JP2009224361A - 固体撮像装置及びその製造方法 - Google Patents

固体撮像装置及びその製造方法 Download PDF

Info

Publication number
JP2009224361A
JP2009224361A JP2008063963A JP2008063963A JP2009224361A JP 2009224361 A JP2009224361 A JP 2009224361A JP 2008063963 A JP2008063963 A JP 2008063963A JP 2008063963 A JP2008063963 A JP 2008063963A JP 2009224361 A JP2009224361 A JP 2009224361A
Authority
JP
Japan
Prior art keywords
state imaging
imaging device
solid
opening
concave lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063963A
Other languages
English (en)
Inventor
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008063963A priority Critical patent/JP2009224361A/ja
Publication of JP2009224361A publication Critical patent/JP2009224361A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】斜め入射光によるスミアが発生しにくい固体撮像装置及びその製造方法を提供する。
【解決手段】光電変換を行う受光部102が形成された半導体基板101と、前記受光部102相当領域に開口部109を有する遮光膜110と、前記開口部109を埋めるように前記遮光膜110上に形成された透明絶縁膜112と、前記透明絶縁膜112上に形成されたカラーフィルター層113とを備えた固体撮像装置おいて、前記開口部109の内部に前記透明絶縁膜112よりも屈折率の大きい凹レンズ111を形成する。
【選択図】図1

Description

本発明は、固体撮像装置及びその製造方法に関し、特にスミアを低減する技術に関する。
図11に従来の固体撮像装置の要部断面図を示す。図11に示すように、従来の固体撮像装置のシリコン基板601には、所要の不純物のイオン注入等により、受光部602、読み出し部603、垂直転送部604、チャネルストップ部605が形成されている。また、シリコン基板601の表面上には、垂直転送部604相当領域にシリコン酸化膜606を介して垂直転送電極607が形成されており、その上には開口部609を受光部602相当領域に有する遮光膜610が形成されており、開口部609の内部には反射防止膜611が形成されている。また、遮光膜610及び反射防止膜611上には、開口部609を埋めるように透明絶縁膜612が形成され、その上にカラーフィルター層613とマイクロオンチップレンズ614とが形成されている。このような従来の固体撮像装置では、マイクロオンチップレンズ614により受光部602へ入射光を集光して感度向上を図っている。
近年、CCD(Charge Coupled Device)型の固体撮像装置の分野では、デジタルスチルカメラ・デジタルビデオカメラ・カメラつき携帯電話等の普及により、ますます装置の小型化、高画素化が求められている。しかしながら、固体撮像装置を小型化、高画素化すると、マイクロオンチップレンズ614と受光部602間の距離が縮小するため、入射光の焦点位置がシリコン基板601の深部側へと移動する。また、遮光膜610の開口部609が縮小するため受光部602への進入光量が減少する。その結果、受光部602での光電変換効率が低下し、固体撮像装置の感度が低下して、所定の照度の下で鮮明な画像を撮影することが困難になる。
そこで、特許文献1〜3の固体撮像装置では、透明絶縁膜612とカラーフィルター層613との間に高屈折率材料からなる凸形状の層内レンズ(不図示)を形成し、当該層内レンズで入射光をさらに屈折させて受光部602への進入光量を増加させ、感度を向上させている。
特開平11−40787号公報 特開平11−87672号公報 特開2002−353428号公報
しかしながら、マイクロオンチップレンズ614や層内レンズで集光すると、図11において矢印で示すような斜め入射光が多くなる。このような斜め入射光は、シリコン基板601と、反射防止膜611、遮光膜610又は垂直転送電極607との間を多重反射して垂直転送部604へと漏れ込み易く、これにより垂直転送部604で光電変換による電荷が生じ、生じた電荷が擬似信号として振る舞って、スミアと呼ばれるノイズが発生する。さらに、斜め入射光が受光部602で光電変換されずに垂直転送部604の直下で光電変換された場合も、直下で生じた電荷の一部が垂直転送部604へと入り込んでスミアが発生する。
そこで、従来の固体撮像装置では、遮光膜610の開口部609を縮小させることで開口部609と垂直転送部604との距離を拡大し、スミアを低減させている。しかし、開口部609を縮小させると、受光部602への入射光量が減少するため感度が低下する。すなわち、スミア低減と感度向上とはトレードオフの関係にあり、固体撮像装置の小型化、高画素化を図りながら両特性を満足させることは非常に困難である。
