JP2009267241A - Electrode for electric double layer capacitor, and electric double layer capacitor - Google Patents

Electrode for electric double layer capacitor, and electric double layer capacitor Download PDF

Info

Publication number
JP2009267241A
JP2009267241A JP2008117447A JP2008117447A JP2009267241A JP 2009267241 A JP2009267241 A JP 2009267241A JP 2008117447 A JP2008117447 A JP 2008117447A JP 2008117447 A JP2008117447 A JP 2008117447A JP 2009267241 A JP2009267241 A JP 2009267241A
Authority
JP
Japan
Prior art keywords
electrode
electrode layer
electric double
activated carbon
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008117447A
Other languages
Japanese (ja)
Other versions
JP5136188B2 (en
Inventor
Yoshinori Hinoki
圭憲 檜
Yoshihiko Ohashi
良彦 大橋
Kazuo Katai
一夫 片井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008117447A priority Critical patent/JP5136188B2/en
Publication of JP2009267241A publication Critical patent/JP2009267241A/en
Application granted granted Critical
Publication of JP5136188B2 publication Critical patent/JP5136188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for an electric double layer capacitor which can fully suppress the occurrence of the falling-off of an electrode layer or the like, while obtaining good capacitance balance, even if the thickness of the electrode is reduced. <P>SOLUTION: The electrode for the electric double layer capacitor has a collector 12, and an electrode layer 14 which is formed on the collector 12. The electrode layer 14 contains acetylene black, active carbon, and binder. In the electrode layer 14, the ratio of the content of acetylene black and the content of active carbon is 95:5 to 80:20 in mass ratio, and the ratio of the total content of acetylene black and active carbon and the content of binder is 65:35 to 45:55 in mass ratio. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用電極及び電気二重層キャパシタに関する。   The present invention relates to an electrode for an electric double layer capacitor and an electric double layer capacitor.

近年、電気二重層キャパシタの薄膜化の要求に対し、従来の技術では電極を構成する電極層の塗膜厚を薄くすることが一般的に行われてきた。しかしながら、従来の活性炭を主体とした電極層では、塗膜厚を薄くしていった場合、電気二重層キャパシタの容量の最大値と最小値との差が大きくなり容量のバランスが損なわれるという問題が生じてしまう。一方で、アセチレンブラック等の導電助材を主体とした電極層の検討もなされている(例えば、特許文献1参照)。しかしながら、アセチレンブラック等の導電助材を主体とした電極層では、塗膜の脱落が問題となってくる。
特開昭63−58814号公報
In recent years, in response to the demand for thinning of the electric double layer capacitor, it has been generally performed to reduce the thickness of the electrode layer constituting the electrode in the conventional technique. However, in conventional electrode layers mainly composed of activated carbon, when the coating thickness is reduced, the difference between the maximum value and the minimum value of the electric double layer capacitor becomes large, and the balance of the capacity is impaired. Will occur. On the other hand, an electrode layer mainly composed of a conductive additive such as acetylene black has been studied (see, for example, Patent Document 1). However, in an electrode layer mainly composed of a conductive auxiliary material such as acetylene black, dropping of the coating film becomes a problem.
JP-A-63-58814

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電極を薄膜化した場合であっても、良好な容量バランスが得られるとともに、電極層の脱落等の発生を十分に抑制することが可能な電気二重層キャパシタ用電極、及び、電気二重層キャパシタを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and even when the electrode is thinned, a good capacity balance can be obtained and the occurrence of electrode layer drop-off can be sufficiently suppressed. An object of the present invention is to provide an electrode for an electric double layer capacitor and an electric double layer capacitor that can be used.

上記目的を達成するために、本発明は、集電体と、該集電体上に形成された電極層と、を有し、上記電極層は、アセチレンブラックと、活性炭と、バインダーと、を含み、上記電極層において、上記アセチレンブラックの含有量と上記活性炭の含有量との比が、質量比で95:5〜80:20であり、且つ、上記アセチレンブラック及び上記活性炭の合計の含有量と上記バインダーの含有量との比が、質量比で65:35〜45:55である、電気二重層キャパシタ用電極を提供する。   To achieve the above object, the present invention comprises a current collector and an electrode layer formed on the current collector, the electrode layer comprising acetylene black, activated carbon, and a binder. In the electrode layer, the ratio of the content of the acetylene black and the content of the activated carbon is 95: 5 to 80:20 in mass ratio, and the total content of the acetylene black and the activated carbon There is provided an electrode for an electric double layer capacitor in which the ratio of the content of the binder to the binder content is 65:35 to 45:55 by mass ratio.

かかる電気二重層キャパシタ用電極によれば、電極層の構成材料としてアセチレンブラック、活性炭及びバインダーを用い、それらの含有量の比を上述した特定の範囲内とすることにより、薄膜化した場合であっても、良好な容量バランスが得られるとともに、電極層の脱落等の発生を十分に抑制することができる。   According to such an electrode for an electric double layer capacitor, acetylene black, activated carbon and a binder are used as the constituent material of the electrode layer, and the content ratio is within the specific range described above, thereby reducing the thickness. However, it is possible to obtain a good capacity balance and to sufficiently prevent the electrode layer from dropping off.

かかる効果が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察する。すなわち、電極層の各構成材料の比率を上記範囲内とすることで、電極層を薄膜化した場合であっても、アセチレンブラックを主体としているため良好な容量バランスを得ることができ、アセチレンブラック中に活性炭が混在している構造としつつバインダーの比率を上記範囲とすることで、充放電中も塗膜の脱落を十分に抑制することができるものと考えられる。   The reason why such an effect is obtained is not necessarily clear, but the present inventors speculate as follows. That is, by making the ratio of each constituent material of the electrode layer within the above range, even when the electrode layer is thinned, it is possible to obtain a good capacity balance because acetylene black is the main component, and acetylene black By setting the ratio of the binder within the above range while having a structure in which activated carbon is mixed therein, it is considered that the falling of the coating film can be sufficiently suppressed even during charging and discharging.

