JP2009249739A - Metal magnetic particulate, method for producing the same and powder magnetic core - Google Patents

Metal magnetic particulate, method for producing the same and powder magnetic core Download PDF

Info

Publication number
JP2009249739A
JP2009249739A JP2008103449A JP2008103449A JP2009249739A JP 2009249739 A JP2009249739 A JP 2009249739A JP 2008103449 A JP2008103449 A JP 2008103449A JP 2008103449 A JP2008103449 A JP 2008103449A JP 2009249739 A JP2009249739 A JP 2009249739A
Authority
JP
Japan
Prior art keywords
fine particles
phase
metal magnetic
magnetic fine
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008103449A
Other languages
Japanese (ja)
Other versions
JP2009249739A5 (en
JP5168637B2 (en
Inventor
Hisato Tokoro
久人 所
Shigeo Fujii
重男 藤井
Yasushi Kaneko
泰 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008103449A priority Critical patent/JP5168637B2/en
Publication of JP2009249739A publication Critical patent/JP2009249739A/en
Publication of JP2009249739A5 publication Critical patent/JP2009249739A5/ja
Application granted granted Critical
Publication of JP5168637B2 publication Critical patent/JP5168637B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide metal magnetic particulates having high saturation magnetization and also having excellent corrosion resistance, and to provide a method for producing the same. <P>SOLUTION: Oxide powder of Fe, compound powder containing an element(s) X (X denotes at least one selected from Al, Co, Ni and Si) and compound powder containing carbon are mixed, and the obtained powder is subjected to heat treatment (first heat treatment) within the range of 800 to 1,600°C in a nonoxidizing atmosphere, so as to form metal magnetic particulates including nuclear particles (comprising Fe and X) and a carbon film, and, after the first heat treatment, the metal magnetic particulates are subjected to heat treatment (second heat treatment) within the range of 400 to 750°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気テープ又は磁気記録ディスク等の磁気記録媒体、電波吸収体、インダクタ又はプリント基板等の電子デバイス(ヨーク等の軟磁性体)、圧粉磁芯、光触媒、核酸抽出用磁気ビーズ、医療用マイクロスフィア等に用いる金属磁性微粒子、及びその製造方法に関する。   The present invention is a magnetic recording medium such as a magnetic tape or a magnetic recording disk, a radio wave absorber, an electronic device such as an inductor or a printed board (soft magnetic body such as a yoke), a dust core, a photocatalyst, a magnetic bead for nucleic acid extraction, The present invention relates to metal magnetic fine particles used for medical microspheres and the like, and a method for producing the same.

電子機器の小型軽量化及び高性能化に伴い、電子機器を構成する電子デバイスに用いられる材料においても高性能化及びナノサイズ化が要求されている。例えば磁気テープに塗布する磁性微粒子は、磁気記録密度の向上を目的として、ナノサイズ化と飽和磁化の向上が同時に要求されている。   As electronic devices become smaller and lighter and have higher performance, materials used for electronic devices constituting electronic devices are also required to have higher performance and nano-size. For example, magnetic fine particles applied to a magnetic tape are required to be nanosized and to improve saturation magnetization simultaneously for the purpose of improving magnetic recording density.

またアレルギーなどの疾病を診断するために抗原等のタンパク質を回収する方法として、磁気分離法が広く用いられるようになってきており、高飽和磁化を有し耐食性に優れたナノサイズの磁気ビーズの要求が高まってきている。特許文献1においては酸化鉄よりも高飽和磁化である金属鉄微粒子を用いた磁気ビーズが提案されている。また電子機器の駆動周波数の高周波化に伴い、高周波下においても高効率の磁性素子を実現できるような高性能な磁性材料が求められている。このため特許文献2では飽和磁束密度の高い鉄系の金属粉末が提案されている。   In addition, magnetic separation methods have been widely used as a method for recovering proteins such as antigens for diagnosing diseases such as allergies. Nano-sized magnetic beads having high saturation magnetization and excellent corrosion resistance have been widely used. There is an increasing demand. Patent Document 1 proposes a magnetic bead using metallic iron fine particles having higher saturation magnetization than iron oxide. Further, as the driving frequency of electronic equipment is increased, a high-performance magnetic material capable of realizing a highly efficient magnetic element even under a high frequency is required. For this reason, Patent Document 2 proposes an iron-based metal powder having a high saturation magnetic flux density.

金属の磁性微粒子はフェライト等の酸化物微粒子に比べて飽和磁化が大きいため、工業的利用への期待が大きい。例えば、金属Feの飽和磁化は218Am/kgと酸化鉄に比べて非常に大きいので、磁場応答性に優れ、信号強度が大きくとれるという利点がある。しかし金属Fe等の金属微粒子は容易に酸化し、例えば10μm以下の微粒子状にすると、比表面積の増大により大気中で激しく酸化燃焼するので、大気中にて乾燥状態で取り扱うのが難しい。そのため、フェライトやマグネタイト等の化学的に安定な酸化物微粒子が広く利用されている。 Since metal magnetic fine particles have a larger saturation magnetization than oxide fine particles such as ferrite, they are highly expected for industrial use. For example, the saturation magnetization of metallic Fe is 218 Am 2 / kg, which is very large compared to iron oxide, and therefore has an advantage of excellent magnetic field response and high signal intensity. However, metal fine particles such as metal Fe readily oxidize. For example, if they are formed into fine particles of 10 μm or less, they violently oxidize and burn in the atmosphere due to an increase in specific surface area, so it is difficult to handle them in the air in a dry state. Therefore, chemically stable oxide fine particles such as ferrite and magnetite are widely used.

金属磁性微粒子の酸化を防ぐため、特許文献3においてはFeの酸化物をほう素または炭素で固相還元することにより、ほう素、窒素、炭素の少なくとも一つを主要元素として含む化合物で金属Fe微粒子を被覆している。しかしこの方法では金属磁性微粒子の被覆が十分ではなく、例えば水溶液中で用いる場合には被覆が不完全な部分から腐食してしまい、磁気ビーズ等の高耐食性が要求される用途には適さない。   In order to prevent oxidation of metal magnetic fine particles, Patent Document 3 discloses a compound containing at least one of boron, nitrogen, and carbon as a main element by solid-phase reduction of an oxide of Fe with boron or carbon. It is coated with fine particles. However, in this method, the coating of the metal magnetic fine particles is not sufficient. For example, when used in an aqueous solution, the coating is corroded from an incomplete portion, and is not suitable for applications requiring high corrosion resistance such as magnetic beads.

また炭素で被覆された金属Fe微粒子においては核粒子に炭素が固溶することによってオーステナイト相と呼ばれる常磁性のγ−(Fe,C)相が安定化する、あるいは炭化鉄が形成されることによって飽和磁化が低下してしまうという問題があった。特に金属微粒子の粒径が10μm以下、更には1μm以下の微粒子となる場合にはγ−(Fe,C)相の安定化が顕著となり、高飽和磁化の微粒子を得ることが困難であった。以上より高飽和磁化でなおかつ高耐食性の金属微粒子を安価に製造し得る工業生産性に優れた方法が望まれている。   Moreover, in the metal Fe fine particles coated with carbon, the paramagnetic γ- (Fe, C) phase called austenite phase is stabilized by the solid solution of carbon in the core particles, or iron carbide is formed. There is a problem that the saturation magnetization is lowered. In particular, when the particle size of the metal fine particles is 10 μm or less, and further 1 μm or less, the γ- (Fe, C) phase is remarkably stabilized, and it is difficult to obtain fine particles with high saturation magnetization. As described above, a method excellent in industrial productivity that can produce metal particles having high saturation magnetization and high corrosion resistance at low cost is desired.

特開2006−97123号公報JP 2006-97123 A 特開2007−146259号公報JP 2007-146259 A 特開2005−89796号公報Japanese Patent Laid-Open No. 2005-89796

従って、本発明の目的は、高飽和磁化を有し、なおかつ耐食性に優れた金属磁性微粒子、及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a metal magnetic fine particle having high saturation magnetization and excellent corrosion resistance, and a method for producing the same.

上記目的に鑑み鋭意研究の結果、本発明に至った。
本発明の金属磁性微粒子の製造方法は、Feの酸化物粉末と元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)を含む化合物粉末と、炭素を含む化合物粉末とを混合し、
得られた粉末を、非酸化性雰囲気中、800〜1600℃の範囲内で熱処理する(第1の熱処理)ことによって、核粒子(核粒子はFe及びXを含有する)及び炭素被膜を有する金属磁性微粒子を形成し、
前記第1の熱処理の後、前記金属磁性微粒子を400〜750℃の範囲内で熱処理する(第2の熱処理)ことを特徴とする。
As a result of intensive studies in view of the above object, the present invention has been achieved.
The method for producing metal magnetic fine particles of the present invention includes a compound powder containing Fe oxide powder and element X (X is at least one selected from Al, Co, Ni and Si), and a compound powder containing carbon. And mix
The obtained powder is heat-treated in a non-oxidizing atmosphere within a range of 800 to 1600 ° C. (first heat treatment), whereby a core particle (the core particle contains Fe and X) and a metal having a carbon film Forming magnetic particles,
After the first heat treatment, the metal magnetic fine particles are heat-treated within a range of 400 to 750 ° C. (second heat treatment).