本発明は、上記の課題に鑑み、斜め入射光によるスミアが発生しにくい固体撮像装置及びその製造方法を提供することを目的とする。
上記目的を達成するため、本発明に係る固体撮像装置は、光電変換を行う受光部が形成された半導体基板と、前記受光部相当領域に開口部を有する遮光膜と、前記開口部を埋めるように前記遮光膜上に形成された透明絶縁膜と、前記透明絶縁膜上に形成されたカラーフィルター層とを備えた固体撮像装置であって、
前記開口部の内部に前記透明絶縁膜よりも屈折率の大きい凹レンズが形成されていることを特徴とする。
本発明に係る固体撮像装置の製造方法は、半導体基板に光電変換を行う受光部を形成する工程と、前記受光部相当領域に開口部を有する遮光膜を形成する工程と、前記開口部の内部を透明絶縁部材で埋める工程と、前記開口部相当領域の一部にレジスト穴を有するレジストをマスクとして等方性エッチングし前記透明絶縁部材の上面を凹型曲面にする工程と、前記レジストを除去し透明絶縁膜を堆積、平坦化させる工程と、前記透明絶縁膜上にカラーフィルター層を形成する工程とを含むことを特徴とする。
本発明に係る固体撮像装置は、開口部の内部に透明絶縁膜よりも屈折率の大きい凹レンズが形成されているため、斜め入射光を垂直入射光にして、或いは垂直入射光に近い入射角度を有する斜め入射光にして、受光部102へ進入させることができる。したがって、斜め入射光によるスミアが発生しにくい。
本発明に係る固体撮像装置の製造方法は、遮光膜の開口部の内部を透明絶縁部材で埋める工程と、前記開口部相当領域の一部にレジスト穴を有するレジストをマスクとして等方性エッチングし前記透明絶縁部材の上面を凹型曲面にする工程とを含むため、開口部の内部に凹レンズを形成することができる。したがって、斜め入射光によるスミアが発生しにくい固体撮像装置を製造することができる。
本発明の実施形態に係る固体撮像装置及びその製造方法について図面を参照して説明する。
[第1の実施形態]
<固体撮像装置>
第1の実施形態に係る固体撮像装置は、半導体基板に行列状に複数形成されたフォトダイオードからなる受光部と、各受光部から読み出された信号電荷を列方向に転送する垂直転送部と、垂直転送部から転送された信号電荷を行方向に転送する水平転送部とを備えたCCD型の固体撮像装置である。
図1は、第1の実施形態に係る固体撮像装置の要部断面図である。図1に示すように、第1の実施形態に係る固体撮像装置には、半導体基板としてのシリコン基板101に、フォトダイオードである受光部102が形成されている。受光部102の一方側には、読み出し部103を介して読み出した信号電荷を転送する垂直転送部104aが形成されており、受光部102の他方側には、隣接する他の受光部(不図示)から読み出した信号電荷を転送する垂直転送部104bが形成されており、受光部102と垂直転送部104bとの間には、チャネルストップ部105が形成されている。
シリコン基板101の表面上には、シリコン酸化膜等からなる絶縁膜106、垂直転送電極107、シリコン酸化膜等からなる絶縁膜108、及び、開口部109を受光部102相当領域に有する遮光膜110が順次形成されている。
垂直転送電極107は、垂直転送部104a,104b相当領域に形成されており、当該垂直転送電極107の上面及び側面に絶縁膜108が形成されている。遮光膜110が垂直転送電極107の上面及び側面を覆っているため、受光部102の受光領域以外の領域には入射光が直接進入しない。一方、開口部109によって露出している受光部102の受光領域には入射光が直接進入する。
遮光膜110の開口部109の内部には、凹レンズ111が形成されている。そして、遮光膜110及び凹レンズ111上には、開口部109を埋めるように、例えばBPSGからなる平坦化された透明絶縁膜112が形成されている。また、透明絶縁膜112上には、カラーフィルター層113が形成され、その上に入射光を受光部102へ集光するマイクロオンチップレンズ114が形成されている。
凹レンズ111は、透明絶縁膜112との界面となる上面が凹型曲面、絶縁膜106との界面となる下面は平面であって、その外周面が開口部109の内周面に接している。当該凹レンズ111は、例えばシリコン窒化膜で形成されており、その屈折率はシリコン基板101よりも小さいが透明絶縁膜112よりは大きい。なお、凹レンズ111のレンズ曲率は全ての画素で同一である。
図1において矢印で示すように、凹レンズ111は、マイクロオンチップレンズ114等で発生した斜め入射光を垂直入射光にして受光部102へ進入させる特性を有する。したがって、斜め入射光が、シリコン基板101と遮光膜110との間やシリコン基板101と垂直転送電極107との間を多重反射して、垂直転送部104a,104b及びその直下へと漏れ込むことが少なく、斜め入射光によるスミアが発生しにくい。
なお、斜め入射光を垂直入射光にして受光部102へ進入させる場合が最も効率良くスミアを低減できるが、必ずしも垂直入射光にする必要はなく、斜め入射光の入射角度が垂直入射光の入射角度(90°)に近づく特性を有していれば良い。垂直入射光に近づく分だけスミアが低減するからである。
