JP2009243014A - Method for manufacturing cellulose nanofiber - Google Patents

Method for manufacturing cellulose nanofiber Download PDF

Info

Publication number
JP2009243014A
JP2009243014A JP2008094050A JP2008094050A JP2009243014A JP 2009243014 A JP2009243014 A JP 2009243014A JP 2008094050 A JP2008094050 A JP 2008094050A JP 2008094050 A JP2008094050 A JP 2008094050A JP 2009243014 A JP2009243014 A JP 2009243014A
Authority
JP
Japan
Prior art keywords
cellulose
acid
pulp
raw material
oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094050A
Other languages
Japanese (ja)
Other versions
JP4981735B2 (en
Inventor
Shoichi Miyawaki
正一 宮脇
Shiho Katsukawa
志穂 勝川
Yutaka Abe
裕 阿部
Yuko Iijima
夕子 飯嶋
Akira Isogai
明 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2008094050A priority Critical patent/JP4981735B2/en
Publication of JP2009243014A publication Critical patent/JP2009243014A/en
Application granted granted Critical
Publication of JP4981735B2 publication Critical patent/JP4981735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively making cellulose nanofiber dispersion which is more excellent in transparency than a conventional one by TEMPO oxidization of acid-treated pulp. <P>SOLUTION: An oxidizing agent is added to aqueous slurry containing a cellulosic raw material washed after acid treatment under the presence of N-oxyl compound and bromide, iodide, or their mixture, the cellulose which is processed and oxidized from the cellulosic raw material is adjusted, then, the method for making the cellulose nanofiber includes loosening and turning the oxidized cellulose into nanofiber. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、予め酸処理したパルプをN−オキシル化合物で酸化することで従来よりも透明性に優れるセルロースナノファイバーを製造することができる方法に関する。   The present invention relates to a method capable of producing cellulose nanofibers that are superior in transparency by oxidizing a previously acid-treated pulp with an N-oxyl compound.

セルロース素材を触媒量の2,2,6,6−テトラメチル−1−ピペリジン−N−オキシラジカル(以下、TEMPOとする)と安価な酸化剤である次亜塩素酸ナトリウム共存下で処理するとセルロースミクロフィブリル表面にカルボキシル基を効率よく導入でき、わずかな解繊エネルギーで均一かつ透明なセルロースナノファイバー水溶液が製造できる(非特許文献1 Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007))。このナノセルロース製造技術は溶媒として水を使用すること、反応副生成物が塩化ナトリウムのみであること等、反応プロセスとしての環境調和性には優位性がある。漂白済みサルファイトパルプはクラフトパルプに比べてセルロース純度が高いため、TEMPO酸化処理でナノファイバー化し易い。また、一般には広葉樹より針葉樹由来のパルプがナノ化し易い傾向にある。しかし、TEMPO酸化処理で最もナノファイバー化し易いと考えられる針葉樹由来の漂白済みサルファイトパルプでも一部ナノ化しない未離解パルプが残留し、ナノ分散液の透明度が低くなる課題があった。
Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007)
When cellulose material is treated in the presence of a catalytic amount of 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and sodium hypochlorite which is an inexpensive oxidizing agent, cellulose Carboxyl groups can be efficiently introduced on the microfibril surface, and a uniform and transparent cellulose nanofiber aqueous solution can be produced with a little fibrillation energy (Non-Patent Document 1 Saito, T., et al., Cellulose Commun., 14 (2 ), 62 (2007)). This nanocellulose production technology is superior in environmental harmony as a reaction process, such as the use of water as a solvent and the fact that the reaction byproduct is only sodium chloride. Since bleached sulfite pulp has a higher cellulose purity than kraft pulp, it is easily converted into nanofibers by TEMPO oxidation treatment. In general, pulp derived from conifers tends to be nano-sized more than hardwoods. However, even the bleached sulfite pulp derived from softwood considered to be most easily converted into nanofibers by the TEMPO oxidation treatment, there remains a problem that undissolved pulp that does not partly remain remains and the transparency of the nanodispersion is lowered.
Saito, T., et al., Cellulose Commun., 14 (2), 62 (2007)

本発明は、酸処理したパルプをTEMPO酸化することで従来よりも透明性に優れたセルロースナノファイバー分散液を効率良く製造できる方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing efficiently the cellulose nanofiber dispersion liquid excellent in transparency than before by carrying out TEMPO oxidation of the acid-treated pulp.

本発明者らは、かかる従来技術の難点を解消するために鋭意検討した結果、ある特定の酸濃度でパルプを加温酸処理することで木材セルロースから透明性の高いナノファイバー分散液を効率良く調製できることを見出し、その知見に基づき本発明をなすに至った。   As a result of intensive studies to solve the problems of the prior art, the present inventors have efficiently obtained a highly transparent nanofiber dispersion from wood cellulose by warming the pulp with a certain acid concentration. The inventors have found that it can be prepared, and have reached the present invention based on the knowledge.