第1の熱処理ではFeの酸化物を還元する。第2の熱処理では第1の熱処理時に生成したγ−(Fe,C)相あるいは炭化鉄をα−Fe相と炭素に分解する反応を促進させる。この分解反応は元素Xの添加によって促進されるものであり、元素Xを無添加とした場合は分解が不十分である。このため本発明の金属磁性微粒子を製造するためには2段熱処理(前記第1及び第2の熱処理)を実施することが好ましい。   In the first heat treatment, the Fe oxide is reduced. In the second heat treatment, the reaction of decomposing the γ- (Fe, C) phase or iron carbide generated during the first heat treatment into the α-Fe phase and carbon is promoted. This decomposition reaction is promoted by the addition of the element X, and the decomposition is insufficient when the element X is not added. For this reason, in order to produce the metal magnetic fine particles of the present invention, it is preferable to carry out a two-stage heat treatment (the first heat treatment and the second heat treatment).

前記本発明の製造方法の第2の熱処理を経ることにより、核粒子はα−Fe相と前記α−Fe相とは異なる強磁性相とを有し、前記強磁性相はメスバウアー分光分析によって得られる内部磁場の値が25〜32Tの範囲内となる相であり、前記核粒子には前記強磁性相が20〜55vol%含まれている金属磁性粒子を得る。前記元素Xを無添加とした場合は内部磁場の低い炭化鉄(FeCの内部磁場は約20Tである。)が10vol%以上析出し、全体的な飽和磁化を低下させてしまう。前記元素Xを添加することにより内部磁場の値が25〜32Tの範囲内となる強磁性相が20〜55vol%含まれるため、高飽和磁化を維持することができる。 Through the second heat treatment of the production method of the present invention, the core particles have an α-Fe phase and a ferromagnetic phase different from the α-Fe phase, and the ferromagnetic phase is obtained by Mossbauer spectroscopy. The obtained magnetic phase is a phase in which the value of the internal magnetic field is in the range of 25 to 32 T, and the core particles obtain metal magnetic particles containing 20 to 55 vol% of the ferromagnetic phase. When the element X is not added, 10 vol% or more of iron carbide having a low internal magnetic field (the internal magnetic field of Fe 3 C is about 20 T) is precipitated, thereby reducing the overall saturation magnetization. By adding the element X, 20 to 55 vol% of a ferromagnetic phase having an internal magnetic field value in the range of 25 to 32 T is included, so that high saturation magnetization can be maintained.

前記金属磁性微粒子において、前記核粒子はAl、Co、Ni及びSiから選ばれる少なくとも1種の元素を1〜10mass%含むことが好ましい。これら元素は核粒子であるFe中の炭素を黒鉛として析出させる作用があるため、常磁性のγ−Fe相や低飽和磁化の炭化鉄の分解を促進するだけでなく、炭素を被覆層へと析出させて被覆率を向上させ、耐食性を向上させる。   In the metal magnetic fine particle, the core particle preferably contains 1 to 10 mass% of at least one element selected from Al, Co, Ni, and Si. These elements have the effect of precipitating carbon in Fe, the core particle, as graphite, so they not only promote the decomposition of the paramagnetic γ-Fe phase and low saturation magnetization iron carbide, but also convert the carbon into a coating layer. Precipitates to improve coverage and improve corrosion resistance.

本発明により、高い飽和磁化と高耐食性を両立した金属磁性微粒子を得ることができる。   According to the present invention, metal magnetic fine particles having both high saturation magnetization and high corrosion resistance can be obtained.

[1]金属磁性微粒子の製造方法
本発明の金属磁性微粒子は、Feの酸化物を炭素(C)で熱還元する固相還元反応において熱処理時にCがFe中に固溶する、あるいはFeと反応してFe−C相を形成することを避けるために、2段熱処理を実施すると共にC析出を促進する元素Xを原料に添加することを特徴としている。
[1] Method for Producing Metal Magnetic Fine Particle The metal magnetic fine particle of the present invention is a solid-phase reduction reaction in which Fe oxide is thermally reduced with carbon (C). In order to avoid the formation of the Fe—C phase, element X that promotes C precipitation is added to the raw material while performing a two-step heat treatment.

(1)Feの酸化物粉末
Feの酸化物粉末の粒径は、金属磁性微粒子の目標粒径に合わせて選択し得るが、0.001〜5μmの範囲内であるのが好ましい。粒径が0.001μm未満では、2次凝集が著しく起こるため、以下の製造工程での取り扱いが困難である。また5μm超では、金属酸化物粉末の比表面積が小さすぎるため、還元反応の進行が遅い。より好ましい金属酸化物粉末の実用的な粒径は0.005〜1μmである。Feの酸化物としてはFe、Fe、FeO等が挙げられ、Feが安価である点で好ましい。
(1) Fe Oxide Powder The particle size of the Fe oxide powder can be selected according to the target particle size of the metal magnetic fine particles, but is preferably in the range of 0.001 to 5 μm. When the particle size is less than 0.001 μm, secondary aggregation occurs remarkably, so that it is difficult to handle in the following manufacturing process. If it exceeds 5 μm, the specific surface area of the metal oxide powder is too small, so that the reduction reaction proceeds slowly. The practical particle size of the metal oxide powder is more preferably 0.005 to 1 μm. Examples of the Fe oxide include Fe 2 O 3 , Fe 3 O 4 , FeO, and the like, and Fe 2 O 3 is preferable in that it is inexpensive.

(2)元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)を含む化合物粉末
元素XはAl、Co、Ni及びSiから選ばれる少なくとも1種であることが好ましく、特にSiはC析出促進作用が大きいので好適である。前記元素Xの化合物粉末とは元素X単体、炭化物、窒化物、酸化物のいずれかが好ましい。ただし前記元素Xの酸化物の中で酸化鉄よりも熱力学的に安定であるものは熱還元されたFeと反応することが困難となり相応しくない。X化合物として具体的にはAl、AlC、AlN、Co、Co、Ni、NiO、NiN、Si、SiC、Si、及びこれら合金などが挙げられる。Al、SiOは熱力学的に安定であるので不適である。固相反応性を考慮すると、前記元素Xの化合物粉末の粒径は0.001〜5μmの範囲内であるのが好ましい。粒径が0.001μm未満では比表面積が大きすぎて容易に酸化し、取り扱いが困難である。また5μm超では比表面積が小さすぎるため、Feとの反応性が低く添加効果が期待できない。より好ましくは0.001〜1μmが好ましい。
(2) Compound powder containing element X (X is at least one selected from Al, Co, Ni and Si) Element X is preferably at least one selected from Al, Co, Ni and Si In particular, Si is suitable because it has a large C precipitation promoting effect. The element X compound powder is preferably element X alone, carbide, nitride, or oxide. However, among the oxides of the element X, those which are thermodynamically more stable than iron oxide are not suitable because it is difficult to react with the thermally reduced Fe. Specific examples of the X compound include Al, AlC, AlN, Co, Co 3 O 4 , Ni, NiO, Ni 3 N, Si, SiC, Si 3 N 4 , and alloys thereof. Al 2 O 3 and SiO 2 are not suitable because they are thermodynamically stable. In consideration of solid phase reactivity, the particle size of the element X compound powder is preferably in the range of 0.001 to 5 μm. If the particle size is less than 0.001 μm, the specific surface area is too large and it is easily oxidized and difficult to handle. If it exceeds 5 μm, the specific surface area is too small, so the reactivity with Fe is low and the effect of addition cannot be expected. More preferably, 0.001-1 micrometer is preferable.

(3)炭素を含む化合物粉末
炭素供給源となる原料の粉末としては、炭素粉(グラファイト、カーボンブラック、或いは天然黒鉛等)が適しているが、炭素を含む化合物であってもよい。すなわち石炭や活性炭、コークスや脂肪酸、ポリビニルアルコールなどの高分子、B−C化合物、金属を含む各種炭化物であってもよい。ただし、被膜の炭素純度を高くするためには、炭素粉を用いるとよい。
(3) Compound powder containing carbon As a raw material powder to be a carbon supply source, carbon powder (graphite, carbon black, natural graphite or the like) is suitable, but a compound containing carbon may also be used. That is, it may be various carbides including coal, activated carbon, coke, fatty acid, polymer such as polyvinyl alcohol, BC compound, and metal. However, carbon powder may be used to increase the carbon purity of the coating.