凹レンズ111の外周面は、開口部109の内周面に接していることが好ましい。開口部109の内部に進入する斜め入射光の全てを垂直入射光にすることができるからである。但し、必ずしも凹レンズの外周面は開口部の内周面に接触している必要はなく、凹レンズの外周面と開口部の内周面とが離れていても良い。
凹レンズ111は、シリコン基板101よりも屈折率が小さいことが好ましい。入射光がシリコン基板101で反射しにくく、より多くの入射光を受光部へ進入させることができるため、進入光量が増加するからである。
凹レンズ111は、その全体が開口部109の内部に完全に収まっていることが好ましい。開口部109の内部へ進入する前の斜め入射光が凹レンズ111によって垂直入射光にされてしまうと、その垂直入射光が開口部109の内部へ進入できなくなる場合が生じ、進入光量が減少するおそれがあるからである。但し、必ずしも凹レンズ111の全体が開口部109の内部に完全に収まっている必要はなく、その一部が開口部109からはみ出していても良い。例えば、凹レンズ111の外周縁部(厚肉の部分)が開口部109からはみ出していても良い。
<製造方法>
第1の実施形態に係る固体撮像装置の製造方法を以下に説明する。まず、図1に示すように、シリコン基板101の所定の位置にp型の不純物を注入し、読み出し部103とチャネルストップ部105とを所定の間隔をおいてそれぞれ形成する。次に、n型の不純物を注入し、読み出し部103とチャネルストップ部105との間に受光部102を形成し、読み出し部103及びチャネルストップ部105の外側に垂直転送部104a、104bをそれぞれ形成する。
次に、シリコン基板101の表面に熱酸化法又はCVD法によりシリコン酸化膜等の絶縁膜106及びポリシリコン膜(不図示)を順次形成した後、それら絶縁膜106及びポリシリコン膜を公知のリソグラフィ技術及びエッチング技術によりパターニングする。そして、垂直転送部104a、104b相当領域に垂直転送電極107を形成した後、垂直転送電極107の表面に熱酸化法等によりシリコン酸化膜108を形成する。
次に、スパッタ及びCVD法等によりアルミニウム及びタングステン等の金属膜を堆積させた後、公知のリソグラフィ技術及びエッチング技術によってパターニングして、垂直転送電極107を覆い且つ受光部102相当領域に開口部109を有する遮光膜110を形成する。
次に、凹レンズ111を形成する。図2は、第1の実施形態に係る凹レンズの形成方法の一例を説明するための図である。まず、遮光膜110上に、例えばシリコン窒化膜を、公知のCVD法又はスパッタ法により開口部109を埋めるように堆積させ、さらに公知のCMP法またはレジストエッチバック法により前記シリコン窒化膜を遮光膜110の高さと同一の高さまで平坦化して、開口部109の内部を透明絶縁部材111aで埋める(図2(a))。
この時、CMP及びレジストエッチバック処理において、遮光膜110に使用している金属を検知すれば処理時間を制御することが可能であり、シリコン窒化膜を遮光膜110の高さと同一の高さまで平坦化するのが容易である。もちろん固定処理時間によるCMP及びレジストエッチバックによっても同様の構造を形成することは可能である。
次に、開口部109相当領域の一部にレジスト穴115を有するレジスト116をマスクとして、透明絶縁部材111aを公知のドライエッチングまたはウェットエッチングにより等方性エッチングし、透明絶縁部材111aの上面を凹型曲面にする(図2(b))。
この時、等方性エッチング条件を変えずにレジスト116のレジスト穴115の大きさ(例えば、レジスト穴115の開口面積)を制御すれば、凹型曲面を目的の曲率に形成することが容易である。もちろんエッチング条件を変更しても最適な曲率の凹型曲面を形成することが可能である。また、エッチング処理において、遮光膜110に使用している金属を検知すればより処理時間を制御でき、凹レンズ111の厚み(高さ)を制御することが容易となる。もちろん固定処理時間によるエッチングによっても同様の構造を形成することは可能である。
最後に、レジスト116を除去すれば凹レンズ111が完成する(図2(c))。その後は、図1に示すように、遮光膜110と凹レンズ111の上に段差を埋めるように透明絶縁膜112を形成し、さらにカラーフィルター層113及びマイクロオンチップレンズ114を順次形成する。
上記製造方法によれば、遮光膜110の開口部109の内部に、最適な曲率及び厚みを有する凹レンズ111を形成することが容易である。
[変形例1]
<固体撮像装置>
第1の実施形態に係る固体撮像装置では、凹レンズ111のレンズ曲率が全ての画素で同一であったが、変形例1に係る固体撮像装置では、凹レンズのレンズ曲率がカラーフィルター層の色毎に異なる。以下に、変形例1に係る固体撮像装置を、原色系カラーフィルター(赤、緑、青)を用いた場合を例に挙げて説明する。
図3は、変形例1に係る固体撮像装置の要部断面図である。図3に示すように、変形例1に係る固体撮像装置は、赤カラーフィルター層213a、緑カラーフィルター層213b及び青カラーフィルター層213cを備え、それらカラーフィルター層213a〜213cに対応して、凹レンズ211a〜211cのレンズ曲率が色毎に最適化されている。
レンズ曲率(上面の曲率)は、赤色用の凹レンズ211aが最も大きく、緑色用の凹レンズ211bが次に大きく、青色用の凹レンズ211cが最も小さい。なお、なお、各凹レンズ211a〜211cのレンズ中央部の厚み(高さ)は全て同じである。