また、本発明の電気二重層キャパシタ用電極において、上記電極層の厚さをTe[μm]とし、上記活性炭の平均粒径をTa[μm]とした場合、TeとTaとが下記式(1)で表される関係を満たすことが好ましい。
0.25≦(Ta/Te)≦1.00 (1)
Further, in the electric double layer capacitor electrode of the present invention, when the thickness of the electrode layer is Te [μm] and the average particle diameter of the activated carbon is Ta [μm], Te and Ta are expressed by the following formula (1 It is preferable to satisfy the relationship represented by
0.25 ≦ (Ta / Te) ≦ 1.00 (1)

電極層の厚さと活性炭の平均粒径とを上記の関係を満たすように調節することで、塗膜を補強する効果が有効に奏され、塗膜の脱落をより十分に抑制することができ、電極の更なる薄膜化を実現可能となる。   By adjusting the thickness of the electrode layer and the average particle size of the activated carbon so as to satisfy the above relationship, the effect of reinforcing the coating film is effectively achieved, and the dropping of the coating film can be more sufficiently suppressed, Further thinning of the electrode can be realized.

本発明はまた、集電体と、該集電体上に形成された電極層と、を有し、上記電極層は、アセチレンブラックと、活性炭と、バインダーと、を含み、上記電極層において、上記アセチレンブラックの含有量と上記活性炭の含有量との比が、質量比で95:5〜80:20であり、且つ、上記アセチレンブラック及び上記活性炭の合計の含有量と上記バインダーの含有量との比が、質量比で65:35〜45:55である電極を備える、電気二重層キャパシタを提供する。   The present invention also includes a current collector and an electrode layer formed on the current collector, and the electrode layer includes acetylene black, activated carbon, and a binder, The ratio of the content of the acetylene black and the content of the activated carbon is 95: 5 to 80:20 in terms of mass ratio, and the total content of the acetylene black and the activated carbon and the content of the binder An electric double layer capacitor comprising an electrode having a mass ratio of 65:35 to 45:55 is provided.

かかる電気二重層キャパシタによれば、電極層の構成材料としてアセチレンブラック、活性炭及びバインダーを用い、それらの含有量の比を上述した特定の範囲内とすることにより、電極を薄膜化した場合であっても、良好な容量バランスが得られるとともに、電極層の脱落等の発生を十分に抑制することができる。   According to such an electric double layer capacitor, acetylene black, activated carbon and a binder are used as the constituent material of the electrode layer, and the ratio of the contents thereof is within the specific range described above, whereby the electrode is thinned. However, it is possible to obtain a good capacity balance and to sufficiently prevent the electrode layer from dropping off.

かかる効果が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察する。すなわち、電極層の各構成材料の比率を上記範囲内とすることで、電極層を薄膜化した場合であっても、アセチレンブラックを主体としているため良好な容量バランスを得ることができ、アセチレンブラック中に活性炭が混在している構造としつつバインダーの比率を上記範囲とすることで、充放電中も塗膜の脱落を十分に抑制することができるものと考えられる。したがって、かかる電極を用いることにより、良好な容量バランスと塗膜の脱落の抑制とを両立しつつ、電気二重層キャパシタの薄膜化を実現することができる。   The reason why such an effect is obtained is not necessarily clear, but the present inventors speculate as follows. That is, by making the ratio of each constituent material of the electrode layer within the above range, even when the electrode layer is thinned, it is possible to obtain a good capacity balance because acetylene black is the main component, and acetylene black By setting the ratio of the binder within the above range while having a structure in which activated carbon is mixed therein, it is considered that the falling of the coating film can be sufficiently suppressed even during charging and discharging. Therefore, by using such an electrode, it is possible to realize a thin electric double layer capacitor while achieving both a good capacity balance and suppression of falling off of the coating film.

また、本発明の電気二重層キャパシタにおいて、上記電極層の厚さをTe[μm]とし、上記活性炭の平均粒径をTa[μm]とした場合、TeとTaとが下記式(1)で表される関係を満たすことが好ましい。
0.25≦(Ta/Te)≦1.00 (1)
In the electric double layer capacitor of the present invention, when the thickness of the electrode layer is Te [μm] and the average particle diameter of the activated carbon is Ta [μm], Te and Ta are expressed by the following formula (1). It is preferable to satisfy the relationship represented.
0.25 ≦ (Ta / Te) ≦ 1.00 (1)

電極層の厚さと活性炭の平均粒径とを上記の関係を満たすように調節することで、塗膜を補強する効果が有効に奏され、塗膜の脱落をより十分に抑制することができ、電極の更なる薄膜化を実現可能となる。したがって、かかる電極を用いることにより、良好な容量バランスと塗膜の脱落の抑制とを両立しつつ、電気二重層キャパシタの更なる薄膜化を実現することができる。   By adjusting the thickness of the electrode layer and the average particle size of the activated carbon so as to satisfy the above relationship, the effect of reinforcing the coating film is effectively achieved, and the dropping of the coating film can be more sufficiently suppressed, Further thinning of the electrode can be realized. Therefore, by using such an electrode, it is possible to achieve further reduction in the thickness of the electric double layer capacitor while achieving both a good capacity balance and suppression of the coating film falling off.

本発明によれば、電極を薄膜化した場合であっても、良好な容量バランスが得られるとともに、電極層の脱落等の発生を十分に抑制することが可能な電気二重層キャパシタ用電極、及び、それを用いた電気二重層キャパシタを提供することができる。   According to the present invention, even when the electrode is thinned, an electric double layer capacitor electrode capable of obtaining a good capacity balance and sufficiently suppressing the occurrence of electrode layer dropping, and the like, and An electric double layer capacitor using the same can be provided.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態に係る電気二重層キャパシタ100を示す模式断面図である。電気二重層キャパシタ100は、主として、積層体20、積層体を収容する外装袋50、及び積層体20に接続された一対のリード60,62を備えている。   FIG. 1 is a schematic cross-sectional view showing an electric double layer capacitor 100 according to the present embodiment. The electric double layer capacitor 100 mainly includes a multilayer body 20, an exterior bag 50 that accommodates the multilayer body, and a pair of leads 60 and 62 connected to the multilayer body 20.