本発明の酸処理したパルプをセルロースナノファイバーの原料として利用することで、従来の酸処理していないパルプから調製したナノファイバー分散液よりも未離解パルプの残留が極めて少なく、透明性が高いセルロースナノファイバーを製造することができる。   By using the acid-treated pulp of the present invention as a raw material for cellulose nanofibers, cellulose having a high degree of transparency is obtained with extremely little residue of undissolved pulp compared to a nanofiber dispersion prepared from a conventional non-acid-treated pulp. Nanofibers can be produced.

本発明の酸処理に使用する酸の種類は、無機酸でも有機酸でも良い。無機酸としては、硫酸、塩酸、硝酸、亜硫酸、亜硝酸、リン酸、二酸化塩素発生装置の残留酸などの鉱酸を使用できる。好適には、硫酸である。有機酸としては、酢酸、乳酸、蓚酸、クエン酸、蟻酸などを使用できる。酸処理時のpHは、2〜6の範囲であり、好ましくは3〜5である。pHが2未満の場合はパルプ中に存在する多価カチオン種の除去は充分であるが、酸が過剰であるためセルロースの重合度が顕著に低下し、それに伴いナノファイバー分散液の粘度低下が大きくなる。一方、pHが6を超えると酸濃度が低く、多価カチオン種の除去が不十分となる。酸処理時のpHを3〜5とすると、酸処理の温度を下げることが可能であり、酸処理コストを低減できるという効果が生じてくる。   The acid used for the acid treatment of the present invention may be an inorganic acid or an organic acid. As the inorganic acid, mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, sulfurous acid, nitrous acid, phosphoric acid, and residual acid of chlorine dioxide generator can be used. Sulfuric acid is preferred. As the organic acid, acetic acid, lactic acid, succinic acid, citric acid, formic acid and the like can be used. The pH during the acid treatment is in the range of 2-6, preferably 3-5. When the pH is less than 2, the removal of the polyvalent cation species present in the pulp is sufficient, but since the acid is excessive, the degree of polymerization of the cellulose is significantly reduced, and the viscosity of the nanofiber dispersion is reduced accordingly. growing. On the other hand, when the pH exceeds 6, the acid concentration is low, and the removal of the polyvalent cation species becomes insufficient. When the pH during the acid treatment is 3 to 5, the temperature of the acid treatment can be lowered, and the effect that the acid treatment cost can be reduced occurs.

酸処理は大気圧下、加圧下のいずれでも実施可能であり、処理温度としては30℃〜120℃、好ましくは50℃〜100℃である。温度が30℃未満では金属除去効果が不十分であり、透明なナノセルロース分散液が得られない。120℃より高温では金属除去の面では効果はあるが、セルロースナノファイバーが一部極端に短繊維化し、解繊し難くなるためナノファイバー分散液の透明度が低下する。また、分散液粘度も大幅に低下する。なお、100℃未満であれば耐圧性の反応容器を必要としないので設備コスト的に有利である。   The acid treatment can be carried out under atmospheric pressure or under pressure, and the treatment temperature is 30 ° C. to 120 ° C., preferably 50 ° C. to 100 ° C. If the temperature is less than 30 ° C., the metal removal effect is insufficient, and a transparent nanocellulose dispersion cannot be obtained. At temperatures higher than 120 ° C., there is an effect in terms of metal removal, but the cellulose nanofibers are partly extremely short and difficult to defibrate, so the transparency of the nanofiber dispersion decreases. Also, the dispersion viscosity is significantly reduced. In addition, if it is less than 100 degreeC, since a pressure-resistant reaction container is not required, it is advantageous at an equipment cost.

酸処理時のパルプ濃度は、0.1〜50重量%の範囲であり、好ましくは1〜30重量%、更に好ましくは2〜30重量%である。
多価金属イオンの除去効果は、酸処理時のpH、反応温度、および反応時間で決定される。これより、反応時間は他の2条件に合わせて適宜設定される。これより、反応時間は他の2条件に合わせて適宜設定されるが、反応温度80℃での反応時間1.5〜6時間、反応温度90℃での反応時間50分間〜5時間、反応温度100℃での反応時間30分間〜4.5時間、反応温度100℃より高温での反応時間5〜50分間が適切である。
The pulp concentration during the acid treatment is in the range of 0.1 to 50% by weight, preferably 1 to 30% by weight, and more preferably 2 to 30% by weight.
The effect of removing the polyvalent metal ion is determined by the pH during the acid treatment, the reaction temperature, and the reaction time. Thus, the reaction time is appropriately set according to the other two conditions. From this, the reaction time is appropriately set according to the other two conditions, but the reaction time at a reaction temperature of 80 ° C. is 1.5 to 6 hours, the reaction time at a reaction temperature of 90 ° C. is 50 minutes to 5 hours, the reaction temperature A reaction time of 30 minutes to 4.5 hours at 100 ° C. and a reaction time of 5 to 50 minutes at a reaction temperature higher than 100 ° C. are suitable.

