JPH04238838A - Glass-ceramics composite material - Google Patents

Glass-ceramics composite material

Info

Publication number
JPH04238838A
JPH04238838A JP1287591A JP1287591A JPH04238838A JP H04238838 A JPH04238838 A JP H04238838A JP 1287591 A JP1287591 A JP 1287591A JP 1287591 A JP1287591 A JP 1287591A JP H04238838 A JPH04238838 A JP H04238838A
Authority
JP
Japan
Prior art keywords
glass
composite material
dielectric constant
powder
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287591A
Other languages
Japanese (ja)
Inventor
Masaaki Hayashi
雅章 林
Hiromitsu Watanabe
広光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP1287591A priority Critical patent/JPH04238838A/en
Publication of JPH04238838A publication Critical patent/JPH04238838A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To provide a glass-ceramics composite material producible at a baking temperature of <=1000 deg.C and having a thermal expansion coefficient close to that of silicon chip, high flexural strength and sufficiently low dielectric constant to be usable for high-speed arithmetic processing. CONSTITUTION:The objective glass-ceramic composite material is composed of (A) 50-80wt.% of glass powder consisting of 66.0-85.0 wt.% of SiO2, 4.5-23.5wt.% of B2O3, 0-8.0wt.% of Al2O3, 2.5-5.0wt.% of Li2O+Na2O+K2O and 0-5.0wt.% of CaO and essentially free from BaO, (B) 10-50wt.% of cordierite powder and (C) 0-40wt.% of alumina powder.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガラスセラミック複合
材、より具体的には、エレクトロニクス分野における回
路内蔵基板用材料として適したガラスセラミック複合材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass-ceramic composite material, and more specifically to a glass-ceramic composite material suitable as a material for circuit-embedded boards in the electronics field.

【0002】0002

【従来の技術】従来より回路内蔵基板用材料としては、
強度、熱伝導性、気密性に優れたアルミナセラミック(
Al2 O3 、通常90重量%を超える純度)が主に
利用されている。しかしながら、アルミナセラミックは
、焼成温度が1500〜1600℃と極めて高いため、
内蔵回路を構成する導体としてこのような高い温度でも
劣化しないMo、W等の高融点の金属材料を使用し、且
つ、還元雰囲気で焼成する必要があり、作業性が悪いこ
と、熱膨張係数が約70×10−7/℃と高いため、シ
リコンチップ(約32〜35×10−7/℃)を直接搭
載できない等の欠点がある。
[Prior Art] Traditionally, materials for circuit boards include:
Alumina ceramic with excellent strength, thermal conductivity, and airtightness (
Al2O3 (purity usually greater than 90% by weight) is mainly utilized. However, alumina ceramic has an extremely high firing temperature of 1500 to 1600°C, so
It is necessary to use high melting point metal materials such as Mo and W that do not deteriorate even at such high temperatures as the conductors constituting the built-in circuit, and to fire them in a reducing atmosphere, resulting in poor workability and a low coefficient of thermal expansion. Since the temperature is as high as approximately 70×10 −7 /° C., there are drawbacks such as the inability to directly mount a silicon chip (approximately 32 to 35×10 −7 /° C.).

【0003】さらに上記の欠点に加え、アルミナセラミ
ックは、誘電率(ε)が約10と高いため、高速回路用
に適さないという欠点がある。すなわち導体中を伝播す
る信号の速度は、その周囲を形成する材料の誘電率が高
い程遅れることが一般に知られているが、アルミナセラ
ミックは、誘電率が高いため、演算処理の高速化の要求
に応えられない。
In addition to the above drawbacks, alumina ceramics have a high dielectric constant (ε) of about 10, which makes them unsuitable for high-speed circuits. In other words, it is generally known that the higher the dielectric constant of the surrounding material, the slower the speed of a signal propagating in a conductor.However, alumina ceramic has a high dielectric constant, so it is necessary to increase the speed of arithmetic processing. I can't respond to that.