積層体20は、一対の電極10がセパレータ18を挟んで対向配置されたものである。電極10は、それぞれ、集電体12上に電極層14が設けられたものであり、各電極層14,14がセパレータ18の両側にそれぞれ接触している。集電体12,12の端部には、それぞれリード60,62が接続されており、リード60,62の端部は外装袋50の外部にまで延びている。   The stacked body 20 is a structure in which a pair of electrodes 10 are arranged to face each other with a separator 18 interposed therebetween. The electrodes 10 are each provided with an electrode layer 14 on a current collector 12, and the electrode layers 14 and 14 are in contact with both sides of the separator 18. Leads 60 and 62 are connected to the ends of the current collectors 12 and 12, respectively, and the ends of the leads 60 and 62 extend to the outside of the outer bag 50.

以下、本実施形態に係る電気二重層キャパシタ用電極10について詳述する。図2は、本実施形態に係る電気二重層キャパシタ用電極10を示す模式断面図である。図2に示すように、電気二重層キャパシタ用電極10は、集電体12と、該集電体12上に形成された電極層14とを備えるものである。   Hereinafter, the electric double layer capacitor electrode 10 according to the present embodiment will be described in detail. FIG. 2 is a schematic cross-sectional view showing the electric double layer capacitor electrode 10 according to the present embodiment. As shown in FIG. 2, the electric double layer capacitor electrode 10 includes a current collector 12 and an electrode layer 14 formed on the current collector 12.

集電体12は、例えば、アルミ箔等の金属箔により形成されている。   The current collector 12 is formed of a metal foil such as an aluminum foil, for example.

電極層14は、アセチレンブラックと、活性炭と、バインダーと、を含んで形成される。   The electrode layer 14 is formed including acetylene black, activated carbon, and a binder.

この電極層14において、アセチレンブラックの含有量と活性炭の含有量との比は、固形分の質量比で95:5〜80:20であることが必要であり、93:7〜82:18であることが好ましく、90:10〜85:15であることがより好ましい。上記範囲よりも活性炭の含有量が多いと、電極10を薄膜化した場合に良好な容量バランスが得られにくく、上記範囲よりも活性炭の含有量が少ないと、電極10を薄膜化した場合に電極層14における塗膜の脱落や抜け、スジ等が発生しやすくなる。   In this electrode layer 14, the ratio of the content of acetylene black and the content of activated carbon needs to be 95: 5 to 80:20 in terms of the mass ratio of the solid content, and is 93: 7 to 82:18. It is preferable that the ratio is 90:10 to 85:15. When the content of activated carbon is larger than the above range, it is difficult to obtain a good capacity balance when the electrode 10 is thinned. When the content of activated carbon is less than the above range, the electrode is formed when the electrode 10 is thinned. The coating film in the layer 14 is likely to drop off, come off, or cause streaks.

また、電極層14において、アセチレンブラック及び活性炭の合計の含有量とバインダーの含有量との比は、固形分の質量比で65:35〜45:55であることが必要であり、63:37〜47:53であることが好ましく、60:40〜50:50であることがより好ましい。上記範囲よりもバインダーの含有量が多いと、容量が著しく低下するとともに、電極10を薄膜化した場合に容量バランスも損なわれやすく、上記範囲よりもバインダーの含有量が少ないと、電極10を薄膜化した場合に電極層14における塗膜の脱落や抜け、スジ等が発生しやすくなる。   In the electrode layer 14, the ratio of the total content of acetylene black and activated carbon and the content of the binder needs to be 65:35 to 45:55 in terms of the solid mass ratio, and 63:37 It is preferably ˜47: 53, more preferably 60:40 to 50:50. When the binder content is larger than the above range, the capacity is remarkably lowered, and when the electrode 10 is thinned, the capacity balance is easily lost. When the binder content is less than the above range, the electrode 10 is thinned. When it becomes, it will become easy to generate | occur | produce the omission of the coating film in the electrode layer 14, omission, a stripe, etc.

なお、上述したアセチレンブラック、活性炭及びバインダーの含有量は、固形分の含有量を意味する。   In addition, content of the acetylene black mentioned above, activated carbon, and a binder means content of solid content.

上記バインダーとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、ポリプロピレン(PP)、フッ素ゴム等が挙げられる。   Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene (PE), polypropylene (PP), and fluororubber.

上記アセチレンブラックの平均粒径は、一次粒径で20〜100nmであることが好ましく、25〜90nmであることがより好ましい。この平均粒径が20nm未満であると、上記範囲内の場合と比較して、塗料の分散性が低下して凝集物が発生しやすくなり、電極層14の表面に突起物が形成されやすくなる傾向があり、100nmを超えると、上記範囲内の場合と比較して、容量バランスが悪くなる傾向がある。   The average particle diameter of the acetylene black is preferably 20 to 100 nm, more preferably 25 to 90 nm, as a primary particle diameter. When the average particle size is less than 20 nm, the dispersibility of the coating is reduced and aggregates are likely to be generated, and protrusions are likely to be formed on the surface of the electrode layer 14 as compared with the case where the average particle size is within the above range. When it exceeds 100 nm, the capacity balance tends to be worse than in the above range.