なお、酸処理に際しては、EDTA、DPTA等のキレート剤を併用することにより、温和な酸処理条件を設定でき、透明性が高くかつ粘度低下の少ないセルロースナノファーバーを製造できる。   In addition, in acid treatment, by using a chelating agent such as EDTA or DPTA in combination, mild acid treatment conditions can be set, and cellulose nanofibers having high transparency and low viscosity reduction can be produced.

本発明で用いるN−オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。
N−オキシル化合物の使用量は、セルロース系原料をナノファイバー化できる触媒量であれば特に制限されない。例えば、絶乾1gのセルロース系原料に対して、0.01〜10mmol、好ましくは0.01〜1mmol、さらに好ましくは0.05〜0.5mmol程度である。
As the N-oxyl compound used in the present invention, any compound can be used as long as it promotes the target oxidation reaction.
The amount of the N-oxyl compound used is not particularly limited as long as it is a catalyst amount capable of converting the cellulose-based raw material into nanofibers. For example, it is about 0.01 to 10 mmol, preferably 0.01 to 1 mmol, and more preferably about 0.05 to 0.5 mmol with respect to 1 g of cellulosic raw material.

本発明のセルロース系原料の酸化方法は、N−オキシル化合物と、並びに臭化物、ヨウ化物又はそれらの混合物の存在下で、酸化剤を用い水中にて行うことを特徴とするもので、これにより得られた酸化されたセルロース系原料は効率良くナノファイバー化することができる。この臭化物またはヨウ化物としては、水中で解離してイオン化可能な化合物、例えば、臭化アルカリ金属やヨウ化アルカリ金属などが使用できる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gのセルロース系原料に対して、0.1〜100mmol、好ましくは0.1〜10mmol、さらに好ましくは0.5〜5mmol程度である。   The method for oxidizing a cellulosic raw material of the present invention is characterized in that it is carried out in water using an oxidizing agent in the presence of an N-oxyl compound and bromide, iodide or a mixture thereof. The oxidized cellulosic raw material thus produced can be efficiently converted into nanofibers. As the bromide or iodide, a compound that can be dissociated and ionized in water, such as an alkali metal bromide or an alkali metal iodide, can be used. The amount of bromide or iodide used can be selected within a range that can promote the oxidation reaction. For example, it is about 0.1 to 100 mmol, preferably 0.1 to 10 mmol, and more preferably about 0.5 to 5 mmol with respect to 1 g of cellulosic raw material.

酸化剤としては、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸や過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物など、目的の酸化反応を推進し得る酸化剤であれば、いずれの酸化剤も使用できる。ナノファイバーの生産コストの観点から、使用する酸化剤として現在工業プロセスにおいて最も汎用されている安価で環境負荷の少ない次亜塩素酸ナトリウムが好適である。酸化剤の使用量は、酸化反応を促進できる範囲で選択できる。例えば、絶乾1gの漂白済み木材パルプに対して、0.5〜500mmol、好ましくは0.5〜50mmol、さらに好ましくは2.5〜25mmol程度である。   The oxidizing agent may be any oxidizing agent that can promote the desired oxidation reaction, such as halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, and peroxide. Agents can also be used. From the viewpoint of the production cost of nanofibers, sodium hypochlorite, which is the most widely used oxidant in industrial processes and is low in environmental load, is suitable. The amount of the oxidizing agent used can be selected within a range that can promote the oxidation reaction. For example, it is 0.5 to 500 mmol, preferably 0.5 to 50 mmol, and more preferably about 2.5 to 25 mmol with respect to 1 g of bleached wood pulp.

本発明で用いるセルロース系原料は特に限定されるものではなく、各種木材由来のクラフトあるいはサルファイトパルプ、それらを高圧ホモジナイザーやミル等で粉砕した粉末状セルロースや酸加水分解などの化学処理により精製した微結晶セルロース粉末を使用できる他、ケナフ、麻、イネ、バカス、竹等の植物でも良い。   The cellulose-based raw material used in the present invention is not particularly limited, and it is purified by chemical treatment such as kraft or sulfite pulp derived from various woods, powdered cellulose obtained by pulverizing them with a high-pressure homogenizer, a mill or the like, or acid hydrolysis. In addition to the use of microcrystalline cellulose powder, plants such as kenaf, hemp, rice, bacus and bamboo may be used.