【0004】このような事情から、ガラス粉末とセラミ
ック粉末とを混合してなり、1000℃以下の低い焼成
温度と比較的高い抗折強度を有し、熱膨張係数が半導体
素子のそれに近似し、さらにアルミナセラミックに比べ
て低い誘電率を有するガラスセラミック複合材が各種提
案されている。
[0004] Under these circumstances, it is made of a mixture of glass powder and ceramic powder, has a low firing temperature of 1000°C or less, has a relatively high bending strength, and has a coefficient of thermal expansion close to that of a semiconductor element. Furthermore, various glass-ceramic composite materials having a lower dielectric constant than alumina ceramics have been proposed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら近年、回
路の演算処理をさらに高速化する要求が高まりつつあり
、従来のガラスセラミック複合材よりもさらに低い誘電
率を有するガラスセラミック複合材の開発が望まれてい
る。
[Problems to be Solved by the Invention] However, in recent years, there has been an increasing demand for further speeding up the calculation processing of circuits, and it is desired to develop a glass-ceramic composite material that has an even lower dielectric constant than conventional glass-ceramic composite materials. ing.

【0006】本発明の目的は、導体として約1000℃
の低い融点を有する金属(Au、Ag、Cu等)を用い
ることができるように、焼成温度が1000℃以下であ
ること、熱膨張係数がシリコンチップのそれと近似して
いること、抗折強度が高いこと、さらに高速演算処理に
十分対応可能な低い誘電率を有することの各条件を満足
するガラスセラミック複合材を提供することである。
[0006] The object of the present invention is to
In order to be able to use metals with low melting points (Au, Ag, Cu, etc.), the firing temperature must be 1000°C or less, the coefficient of thermal expansion must be similar to that of silicon chips, and the bending strength must be low. It is an object of the present invention to provide a glass-ceramic composite material that satisfies the following conditions: high dielectric constant, and low dielectric constant sufficiently compatible with high-speed calculation processing.

【0007】[0007]

【課題を解決するための手段】本発明のガラスセラミッ
ク複合材は、重量百分率で、SiO2   66.0〜
85.0%、B2 O3   4.5〜23.5%、A
l2 O3   0〜8.0%、Li2 O+Na2 
O+K2 O  2.5〜5.0%、CaO    0
〜5.0%の組成を含有し、本質的にBaOを含有しな
いガラス粉末50〜80%と、コージエライト粉末10
〜50%と、アルミナ粉末0〜40%からなることを特
徴とする。
[Means for Solving the Problems] The glass-ceramic composite material of the present invention has a weight percentage of SiO2 of 66.0 to 66.0.
85.0%, B2O3 4.5-23.5%, A
l2 O3 0-8.0%, Li2 O+Na2
O+K2 O 2.5-5.0%, CaO 0
50-80% glass powder containing ~5.0% composition and essentially free of BaO and cordierite powder 10%
50% and 0 to 40% alumina powder.

【0008】[0008]

【作用】本発明において使用するガラス粉末について、
各成分の含有量を上記のように限定した理由は、以下の
とおりである。
[Operation] Regarding the glass powder used in the present invention,
The reason for limiting the content of each component as described above is as follows.

【0009】SiO2 は、ガラス形成酸化物であるが
、85.0%より多いと、ガラスの溶融が困難になり、
一方66.0%より少ないと、誘電率が大きくなるので
好ましくない。
[0009] SiO2 is a glass-forming oxide, but if it exceeds 85.0%, it becomes difficult to melt the glass.
On the other hand, if it is less than 66.0%, the dielectric constant becomes large, which is not preferable.

【0010】B2 O3 もガラス形成酸化物であると
共に、ガラスの溶融性を良好にするフラックス剤として
使用されるが、23.5%より多いと、化学的耐久性が
低下し、一方4.5%より少ないと、フラックス剤とし
ての効果が小さくなる。
B2 O3 is also a glass-forming oxide and is used as a fluxing agent to improve the meltability of glass, but if it exceeds 23.5%, the chemical durability decreases; If the amount is less than %, the effect as a fluxing agent will be reduced.