また、上記アセチレンブラックのBET比表面積は、25〜200m/gであることが好ましく、30〜180m/gであることがより好ましい。BET比表面積が25m/g未満であると、上記範囲内の場合と比較して、電極層14の内部抵抗が増加する傾向があり、200m/gを超えると、上記範囲内の場合と比較して、電極10を薄膜化した場合に電極層14における塗膜の脱落や抜け、スジ等が発生しやすくなる傾向がある。なお、BET比表面積は、窒素吸着等温線からBET等温吸着式を用いて求められる。 Further, BET specific surface area of the acetylene black is preferably 25~200m 2 / g, more preferably 30~180m 2 / g. When the BET specific surface area is less than 25 m 2 / g, the internal resistance of the electrode layer 14 tends to increase as compared with the case in the above range, and when it exceeds 200 m 2 / g, In comparison, when the electrode 10 is thinned, the coating layer on the electrode layer 14 is liable to drop off, come off, or cause streaks. The BET specific surface area is obtained from the nitrogen adsorption isotherm using the BET isotherm adsorption formula.

上記活性炭としては、例えば、フェノール系活性炭や、椰子ガラ活性炭、ピッチ系活性炭等が挙げられる。   Examples of the activated carbon include phenol-based activated carbon, coconut shell activated carbon, pitch-based activated carbon, and the like.

活性炭の平均粒径は、1〜20μmであることが好ましく、2〜18μmであることがより好ましい。平均粒径が1μm未満であると、上記範囲内の場合と比較して、活性炭の粒径が細かくなりすぎて、活性炭の製造が難しくなる傾向があり、20μmを超えると、上記範囲内の場合と比較して、電極層の厚さTeが厚くなる傾向がある。   The average particle diameter of the activated carbon is preferably 1 to 20 μm, and more preferably 2 to 18 μm. When the average particle size is less than 1 μm, the activated carbon particle size tends to be too fine compared to the case within the above range, making it difficult to produce activated carbon. When the average particle size exceeds 20 μm, the case is within the above range. As compared with, the thickness Te of the electrode layer tends to increase.

また、活性炭の平均粒径は、電極層14の厚さをTe[μm]とし、活性炭の平均粒径をTa[μm]とした場合に、TeとTaとが下記式(1)で表される関係を満たすように調節することが好ましい。
0.25≦(Ta/Te)≦1.00 (1)
The average particle diameter of the activated carbon is expressed by the following formula (1) when the thickness of the electrode layer 14 is Te [μm] and the average particle diameter of the activated carbon is Ta [μm]. It is preferable to adjust so as to satisfy the following relationship.
0.25 ≦ (Ta / Te) ≦ 1.00 (1)

なお、(Ta/Te)の値が0.25未満であると、塗膜を補強する効果が小さくなり、電極10を薄膜化した場合に電極層14における塗膜の脱落や抜け、スジ等が発生しやすくなる傾向があり、1.00を超えると、電極層14を塗布するときに、スジが発生する傾向がある。また、塗膜の補強効果により塗膜の脱落等をより十分に抑制する観点から、(Ta/Te)の値は0.27〜0.98であることがより好ましく、0.30〜0.95であることが特に好ましい。   When the value of (Ta / Te) is less than 0.25, the effect of reinforcing the coating film is reduced, and when the electrode 10 is thinned, the coating layer in the electrode layer 14 is dropped, missing, streaks, or the like. When it exceeds 1.00, when the electrode layer 14 is applied, streaks tend to occur. Further, from the viewpoint of more sufficiently suppressing the dropping of the coating film due to the reinforcing effect of the coating film, the value of (Ta / Te) is more preferably 0.27 to 0.98, and preferably 0.30 to 0.00. 95 is particularly preferred.

活性炭のBET比表面積は、300〜3000m/gであることが好ましく、300〜2800m/gであることがより好ましい。BET比表面積が3000m/gを超えると、上記範囲内の場合と比較して、乾燥後における電極層14の塗膜中の残留溶剤が増加する傾向がある。 BET specific surface area of the activated carbon is preferably 300~3000m 2 / g, more preferably 300~2800m 2 / g. When the BET specific surface area exceeds 3000 m 2 / g, the residual solvent in the coating film of the electrode layer 14 after drying tends to increase as compared with the case in the above range.

上述した各構成材料を含有する電極層14の厚さは、電極10及び電気二重層キャパシタ100の薄膜化及び軽量化の観点から、25μm以下であることが好ましく、23μmであることがより好ましい。本実施形態によれば、良好な容量バランスと、電極層14の脱落等の発生の抑制とを両立しつつ、電極層14の厚さを上記範囲にまで薄くすることが可能である。なお、電極層14の厚さを、上記(Ta/Te)の値が上記範囲内となるように調節してもよい。   The thickness of the electrode layer 14 containing each constituent material described above is preferably 25 μm or less, and more preferably 23 μm, from the viewpoint of reducing the thickness and weight of the electrode 10 and the electric double layer capacitor 100. According to the present embodiment, it is possible to reduce the thickness of the electrode layer 14 to the above range while achieving both good capacity balance and suppression of occurrence of the electrode layer 14 falling off. The thickness of the electrode layer 14 may be adjusted so that the value of (Ta / Te) falls within the above range.

上記構成を有する電極層14は、例えば、アセチレンブラック、活性炭、バインダー及び該バインダーを溶解又は分散可能な溶剤を含有する電極層形成用塗布液を集電体12上に塗布し、上記溶媒を除去することより形成することができる。   The electrode layer 14 having the above-described configuration is formed by, for example, applying an electrode layer forming coating solution containing acetylene black, activated carbon, a binder, and a solvent capable of dissolving or dispersing the binder on the current collector 12 to remove the solvent. Can be formed.

セパレータ18は、絶縁性の多孔体で構成されている。絶縁性の多孔体としては、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布等が挙げられる。   The separator 18 is made of an insulating porous body. As the insulating porous body, for example, a laminate of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a mixture of the above resins, or at least one constituent material selected from the group consisting of cellulose, polyester and polypropylene The fiber nonwoven fabric which consists of, etc. are mentioned.

積層体20には電解液が含浸されている。この電解液は、主として、セパレータ18、及び、電極10内の電極層14に含浸されている。   The laminate 20 is impregnated with an electrolytic solution. This electrolytic solution is mainly impregnated in the separator 18 and the electrode layer 14 in the electrode 10.