本発明の方法は温和な条件であっても酸化反応を円滑に進行させることができるという特色がある。そのため、反応温度は15〜30℃程度の室温であってもセルロース系原料を効率良く酸化できる。なお、反応の進行に伴ってセルロースにカルボキシル基が生成し、反応液のpH低下が認められる。そのため、酸化反応を効率良く進行させるためには、反応液のpHを9〜12、好ましくは10〜11程度に維持することが望ましい。   The method of the present invention is characterized in that the oxidation reaction can proceed smoothly even under mild conditions. Therefore, even if the reaction temperature is about 15 to 30 ° C., the cellulosic material can be oxidized efficiently. In addition, a carboxyl group produces | generates in a cellulose with progress of reaction, and the pH fall of a reaction liquid is recognized. Therefore, in order to advance the oxidation reaction efficiently, it is desirable to maintain the pH of the reaction solution at about 9 to 12, preferably about 10 to 11.

本発明にて得られた酸化処理されたセルロースより、簡易な方法で解繊処理することによりセルロースナノファイバーを得ることができる。例えば、酸化処理されたセルロース系原料を十分に水洗し、高速せん断ミキサーや高圧ホモジナイザーなど公知の混合・攪拌、乳化・分散装置を必要に応じて単独もしくは2種類以上組合せて処理することでセルロースナノファイバー化することができる。装置の種類として高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などが挙げられる。せん断速度は1000sec−1以上であれば、凝集構造のない均一かつ透明なセルロースナノファイバーを得ることができる。 From the oxidized cellulose obtained in the present invention, cellulose nanofibers can be obtained by fibrillation treatment by a simple method. For example, cellulosic nanomaterials can be obtained by thoroughly washing the oxidized cellulose raw material with water and treating known mixing / stirring / emulsifying / dispersing devices such as high-speed shear mixers and high-pressure homogenizers singly or in combination of two or more as required. Can be fiberized. Examples of the apparatus include a high-speed rotation type, a colloid mill type, a high-pressure type, a roll mill type, and an ultrasonic type. If the shear rate is 1000 sec −1 or more, uniform and transparent cellulose nanofibers having no aggregate structure can be obtained.

本発明により製造されたセルロースナノファイバーは、幅2〜5nm、長さ1〜5μm程度のセルロースシングルミクロフィブリルである。このセルロースナノファイバーは、バリヤー性、透明性、耐熱性に優れるので、包装材料等の様々な用途に使用することが可能である。
[作用]
本発明の酸処理した漂白済みパルプがナノファイバー化に優れる理由について以下のように推察している。パルプ中には多価金属イオンとしてカルシウムやマグネシウムイオンに代表されるアルカリ土類金属イオン、鉄や銅イオンに代表される遷移金属イオンが存在する。通常、これらカチオン性の金属イオンはカルボキシル基、カルボニル基などの極性基と錯体を形成し易い。そのため、パルプの構成成分であるセルロースやヘミセルロース中に存在する極性基と配位結合し、多糖類間でイオン結合を介した架橋構造を形成する。このように化学パルプ中には多価金属イオンの錯形成で生成した架橋構造がパルプ中に点在し、この微視的領域ではナノファイバー化が進行し難くなる。また、パルプ中には錯形成に関与せず、水和・溶存状態の多価金属イオン種があり、これらイオン種は酸化プロセスでセルロースミクロフィブリル表面に生成したカルボキシル基と即座に結合し、ナノファイバー凝集を引き起こす。このような観点から、パルプ中に存在する多価金属イオン種を予め酸処理で除去しておけば、TEMPO酸化パルプの解繊は容易となり、凝集構造のない、即ち分散性・透明性に優れるセルロースナノファイバー分散液が得られる。
The cellulose nanofiber produced by the present invention is a cellulose single microfibril having a width of 2 to 5 nm and a length of about 1 to 5 μm. Since this cellulose nanofiber is excellent in barrier property, transparency, and heat resistance, it can be used for various applications such as packaging materials.
[Action]
The reason why the acid-treated bleached pulp of the present invention is excellent in nanofiber formation is presumed as follows. In the pulp, there are alkaline earth metal ions typified by calcium and magnesium ions and transition metal ions typified by iron and copper ions as polyvalent metal ions. Usually, these cationic metal ions are likely to form a complex with a polar group such as a carboxyl group or a carbonyl group. Therefore, it is coordinated with polar groups present in cellulose and hemicellulose, which are constituents of pulp, to form a crosslinked structure between the polysaccharides via ionic bonds. Thus, in the chemical pulp, cross-linked structures formed by complex formation of polyvalent metal ions are scattered in the pulp, and in this microscopic region, the formation of nanofibers is difficult to proceed. In addition, there are hydrated and dissolved polyvalent metal ion species that do not participate in complex formation in the pulp, and these ion species are immediately bonded to the carboxyl groups formed on the surface of the cellulose microfibrils by the oxidation process, and are nano-sized. Causes fiber aggregation. From this point of view, if the polyvalent metal ion species present in the pulp is previously removed by acid treatment, the TEMPO oxidized pulp can be easily defibrated and has no aggregated structure, that is, excellent in dispersibility and transparency. A cellulose nanofiber dispersion is obtained.

