JP2000077276A - Electric double-layered capacitor and manufacture of polarized electrode - Google Patents

Electric double-layered capacitor and manufacture of polarized electrode

Info

Publication number
JP2000077276A
JP2000077276A JP24502098A JP24502098A JP2000077276A JP 2000077276 A JP2000077276 A JP 2000077276A JP 24502098 A JP24502098 A JP 24502098A JP 24502098 A JP24502098 A JP 24502098A JP 2000077276 A JP2000077276 A JP 2000077276A
Authority
JP
Japan
Prior art keywords
electrode
electric double
powder
double layer
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24502098A
Other languages
Japanese (ja)
Inventor
Hideki Shibuya
秀樹 渋谷
Toshikazu Takeda
敏和 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ccr Kk
CCR KK
Original Assignee
Ccr Kk
CCR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ccr Kk, CCR KK filed Critical Ccr Kk
Priority to JP24502098A priority Critical patent/JP2000077276A/en
Publication of JP2000077276A publication Critical patent/JP2000077276A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layered capacitor and polarized electrode which has low internal resistance, less deterioration in capacitance and large capacitance and enables the high current electric charging/discharging by improving the grain size structure and the quality of a powder-like C material for the polarized electrode to reduce the bulk resistance of carbide grains constituting the electrode, the contact resistance between the grains and the contact resistance to a collector plate. SOLUTION: In an electric double-layered capacitor having polar electrodes 2 formed by coating, drying and pressing a slurry composed of a powder-like C material, conductive material, binder resin, etc., on collector plates like films wherein the polarized electrodes and a separator 1 are laminated and impregnated with an electrolytic soln., the polarized electrode has an active C powder having a max. grain size 50% larger than the electrode film thickness and an active C powder 20 wt.% or more, the grain size of which is 50-100% of the electrode film thickness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタ及びその製造方法であり、特に、大電流用途及びパ
ワー用途の大容量電気二重層キャパシタ及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor and a method for manufacturing the same, and more particularly, to a large capacity electric double layer capacitor for a large current application and a power application and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ハイパワーモータの初期駆動時には瞬間
的なパワーが要求されており、このために、大きな容量
の電池や電源を予め用意しておく必要がある。この一瞬
に必要な容量のために電池や電源のコストが高くなって
いる。また、過大な充放電電流は、電池の寿命を短くす
る原因でもある。
2. Description of the Related Art Instantaneous power is required at the time of initial driving of a high-power motor. For this reason, it is necessary to prepare a large-capacity battery or power supply in advance. This instantaneous capacity increases the cost of batteries and power supplies. In addition, the excessive charge / discharge current is also a cause of shortening the life of the battery.

【0003】近年、このような瞬時のパワーソースに電
気二重層コンデンサを用いることでバッテリや電源に対
する負荷を減らし、電源の定格容量を定常使用時のもの
としてローコスト化する動きがある。また、エンジンと
モータを組み合わせたハイブリッドカーなどの用途にも
同様の目的で大電流の充放電に耐える高出力タイプの電
気二重層キャパシタが必要とされている。
In recent years, there has been a movement to reduce the load on a battery or a power supply by using an electric double layer capacitor as such an instantaneous power source, and to reduce the cost of the rated capacity of the power supply in the case of regular use. For the same purpose, a high-output type electric double layer capacitor that can withstand a large amount of charge and discharge is also required for applications such as a hybrid car in which an engine and a motor are combined.

【0004】しかしながら、従来の電気二重層キャパシ
タは内部抵抗が高く、大きな電流を取り出すことができ
ないため、コンバータを利用した周辺の回路技術によっ
て高出力を得ているが、結局、コスト高を招くこととな
り、電池を使う場合と比較してほとんど変わらない。
However, since the conventional electric double layer capacitor has a high internal resistance and cannot take out a large current, a high output is obtained by a peripheral circuit technology using a converter. It is almost the same as when using batteries.

【0005】また、有機系電解液を用いた電気二重層コ
ンデンサでは、電極単位面積当たりの抵抗が高いため、
電流密度は1〜20mA/cm2で用いられており、そ
れ以上の電流密度では、電圧降下が大きくなり、出力が
著しく低下する。ゆえに、巻回構造等により薄い電極を
用いて面積を広くして高出力密度を得ようとしている。
しかし、このような有機系電解液と電極構造では、電極
単位面積当たりの抵抗による限界があるため、これ以上
の高出力密度を得るのは困難であった。
In an electric double layer capacitor using an organic electrolyte, the resistance per unit area of the electrode is high.
A current density of 1 to 20 mA / cm 2 is used. At a current density higher than 1 mA, the voltage drop increases and the output is significantly reduced. Therefore, an attempt is made to obtain a high output density by enlarging the area using a thin electrode by a winding structure or the like.
However, with such an organic electrolyte and an electrode structure, it is difficult to obtain a higher output density because there is a limit due to the resistance per unit area of the electrode.