電解液は、公知の電気二重層キャパシタに用いられている電解液を使用することができる。本実施形態において、電解液は、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。   As the electrolytic solution, an electrolytic solution used in a known electric double layer capacitor can be used. In the present embodiment, the electrolytic solution is preferably an electrolyte solution (nonaqueous electrolyte solution) that uses an organic solvent.

この電解液の種類は特に限定されないが、一般的には溶質の溶解度、解離度、液の粘性を考慮して選択され、高導電率でかつ高電位窓(分解開始電圧が高い)の電解質溶液であることが望ましい。例えば、代表的な例としては、テトラエチルアンモニウムテトラフルオロボレイトのような4級アンモニウム塩を、プロピレンカーボネート、ジエチレンカーボネイト、アセトニトリル等の有機溶媒に溶解したものが使用される。なお、この場合、混入水分を厳重に管理することが望ましい。また、電解液は、ゲル状の電解液であってもよい。   The type of the electrolytic solution is not particularly limited, but is generally selected in consideration of the solubility of solute, the degree of dissociation, and the viscosity of the solution, and has a high conductivity and a high potential window (high decomposition start voltage). It is desirable that For example, as a typical example, a quaternary ammonium salt such as tetraethylammonium tetrafluoroborate dissolved in an organic solvent such as propylene carbonate, diethylene carbonate, acetonitrile or the like is used. In this case, it is desirable to strictly manage the mixed water. Further, the electrolyte solution may be a gel electrolyte solution.

外装袋50は、その内部に積層体20及び電解液を密封する。外装袋50は、電解液の外部への漏出や電気二重層キャパシタ100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、外装袋50として、図1に示すように、金属箔52を合成樹脂膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔としては例えばアルミ箔を、合成樹脂膜としてはポリプロピレン等の膜を利用できる。   The exterior bag 50 seals the laminated body 20 and the electrolytic solution therein. The outer bag 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electric double layer capacitor 100. For example, as the outer bag 50, as shown in FIG. 1, a metal laminate film in which a metal foil 52 is coated with a synthetic resin film 54 from both sides can be used. For example, an aluminum foil can be used as the metal foil, and a film such as polypropylene can be used as the synthetic resin film.

リード60,62は、アルミ等の導電材料から形成されている。   The leads 60 and 62 are made of a conductive material such as aluminum.

このような電気二重層キャパシタ100は、上述した構成の電極10を備えているため、十分な薄型化及び軽量化が可能である。そして、薄型化した場合であっても、良好な容量バランスが得られるとともに、電極層14の脱落等の発生を十分に抑制することができる。   Since such an electric double layer capacitor 100 includes the electrode 10 having the above-described configuration, it can be sufficiently reduced in thickness and weight. And even if it is a case where it thins, while being able to obtain a favorable capacity | capacitance balance, generation | occurrence | production, such as dropping of the electrode layer 14, can fully be suppressed.

このような電気二重層キャパシタ100は以下のように製造することができる。まず、リード60,62の接続された積層体20、外装袋50、及び電解液をそれぞれ用意する。このとき、積層体20、外装袋50は、それぞれ、十分に乾燥処理を施しておく。例えば、空気中での加熱の後、さらに、真空中で加熱等することにより、これらの水分を十分に低減させることができる。   Such an electric double layer capacitor 100 can be manufactured as follows. First, the laminate 20 to which the leads 60 and 62 are connected, the outer bag 50, and the electrolyte are prepared. At this time, the laminated body 20 and the exterior bag 50 are each sufficiently dried. For example, after heating in air, the moisture can be sufficiently reduced by heating in vacuum.

続いて、外装袋50内に積層体20を収容し、この積層体20に電解液を滴下し、その後、外装袋50を密封すれば上述の電気二重層キャパシタが完成する。   Subsequently, the laminated body 20 is accommodated in the outer bag 50, an electrolytic solution is dropped onto the laminated body 20, and then the outer bag 50 is sealed to complete the above-described electric double layer capacitor.

なお、電気二重層キャパシタ100は、上述の形態に限定されず、例えば、積層体20が多数積層されたもの等でもよい。   In addition, the electric double layer capacitor 100 is not limited to the above-mentioned form, For example, what laminated | stacked many laminated bodies 20 etc. may be sufficient.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[実施例1〜12及び比較例1〜7]
(電極の作製)
活物質としてのアセチレンブラック(商品名:平均粒径:36nm、BET比表面積:65m/g)、活物質としての粒状の活性炭、及び、バインダーとしてのPVDFを下記表1に示す配合量で混合し、得られた混合物にN−メチルピロリドンを適量加えて混練することにより、電極層形成用塗布液を得た。ここで、各実施例及び比較例で使用する活性炭1〜3は、それぞれ以下のものを用いた。また、表中の「AB」はアセチレンブラックを意味する。更に表1には、アセチレンブラックと活性炭との合計の配合量を100質量%とした場合の活性炭の比率({活性炭の配合量/(アセチレンブラックの配合量+活性炭の配合量)}×100)[質量%]を「活物質中の活性炭の比率」として示す。
[Examples 1-12 and Comparative Examples 1-7]
(Production of electrodes)
Acetylene black (trade name: average particle size: 36 nm, BET specific surface area: 65 m 2 / g) as an active material, granular activated carbon as an active material, and PVDF as a binder are mixed in the blending amounts shown in Table 1 below. Then, an appropriate amount of N-methylpyrrolidone was added to the resulting mixture and kneaded to obtain a coating solution for forming an electrode layer. Here, as the activated carbons 1 to 3 used in the examples and comparative examples, the following were used. In the table, “AB” means acetylene black. Further, Table 1 shows the ratio of activated carbon when the total blending amount of acetylene black and activated carbon is 100% by mass ({the blending amount of activated carbon / (the blending amount of acetylene black + the blending amount of activated carbon)} × 100). [% By mass] is shown as “ratio of activated carbon in the active material”.