(4)原料粉末の混合
Feの酸化物粉末と元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)を含む化合物粉末、及び炭素を含む化合物粉末を混合するためには、ボールミル、ビーズミル、V型ミキサー、乳鉢、ライカイ機、各種ミキサーを用いるのが好ましい。より均一に混合するためには水やアルコールなどの有機溶媒中で湿式混合することが好ましい。
(4) Mixing of raw material powders In order to mix an oxide powder of Fe and a compound powder containing element X (X is at least one selected from Al, Co, Ni and Si) and a compound powder containing carbon For this, it is preferable to use a ball mill, a bead mill, a V-type mixer, a mortar, a reiki machine, or various mixers. In order to mix more uniformly, it is preferable to perform wet mixing in an organic solvent such as water or alcohol.

Feの酸化物粉末に対する炭素化合物粉末の配合比率は、少なくとも還元反応に必要な化学量論比であることが好ましい。前記化学量論比よりも少ない場合には熱処理の際に焼結粒成長してしまい微粒子を得ることが出来ない。また元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)を含む化合物粉末の配合比は、元素Xの濃度がFe対比で1〜10mass%となる比率であることが好ましい。元素XのFe対比濃度が1mass%未満の場合はC析出促進効果が十分に得られず好ましくない。また元素XのFe対比濃度が10mass%を超える場合は高飽和磁化を発現する強磁性相の含有率が低下し、飽和磁化の低下を招くので好ましくない。また上記原料粉末を均一に混合するため、必要に応じて分散剤を添加することが好ましい。Fe対比濃度とは、各原料粉末に含まれるFeとXの合計質量を100mass%としたときのXの割合を表し、一般式ではX/(Fe+X)×100(mass%)で表される。   The mixing ratio of the carbon compound powder to the Fe oxide powder is preferably at least a stoichiometric ratio necessary for the reduction reaction. When it is less than the stoichiometric ratio, sintered grains grow during the heat treatment and fine particles cannot be obtained. The compounding ratio of the compound powder containing the element X (X is at least one selected from Al, Co, Ni, and Si) is such that the concentration of the element X is 1 to 10 mass% in comparison with Fe. Is preferred. When the Fe contrast concentration of the element X is less than 1 mass%, the C precipitation promoting effect cannot be sufficiently obtained, which is not preferable. On the other hand, when the Fe contrast concentration of the element X exceeds 10 mass%, the content of the ferromagnetic phase exhibiting high saturation magnetization is lowered, and the saturation magnetization is lowered. Moreover, in order to mix the said raw material powder uniformly, it is preferable to add a dispersing agent as needed. The Fe contrast concentration represents the ratio of X when the total mass of Fe and X contained in each raw material powder is 100 mass%, and is represented by X / (Fe + X) × 100 (mass%) in the general formula.

(5)熱処理
前記原料の混合粉末は以下に述べる2段熱処理を施すことが好ましい。まず第1の熱処理は800〜1600℃の範囲で熱処理し、Feの酸化物を炭素によって金属Feへと還元する。800℃未満であると還元反応の進行が不十分であり、好ましくない。1600℃を超える高温では粉末中の粒子同士が焼結粒成長するため好ましくない。また熱処理に用いる炉にも耐熱性が要求され製造コストが嵩んでしまう。前記第1熱処理においては還元反応が進行すると共に元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)とFeとが合金化し、FeへのC固溶限を低下させる効果もある。更に第2の熱処理として400〜750℃の範囲で熱処理することが好ましい。この温度範囲はFe−C2元状態図においてα−Fe相が安定な温度領域である。この第2熱処理を施すことによって高温相であるγ−Fe相の残留を抑制することができる。γ−Fe相は常磁性相であるため、高飽和磁化を維持するためには残留を抑制することが好ましい。第2熱処理の温度は400℃未満であるとγ−Fe相からα−Fe相への相転移が不十分であり好ましくない。また750℃超であるとγ−Fe相の安定領域に到達するので好ましくない。γ−Fe相の残留を十分抑制するには温度範囲は600〜750℃がより好ましい。
なお、上述の熱処理において還元反応を十分に進行させるためには非酸化性雰囲気であることが好ましく、Ar、Heなどの不活性ガスや水素、窒素、炭酸ガスなどが選択される。特に安全かつ安価な点では窒素雰囲気がより好ましい。
(5) Heat treatment The mixed powder of the raw materials is preferably subjected to the two-stage heat treatment described below. First, the first heat treatment is performed in the range of 800 to 1600 ° C., and the Fe oxide is reduced to metal Fe by carbon. If the temperature is less than 800 ° C., the progress of the reduction reaction is insufficient, which is not preferable. A high temperature exceeding 1600 ° C. is not preferable because particles in the powder grow into sintered grains. Further, the furnace used for the heat treatment is also required to have heat resistance, which increases the manufacturing cost. In the first heat treatment, the reduction reaction proceeds and the element X (X is at least one selected from Al, Co, Ni and Si) and Fe are alloyed to lower the C solid solubility limit in Fe. There is also an effect. Furthermore, it is preferable to heat-process in the range of 400-750 degreeC as 2nd heat processing. This temperature range is a temperature region in which the α-Fe phase is stable in the Fe-C binary phase diagram. By applying this second heat treatment, the residual γ-Fe phase, which is a high temperature phase, can be suppressed. Since the γ-Fe phase is a paramagnetic phase, it is preferable to suppress the residual in order to maintain high saturation magnetization. If the temperature of the second heat treatment is less than 400 ° C., the phase transition from the γ-Fe phase to the α-Fe phase is insufficient, which is not preferable. Further, if it exceeds 750 ° C., it reaches the stable region of the γ-Fe phase, which is not preferable. In order to sufficiently suppress the residual γ-Fe phase, the temperature range is more preferably 600 to 750 ° C.
In order to allow the reduction reaction to proceed sufficiently in the heat treatment described above, a non-oxidizing atmosphere is preferable, and an inert gas such as Ar or He, hydrogen, nitrogen, carbon dioxide gas, or the like is selected. In particular, a nitrogen atmosphere is more preferable in terms of safety and low cost.

(6)精製・磁気分離
本発明の金属磁性微粒子は前記熱処理によって製造されるが、非磁性成分として原料として用いた炭素を含む化合物粉末の余剰分などが含まれる。したがってより高飽和磁化を有する金属磁性微粒子を得るためには、磁気分離操作によって金属磁性微粒子のみに精製することが好ましい。この精製処理には予め熱処理直後の粉末をイソプロピルアルコール、エタノールなどのアルコール中またはアセトン中に十分分散させた後、永久磁石などで磁性粒子を固定化し、その他の非磁性成分を流出除去することが好ましい。アルコール中での分散には分散機能を発現する界面活性剤を用いたり、あるいは機械的に分散力を付与することが好ましい。
(6) Purification / Magnetic Separation The metal magnetic fine particles of the present invention are produced by the heat treatment, and include a surplus of a compound powder containing carbon used as a raw material as a nonmagnetic component. Therefore, in order to obtain metal magnetic fine particles having higher saturation magnetization, it is preferable to purify only metal magnetic fine particles by magnetic separation operation. In this refining treatment, the powder immediately after the heat treatment is sufficiently dispersed in alcohol such as isopropyl alcohol or ethanol or acetone, and then the magnetic particles are fixed with a permanent magnet, and other nonmagnetic components are discharged and removed. preferable. For dispersion in alcohol, it is preferable to use a surfactant that exhibits a dispersion function, or mechanically impart a dispersion force.

[2]金属磁性微粒子の構造及び特性
(1)金属磁性微粒子の構造
本発明の金属磁性微粒子は炭素で被覆されており、核粒子は金属鉄である。前記核粒子においてα−Fe相の他にメスバウアー分析によって得られる内部磁場の値が25〜31Tの範囲となる強磁性相が20〜55vol%含まれていることが好ましい。内部磁場の値が25T未満であると磁性が弱まり飽和磁化が小さくなってしまう。また内部磁場が31T超であるとα−Fe相以外に酸化鉄Feが含まれてしまう。前記内部磁場が25〜31Tの範囲となる強磁性相は体積比で20〜55vol%含まれていることが好ましい。前記強磁性相の含有率が20vol%未満であると元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1種である。)の添加効果が十分に得られずFe中に炭素が固溶した状態となり、飽和磁化が低下するだけでなく炭素による被覆が不十分となり耐食性が低下する。また前記強磁性相の含有率が55vol%を超えると高飽和磁化であるα−Fe相の含有率が低下してしまい、結果として飽和磁化の低下を招くので好ましくない。
[2] Structure and properties of metal magnetic fine particles
(1) Structure of metal magnetic fine particles The metal magnetic fine particles of the present invention are coated with carbon, and the core particles are metallic iron. In addition to the α-Fe phase, the core particles preferably contain 20 to 55 vol% of a ferromagnetic phase in which the value of the internal magnetic field obtained by Mossbauer analysis is in the range of 25 to 31 T. If the value of the internal magnetic field is less than 25T, the magnetism becomes weak and the saturation magnetization becomes small. If the internal magnetic field exceeds 31T, iron oxide Fe 3 O 4 is contained in addition to the α-Fe phase. The ferromagnetic phase in which the internal magnetic field is in the range of 25 to 31 T is preferably contained in a volume ratio of 20 to 55 vol%. When the content of the ferromagnetic phase is less than 20 vol%, the effect of adding the element X (X is at least one selected from Al, Co, Ni and Si) cannot be sufficiently obtained, and carbon is contained in Fe. Not only does the saturation magnetization decrease, but also the coating with carbon becomes insufficient and the corrosion resistance decreases. On the other hand, if the content of the ferromagnetic phase exceeds 55 vol%, the content of the α-Fe phase, which is highly saturated, is reduced, resulting in a decrease in saturation magnetization, which is not preferable.