【0011】Al2 O3 は、ガラスの化学的耐久性
を向上させる効果を有するが、8.0%より多いと、ガ
ラスの溶融性が悪くなり、誘電率が大きくなるため好ま
しくない。
[0011]Al2O3 has the effect of improving the chemical durability of glass, but if it exceeds 8.0%, it is not preferable because the meltability of the glass deteriorates and the dielectric constant increases.

【0012】Li2 O、Na2 O、K2 Oの各成
分も、フラックス剤として使用されるが、その合量が5
.0%より多いと、熱膨張係数及び誘電率が大きくなる
と共に、絶縁性が低下し、一方2.5%より少ないと、
フラックス剤としての効果が小さくなる。
[0012] Each component of Li2O, Na2O, and K2O is also used as a fluxing agent, but if the total amount is 5
.. If it is more than 0%, the thermal expansion coefficient and dielectric constant will increase, and the insulation will decrease, while if it is less than 2.5%,
It becomes less effective as a fluxing agent.

【0013】CaOも、フラックス剤として使用される
と共に、ガラスを安定化させる効果を有するが、5.0
%より多いと、熱膨張係数及び誘電率が大きくなる。
CaO is also used as a fluxing agent and has the effect of stabilizing glass.
%, the coefficient of thermal expansion and dielectric constant will increase.

【0014】しかしながら本発明においては、BaOを
含有すると、誘電率が大きくなると共に、ガラス中にバ
リウムシリケート結晶やバリウムアルミノシリケート結
晶が析出して、焼成体がポーラスになり、強度や絶縁性
が低下しやすくなるため好ましくない。
However, in the present invention, when BaO is contained, the dielectric constant increases, and barium silicate crystals and barium aluminosilicate crystals are precipitated in the glass, making the fired body porous and reducing strength and insulation properties. This is not desirable because it makes it easier to

【0015】本発明のガラスセラミック複合材は、上記
ガラス粉末50〜80%と、コージエライト粉末10〜
50%と、アルミナ粉末0〜40%からなることを特徴
とするが、このように各粉末の混合割合を限定した理由
は、以下のとおりである。
The glass-ceramic composite material of the present invention contains 50 to 80% of the above glass powder and 10 to 80% of cordierite powder.
50% and 0 to 40% alumina powder, but the reason why the mixing ratio of each powder is limited in this way is as follows.

【0016】ガラス粉末が、50%より少ないと、緻密
な構造の焼成体が得られず、80%より多いと、焼成時
に軟化変形しやすくなる。またコージエライト粉末は、
低膨張、低誘電率の特性を有するが、10%より少ない
と、熱膨張係数と誘電率を低下する効果が小さく、一方
50%より多いと、緻密な構造の焼成体が得られなくな
る。さらにアルミナ粉末は、強度を向上させる効果が大
であるが、40%より多いと、緻密な構造の焼成体が得
られないと共に、熱膨張係数と誘電率が大きくなりすぎ
る。
If the glass powder content is less than 50%, a fired product with a dense structure cannot be obtained, and if it is more than 80%, it is likely to be softened and deformed during firing. In addition, cordierite powder is
It has characteristics of low expansion and low dielectric constant, but if it is less than 10%, the effect of lowering the thermal expansion coefficient and dielectric constant is small, while if it is more than 50%, a fired product with a dense structure cannot be obtained. Further, alumina powder has a great effect of improving strength, but if it exceeds 40%, a fired body with a dense structure cannot be obtained, and the coefficient of thermal expansion and dielectric constant become too large.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて詳細に説明
する。
EXAMPLES The present invention will be explained in detail below based on examples.

【0018】表1は、本発明及び比較例のガラスセラミ
ック複合材に使用するガラス粉末を示すものである。
Table 1 shows the glass powders used in the glass-ceramic composites of the present invention and comparative examples.

【0019】[0019]

【表1】[Table 1]

【0020】表1の各試料は、以下のようにして調製し
た。
[0020] Each sample in Table 1 was prepared as follows.