【0006】このような高電流密度における単セルでの
出力低下はセルの内部抵抗による出力損失による。この
単セルの抵抗増加に寄与する因子を詳細に見ると、 1)集電板等の取り出し部分の抵抗、 2)集電板と電極の接触抵抗、 3)電極を構成する炭化物粒子のバルク抵抗、 4)その粒子間の接触による抵抗、 5)電極−電解液界面及びイオン拡散抵抗、 6)電解液のバルク抵抗、 がある。上記1)及び6)は、材料の種類や電解質の種
類、温度によって決まる。そして、2)〜5)について
は、主に分極性電極の構造、炭素材料の種類、粒子径の
構成によって決まる特性である。
The decrease in output of a single cell at such a high current density is due to output loss due to the internal resistance of the cell. The factors contributing to the increase in the resistance of the single cell are described in detail as follows: 1) the resistance of the portion where the current collector is taken out, 2) the contact resistance between the current collector and the electrode, and 3) the bulk resistance of the carbide particles constituting the electrode. 4) Resistance due to contact between the particles, 5) Electrode-electrolyte interface and ion diffusion resistance, 6) Bulk resistance of electrolyte. The above 1) and 6) are determined by the type of material, the type of electrolyte, and the temperature. Characteristics 2) to 5) mainly depend on the structure of the polarizable electrode, the type of carbon material, and the configuration of the particle diameter.

【0007】また、電極面積を広くする目的で分極性電
極の塗布厚を薄くして抵抗を下げる方法を取ると、電極
の体積当たりの容量が低下し、十分なエネルギ密度が得
られない。
Further, if a method is adopted in which the resistance is reduced by reducing the coating thickness of the polarizable electrode in order to increase the electrode area, the capacity per volume of the electrode is reduced, and a sufficient energy density cannot be obtained.

【0008】[0008]

【発明が解決しようとする課題】本発明は、分極性電極
に用いる粉末状炭素材料の粒子径構成及び材質を改良
し、電極を構成する炭化物粒子のバルク抵抗及びその粒
子間の接触による抵抗を低減させ、かつ、集電板との接
触抵抗を低減して、内部抵抗が低く、大電流充放電が可
能で、容量劣化の少ない、大きな静電容量を有する電気
二重層キャパシタ及び分極性電極の製造方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention improves the particle size composition and material of a powdery carbon material used for a polarizable electrode, and reduces the bulk resistance of carbide particles constituting the electrode and the resistance due to contact between the particles. It is possible to reduce the contact resistance with the current collector plate, reduce the internal resistance, enable large current charging and discharging, reduce the capacity deterioration, and have a large electrostatic capacity of the electric double layer capacitor and the polarizable electrode. It is intended to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】本発明は、粉末状炭素材
料、導電材料及びバインダ樹脂等からなるスラリを集電
板上に塗布、乾燥し、プレスして膜状とした分極性電極
と、セパレータと、を積層とし、電解液を含浸させた電
気二重層キャパシタにおいて、前記分極性電極は、最大
粒子径が電極の膜厚の50%以上である活性炭粉末を有
する電気二重層キャパシタである。
According to the present invention, there is provided a polarizable electrode formed by applying a slurry composed of a powdered carbon material, a conductive material, a binder resin and the like on a current collector, drying and pressing the slurry, and And a separator, wherein the polarizable electrode is an electric double layer capacitor having activated carbon powder having a maximum particle diameter of 50% or more of the film thickness of the electrode.

【0010】また、本発明は、前記分極性電極は、粒子
径が電極の膜厚の50%以上100%以下の活性炭粉末
を20wt%以上有する電気二重層キャパシタである。
Further, the present invention is the electric double layer capacitor, wherein the polarizable electrode has an activated carbon powder having a particle diameter of 50% to 100% of the electrode film thickness of 20% by weight or more.

【0011】そして、本発明は、前記分極性電極は、平
均粒子径が電極の膜厚の50%以上の活性炭粉末を有す
る電気二重層キャパシタである。
The present invention is the electric double layer capacitor, wherein the polarizable electrode has activated carbon powder having an average particle diameter of 50% or more of the electrode thickness.