前記核粒子を被覆する被覆層は平均膜厚が30〜40nmであることが好ましい。平均膜厚が30nm未満であると被覆による核粒子の保護が不十分となり耐食性が低下してしまう。一方平均膜厚が40nm超であると被覆層の体積が多く磁性成分の体積比率が低下してしまい飽和磁化が低下するので好ましくない。核粒子を十分に保護し、なおかつ磁性成分の体積比率をある程度維持するためには被覆層の平均膜厚が前記範囲であることが好ましい。より好ましくは平均粒径d50と平均膜厚tの比率(=t/d50)が0.016〜0.020の範囲となることである。ここで被覆層の平均膜厚は金属磁性微粒子の電子顕微鏡写真を用いて計測できる。1試料につき30粒以上計測し、その平均値を平均膜厚とする。また平均粒径d50は体積基準のメディアン径であり、粒径分布(体積基準)から求めた積算分布曲線において50%の積算値における粒径値である。   The coating layer covering the core particles preferably has an average film thickness of 30 to 40 nm. If the average film thickness is less than 30 nm, the core particles are not sufficiently protected by the coating, and the corrosion resistance is lowered. On the other hand, if the average film thickness is more than 40 nm, the volume of the coating layer is so large that the volume ratio of the magnetic component is lowered and the saturation magnetization is lowered. In order to sufficiently protect the core particles and to maintain the volume ratio of the magnetic component to some extent, it is preferable that the average film thickness of the coating layer is in the above range. More preferably, the ratio of the average particle diameter d50 to the average film thickness t (= t / d50) is in the range of 0.016 to 0.020. Here, the average film thickness of the coating layer can be measured using an electron micrograph of metal magnetic fine particles. 30 or more grains are measured per sample, and the average value is defined as the average film thickness. The average particle diameter d50 is a volume-based median diameter, and is a particle diameter value at an integrated value of 50% in an integrated distribution curve obtained from a particle diameter distribution (volume basis).

また本発明の金属磁性微粒子のd50は0.1〜5μmであることが好ましい。d50が0.1μm未満であると1粒子当りの飽和磁化が小さくなってしまう。また5μm超であると比表面積が小さくなってしまい、例えば医療用磁気ビーズとして用いる場合には目的物質との反応性が低下してしまう。また高周波用部品に用いられる場合には渦電流損が大きくなり好ましくない。0.1〜5μmの金属磁性微粒子であってもγ−Fe相の残留が少なく、高飽和磁化を発現する。   Moreover, it is preferable that d50 of the metal magnetic fine particle of this invention is 0.1-5 micrometers. If d50 is less than 0.1 μm, the saturation magnetization per particle will be small. On the other hand, if it exceeds 5 μm, the specific surface area becomes small. For example, when used as medical magnetic beads, the reactivity with the target substance is lowered. Further, when used for high-frequency components, eddy current loss increases, which is not preferable. Even a metal magnetic fine particle of 0.1 to 5 μm exhibits little saturation of γ-Fe phase and exhibits high saturation magnetization.

(2)磁気特性
本発明の金属磁性微粒子の飽和磁化は100〜195Am/kgであることが好ましい。飽和磁化が100Am/kg未満であると酸化鉄の値と同等となってしまう。また195Am/kg以上であると被覆層の体積比が少なすぎ、被覆が不十分となるので耐食性が低下してしまう。より好ましくは150〜195Am/kg、更に好ましくは180〜195Am/kgである。また本発明の金属磁性微粒子の保持力は1.3kA/mであることが好ましい。1.3kA/m以上であると残留磁化が大きくなり、粒子同士が磁気的凝集してしまうので実用上好ましくないだけでなく、軟磁性材料としての用途に適さなくなってしまう。
(2) Magnetic properties The saturation magnetization of the metal magnetic fine particles of the present invention is preferably 100 to 195 Am 2 / kg. If the saturation magnetization is less than 100 Am 2 / kg, it will be equivalent to the value of iron oxide. On the other hand, if it is 195 Am 2 / kg or more, the volume ratio of the coating layer is too small and the coating becomes insufficient, so that the corrosion resistance is lowered. More preferably, it is 150-195 Am < 2 > / kg, More preferably, it is 180-195 Am < 2 > / kg. Further, the holding force of the metal magnetic fine particles of the present invention is preferably 1.3 kA / m. If it is 1.3 kA / m or more, the remanent magnetization becomes large and the particles are magnetically aggregated, which is not preferable for practical use and is not suitable for use as a soft magnetic material.

(3)耐食性の評価
PBSバッファー1ml中に本発明の金属磁性微粒子25mgを37℃で168h浸漬させた後のFe溶出量が0.8mg/l未満であることが好ましい。0.8mg/l以上であると金属Feを主体とする核粒子の被覆が不十分であり水溶液中での腐食が不可避であり磁性材料の安定性が低下するので好ましくない。またカオトロピック塩(グアニジン塩酸塩、グアニジン硝酸塩、グアニジン炭酸塩、グアニジンチオシアネート、尿素)水溶液1ml中に本発明の金属微粒子25mgを室温で24h浸漬させた後のFe溶出量が170mg/l未満であることが好ましい。170mg/l以上であると金属Feを主体とする核粒子の腐食が著しく、磁性材料としての品質が低下するので好ましくない。本発明の金属磁性微粒子は、Fe中に固溶していた炭素を十分被覆層へと析出させることにより、核粒子(Feコア)を十分に被覆することができ、高い耐食性を発現することができる。
(3) Evaluation of corrosion resistance It is preferable that the Fe elution amount after immersing 25 mg of the metal magnetic fine particles of the present invention in 1 ml of PBS buffer at 37 ° C. for 168 h is less than 0.8 mg / l. If it is 0.8 mg / l or more, coating of core particles mainly composed of metallic Fe is insufficient, corrosion in an aqueous solution is unavoidable, and stability of the magnetic material is lowered, which is not preferable. Further, the Fe elution amount after immersion of 25 mg of the metal fine particles of the present invention at room temperature in 1 ml of an aqueous solution of chaotropic salt (guanidine hydrochloride, guanidine nitrate, guanidine carbonate, guanidine thiocyanate, urea) is less than 170 mg / l. Is preferred. If it is 170 mg / l or more, the core particles mainly composed of metal Fe are significantly corroded, and the quality as a magnetic material is deteriorated. The metal magnetic fine particles of the present invention can sufficiently coat the core particles (Fe core) by sufficiently depositing carbon dissolved in Fe into the coating layer and exhibit high corrosion resistance. it can.

本発明により、高飽和磁化を有する耐食性に優れた金属磁性微粒子を安価でかつ簡易に得られる。Feに固溶しているCを外部表面へと析出させることで核粒子を内部磁場の高い磁性相のみで構成することができ、なおかつ十分な被覆を実現する。したがって高透磁率の圧粉磁芯や高耐食性が要求される環境下で用いられるバイオ医療用磁気ビーズに好適である。   According to the present invention, metal magnetic fine particles having high saturation magnetization and excellent corrosion resistance can be obtained inexpensively and easily. By precipitating C dissolved in Fe on the outer surface, the core particles can be composed only of a magnetic phase having a high internal magnetic field, and sufficient coating is realized. Therefore, it is suitable for a magnetic core for biomedical use used in an environment where high magnetic permeability powder cores and high corrosion resistance are required.

(4)高周波特性
本発明の金属磁性微粒子と有機樹脂とを混合した後、圧縮成形し、必要に応じて樹脂の熱硬化処理を施すことで、5〜10MHzの周波数帯域で優れた磁気特性(透磁率μ=8〜9)を示す圧粉磁芯を得ることができる。ここで前記樹脂は例えば、フェノール樹脂、アクリル樹脂、シリコーン樹脂或いはエポキシ樹脂等を用いることができる。
(4) High-frequency characteristics After mixing the metal magnetic fine particles of the present invention and an organic resin, compression molding is performed, and if necessary, the resin is heat-cured to provide excellent magnetic characteristics in a frequency band of 5 to 10 MHz ( A dust core exhibiting a permeability μ = 8-9) can be obtained. Here, for example, a phenol resin, an acrylic resin, a silicone resin, or an epoxy resin can be used as the resin.