次に実施例に基づき、本発明をさらに詳細に説明する。
[実施例1]
針葉樹由来の漂白済み未叩解サルファイトパルプ(日本製紙ケミカル社)10g(絶乾)に希硫酸と水でpH3、かつパルプ濃度10%となるように調整した。オートクレーブで80℃、2時間酸処理した後、水洗・脱水した。酸処理したパルプ5g(絶乾)をTEMPO(Sigma Aldrich社)94mg(0.5nmol)と臭化ナトリウム755mg(5mmol)を溶解した水溶液500mlに加え、パルプが均一に分散するまで攪拌した。反応系に次亜塩素酸ナトリウム水溶液(有効塩素5%)18ml添加した後、0.5N塩酸水溶液でpHを10.3に調整し、酸化反応を開始した。反応中は系内のpHは低下するが、0.5N水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。2時間反応した後、ガラスフィルターで濾過し、十分に水洗することで酸化処理したパルプを得た。酸化処理したパルプの0.3%(w/v)スラリーを12,000rpmで15分攪拌したところ、透明なゲル状分散液が得られた。また、0.25%(w/v)のセルロースナノファーバー分散液のB型粘度(60rpm、20℃)は830mPa・sであった。
[実施例2]
pHを5、処理時間を3時間とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、透明なナノファイバー分散液が得られた。また、0.25%(w/v)のセルロースナノファーバー分散液のB型粘度(60rpm、20℃)は850mPa・sであった。
[実施例3]
pHを2、処理温度を30℃、処理時間1時間とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、透明なナノファイバー分散液が得られた。また、0.25%(w/v)のセルロースナノファーバー分散液のB型粘度(60rpm、20℃)は815mPa・sであった。
[比較例1]
処理温度を130℃とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、ナノファイバー分散液は不透明であった。また、0.25%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は335mPa・sであった。
[比較例2]
処理温度を25℃とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、ナノファイバー分散液は不透明であった。また、0.25%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は866mPa・sであった。
[比較例3]
pHを1.5とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、ナノファイバー分散液は不透明であった。また、0.25%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は350mPa・sであった。
[比較例4]
pHを7とした以外、実施例1と同様にして酸処理を行い、TEMPO酸化した。得られた酸化パルプを12,000rpmで15分攪拌したところ、ナノファイバー分散液は不透明であった。また、0.25%(w/v)のセルロースナノファーバー水溶液のB型粘度(60rpm、20℃)は870mPa・sであった。
Next, based on an Example, this invention is demonstrated still in detail.
[Example 1]
10 g of bleached unbeaten sulfite pulp (Nippon Paper Chemical Co., Ltd.) derived from conifers (absolutely dry) was adjusted with dilute sulfuric acid and water to a pH of 3 and a pulp concentration of 10%. After acid treatment in an autoclave at 80 ° C. for 2 hours, it was washed with water and dehydrated. 5 g of acid-treated pulp (absolutely dried) was added to 500 ml of an aqueous solution in which 94 mg (0.5 nmol) of TEMPO (Sigma Aldrich) and 755 mg (5 mmol) of sodium bromide had been dissolved, and stirred until the pulp was uniformly dispersed. After adding 18 ml of sodium hypochlorite aqueous solution (effective chlorine 5%) to the reaction system, the pH was adjusted to 10.3 with 0.5N hydrochloric acid aqueous solution, and the oxidation reaction was started. During the reaction, the pH in the system was lowered, but a 0.5N aqueous sodium hydroxide solution was successively added to adjust the pH to 10. After reacting for 2 hours, it was filtered through a glass filter and sufficiently washed with water to obtain an oxidized pulp. When a 0.3% (w / v) slurry of the oxidized pulp was stirred at 12,000 rpm for 15 minutes, a transparent gel dispersion was obtained. The B-type viscosity (60 rpm, 20 ° C.) of the 0.25% (w / v) cellulose nanofiber dispersion was 830 mPa · s.
[Example 2]
Acid treatment was performed in the same manner as in Example 1 except that the pH was 5 and the treatment time was 3 hours, and TEMPO oxidation was performed. When the obtained oxidized pulp was stirred at 12,000 rpm for 15 minutes, a transparent nanofiber dispersion was obtained. The B-type viscosity (60 rpm, 20 ° C.) of the 0.25% (w / v) cellulose nanofiber dispersion was 850 mPa · s.
[Example 3]
The acid treatment was performed in the same manner as in Example 1 except that the pH was 2, the treatment temperature was 30 ° C., and the treatment time was 1 hour, and TEMPO oxidation was performed. When the obtained oxidized pulp was stirred at 12,000 rpm for 15 minutes, a transparent nanofiber dispersion was obtained. The B-type viscosity (60 rpm, 20 ° C.) of the 0.25% (w / v) cellulose nanofiber dispersion was 815 mPa · s.
[Comparative Example 1]
The acid treatment was performed in the same manner as in Example 1 except that the treatment temperature was 130 ° C., and TEMPO oxidation was performed. When the resulting oxidized pulp was stirred at 12,000 rpm for 15 minutes, the nanofiber dispersion was opaque. Further, the B-type viscosity (60 rpm, 20 ° C.) of the aqueous 0.25% (w / v) cellulose nanofiber fiber was 335 mPa · s.
[Comparative Example 2]
The acid treatment was performed in the same manner as in Example 1 except that the treatment temperature was 25 ° C., and TEMPO oxidation was performed. When the resulting oxidized pulp was stirred at 12,000 rpm for 15 minutes, the nanofiber dispersion was opaque. Further, the B-type viscosity (60 rpm, 20 ° C.) of the aqueous 0.25% (w / v) cellulose nanofiber fiber was 866 mPa · s.
[Comparative Example 3]
The acid treatment was performed in the same manner as in Example 1 except that the pH was 1.5, and TEMPO oxidation was performed. When the resulting oxidized pulp was stirred at 12,000 rpm for 15 minutes, the nanofiber dispersion was opaque. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.25% (w / v) cellulose nanofiber solution was 350 mPa · s.
[Comparative Example 4]
Except that the pH was 7, acid treatment was performed in the same manner as in Example 1 to perform TEMPO oxidation. When the resulting oxidized pulp was stirred at 12,000 rpm for 15 minutes, the nanofiber dispersion was opaque. Further, the B-type viscosity (60 rpm, 20 ° C.) of the 0.25% (w / v) cellulose nanofiber solution was 870 mPa · s.