【0012】更に、本発明は、上記粉末状炭素材料は、
抵抗の低い石油ピッチ系、フェノール樹脂系、ポリ塩化
ビニリデン系の炭化物のいずれか一つ又は混合物であ
り、そして、比表面積が800〜1500m2/gであ
る電気二重層キャパシタである。
Further, the present invention provides the above-mentioned powdery carbon material,
An electric double layer capacitor having a low resistance, which is any one or a mixture of petroleum pitch-based, phenolic resin-based, and polyvinylidene chloride-based carbides, and has a specific surface area of 800 to 1500 m 2 / g.

【0013】また、本発明は、粉末状炭素材料、導電材
料及びバインダ樹脂等からなるスラリを集電板上に塗
布、乾燥し、プレスする電気二重層キャパシタの分極性
電極の製造方法において、前記粉末状炭素材料は、粒子
径の大きい活性炭粉末を有する分極性電極の製造方法で
ある。
The present invention also relates to a method of manufacturing a polarizable electrode of an electric double layer capacitor, comprising applying a slurry comprising a powdery carbon material, a conductive material, a binder resin and the like on a current collector, drying and pressing the slurry. Powdered carbon material is a method for producing a polarizable electrode having activated carbon powder having a large particle diameter.

【0014】そして、本発明は、上記粉末状炭素材料
は、粉末状炭素材料に、その平均粒子径よりも最小粒子
径が大きい活性炭粉末を20wt%以上添加したもので
ある分極性電極の製造方法である。
The present invention provides a method for producing a polarizable electrode, wherein the powdered carbon material is obtained by adding activated carbon powder having a minimum particle size larger than the average particle size to the powdered carbon material by 20 wt% or more. It is.

【0015】[0015]

【発明の実施の形態】本発明の発明の実施の形態を説明
する。本発明の電気二重層キャパシタ及びその製造方法
の実施例について、説明する。図1は、電気二重層キャ
パシタの測定方法の説明図である。図2は、実施例で得
られた粉末の粒度分布の説明図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described. Embodiments of an electric double layer capacitor and a method for manufacturing the same according to the present invention will be described. FIG. 1 is an explanatory diagram of a method for measuring an electric double layer capacitor. FIG. 2 is an explanatory diagram of the particle size distribution of the powder obtained in the example.

【0016】実施例1を説明する。比表面積1200m
2/gの石油ピッチ系炭素材料を使用する。平均粒子径
20μmに粉砕し、粒子径53μm以下にふるいわけし
た粉末(a1)に、平均粒子径100μmに粉砕し、粒
子径75μm以上150μm以下に分級した粉末(b
1)を、比率を変えて混合した粉末10gにアセチレン
ブラック1.2g、バインダとして固形分量10wt%
のポリ弗化ビニリデンを6g混合して、N−メチル−2
−ピロリドンを添加して混合し、固形分量25wtのス
ラリを調整した。このスラリをドクターブレードを用い
て厚さ20μmのアルミニウム箔22に塗布し、140
℃で10分乾燥して、厚さ150μmの塗膜21を得
た。この塗膜21をプレスした後、25mm□サイズに
切断して、分極性電極2を得た。そして、この電極2を
厚さ50μmのセルロース繊維不織布セパレータ1を挾
んで対向させ素子とし、その外側にPt板を配置し集電
板3とし、さらにその外側からテフロン板4で挾み込ん
で固定したセルを、1molの(C254NBF4をプ
ロピレンカーボネートに溶解した電解液に浸漬して減圧
含浸した(図1参照)。そして、このセルの内部抵抗及
び電極投影面積に対する電流密度20mA/cm2及び
50mA/cm2における容量を測定した。その結果を
表1に示す。なお、粉末(b1)は、粒子径が分極性電
極の膜厚の50%以上の活性炭粉末である。
Embodiment 1 will be described. Specific surface area 1200m
2 / g of petroleum pitch-based carbon material is used. A powder (a1) pulverized to an average particle diameter of 20 μm and sieved to a particle diameter of 53 μm or less is mixed with a powder (b) pulverized to an average particle diameter of 100 μm and classified to a particle diameter of 75 μm or more and 150 μm or less.
1) was mixed with 10 g of powder mixed in a different ratio, 1.2 g of acetylene black, and a solid content of 10 wt% as a binder.
6 g of polyvinylidene fluoride of N-methyl-2
-Pyrrolidone was added and mixed to prepare a slurry having a solid content of 25 wt. This slurry was applied to an aluminum foil 22 having a thickness of 20 μm using a doctor blade.
After drying at 10 ° C. for 10 minutes, a coating film 21 having a thickness of 150 μm was obtained. After this coating film 21 was pressed, it was cut into a 25 mm square size to obtain a polarizable electrode 2. The electrodes 2 are opposed to each other with a 50 μm-thick cellulose fiber nonwoven fabric separator 1 interposed therebetween, and a Pt plate is disposed outside the current collector plate 3, and the Teflon plate 4 is sandwiched and fixed from the outside thereof. The cell thus obtained was immersed in an electrolytic solution obtained by dissolving 1 mol of (C 2 H 5 ) 4 NBF 4 in propylene carbonate and impregnated under reduced pressure (see FIG. 1). Then, to measure the capacity at a current density of 20 mA / cm 2 and 50 mA / cm 2 with respect to the internal resistance and the electrode projection area of the cell. Table 1 shows the results. The powder (b1) is an activated carbon powder having a particle diameter of 50% or more of the thickness of the polarizable electrode.