活性炭1、平均粒径:6μm、BET比表面積:1800m/g)、
活性炭2、平均粒径:11μm、BET比表面積:1800m/g)、
活性炭3、平均粒径:3μm、BET比表面積:1800m/g)。
Activated carbon 1, average particle size: 6 μm, BET specific surface area: 1800 m 2 / g),
Activated carbon 2, average particle diameter: 11 μm, BET specific surface area: 1800 m 2 / g),
Activated carbon 3, average particle size: 3 μm, BET specific surface area: 1800 m 2 / g).


次に、得られた塗布液をドクターブレード法で30μm厚のエッチングアルミ箔の片面上に塗布した後、乾燥炉内にて120℃で塗膜を乾燥し、次いでカレンダーロールにて加圧加工した後、真空下において175℃で12時間加熱することにより電極層を形成した。得られた電極シートを、塗膜形成領域を中心としてアルミ箔のタブ部を持った長方形状に打ち抜き、電気二重層キャパシタ用の一対の電極を得た。   Next, the obtained coating solution was applied onto one side of a 30 μm-thick etching aluminum foil by a doctor blade method, and then the coating film was dried at 120 ° C. in a drying furnace, and then pressed with a calender roll. Thereafter, an electrode layer was formed by heating at 175 ° C. for 12 hours under vacuum. The obtained electrode sheet was punched out into a rectangular shape having a tab portion of an aluminum foil with the coating film formation region as the center to obtain a pair of electrodes for an electric double layer capacitor.

<電極層の塗膜外観の評価>
各実施例及び比較例で作製した電極について、電極層の塗膜外観を目視にて観察し、脱落の有無を評価した。なお、塗膜の脱落が認められなかったものについては、塗膜の抜け及びスジの有無を併せて観察し、脱落、抜け及びスジのいずれも認められたものは「良好」とした。その結果を表2に示す。
<Evaluation of coating layer appearance of electrode layer>
About the electrode produced by each Example and the comparative example, the coating-film external appearance of the electrode layer was observed visually, and the presence or absence of omission was evaluated. In addition, about the thing in which the drop-off of the coating film was not recognized, the absence of the coating film and the presence or absence of a streak were observed together, and the thing in which all of the drop-off, the drop-off and the streak were recognized was “good”. The results are shown in Table 2.

ここで、図3は、実施例1で作製した電極における電極層の塗膜外観を示す写真である。図3に示す通り、実施例1の電極では、塗膜の脱落、抜け及びスジのいずれも認められず、良好であった。図4は、実施例7で作製した電極における電極層の塗膜外観を示す写真である。図4に示す通り、実施例7の電極では、塗膜の脱落及びスジは認められず、若干の塗膜の抜けは認められたが、実用上問題ない程度であった。図5は、比較例2で作製した電極における電極層の塗膜外観を示す写真である。図5に示す通り、比較例2の電極では、若干の塗膜の脱落、及び、多数の塗膜の抜けが認められ、電極としての使用が困難であった。図6は、比較例1で作製した電極における電極層の塗膜外観を示す写真である。図6に示す通り、比較例1の電極では、塗膜の脱落が認められ、電極としての使用が困難であった。   Here, FIG. 3 is a photograph showing the appearance of the coating film of the electrode layer in the electrode produced in Example 1. As shown in FIG. 3, the electrode of Example 1 was good because none of the coating film was removed, missing, or streaked. FIG. 4 is a photograph showing the appearance of the coating film of the electrode layer in the electrode produced in Example 7. As shown in FIG. 4, in the electrode of Example 7, the coating film was not dropped off and streaks were observed, and some coating film was removed, but it was practically unproblematic. FIG. 5 is a photograph showing the appearance of the coating film of the electrode layer in the electrode produced in Comparative Example 2. As shown in FIG. 5, in the electrode of Comparative Example 2, some coating films were dropped and many coating films were missing, and it was difficult to use as an electrode. 6 is a photograph showing the appearance of the coating film of the electrode layer in the electrode produced in Comparative Example 1. FIG. As shown in FIG. 6, in the electrode of Comparative Example 1, the coating film was removed and it was difficult to use as an electrode.

<電極層の厚さの測定>
各実施例及び比較例で作製した電極のうち、電極層の塗膜の脱落が認められなかったものについて、電極層の厚さをマイクロメーターにより測定した。更に、電極層の厚さをTe[μm]とし、活性炭の平均粒径をTa[μm]とした場合の(Ta/Te)の値を算出した。これらの結果を表2に示す。
<Measurement of electrode layer thickness>
Of the electrodes prepared in each of the examples and comparative examples, the electrode layer thickness was measured with a micrometer for those in which the coating layer of the electrode layer was not removed. Furthermore, the value of (Ta / Te) was calculated when the thickness of the electrode layer was Te [μm] and the average particle diameter of the activated carbon was Ta [μm]. These results are shown in Table 2.

(電気二重層キャパシタの作製)
次に、以下の手順で電気二重層キャパシタを作製した。打ち抜いた電極2枚をセパレータとしての再生セルロース製不織布を介して対向させ、中心部を熱圧着し、積層体を得た。この積層体の各タブ部に超音波溶接でそれぞれアルミ製のリードを溶着した。リードを付けた積層体を、4方のうち2方を開けた袋状アルミラミネートフイルムに入れ、一方の開口部からリードを取り出し、リード部を挟んでラミネートフィルムの開口部を熱圧着した。積層体が入ったアルミラミネート外装袋の最後に残った開口部から積層体に対して電解液を注入し、真空熱圧着により残った開口部をシールし、エージングした後、図1に示したものと同様の構造を有する電気二重層キャパシタを得た。なお、電解液としては、1.2mol/Lのホウフッ化トリエチルメチルアンモニウムのプロピレンカーボネート溶液を用いた。
(Production of electric double layer capacitor)
Next, an electric double layer capacitor was produced by the following procedure. Two punched electrodes were made to face each other through a regenerated cellulose nonwoven fabric as a separator, and the center part was thermocompression bonded to obtain a laminate. Aluminum leads were welded to the tab portions of the laminate by ultrasonic welding. The laminated body with the leads was put into a bag-like aluminum laminate film having two of the four sides opened, the lead was taken out from one opening, and the opening of the laminate film was thermocompression bonded with the lead sandwiched therebetween. What was shown in FIG. 1 after injecting electrolyte solution into the laminate from the last remaining opening of the aluminum laminate outer bag containing the laminate, sealing the remaining opening by vacuum thermocompression bonding, and aging Thus, an electric double layer capacitor having the same structure was obtained. As the electrolytic solution, a 1.2 mol / L triethylmethylammonium borofluoride propylene carbonate solution was used.