このように、カラーフィルター層213a〜213cで分光された斜め入射光について、長波長の赤色光にはレンズ曲率の大きい赤色用の凹レンズ211aを使用し、短波長の青色光にはレンズ曲率の小さい青色用の凹レンズ211cを使用することで、各色斜め入射光を最適な垂直入射光にしてシリコン基板101へ進入させ、スミアを低減している。
この構成は、補色系カラーフィルター(イエロー、マゼンダ、シアン、グリーン)等にも応用でき、分光された入射光の波長の長短により凹レンズのレンズ曲率を変化させれば(波長が長くなるほどレンズ曲率を大きくすれば)、効果的にスミアを低減できる。
以上のように、変形例1に係る固体撮像装置は、凹レンズのレンズ曲率がカラーフィルター層の色毎に異なるため、レンズ曲率を入射光の波長に応じて最適化することが可能であり、このように最適化すれば、カラーフィルター層213a〜213cで特定波長に分光された数種類の斜め入射光を、それぞれ最適な垂直入射光にして受光部へ進入させることができる。
<製造方法>
変形例1に係る固体撮像装置の製造方法を以下に説明する。凹レンズの形成方法以外は第1の実施形態と略同様であるため、主として凹レンズの形成方法について説明する。
まず、遮光膜上に、例えばシリコン窒化膜を、公知のCVD法又はスパッタ法により開口部を埋めるように堆積させ、さらに公知のCMP法またはレジストエッチバック法により前記シリコン窒化膜を遮光膜の高さと同一の高さまで平坦化して、開口部の内部を透明絶縁部材で埋める。
図4は、変形例1に係る凹レンズの形成方法の一例を説明するための図である。次に、図4に示すように、開口部相当領域の一部にレジスト穴215a〜215cを有するレジスト216をマスクとして透明絶縁部材を公知のドライエッチングまたはウェットエッチングにより等方性エッチングし、透明絶縁部材の上面を凹型曲面にすることで凹レンズ211a〜211cを形成する。
レジスト216のレジスト穴215a〜215cは、カラーフィルター層の色毎に大きさが異なっており、赤色用のレジスト穴215cが最も小さく、緑色用のレジスト穴215bが次に小さく、青色用のレジスト穴215aが最も大きい。この形成方法によれば、カラーフィルター層213a〜213cの色毎に最適化されたレンズ曲率を有する凹レンズ211a〜211cを容易に一度に形成することができる。
[変形例2]
<固体撮像装置>
第1の実施形態に係る固体撮像装置では、凹レンズ111のレンズ厚が全ての画素で同一であったが、変形例2に係る固体撮像装置では、凹レンズのレンズ厚がカラーフィルター層の色毎に異なる。以下に、変形例2に係る固体撮像装置を、原色系カラーフィルター(赤、緑、青)を用いた場合を例に挙げて説明する。
一般的に、低屈折率の物質から高屈折率の物質に光が進入する際には界面で反射が発生するが、その反射は低屈折率の物質と高屈折率の物質の間にそれらの間の屈折率の物質を挿入することで抑制でき、挿入する物質の最適な厚みは進入する光の波長により異なることが知られている。すなわち、図1に示すように、第1の実施形態に係る固体撮像装置のように屈折率の小さい透明絶縁膜112から屈折率の大きいシリコン基板101へ入射光が進入する場合において、凹レンズ111の屈折率を透明絶縁膜112とシリコン基板101との間の屈折率とすれば、凹レンズ111が反射防止の効果を発揮しシリコン基板101による反射が抑制され、入射光が効果的に受光部102に進入して感度が向上する。
図5は、変形例2に係る固体撮像装置の要部断面図である。図5に示すように、変形例2に係る固体撮像装置は、赤カラーフィルター層313a、緑カラーフィルター層313b及び青カラーフィルター層313cを備え、それらカラーフィルター層313a〜313cに対応して、凹レンズ311a〜311cのレンズ厚が色毎に最適化されている。
レンズ厚(レンズ高さ)は、赤色用の凹レンズ311aが最も厚く(高く)、緑色用の凹レンズ311bが次に厚く、青色用の凹レンズ311cが最も薄い(低い)。より具体的には、レンズ中央部においてもレンズ外周縁部においても、赤色用が最も厚く、緑色用が次に厚く、青色用が最も薄い。なお、各凹レンズ311a〜311cのレンズ曲率(上面の曲率)は全て同じである。
このように、カラーフィルター層313a〜313cで分光された斜め入射光について、長波長の赤色光にはレンズ厚の厚い赤色用の凹レンズ311aを使用し、短波長の青色光にはレンズ厚の薄い青色用の凹レンズ311cを使用することで、各色斜め入射光を最適な垂直入射光にしてシリコン基板101へ進入させ、スミアを低減している。
変形例2では、レンズ中央部の厚みを赤カラーフィルター層313aに対して155〜170nm、緑カラーフィルター層313bに対して130〜145nm、青カラーフィルター層313cに対して105〜120nmとした場合に最適な感度が得られた。
この構成は補色系カラーフィルター(イエロー、マゼンダ、シアン、グリーン)等にも応用でき、分光された入射光の波長の長短により凹レンズのレンズ厚を変化させれば(波長が長くなるほどレンズ厚を厚くすれば)、効果的にスミアを低減できる。
以上のように、変形例2に係る固体撮像装置は、凹レンズのレンズ厚がカラーフィルター層の色毎に異なるため、レンズ厚を入射光の波長に応じて最適化することが可能であり、このように最適化すれば、カラーフィルター層313a〜313cで特定波長に分光された数種類の斜め入射光を、それぞれ最適な垂直入射光にして受光部へ進入させることができる。