【表1】 [Table 1]

【0017】実施例2を説明する。比表面積1400m
2/gのフェノール樹脂系炭素材料を使用する。平均粒
子径10μmに粉砕し、粒子径22μm以下にふるいわ
けした粉末(a2)に、平均粒子径60μmに粉砕し、
粒子径53μm以上75μm以下に分級した粉末(b
2)を比率を変えて混合した粉末を用い、実施例1と同
様にスラリを調整した。このスラリをドクターブレード
を用いて厚さ20μmのアルミニウム箔に塗布し、14
0℃で10分乾燥して、厚さ80μmの塗膜を得た。そ
して、プレスして得られた電極を、実施例1と同様に、
セルの内部抵抗及び電極投影面積に対する電流密度20
mA/cm2及び50mA/cm2における容量を測定し
た。その結果を表2に示す。なお、粉末(b2)は、粒
子径が分極性電極の膜厚の50%以上の活性炭粉末であ
る。
Embodiment 2 will be described. Specific surface area 1400m
A 2 / g phenolic resin-based carbon material is used. The powder (a2) crushed to an average particle diameter of 10 μm and sieved to a particle diameter of 22 μm or less is crushed to an average particle diameter of 60 μm,
Powder (b) having a particle diameter of not less than 53 μm and not more than 75 μm
Slurry was adjusted in the same manner as in Example 1 by using powder obtained by mixing 2) in different ratios. This slurry was applied to a 20 μm thick aluminum foil using a doctor blade,
After drying at 0 ° C. for 10 minutes, a coating film having a thickness of 80 μm was obtained. Then, the electrode obtained by pressing was pressed in the same manner as in Example 1.
Current density 20 for cell internal resistance and electrode projected area
The capacitance at mA / cm 2 and 50 mA / cm 2 was measured. Table 2 shows the results. The powder (b2) is an activated carbon powder having a particle diameter of 50% or more of the thickness of the polarizable electrode.

【表2】 [Table 2]

【0018】実施例3を説明する。ポリ塩化ビニリデン
を600℃で炭化したものを水蒸気賦活した比表面積9
00m2/gの炭素材料を使用する。平均粒子径20μ
mに粉砕し、粒子径53μm以下にふるいわけした粉末
(a3)に、平均粒子径100μmに粉砕して粒子径7
5μm以上150μm以下に分級した粉末(b3)を3
0wt%混合した粉末を用い、実施例1と同様にスラリ
を調整した。このスラリをドクターブレードを用いて厚
さ20μmのアルミニウム箔に塗布し、140℃で10
分乾燥して、厚さ150μmの塗膜を得た。そして、プ
レスして得られた電極を、実施例1と同様に、セルの内
部抵抗及び電極投影面積に対する電流密度20mA/c
2及び50mA/cm2における容量を測定した。その
結果を表3に示す。なお、粉末(b3)は、粒子径が分
極性電極の膜厚の50%以上の活性炭粉末である。
Embodiment 3 will be described. Specific surface area 9 obtained by steam activation of carbonized polyvinylidene chloride at 600 ° C.
A carbon material of 00 m 2 / g is used. Average particle size 20μ
m, and sieved to a particle size of 53 μm or less, into a powder (a3) having an average particle size of 100 μm and a particle size of 7 μm.
Powder (b3) classified into 5 μm or more and 150 μm or less
Slurry was adjusted in the same manner as in Example 1 using powder mixed with 0 wt%. This slurry was applied to a 20 μm-thick aluminum foil using a doctor blade.
After drying for a minute, a coating film having a thickness of 150 μm was obtained. Then, the electrode obtained by pressing was subjected to a current density of 20 mA / c with respect to the internal resistance of the cell and the projected area of the electrode, as in Example 1.
The capacitance at m 2 and 50 mA / cm 2 was measured. Table 3 shows the results. The powder (b3) is an activated carbon powder having a particle diameter of 50% or more of the thickness of the polarizable electrode.