実施例1、比較例3,4のセルロースナノファイバー分散液の写真である。2 is a photograph of cellulose nanofiber dispersion liquids of Example 1 and Comparative Examples 3 and 4. FIG.

Claims (2)

pH2〜6、温度30℃以上120℃以下の条件で酸処理後洗浄したセルロース系原料を含む水性スラリーに、N−オキシル化合物と、並びに臭化物、ヨウ化物又はこれらの混合物の存在下で、酸化剤を添加し、前記セルロース系原料を処理して酸化されたセルロースを調製し、該酸化されたセルロースを解繊処理してナノファイバー化することを特徴とするセルロースナノファイバーの製造方法。 An aqueous slurry containing a cellulosic raw material washed after acid treatment under the conditions of pH 2-6, temperature 30 ° C. or higher and 120 ° C. or lower, an oxidant in the presence of an N-oxyl compound and bromide, iodide or a mixture thereof. A method for producing cellulose nanofibers comprising: adding cellulose, preparing oxidized cellulose by treating the cellulose-based raw material, and defibrating the oxidized cellulose into nanofibers. セルロース系原料が、漂白済みクラフトパルプまたは漂白済みサルファイトパルプであることを特徴とする請求項1に記載のセルロースナノファイバーの製造方法。 The method for producing cellulose nanofibers according to claim 1, wherein the cellulosic material is bleached kraft pulp or bleached sulfite pulp.
JP2008094050A 2008-03-31 2008-03-31 Method for producing cellulose nanofiber Active JP4981735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094050A JP4981735B2 (en) 2008-03-31 2008-03-31 Method for producing cellulose nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094050A JP4981735B2 (en) 2008-03-31 2008-03-31 Method for producing cellulose nanofiber

Publications (2)

Publication Number Publication Date
JP2009243014A true JP2009243014A (en) 2009-10-22
JP4981735B2 JP4981735B2 (en) 2012-07-25

Family

ID=41305226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094050A Active JP4981735B2 (en) 2008-03-31 2008-03-31 Method for producing cellulose nanofiber

Country Status (1)