<製造方法>
変形例2に係る固体撮像装置の製造方法を以下に説明する。凹レンズの形成方法以外は第1の実施形態と略同様であるため、主として凹レンズの形成方法について説明する。
まず、遮光膜上に、例えばシリコン窒化膜を、公知のCVD法又はスパッタ法により開口部を埋めるように堆積させ、さらに公知のCMP法またはレジストエッチバック法により前記シリコン窒化膜を遮光膜の高さと同一の高さまで平坦化して、開口部の内部を透明絶縁部材で埋める。
図6は、変形例2に係る凹レンズの形成方法の一例を説明するための図である。次に、図6に示すように、色毎にその都度、対象となる色の開口部相当領域の一部にレジスト穴315a〜315cを有するレジスト316a〜316cをマスクとして透明絶縁部材を公知のドライエッチングまたはウェットエッチングにより等方性エッチングし、透明絶縁部材の上面を凹型曲面にすることで凹レンズ311a〜311cを形成する。レジスト316a〜316cは、色毎にその都度、形成し除去する。この時、エッチング時間を制御すれば目的のレンズ厚の凹レンズ311a〜311cを容易に形成することができる。
[変形例3]
図12は、従来の固体撮像装置を示す図であって、(a)は撮像領域を示す概略平面図、(b)は撮像領域中央部の要部断面図、(c)は撮像領域周辺部の要部断面図である。
従来の固体撮像装置において、図12(a)に符号bで示すような撮像領域中央部の画素では入射光が垂直成分の光となるため、図12(b)に示すように、マイクロオンチップレンズ714aは受光部702aの真上に配置されている。一方、図12(a)に符号cで示すような撮像領域周辺部の画素では入射光が斜め成分の光となるため、図12(c)に示すように、マイクロオンチップレンズ714bは受光部702bに対してずらして配置されている。
このように、撮像領域周辺部の画素ではマイクロオンチップレンズ714bをずらして配置することで、入射光をより受光部702bへ集光させ感度を向上させている。しかしながら、撮像領域中央部と比べてより斜め入射光が多くなるため、レベルの悪いスミアが発生する。変形例3に係る固体撮像装置は、このようなレベルの悪いスミアを抑制する構成を有する。
<固体撮像装置>
図7は、変形例3に係る固体撮像装置を示す図であって、(a)は撮像領域を示す概略平面図、(b)は撮像領域中央部の要部断面図、(c)は撮像領域周辺部の要部断面図である。
変形例3に係る固体撮像装置において、図7(a)に符号bで示すような撮像領域中央部の画素では、図7(b)に示すように、マイクロオンチップレンズ414aは受光部402aの真上に配置されており、凹レンズ411aのレンズ中央部は遮光膜410の開口部409aの中央部と一致している。一方、図7(a)に符号cで示すような撮像領域周辺部の画素では、図7(c)に示すように、マイクロオンチップレンズ414bは受光部402bに対して撮影領域中央部側へずらして配置されており、凹レンズ411bは、レンズ中央部(薄肉の部分)が遮光膜410の開口部409bの中央部に対して撮像領域外側へずれるように形成されている。
このように、撮像領域周辺部の画素において、凹レンズ411bのレンズ中央部を遮光膜410の開口部409bの中央部に対して撮像領域外側へずらすことで、ずらして配置されたマイクロオンチップレンズ414bを通過して集光された斜め入射光を垂直入射光として受光部402bへ進入させることができる。その結果、撮像領域周辺部においてもスミアが低減することができる。また、撮像領域周辺部のレンズ形状の最適化が容易となる。
<製造方法>
変形例3に係る固体撮像装置の製造方法を以下に説明する。凹レンズの形成方法以外は第1の実施形態と略同様であるため、主として凹レンズの形成方法について説明する。
まず、遮光膜上に、例えばシリコン窒化膜を、公知のCVD法又はスパッタ法により開口部を埋めるように堆積させ、さらに公知のCMP法またはレジストエッチバック法により前記シリコン窒化膜を遮光膜の高さと同一の高さまで平坦化して、開口部の内部を透明絶縁部材で埋める。
図8は、変形例3に係る凹レンズの形成方法の一例を説明するための図であって、(a)は撮像領域中央部の画素の凹レンズの形成方法を説明するための図、(b)は撮像領域中央部の画素の凹レンズの形成方法を説明するための図である。図8(a)に示すように、撮像領域中央部においてはレジスト穴415aの位置が遮光膜410の開口部409a中央部と一致し、図8(b)に示すように、撮像領域周辺部においてはレジスト穴415bの位置が遮光膜410の開口部409b中央部に対して撮像領域外側へずれたレジスト416をマスクとして、透明絶縁膜を公知のドライエッチングまたはウェットエッチングにより等方性エッチングし、凹型曲面を形成する。
この形成方法を用いれば、撮像領域内の全ての画素において、レジスト穴415a,415bの位置を最適化することにより、目的の凹レンズ411a,411bが形成可能であり、スミアを有効に低減することができる。
[第2の実施形態]
第2の実施形態に係る固体撮像装置は、透光性保護板上の端子パッドと導電パッドとの間の接続態様が異なる他は、基本的に実施の形態1の固体撮像装置2と同様の構成をしている。したがって、共通の構成部分には実施の形態1と同じ符号を付してその説明は省略するか簡略するにとどめ、上記接続態様を中心に説明する。