【表3】 [Table 3]

【0019】実施例1〜3の結果から明らかなように、
粉末状炭素材料の素材及び分極性電極の膜厚によらず、
粒子径が分極性電極の膜厚の50%以上である活性炭粉
末(b1、b2、b3)が20wt%以上有する電極
は、内部抵抗が低くなり、そして、50mA/cm2
高電流密度での容量低下も減り、容量が大きくなってい
ることがわかる。なお、No.18(プレスなし)につ
いては、後述する。
As is clear from the results of Examples 1 to 3,
Regardless of the powdered carbon material and the thickness of the polarizable electrode,
An electrode having an activated carbon powder (b1, b2, b3) having a particle diameter of 50% or more of the film thickness of the polarizable electrode at 20% by weight or more has a low internal resistance and has a high current density of 50 mA / cm 2 . It can be seen that the capacity decrease is reduced and the capacity is increased. In addition, No. 18 (no press) will be described later.

【0020】実施例4を説明する。比表面積1200m
2/gの石油ピッチ系炭素材料を用い、平均粒子径50
μmに粉砕し、粒子径75μm以下にふるいわけした。
得られた粉末の粒度分布は、図2に示すようになり、実
施例1〜3で効果の認められた粒子径サイズの粉末を得
ているのがわかる。この粉末100gにアセチレンブラ
ック12g、バインダとして固形分量10wt%のポリ
弗化ビニリデンを60g混合してN−メチル−2−ピロ
リドンを添加して混合し、固形分量25wt%のスラリ
を調整した。このスラリをドクターブレードを用いて、
厚さ20μmのアルミニウム箔に110mの幅で塗布
し、140℃で10分乾燥して、厚さ80μmの塗膜を
得た。このプロセスを裏面にも行って両面に分極性電極
を形成した。次に、この電極に集電用のタブを付けた状
態で44×103mmのサイズに切断した後、プレスし
て分極性電極を得た。そして、この電極を厚さ50μm
のセパレータを挾んで集電タブの位置が交互になるよう
に層を積層してプレスした後、タブを正極負極でそれぞ
れ圧着して、角形の樹脂製の上蓋の端子に取り付けた状
態の素子とし、160℃で24時間減圧乾燥した。この
素子を窒素雰囲気のグローブボックス中で1molの
(C254NBF4をプロピレンカーボネートに溶解し
た電解液に浸漬して24時間減圧含浸した後、50mm
□で高さが123mmのアルミニウムケースにいれて上
蓋の周囲をかしめ、さらにエポキシ樹脂を流し込み封口
して、電気二重層キャパシタとした。この電気二重層キ
ャパシタの1KHzにおける直列等価抵抗値(ESR)
は、0.5mΩであった。電圧2.4V、電流500A
における放電時の静電容量は、1100Fで、直流抵抗
値は0.8mΩであった。
Embodiment 4 will be described. Specific surface area 1200m
2 / g petroleum pitch-based carbon material, average particle size 50
It was pulverized to a size of μm and sieved to a particle size of 75 μm or less.
The particle size distribution of the obtained powder is as shown in FIG. 2, and it can be seen that powder having a particle size effective for Examples 1 to 3 was obtained. To 100 g of this powder, 12 g of acetylene black, 60 g of polyvinylidene fluoride having a solid content of 10 wt% as a binder were mixed, and N-methyl-2-pyrrolidone was added and mixed to prepare a slurry having a solid content of 25 wt%. Using a doctor blade, this slurry
It was applied to an aluminum foil having a thickness of 20 μm with a width of 110 m, and dried at 140 ° C. for 10 minutes to obtain a coating film having a thickness of 80 μm. This process was also performed on the back surface to form polarizable electrodes on both surfaces. Next, this electrode was cut into a size of 44 × 103 mm with a current collecting tab attached, and then pressed to obtain a polarizable electrode. And this electrode is 50 μm thick
After stacking the layers so that the positions of the current collecting tabs are alternately sandwiched between the separators and pressing them, the tabs are pressed with positive and negative electrodes respectively, and the element is attached to the terminal of the rectangular resin top cover. And dried under reduced pressure at 160 ° C. for 24 hours. This device was immersed in an electrolyte solution of 1 mol of (C 2 H 5 ) 4 NBF 4 in propylene carbonate in a glove box in a nitrogen atmosphere, and impregnated with the solution under reduced pressure for 24 hours.
□ was placed in an aluminum case having a height of 123 mm, and the periphery of the upper lid was caulked. Further, an epoxy resin was poured in and sealed to obtain an electric double layer capacitor. Series equivalent resistance (ESR) at 1 KHz of this electric double layer capacitor
Was 0.5 mΩ. Voltage 2.4V, current 500A
Was 1100 F and the DC resistance was 0.8 mΩ.