(実施例1〜4)
平均粒径0.05μmのα−Fe粉末と平均粒径0.04μmのSiC粉末、及び平均粒径0.02μmのカーボンブラック粉末(C.B.)を表1で示した配合比でそれぞれ秤量し、ボールミルにて20時間湿式混合した。得られた混合スラリーを乾燥後、この混合粉末をアルミナ製ボートに適量充填して炉の中に配置し、流量が2(l/min)の窒素ガス気流中で室温から3℃/minの速度で昇温した後、1400℃で2時間保持して室温まで炉冷し、更に連続的に700℃まで昇温して1時間保持後に室温まで冷却する2段熱処理を実施した。熱処理直後の試料の飽和磁化を振動試料型磁化測定機(VSM)にて最大印加磁場1.6MA/mとして測定した。結果を表1に示す。また熱処理直後の試料粉末についてX線回折測定(線源:Cu−Kα線、測定範囲:20〜120°)を行い、相の同定を行った。
(Examples 1-4)
Table 1 shows the mixing ratio of α-Fe 2 O 3 powder having an average particle diameter of 0.05 μm, SiC powder having an average particle diameter of 0.04 μm, and carbon black powder (CB) having an average particle diameter of 0.02 μm. And were wet mixed in a ball mill for 20 hours. After drying the obtained mixed slurry, an appropriate amount of this mixed powder is filled into an alumina boat and placed in a furnace, and the flow rate is from room temperature to 3 ° C./min in a nitrogen gas stream with a flow rate of 2 (l / min). After the temperature was raised, the furnace was cooled to room temperature at 1400 ° C. for 2 hours, further heated to 700 ° C., held for 1 hour, and then cooled to room temperature. The saturation magnetization of the sample immediately after the heat treatment was measured with a vibrating sample magnetometer (VSM) with a maximum applied magnetic field of 1.6 MA / m. The results are shown in Table 1. The sample powder immediately after the heat treatment was subjected to X-ray diffraction measurement (ray source: Cu-Kα ray, measurement range: 20 to 120 °) to identify the phase.

(比較例1)
SiC粉末を無添加とした以外は実施例1と同様にして試料を作製し、試料の飽和磁化を測定した。結果を表1に示す。またX線回折測定も実施例1と同様に行った。
(Comparative Example 1)
A sample was prepared in the same manner as in Example 1 except that no SiC powder was added, and the saturation magnetization of the sample was measured. The results are shown in Table 1. X-ray diffraction measurement was also performed in the same manner as in Example 1.

(比較例2)
熱処理条件を1400℃で2時間の1段処理とした以外は比較例1と同様にして試料を作製した。熱処理直後の飽和磁化を表1に示す。
(Comparative Example 2)
A sample was prepared in the same manner as in Comparative Example 1 except that the heat treatment was performed at 1400 ° C. for 1 hour for 2 hours. Table 1 shows the saturation magnetization immediately after the heat treatment.

実施例1〜4では飽和磁化が148Am/kg以上であるが、比較例1、2の飽和磁化は141、130Am/kgと比較的低い。これは2段熱処理による効果とSiの添加効果によって実施例1〜4の試料粉末中に含まれるγ−Fe相の体積比率が小さくなった為である。図1にγ−Fe相の体積比率とSi濃度(=Si/(Fe+Si))の関係を示す。Si濃度が高くなるにしたがってγ−Fe相の体積比率が低下していく。なお、γ−Fe相の体積比率(Cγと記載)はγ相の回折ピーク((111)γ、(200)γ、(220)γ)とα相の回折ピーク((110)α、(200)α、(211)α)の各強度と各R値から、以下の[数1]を用いて算出した。R値は以下の[数2]を用いて算出した。θは各回折ピークの回折角、vは格子定数から算出される単位胞の体積を表し実測により求めることができる。それ以外の各パラメータは参考文献(カリティ著「新版 X線回折要論」(松村源太郎・訳) (株)アグネ)に記載されている値を用いた。 In Examples 1 to 4, the saturation magnetization is 148 Am 2 / kg or more, but the saturation magnetizations of Comparative Examples 1 and 2 are relatively low, 141 and 130 Am 2 / kg. This is because the volume ratio of the γ-Fe phase contained in the sample powders of Examples 1 to 4 is reduced by the effect of the two-stage heat treatment and the effect of addition of Si. FIG. 1 shows the relationship between the volume ratio of the γ-Fe phase and the Si concentration (= Si / (Fe + Si)). As the Si concentration increases, the volume ratio of the γ-Fe phase decreases. The volume ratio of the γ-Fe phase (described as C γ ) is the diffraction peak of the γ phase ((111) γ , (200) γ , (220) γ ) and the diffraction peak of the α phase ((110) α , ( 200) α and (211) α ) were calculated from the respective intensities and R values using the following [Equation 1]. The R value was calculated using the following [Equation 2]. θ represents the diffraction angle of each diffraction peak, v represents the volume of the unit cell calculated from the lattice constant, and can be obtained by actual measurement. For each of the other parameters, the values described in the reference (“New edition: X-ray diffraction theory” by Karity (Gentaro Matsumura, translation) Agne, Inc.) were used.

以上より、常磁性であるγ−Fe相が試料に含まれると飽和磁化が低下するだけでなく、たとえ金属磁性微粒子だけを磁気分離できたとしても分離回収率が低下してしまい好ましくない。実施例1〜4で示したようにSiを添加すること、なおかつα−Fe相が安定な領域で2段熱処理を施すことが、γ−Fe相の析出抑制に効果的である。表1で“Si濃度”は、(Si/(Fe+Si))×100に相当する。   From the above, when a γ-Fe phase that is paramagnetic is included in the sample, not only the saturation magnetization is lowered, but even if only the metal magnetic fine particles can be magnetically separated, the separation and recovery rate is lowered, which is not preferable. Adding Si as shown in Examples 1 to 4 and performing a two-step heat treatment in a region where the α-Fe phase is stable is effective in suppressing the precipitation of the γ-Fe phase. In Table 1, “Si concentration” corresponds to (Si / (Fe + Si)) × 100.

(実施例5〜8)
実施例1〜4で得た試料粉末から金属磁性微粒子だけを取り出すため、次に述べる精製・磁気分離処理を実施した。まず実施例1〜4の試料粉末2gとイソプロピルアルコール100mlをガラス瓶に投入し、浴槽型の超音波洗浄器にて超音波(25kHz)を5分間照射する。次いで永久磁石で金属磁性微粒子をガラス瓶内壁に固定化し、上澄み液を除去する。この操作を上澄み液が透明となるまで繰り返し、実施例5〜8の磁性粉末を得た。
(Examples 5 to 8)
In order to extract only the metal magnetic fine particles from the sample powders obtained in Examples 1 to 4, the following purification and magnetic separation treatment was performed. First, 2 g of the sample powders of Examples 1 to 4 and 100 ml of isopropyl alcohol are put into a glass bottle, and ultrasonic waves (25 kHz) are irradiated for 5 minutes with a bathtub-type ultrasonic cleaner. Next, the metal magnetic fine particles are fixed to the inner wall of the glass bottle with a permanent magnet, and the supernatant is removed. This operation was repeated until the supernatant became transparent, and magnetic powders of Examples 5 to 8 were obtained.