【0021】まず表1の各試料のガラス組成となるよう
に、二酸化ケイ素、ホウ酸、酸化アルミニウム、カルシ
ウム、リチウム、ソーダ、カリウムの炭酸塩、酸化バリ
ウム等を調合したバッチを白金ルツボに入れ、約155
0℃で1時間溶融した後、ローラー成形することによっ
て薄板状のガラスを作製した。次いでこのガラスを、ボ
ールミルを用いて粉砕し、分級することによって、2〜
3μmの平均粒径を有する粉末状の試料を得た。
First, a batch containing silicon dioxide, boric acid, aluminum oxide, calcium, lithium, soda, potassium carbonate, barium oxide, etc. was placed in a platinum crucible so as to have the glass composition of each sample in Table 1. Approximately 155
After melting at 0° C. for 1 hour, a thin plate glass was produced by roller molding. Next, this glass is crushed using a ball mill and classified to produce 2-
A powdered sample with an average particle size of 3 μm was obtained.

【0022】このようにして作製した粉末状の各ガラス
試料を、コージエライト粉末やアルミナ粉末と所定の割
合で混合し、5φ×50mmの丸棒状、40φ×2mm
の円板状及び10×50×0.6mmの短冊状にプレス
成形した後、900℃で10分間焼成することによって
試験体を作製し、丸棒状試験体を用いてディラトメータ
ーで熱膨張係数を測定し、また円板状試験体によって誘
電率、短冊状試験体によって抗折強度(三点荷重方式)
を測定した。
Each of the powdered glass samples prepared in this way was mixed with cordierite powder and alumina powder in a predetermined ratio, and was made into round rods of 5φ x 50mm and 40φ x 2mm.
After press-forming into a disc shape and a strip shape of 10 x 50 x 0.6 mm, test specimens were prepared by baking at 900 ° C. for 10 minutes, and the thermal expansion coefficient was measured with a dilatometer using a round bar specimen. The dielectric constant was measured using a disk-shaped specimen, and the bending strength was measured using a strip-shaped specimen (three-point loading method).
was measured.

【0023】その結果を表2に示す。The results are shown in Table 2.

【0024】[0024]

【表2】[Table 2]

【0025】表2から明らかなように、本発明のガラス
セラミック複合材(試料No.1〜8)は、熱膨張係数
が24〜38×10−7/℃、誘電率が4.8以下、抗
折強度が1150〜1480Kg/cm2 といずれも
良好な値を示した。しかしながら比較例のガラスセラミ
ック複合材(試料No.9)は、熱膨張係数が47×1
0−7/℃と比較的良好な値を示したが、誘電率が6.
5と高く、しかも抗折強度が1100Kg/cm2 と
低かった。
As is clear from Table 2, the glass-ceramic composites of the present invention (sample Nos. 1 to 8) have a thermal expansion coefficient of 24 to 38 x 10-7/°C, a dielectric constant of 4.8 or less, The bending strength was 1150 to 1480 Kg/cm2, which was a good value. However, the comparative glass-ceramic composite material (sample No. 9) has a thermal expansion coefficient of 47×1
It showed a relatively good value of 0-7/℃, but the dielectric constant was 6.
5, and the bending strength was low at 1100 Kg/cm2.

【0026】尚、比較例であるNo.9の試料を、電子
顕微鏡で観察したところ、バリウムアルミノシリケート
結晶の析出が認められ、且つ、内部に多くの細孔が存在
していた。
[0026] As a comparative example, No. When Sample No. 9 was observed with an electron microscope, precipitation of barium aluminosilicate crystals was observed, and many pores were present inside.

【0027】[0027]