【0021】比較例1を説明する。アルカリ賦活した比
表面積3100m2/gの石油コークス系炭素材料を用
いて、平均粒子径10μmに粉砕して、粒子径53μm
以下にふるいわけした粉末(a4)に、平均粒子径10
0μmに粉砕して粒子径53μm以上75μm以下にふ
るいわけした粉末(b4)を30%混合した粉末を用
い、実施例1と同様にスラリを調整した。このスラリを
ドクターブレードを用いて、厚さ20μmのアルミニウ
ム箔に塗布し、140℃で10分乾燥して、厚さ150
μmの塗膜を得た。そして、この電極を実施例1と同様
にセルの内部抵抗及び電極投影面積に対する電流密度2
0mA/cm2及び50mA/cm2における容量を測定
した。得られた結果を表4に示す。なお、粉末(b4)
は、粒子径が分極性電極の膜厚の50%以上の活性炭粉
末である。
Comparative Example 1 will be described. Using an alkali-activated petroleum coke-based carbon material having a specific surface area of 3100 m 2 / g, pulverized to an average particle diameter of 10 μm, and a particle diameter of 53 μm
The powder (a4) sieved below has an average particle size of 10
A slurry was prepared in the same manner as in Example 1 by using a powder obtained by mixing 30% of a powder (b4) crushed to 0 μm and sieved to a particle diameter of 53 μm to 75 μm. The slurry was applied to an aluminum foil having a thickness of 20 μm using a doctor blade, dried at 140 ° C. for 10 minutes, and then dried to a thickness of 150 μm.
A μm coating was obtained. Then, similarly to the first embodiment, the current density of the electrode with respect to the internal resistance of the cell and the projected area of the electrode was 2%.
The capacity at 0 mA / cm 2 and 50 mA / cm 2 was measured. Table 4 shows the obtained results. In addition, powder (b4)
Is an activated carbon powder having a particle diameter of 50% or more of the film thickness of the polarizable electrode.

【表4】 [Table 4]

【0022】この測定結果をみると、比較例1で得られ
たセルNo.42は,粒子構成の効果が現れており、当
初は大きな容量及び低い内部抵抗を得たが、粉末状炭素
材料として、比表面積の大きなものを使用しているた
め、充放電を繰り返すと著しい容量低下が生じ、実用に
は適さないことがわかった。
Looking at the measurement results, the cell no. No. 42 shows the effect of the particle configuration, and at the beginning a large capacity and a low internal resistance were obtained. However, since a powdered carbon material having a large specific surface area was used, a remarkable capacity was obtained when charging and discharging were repeated. It has been found that a drop occurs and is not suitable for practical use.

【0023】比較例2を説明する。実施例1のNo.1
4と同様にして作成した分極性電極をプレスせずにセル
を作成し、容量と内部抵抗を測定したところ、表1のN
o.18のセルと同様に、抵抗がNo.14のセルに比
べて大きく、高電流密度側での容量が小さくなった。高
電流密度側での容量を低下させないためには、プレス処
理が重要であることがわかった。
Comparative Example 2 will be described. No. 1 of the first embodiment. 1
A cell was prepared without pressing the polarizable electrode prepared in the same manner as in Example 4, and the capacitance and internal resistance were measured.
o. 18, the resistance is No. It was larger than the cell No. 14 and the capacity on the high current density side was small. It was found that pressing was important in order not to lower the capacity on the high current density side.