Country Link
JP (1) JP4981735B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
JP2011231208A (en) * 2010-04-27 2011-11-17 Kyoto Univ Rubber composition and method for manufacturing rubber composition
US8231764B2 (en) 2009-05-15 2012-07-31 Imerys Minerals, Limited Paper filler method
JP2014040531A (en) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd Method for producing oxidized cellulose and method for producing cellulose nanofiber
JP2014040530A (en) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd Method for producing oxidized cellulose and method for producing cellulose nanofiber
JP2016089307A (en) * 2014-11-07 2016-05-23 凸版印刷株式会社 Waterproof paper, paper container using the same, and manufacturing method
JP2017179685A (en) * 2015-10-06 2017-10-05 チカミミルテック株式会社 Method for manufacturing fiber splittable into extrafine fibers, method for manufacturing extrafine fiber, fiber splittable into extrafine fibers and extrafine fiber
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US10214859B2 (en) 2016-04-05 2019-02-26 Fiberlean Technologies Limited Paper and paperboard products
US10253457B2 (en) 2010-11-15 2019-04-09 Fiberlean Technologies Limited Compositions
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
WO2019124251A1 (en) * 2017-12-18 2019-06-27 日本製紙株式会社 Chemically modified cellulose and cellulose nanofiber, and method for producing same
DE112017006834T5 (en) 2017-01-16 2019-09-26 Jgc Catalysts And Chemicals Ltd. polishing composition
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US10794006B2 (en) 2016-04-22 2020-10-06 Fiberlean Technologies Limited Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241409A1 (en) 2020-05-25 2021-12-02 富士フイルム株式会社 Composition, sheet-shaped molded body, artificial leather, and sheet-shaped molded body production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049591A (en) * 1999-05-31 2001-02-20 Daicel Chem Ind Ltd Fiber raw material and method for producing the same
JP2001115389A (en) * 1999-08-17 2001-04-24 Natl Starch & Chem Investment Holding Corp Aldehyde-modified cellulose pulp for producing high strength paper product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049591A (en) * 1999-05-31 2001-02-20 Daicel Chem Ind Ltd Fiber raw material and method for producing the same
JP2001115389A (en) * 1999-08-17 2001-04-24 Natl Starch & Chem Investment Holding Corp Aldehyde-modified cellulose pulp for producing high strength paper product

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282422A1 (en) * 2007-12-28 2010-11-11 Shoichi Miyawaki Processes for producing cellulose nanofibers, cellulose oxidation catalysts and methods for oxidizing cellulose
US8287692B2 (en) * 2007-12-28 2012-10-16 Nippon Paper Industries Co., Ltd. Processes for producing cellulose nanofibers
US10982387B2 (en) 2009-03-30 2021-04-20 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US10294371B2 (en) 2009-03-30 2019-05-21 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10975242B2 (en) 2009-03-30 2021-04-13 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose gels
US10301774B2 (en) 2009-03-30 2019-05-28 Fiberlean Technologies Limited Process for the production of nano-fibrillar cellulose suspensions
US11970817B2 (en) 2009-05-15 2024-04-30 Fiberlean Technologies Limited Paper filler composition
US8231764B2 (en) 2009-05-15 2012-07-31 Imerys Minerals, Limited Paper filler method
US11732411B2 (en) 2009-05-15 2023-08-22 Fiberlean Technologies Limited Paper filler composition
US11377791B2 (en) 2009-05-15 2022-07-05 Fiberlean Technologies Limited Paper filler composition
US9127405B2 (en) 2009-05-15 2015-09-08 Imerys Minerals, Limited Paper filler composition
US11162219B2 (en) 2009-05-15 2021-11-02 Fiberlean Technologies Limited Paper filler composition
US10100464B2 (en) 2009-05-15 2018-10-16 Fiberlean Technologies Limited Paper filler composition
US10053817B2 (en) 2010-04-27 2018-08-21 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
JP2011231208A (en) * 2010-04-27 2011-11-17 Kyoto Univ Rubber composition and method for manufacturing rubber composition
US10633796B2 (en) 2010-04-27 2020-04-28 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US11155697B2 (en) 2010-04-27 2021-10-26 Fiberlean Technologies Limited Process for the production of gel-based composite materials
US10100467B2 (en) 2010-04-27 2018-10-16 Fiberlean Technologies Limited Process for the manufacture of structured materials using nano-fibrillar cellulose gels
US11136721B2 (en) 2010-11-15 2021-10-05 Fiberlean Technologies Limited Compositions
US11655594B2 (en) 2010-11-15 2023-05-23 Fiberlean Technologies Limited Compositions
US10253457B2 (en) 2010-11-15 2019-04-09 Fiberlean Technologies Limited Compositions
JP2014040531A (en) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd Method for producing oxidized cellulose and method for producing cellulose nanofiber
JP2014040530A (en) * 2012-08-23 2014-03-06 Nippon Paper Industries Co Ltd Method for producing oxidized cellulose and method for producing cellulose nanofiber
JP2016089307A (en) * 2014-11-07 2016-05-23 凸版印刷株式会社 Waterproof paper, paper container using the same, and manufacturing method
JP2017179685A (en) * 2015-10-06 2017-10-05 チカミミルテック株式会社 Method for manufacturing fiber splittable into extrafine fibers, method for manufacturing extrafine fiber, fiber splittable into extrafine fibers and extrafine fiber
US10577469B2 (en) 2015-10-14 2020-03-03 Fiberlean Technologies Limited 3D-formable sheet material
US11932740B2 (en) 2015-10-14 2024-03-19 Fiberlean Technologies Limited 3D-formable sheet material
US11384210B2 (en) 2015-10-14 2022-07-12 Fiberlean Technologies Limited 3-D formable sheet material
US11846072B2 (en) 2016-04-05 2023-12-19 Fiberlean Technologies Limited Process of making paper and paperboard products
US10801162B2 (en) 2016-04-05 2020-10-13 Fiberlean Technologies Limited Paper and paperboard products
US11274399B2 (en) 2016-04-05 2022-03-15 Fiberlean Technologies Limited Paper and paperboard products
US10214859B2 (en) 2016-04-05 2019-02-26 Fiberlean Technologies Limited Paper and paperboard products
US11732421B2 (en) 2016-04-05 2023-08-22 Fiberlean Technologies Limited Method of making paper or board products
US10794006B2 (en) 2016-04-22 2020-10-06 Fiberlean Technologies Limited Compositions comprising microfibrilated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
US11572659B2 (en) 2016-04-22 2023-02-07 Fiberlean Technologies Limited Compositions comprising microfibrillated cellulose and polymers and methods of manufacturing fibres and nonwoven materials therefrom
DE112017006834T5 (en) 2017-01-16 2019-09-26 Jgc Catalysts And Chemicals Ltd. polishing composition
JP7233380B2 (en) 2017-12-18 2023-03-06 日本製紙株式会社 Chemically modified cellulose and cellulose nanofibers and method for producing the same
JPWO2019124251A1 (en) * 2017-12-18 2020-12-17 日本製紙株式会社 Chemically modified cellulose and cellulose nanofibers and their manufacturing methods
WO2019124251A1 (en) * 2017-12-18 2019-06-27 日本製紙株式会社 Chemically modified cellulose and cellulose nanofiber, and method for producing same