【発明の効果】以上のように、本発明のガラスセラミッ
ク複合材は、熱膨張係数がシリコンチップのそれに近似
し、十分に高い抗折強度を有し、しかも誘電率が非常に
低いため、回路内蔵基板用材料として好適である。
As described above, the glass-ceramic composite material of the present invention has a coefficient of thermal expansion close to that of a silicon chip, has a sufficiently high bending strength, and has a very low dielectric constant. Suitable as a material for built-in substrates.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量百分率で、SiO2   66.
0〜85.0%、B2 O3 4.5〜23.5%、A
l2 O3   0〜8.0%、Li2 O+Na2 
O+K2 O  2.5〜5.0%、CaO  0〜5
.0%の組成を含有し、本質的にBaOを含有しないガ
ラス粉末50〜80%と、コージエライト粉末10〜5
0%と、アルミナ粉末0〜40%からなることを特徴と
するガラスセラミック複合材。
Claim 1: SiO2 66.% by weight.
0-85.0%, B2 O3 4.5-23.5%, A
l2 O3 0-8.0%, Li2 O+Na2
O+K2 O 2.5-5.0%, CaO 0-5
.. 0% composition and essentially BaO-free glass powder 50-80% and cordierite powder 10-5%
0% and 0 to 40% alumina powder.
JP1287591A 1991-01-09 1991-01-09 Glass-ceramics composite material Pending JPH04238838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287591A JPH04238838A (en) 1991-01-09 1991-01-09 Glass-ceramics composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287591A JPH04238838A (en) 1991-01-09 1991-01-09 Glass-ceramics composite material

Publications (1)

Publication Number Publication Date
JPH04238838A true JPH04238838A (en) 1992-08-26

Family

ID=11817602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287591A Pending JPH04238838A (en) 1991-01-09 1991-01-09 Glass-ceramics composite material

Country Status (1)

Country Link
JP (1) JPH04238838A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042426A2 (en) * 2003-10-28 2005-05-12 Inocermic Gesellschaft für innovative Keramik mbH Glass-ceramic (ltcc) capable of being assembled with silicon by anodic bonding
JP2009280417A (en) * 2008-05-19 2009-12-03 Nikko Co Anode-joinable ceramic composition for low temperature sintering
JP2010228969A (en) * 2009-03-27 2010-10-14 Ohara Inc Glass

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042426A2 (en) * 2003-10-28 2005-05-12 Inocermic Gesellschaft für innovative Keramik mbH Glass-ceramic (ltcc) capable of being assembled with silicon by anodic bonding
WO2005042426A3 (en) * 2003-10-28 2005-06-09 Inocermic Ges Fuer Innovative Glass-ceramic (ltcc) capable of being assembled with silicon by anodic bonding
DE10351196B4 (en) * 2003-10-28 2016-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Use of anodically silicon bondable glass ceramic (LTCC)
JP2009280417A (en) * 2008-05-19 2009-12-03 Nikko Co Anode-joinable ceramic composition for low temperature sintering
JP2010228969A (en) * 2009-03-27 2010-10-14 Ohara Inc Glass

Similar Documents

Publication Publication Date Title
JP5413562B2 (en) Sealing material
JP2003095697A (en) Sealing composition
JPH09278483A (en) Bismuth based glass composition
JPH0710598A (en) Low dielectric constant glass fiber
US3331731A (en) Method of and article formed by sealing alumina ceramic to a metal with a sealant glass
JP2000072473A (en) Low melting point glass and sealing composition
JP2002220256A (en) Lead-free glass, electronic circuit board composition, and the electronic circuit board
JP3096136B2 (en) Glass composition for low-temperature fired substrate and substrate obtained therefrom
JP2663577B2 (en) Sealing composition
EP0494357A1 (en) Glass-ceramic-bonded ceramic composites
JP5545589B2 (en) Manufacturing method of sealing material
JPH0222023B2 (en)
JPH04238838A (en) Glass-ceramics composite material
JP2001261369A (en) Low melting point glass composition
US11939258B2 (en) Glass powder, dielectric material, sintered body, and high frequency circuit member
JP4425386B2 (en) Low melting point glass and sealing composition
JP2000128628A (en) Glass ceramics composition
JP2002220255A (en) Lead-free glass, electronic circuit board composition, and the electronic circuit board
JPH04238837A (en) Glass-ceramic composite material
GB2172282A (en) Toughened glass-ceramics
JPS61186248A (en) Glass ceramic
JPH0193436A (en) Glass composition for substrate material
JPH0449497B2 (en)
JPH0624797A (en) Glass for bonding or sealing
US3320043A (en) Method for making thin film glass elements