【0024】以上、実施例及び比較例で説明したよう
に、本実施例のセルは、分極性電極の膜厚の50%以上
の粒子径の炭素材料を添加することで、粒子間の接触抵
抗が減少し、集電板から分極性電極の末端までの抵抗を
炭素材料のバルク抵抗に近づけて、低減することができ
る。更に、プレスによって大粒子径の粒子が集電板にし
っかりとコンタクトし、プローブの役割をするようにな
り、抵抗が更に低減する。特に、比表面積の比較的小さ
な炭素材料や樹脂を800℃以上の高温で炭化した炭素
材料は、バルクの抵抗値が低くなり、抵抗の低減には適
している。なお、比表面積を1500m2/g以上に賦
活した炭素材料は、密度が下がり、抵抗値も増加する傾
向にある。更に、活性が高いため、電解液との反応を引
き起こしやすく、充放電を繰り返すと容量劣化が著しく
なり、実用には適さない。
As described in the above examples and comparative examples, the cell of the present example was prepared by adding a carbon material having a particle diameter of 50% or more of the thickness of the polarizable electrode to thereby obtain a contact resistance between particles. And the resistance from the current collector to the end of the polarizable electrode can be reduced by approaching the bulk resistance of the carbon material. In addition, the pressing causes the large-diameter particles to come into firm contact with the current collector plate and act as a probe, further reducing the resistance. In particular, a carbon material having a relatively small specific surface area or a carbon material obtained by carbonizing a resin at a high temperature of 800 ° C. or more has a low bulk resistance value and is suitable for reducing the resistance. The carbon material activated to have a specific surface area of 1500 m 2 / g or more tends to have a reduced density and an increased resistance value. Furthermore, since the activity is high, it easily causes a reaction with the electrolytic solution, and when charge and discharge are repeated, the capacity is significantly deteriorated, which is not suitable for practical use.

【0025】[0025]

【発明の効果】本発明によれば、分極性電極に用いる粉
末状炭素材料の粒子径構成及び材質を改良し、電極を構
成する炭化物粒子のバルク抵抗及びその粒子間の接触に
よる抵抗を低減させ、かつ、集電板との接触抵抗を低減
して、内部抵抗が低く、大電流充放電が可能で、容量劣
化の少ない、大きな静電容量を有する電気二重層キャパ
シタ及び分極性電極を得ることができる。
According to the present invention, the particle diameter composition and material of the powdery carbon material used for the polarizable electrode are improved, and the bulk resistance of carbide particles constituting the electrode and the resistance due to contact between the particles are reduced. To obtain an electric double layer capacitor and a polarizable electrode having a low capacitance, a low internal resistance, a large current charge / discharge, a small capacity deterioration, and a large capacitance by reducing the contact resistance with the current collector plate. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層キャパシタの測定方法の説明図。FIG. 1 is an explanatory diagram of a method for measuring an electric double layer capacitor.