Also Published As

Publication number Publication date
JP4981735B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4981735B2 (en) Method for producing cellulose nanofiber
JP5330882B2 (en) Method for producing cellulose gel dispersion
JP5381338B2 (en) Method for producing cellulose nanofiber
JP4603095B2 (en) Cellulose oxidation method and cellulose oxidation catalyst
WO2011074301A1 (en) Method for oxidation of cellulose and process for production of cellulose nanofibers
JP5329279B2 (en) Method for producing cellulose nanofiber
JP2009263652A (en) Method of producing cellulose nanofibers
EP3409692B1 (en) Anionically-modified cellulose nanofiber dispersion liquid and production method therefor
JP2010235679A (en) Method for manufacturing cellulose nano-fiber
JP6366178B2 (en) Method for producing cellulose nanofiber
WO2017057710A1 (en) Cellulose nanofiber dispersion liquid and method for producing same
WO2018216474A1 (en) Oxidized cellulose nanofibers, dispersion of oxidized cellulose nanofibers, and production method for dispersion of oxidized cellulose nanofibers
JP7283874B2 (en) Oxidized cellulose nanofibers and oxidized cellulose nanofiber dispersions
JP7477326B2 (en) Dry solid of hydrophobized anion-modified cellulose or defibrated product thereof, dispersion of hydrophobized anion-modified cellulose nanofiber, and method for producing the same
JP7199230B2 (en) Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose
JP2018100383A (en) Method for producing carboxylated cellulose nanofiber
JP7199229B2 (en) Method for producing hydrophobized anion-modified cellulose nanofiber dispersion and dry solid of hydrophobized anion-modified cellulose
JP7098467B2 (en) Manufacturing method of cellulose nanofibers
JP7239294B2 (en) Method for producing anion-modified cellulose nanofiber
JPWO2019124251A1 (en) Chemically modified cellulose and cellulose nanofibers and their manufacturing methods
JP7424756B2 (en) Dry solid of hydrophobized anion-modified cellulose pulverized product and method for producing the same, and method for producing hydrophobized anion-modified cellulose nanofiber dispersion
JP7250455B2 (en) Composition containing anion-modified cellulose nanofibers
JP7432390B2 (en) Hydrophobized anion-modified cellulose nanofiber dispersion and method for producing the same, and dry solid of hydrophobized anion-modified cellulose and method for producing the same
JP2024003914A (en) Method for producing cellulose nanofiber
JP2021011519A (en) Hydrophobized anion-modified cellulose nanofiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100827

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250