかに記載の磁器組成物を成形及び焼成してなり、熱膨張係数が3.0〜4.0ppm/℃であることを特徴とする焼結基板。   A sintered substrate obtained by molding and firing the porcelain composition according to any one of claims 1 to 6, and having a thermal expansion coefficient of 3.0 to 4.0 ppm / ° C. 請求項7に記載のグリーンシートを1枚または複数枚用いてなる貫通配線基板。   A through wiring substrate using one or a plurality of the green sheets according to claim 7. 請求項9に記載の貫通配線基板とMEMS素子が形成されたシリコンウェハとを陽極接合した後ダイシングしてなるMEMS素子。   The MEMS element formed by carrying out anodic bonding of the penetration wiring board of Claim 9, and the silicon wafer in which the MEMS element was formed, and dicing.
JP2008131270A 2008-05-19 2008-05-19 Anode-joinable ceramic composition for low temperature sintering Pending JP2009280417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131270A JP2009280417A (en) 2008-05-19 2008-05-19 Anode-joinable ceramic composition for low temperature sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131270A JP2009280417A (en) 2008-05-19 2008-05-19 Anode-joinable ceramic composition for low temperature sintering

Publications (1)

Publication Number Publication Date
JP2009280417A true JP2009280417A (en) 2009-12-03

Family

ID=41451299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131270A Pending JP2009280417A (en) 2008-05-19 2008-05-19 Anode-joinable ceramic composition for low temperature sintering

Country Status (1)

Country Link
JP (1) JP2009280417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119615A (en) * 2009-12-07 2011-06-16 Shinko Electric Ind Co Ltd Wiring board, method of manufacturing the same, and semiconductor package
CN106747357A (en) * 2016-12-22 2017-05-31 广东风华高新科技股份有限公司 LTCC and preparation method thereof
CN115831444A (en) * 2022-12-28 2023-03-21 广东南海启明光大科技有限公司 Medium slurry with low thermal expansion coefficient and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238838A (en) * 1991-01-09 1992-08-26 Nippon Electric Glass Co Ltd Glass-ceramics composite material
WO2005042426A2 (en) * 2003-10-28 2005-05-12 Inocermic Gesellschaft für innovative Keramik mbH Glass-ceramic (ltcc) capable of being assembled with silicon by anodic bonding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238838A (en) * 1991-01-09 1992-08-26 Nippon Electric Glass Co Ltd Glass-ceramics composite material
WO2005042426A2 (en) * 2003-10-28 2005-05-12 Inocermic Gesellschaft für innovative Keramik mbH Glass-ceramic (ltcc) capable of being assembled with silicon by anodic bonding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011119615A (en) * 2009-12-07 2011-06-16 Shinko Electric Ind Co Ltd Wiring board, method of manufacturing the same, and semiconductor package
US8674514B2 (en) 2009-12-07 2014-03-18 Shinko Electric Industries Co., Ltd. Wiring board, manufacturing method of the wiring board, and semiconductor package
CN106747357A (en) * 2016-12-22 2017-05-31 广东风华高新科技股份有限公司 LTCC and preparation method thereof
CN106747357B (en) * 2016-12-22 2019-12-06 广东风华高新科技股份有限公司 Low-temperature co-fired ceramic and preparation method thereof
CN115831444A (en) * 2022-12-28 2023-03-21 广东南海启明光大科技有限公司 Medium slurry with low thermal expansion coefficient and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5175650B2 (en) Porcelain capable of anodic bonding and composition for porcelain
JPH09295827A (en) Glass for substrate and ceramic base using the same
JPWO2016185921A1 (en) Low temperature sintered ceramic materials, ceramic sintered bodies and ceramic electronic components
JP6474018B2 (en) Ceramic circuit board, ceramic green sheet for ceramic circuit board, and glass ceramic powder for ceramic circuit board
JP5293605B2 (en) Ceramic multilayer substrate and manufacturing method thereof
JP2009280417A (en) Anode-joinable ceramic composition for low temperature sintering
Birol Fabrication of low temperature co-fired ceramic (LTCC)-based sensor and micro-fluidic structures
WO2021024918A1 (en) Ceramic wiring board, ceramic green sheet for ceramic wiring board, and glass ceramic powder for ceramic wiring board
JP2006236921A (en) Conductive paste, ceramic wiring board using it and its manufacturing method
JP2006282474A (en) Glass ceramic sintered compact, its production method, and wiring board using the same
JP4703207B2 (en) Wiring board
JP2001342063A (en) Low temperature-baked ceramic composition, low temperature ceramic, its production method, wiring board using the same and its production method
JP5175791B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP5249121B2 (en) Low-temperature fired high-strength low-thermal-expansion porcelain and method for producing the same
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP2006137618A (en) Dielectric ceramic substrate
JP4383113B2 (en) Manufacturing method of multilayer wiring board
JP5566764B2 (en) Low temperature fired high strength low thermal expansion ceramic
JPH0450141A (en) Glass-ceramic substrate
JP6336841B2 (en) Wiring board
JP3934811B2 (en) High thermal expansion glass ceramic sintered body and manufacturing method thereof, wiring board and mounting structure thereof
JP2005116337A (en) Conductive paste, via-hole conductor and multilayer ceramic substrate
JPH0474751A (en) Production of multi-ply ceramic circuit board
JP2004231453A (en) Glass-ceramic composition, glass-ceramic sintered compact, wiring substrate using the compact, and packaging structure of the wiring substrate
JP2006093525A (en) Method of manufacturing ceramic multilayer substrate and ceramic multilayer substrate and power amplifier module using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120323