【図2】実施例で得られた粉末の粒度分布の説明図。FIG. 2 is an explanatory diagram of a particle size distribution of a powder obtained in an example.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 分極性電極 3 集電板 4 テフロン板 DESCRIPTION OF SYMBOLS 1 Separator 2 Polarized electrode 3 Current collector plate 4 Teflon plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 粉末状炭素材料、導電材料及びバインダ
樹脂等からなるスラリを集電板上に塗布、乾燥し、プレ
スして膜状とした分極性電極と、セパレータと、を積層
とし、電解液を含浸させた電気二重層キャパシタにおい
て、 前記分極性電極は、最大粒子径が電極の膜厚の50%以
上である活性炭粉末を有することを特徴とする電気二重
層キャパシタ。
1. A slurry comprising a powdery carbon material, a conductive material, a binder resin and the like is coated on a current collector, dried, pressed to form a film-shaped polarizable electrode, and a separator is laminated. An electric double layer capacitor impregnated with a liquid, wherein the polarizable electrode has activated carbon powder having a maximum particle diameter of 50% or more of the electrode thickness.
【請求項2】 請求項1記載の電気二重層キャパシタに
おいて、 前記分極性電極は、粒子径が電極の膜厚の50%以上1
00%以下の活性炭粉末を20wt%以上有することを
特徴とする電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the particle diameter of the polarizable electrode is 50% or more of the film thickness of the electrode.
An electric double layer capacitor comprising at least 20% by weight of activated carbon powder of not more than 00%.
【請求項3】 請求項1又は2に記載の電気二重層キャ
パシタにおいて、 前記分極性電極は、平均粒子径が電極の膜厚の50%以
上の活性炭粉末を有することを特徴とする電気二重層キ
ャパシタ。
3. The electric double layer capacitor according to claim 1, wherein the polarizable electrode has an activated carbon powder having an average particle diameter of 50% or more of the thickness of the electrode. Capacitors.
【請求項4】 請求項1〜3のいずれか1項に記載の電
気二重層キャパシタにおいて、 上記粉末状炭素材料は、抵抗の低い石油ピッチ系、フェ
ノール樹脂系、ポリ塩化ビニリデン系の炭化物のいずれ
か一つ又は混合物であり、そして、比表面積が800〜
1500m2/gであることを特徴とする電気二重層キ
ャパシタ。
4. The electric double layer capacitor according to claim 1, wherein the powdery carbon material is selected from petroleum pitch-based, phenolic resin-based, and polyvinylidene chloride-based carbides having low resistance. Or a mixture having a specific surface area of 800 to
An electric double layer capacitor having a capacity of 1500 m 2 / g.
【請求項5】 粉末状炭素材料、導電材料及びバインダ
樹脂等からなるスラリを集電板上に塗布、乾燥し、プレ
スする電気二重層キャパシタの分極性電極の製造方法に
おいて、 前記粉末状炭素材料は、粒子径の大きい活性炭粉末を有
することを特徴とする分極性電極の製造方法。
5. A method for producing a polarizable electrode of an electric double layer capacitor, comprising applying a slurry composed of a powdery carbon material, a conductive material, a binder resin and the like on a current collector, drying and pressing the slurry. Is a method for producing a polarizable electrode, comprising an activated carbon powder having a large particle diameter.
【請求項6】 請求項5記載の分極性電極の製造方法に
おいて、 上記粉末状炭素材料は、粉末状炭素材料に、その平均粒
子径よりも最小粒子径が大きい活性炭粉末を20wt%
以上添加したものであることを特徴とする分極性電極の
製造方法。
6. The method for producing a polarizable electrode according to claim 5, wherein the powdered carbon material is an activated carbon powder having a minimum particle diameter larger than the average particle diameter of 20 wt% in the powdered carbon material.
A method for producing a polarizable electrode, characterized by being added as described above.
JP24502098A 1998-08-31 1998-08-31 Electric double-layered capacitor and manufacture of polarized electrode Pending JP2000077276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24502098A JP2000077276A (en) 1998-08-31 1998-08-31 Electric double-layered capacitor and manufacture of polarized electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24502098A JP2000077276A (en) 1998-08-31 1998-08-31 Electric double-layered capacitor and manufacture of polarized electrode

Publications (1)

Publication Number Publication Date
JP2000077276A true JP2000077276A (en) 2000-03-14

Family

ID=17127391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24502098A Pending JP2000077276A (en) 1998-08-31 1998-08-31 Electric double-layered capacitor and manufacture of polarized electrode

Country Status (1)

Country Link
JP (1) JP2000077276A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267241A (en) * 2008-04-28 2009-11-12 Tdk Corp Electrode for electric double layer capacitor, and electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267241A (en) * 2008-04-28 2009-11-12 Tdk Corp Electrode for electric double layer capacitor, and electric double layer capacitor

Similar Documents

Publication Publication Date Title
JP3689948B2 (en) Electric double layer capacitor
US6282081B1 (en) Electrode for capacitor, method for producing the same and capacitor
US20120099244A1 (en) Electrode of high-density super capacitor and method for manufacturing same
JP2007280803A (en) Hybrid laminated electrode and hybrid secondary power source using the same
JP2004520703A (en) Electrochemical double layer capacitor with carbon powder electrode
KR20100129307A (en) Ionic liquid-containing electrode membrane and electrode, process for producing the electrode membrane and the electrode, and electric storage device
EP2362468A1 (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP2002231585A (en) Electric double-layered capacitor
JP2011028898A (en) Positive electrode for lithium secondary battery and method of manufacturing the same
JP2011119290A (en) Method of manufacturing electrode for electrochemical element
JP2002270470A (en) Electric double-layered capacitor
JP3460776B2 (en) Electric double layer capacitor
US11456451B2 (en) Method for preparing dry electrode
WO2015005294A1 (en) Power storage device
JP2011204704A (en) Electrode for lithium ion capacitor and lithium ion capacitor
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR100928224B1 (en) Manufacturing method of nano active material electrode for energy storage device
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JPH11329393A (en) Nonwoven cloth for battery separator and battery using it
JP2000077276A (en) Electric double-layered capacitor and manufacture of polarized electrode
KR20220070027A (en) Supercapacitors with biasing electrodes
JP3680883B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2002260970A (en) Activated carbonaceous structure and electric double- layer capacitor using the same
JP2004186275A (en) Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same