得られた磁性粉末についてメスバウアー分光分析を実施し、各磁性粉末に含まれる磁性相を解析した。結果を表2に示す。なお、メスバウアー分光分析の際にはCo−57(Rh matrix)を線源として用い、実施例5〜8の試料粉末をそれぞれ粘着テープで固定して測定した。線源の駆動速度はα−Fe標準試料で校正し、−10mm/s〜10mm/sの範囲で測定した。検出したメスバウアースペクトルはローレンツ関数にてフィッティングさせ、スペクトルのピーク間隔から内部磁場を算出した。またα−Fe以外に複数の磁性相が検出された場合は各磁性相のスペクトル面積を求めて比をとり各磁性相の体積比率とした。実施例5の磁性粉末は内部磁場33.0Tのα−Fe相と内部磁場30.6TのFe−Si合金相(bcc構造におけるFeの最隣接原子8個のうち1個だけがSiに置き換わった構造、以後はFe−Si(I)と記述する。)とで構成されていた。実施例6〜8の磁性粉末においては実施例5で検出したα−Fe相、Fe−Si(I)相に加えて内部磁場約27TのFe−Si合金相(bcc構造におけるFeの最隣接原子8個のうち2個だけがSiに置き換わった構造、以後はFe−Si(II)と記述する)も含まれることを見出した。各相の体積比を表2に示す。実施例5〜8において、α−Fe相は46.4〜76.3vol%、内部磁場27〜31TのFe−Si合金相は23.7〜53.7vol%含まれる。   Mossbauer spectroscopy was performed on the obtained magnetic powder, and the magnetic phase contained in each magnetic powder was analyzed. The results are shown in Table 2. In the Mossbauer spectroscopic analysis, Co-57 (Rh matrix) was used as a radiation source, and the sample powders of Examples 5 to 8 were each fixed with an adhesive tape and measured. The driving speed of the radiation source was calibrated with an α-Fe standard sample and measured in the range of −10 mm / s to 10 mm / s. The detected Mossbauer spectrum was fitted with a Lorentz function, and the internal magnetic field was calculated from the peak interval of the spectrum. When a plurality of magnetic phases other than α-Fe were detected, the spectrum area of each magnetic phase was obtained and the ratio was taken as the volume ratio of each magnetic phase. In the magnetic powder of Example 5, the α-Fe phase with an internal magnetic field of 33.0 T and the Fe—Si alloy phase with an internal magnetic field of 30.6 T (only one of the eight nearest atoms of Fe in the bcc structure was replaced with Si). Structure, hereinafter referred to as Fe-Si (I)). In the magnetic powders of Examples 6 to 8, in addition to the α-Fe phase and Fe—Si (I) phase detected in Example 5, an Fe—Si alloy phase having an internal magnetic field of about 27 T (the nearest atom of Fe in the bcc structure) It has been found that a structure in which only two of the eight are replaced by Si (hereinafter referred to as Fe-Si (II)) is also included. Table 2 shows the volume ratio of each phase. In Examples 5 to 8, the α-Fe phase is contained in 46.4 to 76.3 vol%, and the Fe—Si alloy phase having an internal magnetic field of 27 to 31 T is contained in 23.7 to 53.7 vol%.

また実施例5〜8の磁性粉末について磁気特性(飽和磁化及び保磁力)を実施例1と同様にして測定した。結果を表2に示す。   The magnetic characteristics (saturation magnetization and coercive force) of the magnetic powders of Examples 5 to 8 were measured in the same manner as in Example 1. The results are shown in Table 2.

また各磁性粉末の平均粒径(体積基準のメディアン径)d50をレーザー回折測定装置(HORIBA、LA−920)を用いて測定した。結果を表3に示す。   Moreover, the average particle diameter (volume-based median diameter) d50 of each magnetic powder was measured using a laser diffraction measuring apparatus (HORIBA, LA-920). The results are shown in Table 3.

さらに実施例5〜8の各磁性粉末を透過型電子顕微鏡(日立製FE−TEM、HF−2100)で観察すると炭素(C)膜で被覆されたFe核粒子を観察できた。代表的な写真を図2に示す。図2は10枚の写真であり、上段の左側から比較例3及び実施例5〜8に対応し、下段は上段の粒子の被膜近傍(背景/炭素被膜/Fe核粒子)を拡大した写真である。Si濃度が高くなるにつれてC被覆膜が厚くなっていることがわかる。各試料において無作為に40粒ずつ電子顕微鏡写真を撮影し、C被覆膜の厚みを計測して平均の被覆膜厚tを算出した。tもSi濃度が高くなるにつれて厚くなっている。また被覆膜厚t、及びtの平均粒径d50との比(=t/d50)を表3に示す。Siを添加しても平均粒径が大きく変化しないため、t/d50は0.015〜0.022と無添加の場合の1.5倍以上の値となる。   Further, when each of the magnetic powders of Examples 5 to 8 was observed with a transmission electron microscope (Hitachi FE-TEM, HF-2100), Fe core particles coated with a carbon (C) film could be observed. A representative photograph is shown in FIG. FIG. 2 shows 10 photographs, corresponding to Comparative Example 3 and Examples 5 to 8 from the left side of the upper stage, and the lower stage is an enlarged photograph of the vicinity of the upper particle coating (background / carbon coating / Fe core particles). is there. It can be seen that the C coating film becomes thicker as the Si concentration increases. For each sample, 40 electron micrographs were randomly taken, the thickness of the C coating film was measured, and the average coating film thickness t was calculated. t also increases as the Si concentration increases. Table 3 shows the coating thickness t and the ratio of t to the average particle diameter d50 (= t / d50). Since the average particle size does not change greatly even when Si is added, t / d50 is 0.015 to 0.022, which is 1.5 times or more of the value obtained without addition.

次に各試料粉末25mgをPBSバッファー(GIBCO、Phosphate Buffered Saline、pH=7.4、Cat.No.10010-023)1ml中に37℃で168h浸漬させ、前記PBSバッファー中に溶出したFeイオン濃度をICP分析(Inductively Couple Plasma、エスアイアイナノテクノロジー社製:SPS3100H)により測定した。測定結果を「Fe溶出量」として表3に示す。またPBSバッファーの代わりにカオトロピック塩水溶液(TOYOBO、MagExtractor-Genome-に付属の溶解・吸着液)を用い、浸漬条件を室温で24hとした場合のFeイオン濃度も表3に示す。Siの添加によりFe溶出量が低下していることが分かる。   Next, 25 mg of each sample powder was immersed in 1 ml of PBS buffer (GIBCO, Phosphate Buffered Saline, pH = 7.4, Cat. No. 10010-023) at 37 ° C. for 168 h, and the Fe ion concentration eluted in the PBS buffer was determined by ICP. It was measured by analysis (Inductively Couple Plasma, manufactured by SII Nano Technology, Inc .: SPS3100H). The measurement results are shown in Table 3 as “Fe elution amount”. Table 3 also shows the Fe ion concentration when the aqueous solution of chaotropic salt (dissolution / adsorption solution attached to TOYOBO, MagExtractor-Genome-) is used instead of the PBS buffer and the immersion conditions are 24 h at room temperature. It can be seen that the Fe elution amount is reduced by the addition of Si.

以上より、Siの添加によって平均粒径を大きく変えることなくC被覆膜厚が厚くなることを見出した。その結果、水溶液中へのFeイオン濃度が大きく低下して耐食性が大幅に改善することが分かる。すなわちSi添加によってFe核粒子に対するC被覆率が向上した。   From the above, it has been found that the C coating film thickness is increased without greatly changing the average particle diameter by the addition of Si. As a result, it can be seen that the Fe ion concentration in the aqueous solution is greatly reduced and the corrosion resistance is greatly improved. That is, the C coverage to Fe core particles was improved by adding Si.

(比較例3)
比較例1の試料粉末から実施例5〜8と同様にして磁性粉末を精製・磁気分離し、得られた磁性粉末についてメスバウアー分光分析、磁気特性を実施例5〜8と同様にして測定した。結果を表2に示す。また平均粒径d50、平均の被覆膜厚、及び各水溶液(PBSバッファー、カオトロピック塩水溶液)へのFe溶出量を実施例5〜8と同様に測定した。結果を表3に示す。
(Comparative Example 3)
The magnetic powder was purified and magnetically separated from the sample powder of Comparative Example 1 in the same manner as in Examples 5 to 8, and the obtained magnetic powder was measured for Mossbauer spectroscopy and magnetic properties in the same manner as in Examples 5 to 8. . The results are shown in Table 2. Moreover, the average particle diameter d50, the average coating film thickness, and the Fe elution amount to each aqueous solution (PBS buffer, chaotropic salt aqueous solution) were measured in the same manner as in Examples 5-8. The results are shown in Table 3.

以上より、比較例3では内部磁場20.7Tの炭化鉄(FeC)相が10.6vol%含まれていることが分かった。この炭化鉄相は実施例5〜8で検出したα−FeやFe−Si合金相に比べて内部磁場が小さく、飽和磁化を低下させる原因となっている。Siの添加は磁性粉末の飽和磁化を向上させる効果がある。その理由は磁性の弱い前記炭化鉄相を消失させ、代わりに比較的大きな内部磁場(27〜31T)を有するFe−Si相を23.7〜53.7vol%析出させることに起因している。 From the above, it was found that Comparative Example 3 contained 10.6 vol% of an iron carbide (Fe 3 C) phase having an internal magnetic field of 20.7 T. This iron carbide phase has a smaller internal magnetic field than the α-Fe and Fe—Si alloy phases detected in Examples 5 to 8, and causes a decrease in saturation magnetization. The addition of Si has the effect of improving the saturation magnetization of the magnetic powder. The reason is that the iron carbide phase having weak magnetism disappears, and instead, 23.7 to 53.7 vol% of a Fe—Si phase having a relatively large internal magnetic field (27 to 31 T) is precipitated.