<固体撮像装置>
図9は、第2の実施形態に係る固体撮像装置の要部断面図である。第2の実施形態に係る固体撮像装置は、図9に示すように、シリコン基板501、受光部502、読み出し部503、垂直転送部504a,504b、チャネルストップ部505、絶縁膜506、垂直転送電極507、絶縁膜508、開口部509、及び、遮光膜510についての構成が、第1の実施形態に係る固体撮像装置と略同様である。したがって、これらについての説明は省略する。
遮光膜510の開口部509の内部には凹レンズ511が形成されており、遮光膜510と凹レンズ511の上に、例えばBPSGからなる平坦化された透明絶縁膜512が形成されている。さらに、透明絶縁膜512の上には、例えば、シリコン窒化膜やシリコン窒化酸化膜から形成された水素を含んだ水素供給膜517及びカラーフィルター層513が順次が形成されており、カラーフィルター層513の上には入射光を受光部502へ集光するためのマイクロオンチップレンズ514が形成されている。
凹レンズ511は、例えばシリコン窒化膜から形成されており、レンズ中央部に受光部502に向け貫通する導光穴518を有し、その外周面が遮光膜510の開口部509の内周面に接しており、その屈折率はシリコン基板501よりも小さいが透明絶縁膜512よりは大きい。
第2の実施形態に係る固体撮像装置は、受光部502上の遮光膜510の開口部509に、シリコン基板501よりも小さく透明絶縁膜512よりも大きい屈折率を有した凹レンズ511が形成されているため、マイクロオンチップレンズ514での集光によって生じた斜め入射光が凹レンズ511で垂直入射光となり受光部502へ進入する。したがって、感度を落とすことなく、斜め入射光により生じるスミアを効果的に低減できる。
斜め入射光はレンズ中央部を通ることは少なく、例えレンズ中央部を通ったとしても垂直転送部504a,504bまでに距離がある。したがって、凹レンズ511のレンズ中央部に導光穴518が形成されていても、入射光が多重反射により垂直転送部504a,504bへ進入することは少なく、入射光は受光部502に進入する。
従来の固体撮像装置は、シリコン基板表面のシリコンとシリコン酸化膜界面のシリコンとのダングリングボンドによる界面準位で電荷が熱的に励起され、その電荷が暗電流というノイズとして働き撮像特性が劣化するといった課題を有する。そこで、水素アニール処理や、水素を含んだシリコン窒化膜形成後の熱処理を行って、水素をシリコン基板へ拡散させ、ダングリングボンドを水素で終端して暗電流を低減している。
第2の実施形態に係る固体撮像装置では、水素供給膜517を堆積させた後、水素アニール処理を施すが、水素供給膜517から放出された水素は凹レンズ511の導光穴518を通じてシリコン基板501へ拡散する。その結果、効果的に暗電流が低減される。
なお、シリコン窒化膜からなる凹レンズ511そのものも水素を含んでいるため水素供給によるダングリングボンドの終端化の一因を担っており、凹レンズ511によっても暗電流は低減されている。この効果は、第1の実施形態に係る固体撮像装置の凹レンズ111にもある。
第2の実施形態に係る固体撮像装置には、第1の実施形態に係る固体撮像装置が奏する効果に加え、凹レンズ511の導光穴518を通して、水素供給膜517からシリコン基板501へ水素を供給することができる。したがって、ダングリングボンドを水素終端化し、暗電流を効果的に低減できる。
<製造方法>
第2の実施形態に係る固体撮像装置の製造方法を以下に説明する。遮光膜510を形成するまでの工程は第1の実施形態に係る固体撮像装置と略同様であるため、それ以降の工程について説明する。
図10は、第2の実施形態に係る凹レンズの形成方法の一例を説明するための図である。まず、遮光膜510の開口部509の内部を透明絶縁部材で埋めて、その透明絶縁部材の上面を凹型曲面にする。その後、図10に示すように、透明絶縁部材のレンズ中央部に相当する領域にレジスト穴515を有するレジスト516をマスクとして、上面が凹型曲面の透明絶縁部材を公知のドライエッチングにより異方性エッチングして、当該透明絶縁部材に導光穴518を形成する。最後にレジスト516を除去し、凹レンズ511が完成する。
その後、図9に示すように遮光膜510と凹レンズ511の上に段差を埋めるように透明絶縁膜512を形成し、さらに水素供給膜517を形成する。その後、水素を含む雰囲気中においてアニール処理を行い、水素を放出させ、シリコン基板501表面におけるダングリングボンドを終端化する。第2の実施形態では400〜500℃の温度で30〜60分間アニール処理を行った場合に暗電流が最も低減した。その後、カラーフィルター層513、マイクロオンチップレンズ514を順次形成する。
[むすび]
以上、本発明に係る固体撮像装置及びその製造方法を実施の形態に基づいて具体的に説明してきたが、本発明に係る固体撮像装置及びその製造方法は、上記の実施の形態に限定されない。
例えば、本発明に係る固体撮像装置は、第1及び第2の実施形態、並びに、第1の実施形態の変形例1〜3に係る固体撮像装置の構成の一部を組み合わせた構成であってもよい。それぞれを組み合わせて使用することは可能であり、組み合わせることにより相乗的なスミアの低減と暗電流の低減を得ることができる場合がある。
本発明に係る固体撮像装置及びその製造方法は、斜め入射光を凹レンズにより垂直入射光として受光部へ進入させることにより、効果的にスミア低減できる固体撮像装置を実現でき、特に凹レンズを備えた固体撮像装置及びその製造方法として有用である。
第1の実施形態に係る固体撮像装置の要部断面図 第1の実施形態に係る凹レンズの形成方法の一例を説明するための図 変形例1に係る固体撮像装置の要部断面図 変形例1に係る凹レンズの形成方法の一例を説明するための図 変形例2に係る固体撮像装置の要部断面図 変形例2に係る凹レンズの形成方法の一例を説明するための図 変形例3に係る固体撮像装置を示す図であって、(a)は撮像領域を示す概略平面図、(b)は撮像領域中央部の要部断面図、(c)は撮像領域周辺部の要部断面図 変形例3に係る凹レンズの形成方法の一例を説明するための図であって、(a)は撮像領域中央部の画素の凹レンズの形成方法を説明するための図、(b)は撮像領域中央部の画素の凹レンズの形成方法を説明するための図 第2の実施形態に係る固体撮像装置の要部断面図 第2の実施形態に係る凹レンズの形成方法の一例を説明するための図 従来の固体撮像装置の要部断面図 従来の固体撮像装置を示す図であって、(a)は撮像領域を示す概略平面図、(b)は撮像領域中央部の要部断面図、(c)は撮像領域周辺部の要部断面図
符号の説明
101,501 半導体基板
102,402a,402b,502 受光部
104a,104b,504a,504b 垂直転送部
109,409a,409b,509 開口部
110,410,510 遮光膜
111,211a〜211c,311a〜311c,411a,411b,511 凹レンズ
111a 透明絶縁部材
112,512 透明絶縁膜
113,213a〜213c,313a〜313c,513 カラーフィルター層
115,215a〜215c,315a〜315c,415a,415b,515 レジスト穴
116,216,316a〜316c,416,516 レジスト
518 導光穴

Claims (12)

  1. 光電変換を行う受光部が形成された半導体基板と、前記受光部相当領域に開口部を有する遮光膜と、前記開口部を埋めるように前記遮光膜上に形成された透明絶縁膜と、前記透明絶縁膜上に形成されたカラーフィルター層とを備えた固体撮像装置であって、
    前記開口部の内部に前記透明絶縁膜よりも屈折率の大きい凹レンズが形成されていることを特徴とする固体撮像装置。
  2. 前記凹レンズは、斜め入射光を垂直入射光にして前記受光部へ進入させる特性を有することを特徴とする請求項1記載の固体撮像装置。
  3. 前記凹レンズの外周面が前記開口部の内周面に接していることを特徴とする請求項1又は2に記載の固体撮像装置。
  4. 前記凹レンズは前記カラーフィルター層の色毎にレンズ曲率が異なることを特徴とする請求項1から3のいずれかに記載の固体撮像装置。
  5. 前記凹レンズは前記カラーフィルター層の色毎にレンズ厚が異なることを特徴とする請求項1から4のいずれかに記載の固体撮像装置。
  6. 前記凹レンズは前記半導体基板よりも屈折率が小さいことを特徴とする請求項1から5のいずれかに記載の固体撮像装置。
  7. 前記凹レンズはシリコン窒化膜で形成されていることを特徴とする請求項1から6のいずれかに記載の固体撮像装置。
  8. 前記凹レンズは、レンズ中央部に前記受光部に向け貫通する導光穴を有することを特徴とする請求項1から7のいずれかに記載の固体撮像装置。
  9. 前記受光部は、前記半導体基板に行列状に複数形成されており、前記各受光部から読み出した信号電荷を列方向に転送する垂直転送部と、前記垂直転送部から転送された信号電荷を行方向に転送する水平転送部とをさらに備え、CCD型の固体撮像装置として機能することを特徴とする請求項1から8のいずれかに記載の固体撮像装置。
  10. 半導体基板に光電変換を行う受光部を形成する工程と、前記受光部相当領域に開口部を有する遮光膜を形成する工程と、前記開口部の内部を透明絶縁部材で埋める工程と、前記開口部相当領域の一部にレジスト穴を有するレジストをマスクとして等方性エッチングし前記透明絶縁部材の上面を凹型曲面にする工程と、前記レジストを除去し透明絶縁膜を堆積、平坦化させる工程と、前記透明絶縁膜上にカラーフィルター層を形成する工程とを含むことを特徴とする固体撮像装置の製造方法。
  11. 前記レジスト穴は前記カラーフィルター層の色毎に大きさが異なることを特徴とする請求項10に記載の固体撮像装置の製造方法。
  12. 前記透明絶縁部材の上面を凹型曲面にする工程後、前記透明絶縁膜を堆積、平坦化させる工程前に、前記開口部相当領域の一部にレジスト穴を有するレジストをマスクとして異方性エッチングし前記透明絶縁部材に導光穴を設ける工程を含むことを特徴とする請求項10又は11に記載の固体撮像装置の製造方法。
JP2008063963A 2008-03-13 2008-03-13 固体撮像装置及びその製造方法 Pending JP2009224361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063963A JP2009224361A (ja) 2008-03-13 2008-03-13 固体撮像装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063963A JP2009224361A (ja) 2008-03-13 2008-03-13 固体撮像装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009224361A true JP2009224361A (ja) 2009-10-01

Family

ID=41240876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063963A Pending JP2009224361A (ja) 2008-03-13 2008-03-13 固体撮像装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009224361A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096782A (ja) * 2009-10-28 2011-05-12 Toshiba Corp 固体撮像素子の製造方法
JP2012160906A (ja) * 2011-01-31 2012-08-23 Canon Inc 固体撮像装置およびカメラ
JP2013038266A (ja) * 2011-08-09 2013-02-21 Canon Inc 撮像装置、撮像システムおよび撮像装置の製造方法
US8743265B2 (en) 2011-03-23 2014-06-03 Sony Corporation Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
JP2015180077A (ja) * 2015-05-01 2015-10-08 キヤノン株式会社 固体撮像装置およびカメラ
JP2016001675A (ja) * 2014-06-12 2016-01-07 株式会社リコー レーザ媒体、レーザ装置、レーザ加工機、表示装置及びレーザ媒体の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096782A (ja) * 2009-10-28 2011-05-12 Toshiba Corp 固体撮像素子の製造方法
JP2012160906A (ja) * 2011-01-31 2012-08-23 Canon Inc 固体撮像装置およびカメラ
US8743265B2 (en) 2011-03-23 2014-06-03 Sony Corporation Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
JP2013038266A (ja) * 2011-08-09 2013-02-21 Canon Inc 撮像装置、撮像システムおよび撮像装置の製造方法
JP2016001675A (ja) * 2014-06-12 2016-01-07 株式会社リコー レーザ媒体、レーザ装置、レーザ加工機、表示装置及びレーザ媒体の製造方法
JP2015180077A (ja) * 2015-05-01 2015-10-08 キヤノン株式会社 固体撮像装置およびカメラ

Similar Documents

Publication Publication Date Title
KR102178387B1 (ko) 고체 촬상 소자 및 고체 촬상 소자의 제조 방법, 전자 기기
JP5369441B2 (ja) 固体撮像素子
US7420236B2 (en) Photoelectric conversion device and manufacturing method thereof
TWI427780B (zh) 固態成像器件,其製造方法,及電子裝置
TWI399849B (zh) 固態成像裝置,製造固態成像裝置之方法,及電子設備
JP2010093081A (ja) 固体撮像装置およびその製造方法
US20230246047A1 (en) Image sensor
TW202139450A (zh) 改良影像感測器串擾之方法及結構
JP2009021415A (ja) 固体撮像装置およびその製造方法
JP4971616B2 (ja) 撮像装置
JP2008270679A (ja) 固体撮像装置およびその製造方法および撮像装置
JP2006120845A (ja) 光電変換装置およびその製造方法
JP2009224361A (ja) 固体撮像装置及びその製造方法
CN102779826A (zh) 背照式cmos影像传感器
JP2006013522A (ja) イメージセンサー及びその製造方法
JP2013207053A (ja) 固体撮像素子、電子機器
JP2011243885A (ja) 固体撮像装置及びその製造方法
KR102242580B1 (ko) 이미지 센서 및 이의 제조 방법
JP2006140413A (ja) 固体撮像素子
JP2007287818A (ja) 固体撮像素子およびその製造方法
JP2008066409A (ja) 固体撮像装置及びその製造方法
JP2005340498A (ja) 固体撮像素子
JP6254829B2 (ja) 固体撮像素子及びその製造方法
JP2008153500A (ja) 固体撮像装置及びカメラ
KR20100050330A (ko) 이미지 센서 및 그 제조 방법