<容量バランスの評価>
各実施例及び比較例で作製した電気二重層キャパシタの容量を以下の方法で測定した。すなわち、作製した電気二重層キャパシタに対し、充放電試験装置(菊水電子社製、商品名:PFX2011)を用いて50mAの定電流で充電を行い、電気二重層キャパシタに電荷が蓄積していくに従って電圧が上昇する様子をモニタし、電圧が3.3Vに達した後、定電圧充電(緩和充電)に移行し、5分間定電圧充電を行った。そして、放電は50mAの定電流で行い、終止電圧1.8Vとした。これにより得られた放電曲線(放電電圧−放電時間)から、3.0Vから2.0Vまでにかかった時間Δt[msec.]を求め、下記の関係式;
容量={放電電流(50mA)×時間Δt}/電圧(3.0−2.0V)
により容量[F]を求めた。
<Evaluation of capacity balance>
The capacitance of the electric double layer capacitor produced in each example and comparative example was measured by the following method. That is, the produced electric double layer capacitor is charged with a constant current of 50 mA using a charge / discharge test apparatus (trade name: PFX2011, manufactured by Kikusui Electronics Co., Ltd.), and the electric charge accumulates in the electric double layer capacitor. The state in which the voltage increased was monitored, and after the voltage reached 3.3 V, the operation shifted to constant voltage charging (relaxation charging), and constant voltage charging was performed for 5 minutes. Then, discharging was performed at a constant current of 50 mA, and a final voltage was 1.8V. From the discharge curve thus obtained (discharge voltage-discharge time), the time Δt [msec. ], And the following relational expression:
Capacity = {Discharge current (50 mA) × Time Δt} / Voltage (3.0-2.0 V)
To obtain the capacity [F].

上記方法で容量を20回測定し、その平均値(CAve)、最大値(CMax)及び最小値(CMin)をそれぞれ求め、下記式;
容量バランス={(CMax−CMin)/CAve}×100
により容量バランス[%]を求めた。その結果を表2に示す。なお、比較例1〜4の電気二重層キャパシタは、電極層における塗膜の脱落又は著しい塗膜の抜けが生じており、容量の測定が困難であったため、容量バランスを評価できなかった。
The capacity is measured 20 times by the above method, and the average value (C Ave ), the maximum value (C Max ), and the minimum value (C Min ) are obtained, respectively, and the following formula:
Capacity balance = {(C Max −C Min ) / C Ave } × 100
Thus, the capacity balance [%] was obtained. The results are shown in Table 2. In addition, the electric double layer capacitors of Comparative Examples 1 to 4 were unable to evaluate the capacity balance because the coating layer dropped off or the coating film dropped significantly in the electrode layer, and it was difficult to measure the capacity.


本発明の電気二重層キャパシタの好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the electric double layer capacitor of this invention. 本発明の電気二重層キャパシタ用電極の好適な一実施形態を示す模式断面図である。It is a schematic cross section which shows suitable one Embodiment of the electrode for electric double layer capacitors of this invention. 実施例1で作製した電極における電極層の塗膜外観を示す写真である。2 is a photograph showing an appearance of a coating film of an electrode layer in an electrode produced in Example 1. FIG. 実施例7で作製した電極における電極層の塗膜外観を示す写真である。6 is a photograph showing an appearance of a coating film of an electrode layer in an electrode produced in Example 7. 比較例2で作製した電極における電極層の塗膜外観を示す写真である。4 is a photograph showing an appearance of a coating film of an electrode layer in an electrode produced in Comparative Example 2. 比較例1で作製した電極における電極層の塗膜外観を示す写真である。2 is a photograph showing an appearance of a coating film of an electrode layer in an electrode produced in Comparative Example 1.

符号の説明Explanation of symbols

10…電極、12…集電体、14…電極層、18…セパレータ、20…積層体、50…外装袋、100…電気二重層キャパシタ。   DESCRIPTION OF SYMBOLS 10 ... Electrode, 12 ... Current collector, 14 ... Electrode layer, 18 ... Separator, 20 ... Laminated body, 50 ... Exterior bag, 100 ... Electric double layer capacitor

Claims (4)