(実施例9〜11)
SiCの代わりに平均粒径1μmのAlN粉末(添川理化学(株))を用いた以外は、実施例1〜3と同様にして試料粉末を作製し、実施例5〜7と同様にして精製・磁気分離操作を行って磁性粉末を得た。得られた磁性粉末からの各水溶液中へのFe溶出量を表4にまとめた。
(Examples 9 to 11)
A sample powder was prepared in the same manner as in Examples 1 to 3 except that AlN powder having an average particle diameter of 1 μm (Soekawa Riken Co., Ltd.) was used instead of SiC. A magnetic powder was obtained by performing a magnetic separation operation. Table 4 summarizes the amount of Fe elution from the obtained magnetic powder into each aqueous solution.

(実施例12〜14)
SiCの代わりに平均粒径0.5μmのCo粉末(OMG、72/73)を用いた以外は、実施例1〜3と同様にして試料粉末を作製し、実施例5〜7と同様にして精製・磁気分離操作を行って磁性粉末を得た。得られた磁性粉末からの各水溶液中へのFe溶出量を表4にまとめた。
(Examples 12 to 14)
Sample powders were prepared in the same manner as in Examples 1 to 3 except that Co 3 O 4 powder (OMG, 72/73) having an average particle size of 0.5 μm was used instead of SiC. Similarly, purification and magnetic separation operations were performed to obtain a magnetic powder. Table 4 summarizes the amount of Fe elution from the obtained magnetic powder into each aqueous solution.

(実施例15〜17)
SiCの代わりに平均粒径0.4μmのNiO粉末(添川理化)を用いた以外は、実施例1〜3と同様にして試料粉末を作製し、実施例5〜7と同様にして精製・磁気分離操作を行って磁性粉末を得た。得られた磁性粉末からの各水溶液中へのFe溶出量を表4にまとめた。
(Examples 15 to 17)
A sample powder was prepared in the same manner as in Examples 1 to 3 except that NiO powder (Soekawa Rika) having an average particle size of 0.4 μm was used instead of SiC, and purification and magnetic properties were performed in the same manner as in Examples 5 to 7. Separation operation was performed to obtain a magnetic powder. Table 4 summarizes the amount of Fe elution from the obtained magnetic powder into each aqueous solution.

以上より、黒鉛化促進元素として知られているAl、Co、Niのいずれを添加してもSiと同様にFe溶出量の低下に効果があることが分かる。   From the above, it can be seen that the addition of any of Al, Co, and Ni, which are known as graphitization promoting elements, is effective in reducing the amount of Fe elution as with Si.

(実施例18〜22)
Si濃度(=Si/(Fe+Si))を表5で示した値となるように配合比を調整し、第1熱処理温度を1200℃とした以外は実施例1と同様に試料粉末を作製した。更に実施例5と同様に精製・磁気分離操作を施し、実施例18〜22の磁性粉末を得た。各磁性粉末の磁気特性を実施例1と同様に測定し、結果を表5に示した。
(Examples 18 to 22)
The sample powder was prepared in the same manner as in Example 1 except that the compounding ratio was adjusted so that the Si concentration (= Si / (Fe + Si)) was the value shown in Table 5 and the first heat treatment temperature was 1200 ° C. Further, purification and magnetic separation operations were performed in the same manner as in Example 5 to obtain magnetic powders of Examples 18-22. The magnetic characteristics of each magnetic powder were measured in the same manner as in Example 1, and the results are shown in Table 5.

この実施例18〜22の各磁性粉末を用いて以下の手順で圧粉体を作製した。まず適量のアセトンにエポキシ樹脂粉末(ソマール株式会社、EPX−6136)を4重量部(磁性粉末対比)溶解し、次いで磁性粉末100重量部を投入した。この混合物を室温で攪拌混合しながらアセトンのみを蒸発させ、その後目開き500μmの篩を通して造粒粉を得た。この造粒粉を成形圧6ton/cm(588MPa)にて成形し、外径7mm、内径4mm、高さ3mmのリング形状の成形体を得た。この成形体を大気中200℃にて1時間保持し、エポキシ樹脂を熱硬化させてリング状試料とした。このリング状試料について透磁率μ’の周波数依存性をインピーダンスアナライザー(アジレントテクノロジー社製4291B)にて1MHz〜1.8GHzの範囲で測定し、5MHz及び10MHzでの透磁率μ’を得た(表5)。 Using the magnetic powders of Examples 18 to 22, green compacts were produced according to the following procedure. First, 4 parts by weight (compared to magnetic powder) of epoxy resin powder (Somal Corporation, EPX-6136) was dissolved in an appropriate amount of acetone, and then 100 parts by weight of magnetic powder was added. While stirring and mixing the mixture at room temperature, only acetone was evaporated, and then granulated powder was obtained through a sieve having an opening of 500 μm. This granulated powder was molded at a molding pressure of 6 ton / cm 2 (588 MPa) to obtain a ring-shaped molded body having an outer diameter of 7 mm, an inner diameter of 4 mm, and a height of 3 mm. This molded body was kept in the atmosphere at 200 ° C. for 1 hour, and the epoxy resin was thermally cured to obtain a ring-shaped sample. The frequency dependence of the magnetic permeability μ ′ of this ring-shaped sample was measured in the range of 1 MHz to 1.8 GHz with an impedance analyzer (Agilent Technology 4291B) to obtain the magnetic permeability μ ′ at 5 MHz and 10 MHz (Table). 5).

表5よりSi無添加(比較例4)に比べてSi添加量が増加するにつれて透磁率μが向上しており、Si濃度(=Si/(Fe+Si))が8mass%以上で飽和していることが分かる。これはSi添加と共に保磁力が0.8kA/m未満まで低下していることに起因している。 From Table 5, the magnetic permeability μ is improved as the amount of Si added is increased compared to the case where Si is not added (Comparative Example 4), and the Si concentration (= Si / (Fe + Si)) is saturated at 8 mass% or more. I understand. This is because the coercive force decreases to less than 0.8 kA / m with the addition of Si.

γ−Fe相の体積比率とSi濃度(=Si/(Fe+Si))の関係を示すグラフである。It is a graph which shows the relationship between the volume ratio of a (gamma) -Fe phase, and Si density | concentration (= Si / (Fe + Si)). 実施例5〜8の各磁性粉末の透過型電子顕微鏡写真である。It is a transmission electron micrograph of each magnetic powder of Examples 5-8.

Claims (11)