集電体と、該集電体上に形成された電極層と、を有し、
前記電極層は、アセチレンブラックと、活性炭と、バインダーと、を含み、
前記電極層において、前記アセチレンブラックの含有量と前記活性炭の含有量との比が、質量比で95:5〜80:20であり、且つ、前記アセチレンブラック及び前記活性炭の合計の含有量と前記バインダーの含有量との比が、質量比で65:35〜45:55である、電気二重層キャパシタ用電極。
A current collector, and an electrode layer formed on the current collector,
The electrode layer includes acetylene black, activated carbon, and a binder,
In the electrode layer, the ratio of the content of the acetylene black and the content of the activated carbon is 95: 5 to 80:20 by mass ratio, and the total content of the acetylene black and the activated carbon The electrode for electric double layer capacitors whose ratio with content of a binder is 65: 35-45: 55 by mass ratio.
前記電極層の厚さをTe[μm]とし、前記活性炭の平均粒径をTa[μm]とした場合、TeとTaとが下記式(1)で表される関係を満たす、請求項1記載の電気二重層キャパシタ用電極。
0.25≦(Ta/Te)≦1.00 (1)
The thickness of the said electrode layer is set to Te [micrometer], and when the average particle diameter of the said activated carbon is set to Ta [micrometer], Te and Ta satisfy | fill the relationship represented by following formula (1). Electrode for electric double layer capacitor.
0.25 ≦ (Ta / Te) ≦ 1.00 (1)
集電体と、該集電体上に形成された電極層と、を有し、前記電極層は、アセチレンブラックと、活性炭と、バインダーと、を含み、前記電極層において、前記アセチレンブラックの含有量と前記活性炭の含有量との比が、質量比で95:5〜80:20であり、且つ、前記アセチレンブラック及び前記活性炭の合計の含有量と前記バインダーの含有量との比が、質量比で65:35〜45:55である電極を備える、電気二重層キャパシタ。   A current collector, and an electrode layer formed on the current collector, the electrode layer comprising acetylene black, activated carbon, and a binder, wherein the electrode layer contains the acetylene black The ratio of the amount and the content of the activated carbon is 95: 5 to 80:20 in mass ratio, and the ratio of the total content of the acetylene black and the activated carbon and the content of the binder is mass. An electric double layer capacitor comprising electrodes having a ratio of 65:35 to 45:55. 前記電極層の厚さをTe[μm]とし、前記活性炭の平均粒径をTa[μm]とした場合、TeとTaとが下記式(1)で表される関係を満たす、請求項3記載の電気二重層キャパシタ。
0.25≦(Ta/Te)≦1.00 (1)
The thickness of the said electrode layer is set to Te [micrometer], and when the average particle diameter of the said activated carbon is set to Ta [micrometer], Te and Ta satisfy | fill the relationship represented by following formula (1). Electric double layer capacitor.
0.25 ≦ (Ta / Te) ≦ 1.00 (1)
JP2008117447A 2008-04-28 2008-04-28 Electrode for electric double layer capacitor and electric double layer capacitor Active JP5136188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117447A JP5136188B2 (en) 2008-04-28 2008-04-28 Electrode for electric double layer capacitor and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117447A JP5136188B2 (en) 2008-04-28 2008-04-28 Electrode for electric double layer capacitor and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2009267241A true JP2009267241A (en) 2009-11-12
JP5136188B2 JP5136188B2 (en) 2013-02-06

Family

ID=41392683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117447A Active JP5136188B2 (en) 2008-04-28 2008-04-28 Electrode for electric double layer capacitor and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP5136188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028668A (en) * 2010-07-27 2012-02-09 Air Water Inc Coated electrode and capacitor using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304049A (en) * 1992-04-28 1993-11-16 Fuji Elelctrochem Co Ltd Electric double layer capacitor
JP2000077276A (en) * 1998-08-31 2000-03-14 Ccr:Kk Electric double-layered capacitor and manufacture of polarized electrode
JP2001284185A (en) * 2000-03-31 2001-10-12 Nippon Chemicon Corp Polarizable electrode for electric double-layer capacitor, and method of manufacturing the same
JP2001351834A (en) * 2000-04-06 2001-12-21 Fuji Electric Co Ltd Electric double-layer capacitor
JP2005191423A (en) * 2003-12-26 2005-07-14 Tdk Corp Electrode for capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05304049A (en) * 1992-04-28 1993-11-16 Fuji Elelctrochem Co Ltd Electric double layer capacitor
JP2000077276A (en) * 1998-08-31 2000-03-14 Ccr:Kk Electric double-layered capacitor and manufacture of polarized electrode
JP2001284185A (en) * 2000-03-31 2001-10-12 Nippon Chemicon Corp Polarizable electrode for electric double-layer capacitor, and method of manufacturing the same
JP2001351834A (en) * 2000-04-06 2001-12-21 Fuji Electric Co Ltd Electric double-layer capacitor
JP2005191423A (en) * 2003-12-26 2005-07-14 Tdk Corp Electrode for capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028668A (en) * 2010-07-27 2012-02-09 Air Water Inc Coated electrode and capacitor using it

Also Published As

Publication number Publication date
JP5136188B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US7303974B2 (en) Method for producing electrochemical capacitor electrode
US7046503B2 (en) Electrode for capacitor
US20070025062A1 (en) Method for producing electrochemical capacitor electrode
JP5578925B2 (en) Polarizable electrode material for electric double layer capacitor with improved withstand voltage and electric double layer capacitor using the same
JP2011097036A (en) Capacitor
JP2006261599A (en) Manufacturing method of electric double layer capacitor
JP2018061039A5 (en) Method of manufacturing non-aqueous lithium type storage element
US7974073B2 (en) Electric double-layer capacitor with a negative electrode containing a carbon material and a titanium oxide
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP2004335889A (en) Electrochemical capacitor
US7303975B2 (en) Method for producing electrochemical capacitor electrode
JP2003197487A (en) Electric double-layer capacitor
JP2016197649A (en) Separator for electric double layer capacitor and electric double layer capacitor
JP5136188B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
JP2009199962A (en) Separator-incorporated electrode, its manufacturing method, and power storage device using the same
JP4957373B2 (en) Electric double layer capacitor
JP2004253562A (en) Electrochemical capacitor
US20050204527A1 (en) Method of producing electrode for capacitor
JP2008130740A (en) Electric double-layer capacitor electrode and manufacturing method therefor
JP3692110B2 (en) Polarizable electrode for electric double layer capacitor, method for producing the polarizable electrode, and electric double layer capacitor produced using the polarizable electrode
JP2006086148A (en) Electric double layer capacitor and its manufacturing method
JP2010003471A (en) Nonaqueous electrolyte secondary battery
WO2013076762A1 (en) Capacitor
WO2011155164A1 (en) Capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5136188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3