Feの酸化物粉末と元素X(XはAl、Co、Ni及びSiから選ばれる少なくとも1
種である。)を含む化合物粉末と、炭素を含む化合物粉末とを混合し、
得られた粉末を、非酸化性雰囲気中、800〜1600℃の範囲内で熱処理する(第1の熱処理)ことによって、核粒子(核粒子はFe及びXを含有する)及び炭素被膜を有する金属磁性微粒子を形成し、
前記第1の熱処理の後、前記金属磁性微粒子を400℃〜750℃の範囲内で熱処理する(第2の熱処理)ことを特徴とする金属磁性微粒子の製造方法。
Fe oxide powder and element X (where X is at least one selected from Al, Co, Ni and Si)
It is a seed. ) Containing compound powder and carbon containing compound powder,
The obtained powder is heat-treated in a non-oxidizing atmosphere within a range of 800 to 1600 ° C. (first heat treatment), whereby a core particle (the core particle contains Fe and X) and a metal having a carbon film Forming magnetic particles,
After the first heat treatment, the metal magnetic fine particles are heat-treated within a range of 400 ° C. to 750 ° C. (second heat treatment).
前記第2の熱処理を経ることにより、前記核粒子はα−Fe相と前記α−Fe相とは異なる強磁性相とを有し、
前記強磁性相はメスバウアー分光分析によって得られる内部磁場の値が25〜32Tの範囲内となる相であり、
前記核粒子には、前記強磁性相が20〜55vol%含まれることを特徴とする請求項1に記載の金属磁性微粒子の製造方法。
By passing through the second heat treatment, the core particles have an α-Fe phase and a ferromagnetic phase different from the α-Fe phase,
The ferromagnetic phase is a phase in which the value of the internal magnetic field obtained by Mossbauer spectroscopy is in the range of 25 to 32 T.
The method for producing metal magnetic fine particles according to claim 1, wherein the core particles contain 20 to 55 vol% of the ferromagnetic phase.
核粒子を炭素で被覆した金属磁性微粒子であり、
前記核粒子は、α−Fe相と、前記α−Fe相とは異なる強磁性相を有し、
前記強磁性相はメスバウアー分析によって得られる内部磁場の値が25〜32Tの範囲内であり、
前記核粒子には前記強磁性相が20〜55vol%含まれていることを特徴とする金属磁性微粒子。
It is a metal magnetic fine particle in which the core particle is coated with carbon,
The core particles have an α-Fe phase and a ferromagnetic phase different from the α-Fe phase,
The ferromagnetic phase has an internal magnetic field value obtained by Mossbauer analysis in the range of 25 to 32 T,
The metal magnetic fine particles, wherein the core particles contain 20 to 55 vol% of the ferromagnetic phase.
請求項3に記載の金属磁性微粒子において、体積基準のメディアン径d50が0.1〜5μmであることを特徴とする金属磁性微粒子。   The metal magnetic fine particles according to claim 3, wherein the volume-based median diameter d50 is 0.1 to 5 µm. 請求項3又は4に記載の金属磁性微粒子において、被覆層の平均膜厚が30〜40nmであることを特徴とする金属磁性微粒子。   The metal magnetic fine particles according to claim 3 or 4, wherein the coating layer has an average film thickness of 30 to 40 nm. 請求項3〜5のいずれかに記載の金属磁性微粒子において、前記核粒子はAl、Co、Ni及びSiから選ばれる少なくとも1種の元素を1〜10mass%含むことを特徴とする金属磁性微粒子。   The metal magnetic fine particles according to claim 3, wherein the core particles contain 1 to 10 mass% of at least one element selected from Al, Co, Ni, and Si. 請求項3〜6のいずれかに記載の金属磁性微粒子において、飽和磁化が180〜195Am/kgであることを特徴とする金属磁性微粒子。 The metal magnetic fine particles according to claim 3, wherein the saturation magnetization is 180 to 195 Am 2 / kg. 請求項3〜7のいずれかに記載の金属磁性微粒子において、保磁力が1.3kA/m未満であることを特徴とする金属磁性微粒子。   The metal magnetic fine particles according to any one of claims 3 to 7, wherein the coercive force is less than 1.3 kA / m. 請求項3〜8のいずれかに記載の金属磁性微粒子において、PBSバッファー中に25mg/mlの粒子濃度にて37℃で168h浸漬させた後のFe溶出量が0.8mg/l未満であることを特徴とする金属磁性微粒子。   In the metal magnetic fine particles according to any one of claims 3 to 8, the amount of Fe elution after being immersed in PBS buffer at a particle concentration of 25 mg / ml at 37 ° C for 168 hours is less than 0.8 mg / l. Metallic magnetic fine particles characterized by 請求項3〜9のいずれかに記載の金属磁性微粒子において、カオトロピック塩水溶液中に25mg/mlの粒子濃度にて室温で24h浸漬させた後のFe溶出量が170mg/l未満であることを特徴とする金属磁性微粒子。   The metal magnetic fine particles according to any one of claims 3 to 9, wherein the Fe elution amount after being immersed in an aqueous chaotropic salt solution at a particle concentration of 25 mg / ml at room temperature for 24 hours is less than 170 mg / l. Metal magnetic fine particles. 請求項3〜10のいずれかに記載の金属磁性微粒子と有機樹脂とで構成されることを特徴とする圧粉磁芯。   A dust core comprising the metal magnetic fine particles according to claim 3 and an organic resin.
JP2008103449A 2008-04-11 2008-04-11 Metal magnetic fine particles and production method thereof, dust core Expired - Fee Related JP5168637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008103449A JP5168637B2 (en) 2008-04-11 2008-04-11 Metal magnetic fine particles and production method thereof, dust core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008103449A JP5168637B2 (en) 2008-04-11 2008-04-11 Metal magnetic fine particles and production method thereof, dust core

Publications (3)

Publication Number Publication Date
JP2009249739A true JP2009249739A (en) 2009-10-29
JP2009249739A5 JP2009249739A5 (en) 2012-03-22
JP5168637B2 JP5168637B2 (en) 2013-03-21

Family

ID=41310705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008103449A Expired - Fee Related JP5168637B2 (en) 2008-04-11 2008-04-11 Metal magnetic fine particles and production method thereof, dust core

Country Status (1)

Country Link
JP (1) JP5168637B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193349A (en) * 2011-03-17 2012-10-11 Xerox Corp Curable ink containing coated magnetic nanoparticle
JP2012193350A (en) * 2011-03-17 2012-10-11 Xerox Corp Phase-change magnetic ink containing carbon-coated magnetic nanoparticle, and process for producing the same
WO2013100346A1 (en) * 2011-12-29 2013-07-04 한국화학연구원 Method for producing porous carbon-coated metal nanoparticles and porous carbon-coated metal nanoparticles produced using same
JP2013167000A (en) * 2012-02-16 2013-08-29 Hitachi Metals Ltd Metal powder, method for producing the same, and dust core
KR101355125B1 (en) * 2012-07-03 2014-01-29 한국화학연구원 Preparation of carbon coated nano-metal particles having pores and carbon coated nano-metal particles having pores prepared thereby
JP2018142618A (en) * 2017-02-28 2018-09-13 山陽特殊製鋼株式会社 Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same
JP2021009930A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Dust core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2005232514A (en) * 2004-02-18 2005-09-02 Hitachi Metals Ltd Metal particulate, and method for producing metal particulate
JP2005273011A (en) * 2004-02-27 2005-10-06 Hitachi Metals Ltd Iron based nanosize particle and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259807A (en) * 2003-02-25 2004-09-16 Hitachi Metals Ltd Dust core and magnetic powder therefor
JP2005232514A (en) * 2004-02-18 2005-09-02 Hitachi Metals Ltd Metal particulate, and method for producing metal particulate
JP2005273011A (en) * 2004-02-27 2005-10-06 Hitachi Metals Ltd Iron based nanosize particle and production method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193349A (en) * 2011-03-17 2012-10-11 Xerox Corp Curable ink containing coated magnetic nanoparticle
JP2012193350A (en) * 2011-03-17 2012-10-11 Xerox Corp Phase-change magnetic ink containing carbon-coated magnetic nanoparticle, and process for producing the same
WO2013100346A1 (en) * 2011-12-29 2013-07-04 한국화학연구원 Method for producing porous carbon-coated metal nanoparticles and porous carbon-coated metal nanoparticles produced using same
JP2013167000A (en) * 2012-02-16 2013-08-29 Hitachi Metals Ltd Metal powder, method for producing the same, and dust core
KR101355125B1 (en) * 2012-07-03 2014-01-29 한국화학연구원 Preparation of carbon coated nano-metal particles having pores and carbon coated nano-metal particles having pores prepared thereby
JP2018142618A (en) * 2017-02-28 2018-09-13 山陽特殊製鋼株式会社 Soft magnetic flat powder with high magnetic permeability and high weather resistance and soft magnetic resin composition containing the same
JP2021009930A (en) * 2019-07-01 2021-01-28 株式会社豊田中央研究所 Dust core
JP7356270B2 (en) 2019-07-01 2023-10-04 株式会社豊田中央研究所 powder magnetic core

Also Published As

Publication number Publication date
JP5168637B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5710427B2 (en) Magnetic material, method for manufacturing magnetic material, and inductor element using magnetic material
JP4560784B2 (en) Fine metal particles, method for producing the same, and magnetic beads
EP1568427B1 (en) Production method of fine composite metal particles
JP4895151B2 (en) Iron-based nano-sized particles and method for producing the same
JP5168637B2 (en) Metal magnetic fine particles and production method thereof, dust core
Sivakumar et al. Nanophase formation of strontium hexaferrite fine powder by the sonochemical method using Fe (CO) 5
CN108885930B (en) Magnetic material and method for producing the same
JP5359905B2 (en) Fine metal particles, method for producing the same, and magnetic beads
JP6942379B2 (en) Magnetic materials and their manufacturing methods
JP5229526B2 (en) Magnetic ultrafine particles and method for producing the same
JP6521415B2 (en) Magnetic material and method of manufacturing the same
JP4853769B2 (en) Magnetic silica particles and method for producing the same
JP5556756B2 (en) Iron-based nano-sized particles and method for producing the same
JP2008081818A (en) Method for producing precursor powder of nickel-ferroalloy nanoparticle, precursor powder of nickel-ferroalloy nanoparticle, method for producing nickel-ferroalloy nanoparticle, and nickel-ferroalloy nanoparticle
JP2007046074A5 (en)
JP2007046074A (en) Fine metal particle and manufacturing method therefor
JP2009249739A5 (en)
JP2012204744A (en) Soft magnetic metal powder, method for producing the same, powder magnetic core and method for producing the same
JP2004281846A (en) High-frequency magnetic material, high-frequency magnetic part using the same, and method for manufacturing the same
CN110506314B (en) Magnetic material and method for producing the same
JP2011132581A (en) Method for producing nanoparticle of nickel-iron alloy with high saturation magnetization, and nanoparticle of nickel-iron alloy with high saturation magnetization
KR20190116267A (en) Soft magnetic flat powder
JP4304668B2 (en) Metal fine particles and method for producing metal fine particles
JP2008179841A (en) Method for producing nickel-iron-molybdenum alloy nanoparticle, and nickel-iron-molybdenum alloy nanoparticle
CN114496442A (en) Nano magnetic particle, preparation method thereof and magnetic liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5168637

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees