JP2009220792A - 車両およびその制御方法 - Google Patents

車両およびその制御方法 Download PDF

Info

Publication number
JP2009220792A
JP2009220792A JP2008070300A JP2008070300A JP2009220792A JP 2009220792 A JP2009220792 A JP 2009220792A JP 2008070300 A JP2008070300 A JP 2008070300A JP 2008070300 A JP2008070300 A JP 2008070300A JP 2009220792 A JP2009220792 A JP 2009220792A
Authority
JP
Japan
Prior art keywords
driving force
power
output
axle
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070300A
Other languages
English (en)
Other versions
JP5115261B2 (ja
Inventor
Daisuke Itoyama
大介 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008070300A priority Critical patent/JP5115261B2/ja
Publication of JP2009220792A publication Critical patent/JP2009220792A/ja
Application granted granted Critical
Publication of JP5115261B2 publication Critical patent/JP5115261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両の挙動の安定化と部品保護の両立を図りつつ、できるだけスムースな走行を実現する。
【解決手段】ハイブリッド自動車20では、挙動不安定状態を解消するためのトルク制限値Tlimが設定されていないときには、リングギヤ軸32aに出力すべき目標トルクTr*が運転者のアクセル操作に基づく要求トルクT*と比較的小さな一定値T0である上下限レート値ΔTとに基づいて緩変化するように設定される(S120〜S150)。また、トルク制限値Tlimが設定されているときには、要求トルクT*およびトルク制限値Tlimのうちの小さい方と、モータMG2の回転数Nm2が低いほどリングギヤ軸32aに出力されるトルクの変動を許容するように設定される上下限レート値ΔTとに基づいて緩変化するように目標トルクTr*が設定される(S120,S230,S240,S150)。
【選択図】図3

Description

本発明は、車両およびその制御方法に関し、特に駆動輪に連結された車軸に動力を出力可能な電動機と当該電動機と電力をやり取り可能な蓄電手段とを有する車両およびその制御方法に関する。
従来から、駆動輪を駆動する動力源に装備された少なくとも1つのモータと、駆動輪の駆動スリップを検出し、モータトルクダウン制御により駆動輪のグリップを回復させるモータトラクション制御手段とを備えた車両が知られている(例えば、特許文献1参照)。この車両のモータトラクション制御手段は、部品保護のための第1トルクダウン量を演算する部品保護制御部と、車両挙動を安定させるための第2トルクダウン量を演算するスタビリティ制御部とを有し、部品保護制御部による第1トルクダウン量とスタビリティ制御部による第2トルクダウン量のうち、トルクダウン量が大きい方を制御目標トルクダウン量として選択する。これにより、この車両では、モータトラクション制御時に部品保護とスタビリティの確保との両立を図っている。
特開2006−115644号公報
しかしながら、上記従来の車両のように、部品保護のための第1トルクダウン量と車両の挙動を安定化させる第2トルクダウン量との大きい方を制御目標トルクダウン量とした場合、制御目標トルクダウン量の連続性をある程度保つことができるものの、第1および第2トルクダウン量が急変したような場合には、駆動輪に出力されるトルクも急変することになるので、過大なショックを発生させてしまうおそれがある。
そこで、本発明の車両およびその制御方法は、車両の挙動の安定化と部品保護の両立を図りつつ、できるだけスムースな走行を実現することを主目的とする。
本発明による車両およびその制御方法は、上述の主目的を達成するために以下の手段を採っている。
本発明による車両は、
駆動輪に連結された車軸に動力を出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段とを有する車両であって、
運転者による駆動力要求操作に基づいて走行に要求される要求駆動力を設定する要求駆動力設定手段と、
前記駆動輪の空転によるスリップが発生している状態を少なくとも含む挙動不安定状態にあるときに、該挙動不安定状態を解消するために前記車軸に出力すべき駆動力である制限駆動力を設定する制限駆動力設定手段と、
前記制限駆動力設定手段により前記制限駆動力が設定されていないときには前記車軸に出力すべき目標駆動力を前記設定された要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定し、前記制限駆動力設定手段により前記制限駆動力が設定されているときには前記目標駆動力を前記設定された要求駆動力および制限駆動力のうちの小さい方と前記第1の緩変化制約に比べて前記電動機の回転数が低いほど前記車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように設定する目標駆動力設定手段と、
前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記電動機を制御する制御手段と、
を備えるものである。
この車両では、制限駆動力設定手段によって駆動輪の空転によるスリップが発生している状態を少なくとも含む挙動不安定状態を解消するための制限駆動力が設定されていないときには、車軸に出力すべき目標駆動力が運転者による駆動力要求操作に基づく要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定され、設定された目標駆動力に基づく動力が車軸に出力されるように電動機が制御される。また、制限駆動力設定手段により制限駆動力が設定されているときには、運転者による駆動力要求操作に基づく要求駆動力および制限駆動力設定手段による制限駆動力のうちの小さい方と第1の緩変化制約に比べて電動機の回転数が低いほど車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように目標駆動力が設定され、設定された目標駆動力に基づく動力が車軸に出力されるように電動機が制御される。これにより、この車両では、制限駆動力設定手段により制限駆動力が設定されないときに用いられる第1の緩変化制約を部品保護の要請が高まる電動機の回転数が比較的高い状態を基準として定め、車両の挙動が安定しているときに第1の緩変化制約を用いて車軸に出力されるべき目標駆動力を緩変化させることで部品保護を図りつつスムースな走行を実現することが可能となる。また、制限駆動力設定手段により制限駆動力が設定されるときに用いられる第2の緩変化制約を第1の緩変化制約に比べて電動機の回転数が低いほど車軸に出力される動力の変動を許容する傾向をもつものとすることにより、電動機(および駆動輪)の回転数が比較的低い状態で駆動輪の空転によるスリップが発生する等して制限駆動力設定手段により制限駆動力が設定されたときには、過大なショックが発生しない程度に要求駆動力と制限駆動力との小さい方に基づく目標駆動力の変動を許容して、挙動不安定状態の解消とそれによる部品保護を図ることができる。この結果、この車両では、車両の挙動の安定化と部品保護の両立を図りつつ、できるだけスムースな走行を実現することが可能となる。
また、前記第2の緩変化制約は、前記目標駆動力の少なくとも減少側の変化量の許容量を前記電動機の回転数が低いほど大きくする傾向を有する制約であってもよい。これにより、制限駆動力設定手段によって運転者の駆動力要求操作に基づく要求駆動力よりも大幅に小さい制限駆動力が設定されたときに、過大なショックを発生させることなく挙動不安定状態を解消するための制限駆動力に基づく駆動力を車軸に出力することが可能となる。
更に、前記車両は、前記蓄電手段からの電圧を昇圧して前記電動機側に供給可能な電圧変換手段を含む電源回路と、前記電動機の回転数が高く、かつ該電動機からのトルクが高いほど前記蓄電手段からの電圧が昇圧されるように前記電圧変換手段と制御する電圧変換制御手段とを更に備えてもよく、前記第1および第2の緩変化制約は、少なくとも前記電動機の回転数が所定の高回転域にあるときには前記目標駆動力の少なくとも増加側の変化量の許容量を所定値に設定する制約であってもよい。これにより、所定の高回転域における電動機からのトルクの急増を抑え、それにより電圧変換手段による過剰な昇圧に起因した電源回路の劣化を抑制することができる。
また、前記車両は、前記駆動輪に連結された車軸に動力を出力可能な内燃機関を更に備えてもよく、前記制御手段は、前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記内燃機関と前記電動機とを制御するものであってもよい。この場合、前記車両は、前記車軸と前記内燃機関の機関軸とに接続されて電力と動力との入出力を伴って前記内燃機関の動力の少なくとも一部を前記車軸側に出力すると共に前記蓄電手段と電力をやり取り可能な電力動力入出力手段を更に備えてもよく、前記電動機は前記車軸または該車軸とは異なる他の車軸に動力を出力可能であってもよく、前記制御手段は、前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記内燃機関と前記電力動力入出力手段と前記電動機とを制御するものであってもよい。更に、前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含むものであってもよい。
本発明による車両の制御方法は、
駆動輪に連結された車軸に動力を出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段と、運転者による駆動力要求操作に基づいて走行に要求される要求駆動力を設定する要求駆動力設定手段と、前記駆動輪の空転によるスリップが発生している状態を少なくとも含む挙動不安定状態にあるときに、該挙動不安定状態を解消するために車軸に出力すべき駆動力である制限駆動力を設定する制限駆動力設定手段とを有する車両の制御方法であって、
(a)前記制限駆動力設定手段により前記制限駆動力が設定されていないときには前記車軸に出力すべき目標駆動力を前記要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定し、前記制限駆動力設定手段により前記制限駆動力が設定されているときには前記目標駆動力を前記要求駆動力および前記制限駆動力のうちの小さい方と前記第1の緩変化制約に比べて前記電動機の回転数が低いほど前記車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように設定するステップと、
(b)ステップ(a)にて設定された目標駆動力に基づく動力が前記車軸に出力されるように前記電動機を制御するステップと、
を備えるものである。
この方法によれば、車両の挙動の安定化と部品保護の両立を図りつつ、できるだけスムースな走行を実現することが可能となる。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の一実施例に係る車両としてのハイブリッド自動車20の概略構成図である。同図に示すハイブリッド自動車20は、エンジン22と、エンジン22のクランクシャフト(機関軸)26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された車軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35を介してリングギヤ軸32aに機械的に接続されたモータMG2と、摩擦制動力を出力可能な制動手段である電子制御式油圧ブレーキユニット(以下、単に「ブレーキユニット」という)69と、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)70等とを備えるものである。
エンジン22は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジンECU」という)24により燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジンECU24には、エンジン22に対して設けられて当該エンジン22の運転状態を検出する各種センサからの信号が入力される。そして、エンジンECU24は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号や上記センサからの信号等に基づいてエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU70に出力する。
動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行う遊星歯車機構として構成されている。機関側回転要素としてのキャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、車軸側回転要素としてのリングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ接続されており、動力分配統合機構30は、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側とにそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して最終的に駆動輪63a,63bに出力される。
モータMG1およびモータMG2は、いずれも外表面に永久磁石が貼り付けられたロータと三相コイルが巻回されたステータとを備える周知の同期発電電動機として構成されている。インバータ41,42は、図2に示すように、6つのトランジスタT11〜T16,T21〜26と、トランジスタT11〜T16,T21〜T26に逆方向に並列接続された6つのダイオードD11〜D16,D21〜D26とにより構成されている。トランジスタT11〜T16,T21〜T26は、それぞれインバータ41,42が電力ライン54として共用する正極母線54aと負極母線54bとに対してソース側とシンク側になるよう2個ずつペアで配置されており、対となるトランジスタ同士の接続点の各々にモータMG1,MG2の三相コイル(U相,V相,W相)の各々が接続されている。従って、正極母線54aと負極母線54bとの間に電圧が作用している状態で対をなすトランジスタT11〜T16,T21〜T26のオン時間の割合を制御することにより三相コイルに回転磁界を形成でき、モータMG1,MG2を回転駆動することができる。インバータ41,42は、正極母線54aと負極母線54bとを共用しているから、モータMG1,MG2のいずれかで発電される電力を他のモータに供給することができる。正極母線54aと負極母線54bとには電圧平滑用の平滑コンデンサ57が接続されている。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流、インバータ41,42に取り付けられた図示しない温度センサからのインバータ温度Tinv1,Tinv2等が入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。
昇圧コンバータ55は、図2に示すように、2つのトランジスタT31,T32と、トランジスタT31,T32に逆方向に並列接続された2つのダイオードD31,D32と、リアクトルLとにより構成されている。2つのトランジスタT31,T32は、それぞれインバータ41,42の正極母線54aと負極母線54bとに接続されており、その接続点にリアクトルLが接続されている。また、リアクトルLと負極母線54bとにはそれぞれバッテリ50の正極端子と負極端子とがシステムメインリレー56を介して接続されている。従って、トランジスタT31,T32をスイッチング制御することによりバッテリ50の直流電力をその電圧を昇圧してインバータ41,42に供給したり正極母線54aと負極母線54bとに作用している直流電圧を降圧してバッテリ50を充電したりすることができる。また、リアクトルLと負極母線54bとの間には電圧平滑用の平滑コンデンサ59が接続されている。この平滑コンデンサ59の端子間には第2電圧センサ92が設置されており、昇圧コンバータ55の昇圧前電圧VLを検出する。なお、昇圧コンバータ55の昇圧後電圧VHは、平滑コンデンサ57の端子間に設置された第3電圧センサ93(電動機側の電圧を検出する電動機側電圧検出手段)により検出される。
バッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された電圧センサ91からのバッテリ電圧、バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流、バッテリ50に取り付けられた温度センサ51からのバッテリ温度Tb等が入力されている。バッテリECU52は、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッドECU70やエンジンECU24に出力する。更に、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを算出したり、当該残容量SOCに基づいてバッテリ50の充放電要求パワーPb*を算出したり、残容量SOCと電池温度Tbとに基づいてバッテリ50の充電に許容される電力である充電許容電力としての入力制限Winとバッテリ50の放電に許容される電力である放電許容電力としての出力制限Woutとを算出したりする。なお、バッテリ50の入出力制限Win,Woutは、バッテリ温度Tbに基づいて入出力制限Win,Woutの基本値を設定すると共に、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定可能である。
ブレーキユニット69は、ブレーキペダル85の踏み込みに応じて油圧を発生するブレーキマスタシリンダ68や、駆動輪63a,63bのホイールシリンダ64a,64bや図示しない他の車輪のホイールシリンダに調整した油圧を供給するブレーキアクチュエータ67、ブレーキアクチュエータ67を制御するブレーキ用電子制御ユニット(以下、「ブレーキECU」という)66等を含む。ブレーキアクチュエータ67は、図示しない油圧発生源としてのポンプやアキュムレータ、ブレーキマスタシリンダ68とホイールシリンダ64a等との連通状態を制御するマスタシリンダカットソレノイドバルブ、ブレーキペダル85の踏み込み量に応じてペダル踏力に対する反力を創出するストロークシミュレータ等を有する。また、ブレーキECU66は、図示しない信号ラインを介して、マスタシリンダ圧を検出する図示しないマスタシリンダ圧センサからのマスタシリンダ圧や、ホイールシリンダ64a等ごとに設けられた図示しないホイールシリンダ圧センサからのホイールシリンダ圧、駆動輪63a,63bに取り付けられた車輪速センサ65a,65bからの駆動輪速Vfl,Vfr、図示しない他の車輪に取り付けられた車輪速センサからの従動輪速Vrl,Vrr,車両前後および横方向の加速度を検出可能なGセンサ94からの車両加速度と,車両重心周りの回転角速度であるヨーレートを検出するヨーレートセンサ95からのヨーレート、図示しない操舵角センサからの操舵角等を入力すると共に、ハイブリッドECU70、図示しないステアリングユニットを制御する操舵ECU(図示省略)等との間で通信により各種信号のやり取りを行う。そして、ブレーキECU66は、ブレーキペダル85の踏み込み量を示すブレーキペダルポジションBPや車速V等に基づいてハイブリッド自動車20に作用させるべき制動力のうちのブレーキユニット69による分担分に応じた制動用のトルクが駆動輪63a,63b等や図示しない他の車輪に作用するようブレーキアクチュエータ67を制御する。また、ブレーキECU66は、運転者によるブレーキペダル85の踏み込み操作とは無関係に、駆動輪63a,63bや他の車輪に制動用のトルクが作用するようブレーキアクチュエータ67を制御することもできる。
更に、ブレーキECU66は、駆動輪の空転や車両が横滑りした際の安定性を確保すべく、各種入力信号に基づいていわゆるアンチロック制御(ABS)や駆動輪63a,63bのいずれかが空転によりスリップするのを抑制するトラクションコントロール(TRC)、旋回走行時に車両の姿勢を安定に保持する車両安定化制御(VSC)等をも実行可能である。そして、実施例のブレーキECU66は、これらのVSC等を実行するに際して、ブレーキアクチュエータ67等を個別に制御する代わりに、ブレーキアクチュエータ67の制御と駆動力制御とステアリング制御とを統合した車両運動統合制御(VDIM:Vehicle Dynamics Integrated Management)を実行する。例えば、ブレーキECU66は、トラクションコントロール(TRC)の実行に際して、駆動輪63a,63bの車輪速Vfl,Vfrを車体速に換算したものと推定車体速Veとの偏差であるスリップ速度が比較的低い所定速度Vsref(例えば、時速1kmや時速3km,時速5km等)以上となっている駆動輪にスリップが生じていると判定し、スリップを生じていると判定された駆動輪63a,63bにスリップ速度が大きいほど大きな制動トルクが付与されるようブレーキアクチュエータ67を制御したり、主にモータMG2からのトルク出力が制限されるようにしてスリップ状態のような挙動不安定状態を解消するためにリングギヤ軸32aに出力すべき駆動力である制限駆動力としてのトルク制限値TlimをハイブリッドECU70に制御信号を出力したりする。ここで、実施例のブレーキECU66には、運転に長けた運転者の中には車両側からの運転支援を好まない者もいることを踏まえて、ブレーキECU66による車両運動統合制御をオン/オフ可能とするVDIMスイッチ90が接続されている。運転者によりVDIMスイッチ90がオフされると、ブレーキECU66は、所定のVDIMスイッチフラグFvsを値0に設定し、この場合、ブレーキECU66は、車両運動統合制御を実行することなく更に車両運動統合制御の実行の有無を示す所定のVDIMフラグFvを値0に設定する。これに対して、運転者によりVDIMスイッチ90がオンされると、ブレーキECU66は、上記VDIMスイッチフラグFvsを値1に設定する。ブレーキECU66は、VDIMスイッチ90がオンされているときに車両運動統合制御を実行すべき場合には、上記VDIMフラグFvを値1に設定すると共に、Gセンサ94やヨーレートセンサ95等からの信号に基づいて目標車両挙動や実際の車両状態量を演算し、演算した目標車両挙動と車両状態量とに基づいてブレーキアクチュエータ67への指令値や、ハイブリッドECU70への駆動力指令としてのトルク制限値Tlim、操舵ECUへの操舵補正量等を設定する。なお、実施例において、ブレーキECU66は、運転者によりVDIMスイッチ90がオンされていても車両運動統合制御を実行する必要がないときには、車両運動統合制御を実行することなくVDIMフラグFvを値0に設定する。
ハイブリッドECU70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74やデータを一時的に記憶するRAM76、図示しない入出力ポートおよび通信ポート等を備える。ハイブリッドECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP、車速センサ88からの車速V等が入力ポートを介して入力されている。また、ハイブリッドECU70には、更に電圧センサ92からの昇圧前電圧VLや電圧センサ93からの昇圧後電圧VH等が入力されており、ハイブリッドECU70からは、昇圧コンバータ55のトランジスタT31,T32へのスイッチング制御信号やシステムメインリレー56への駆動信号等が出力ポートを介して出力される。そして、ハイブリッドECU70は、前述したように、エンジンECU24やモータECU40、バッテリECU52、ブレーキECU66と通信ポートを介して接続されており、エンジンECU24やモータECU40、バッテリECU52と各種制御信号やデータのやりとりを行なっている。
上述のように構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて車軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるようエンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1及びモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部又はその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1及びモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モード等がある。
また、実施例のハイブリッド自動車20では、モータMG1,MG2の目標動作点(トルク指令Tm1*,Tm2*および回転数Nm1,Nm2)に応じてバッテリ50の定格電圧が所定電圧(例えば500〜650V程度)まで昇圧されるようにハイブリッドECU70により昇圧コンバータ55が制御される。すなわち、実施例では、モータMG1用のマップからモータMG1に対するトルク指令Tm1*とモータMG1の回転数Nm1とに対応するものとして導出される昇圧後電圧VHの目標値と、モータMG2用のマップからモータMG2に対するトルク指令Tm2*とモータMG2の回転数Nm2とに対応するものとして導出される昇圧後電圧VHの目標値との大きい方が目標昇圧後電圧VHtagとして設定され、昇圧後電圧VHが目標昇圧後電圧VHtagになるように昇圧コンバータ55が制御される。目標昇圧後電圧VHtagは、基本的にモータMG1またはMG2の回転数Nm1,Nm2の絶対値が大きく、かつモータMG1,MG2に対するトルク指令Tm1*,Tm2*の絶対値が大きいほど大きくなる傾向に設定される。
次に実施例のハイブリッド自動車20の動作について説明する。図3はハイブリッドECU70のCPU72により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは所定時間毎(例えば数msec毎)に繰り返し実行される。
図3の駆動制御ルーチンの開始に際して、ハイブリッドECU70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V、モータMG1,MG2の回転数Nm1,Nm2、バッテリ52からの充放電要求パワーPb*やバッテリ50の入出力制限Win,Wout、ブレーキECU66からのVDIMフラグFvやトルク制限値Tlimといった制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されるモータMG1,MG2の回転子の回転位置に基づいて計算されたものをモータECU40から通信により入力するものとした。ステップS100のデータ入力処理の後、運転者の駆動力要求操作であるアクセル操作に基づいて、走行に要求されるトルクとして駆動輪63a,63bに連結されたリングギヤ軸32a(駆動軸)に出力すべき要求トルクT*を設定する(ステップS110)。実施例では、運転者の駆動力要求操作であるアクセル操作の度合を示すアクセル開度Accと車速Vと要求トルクT*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクT*を導出して設定するものとした。図4に要求トルク設定用マップの一例を示す。
次いで、ブレーキECU66からのVDIMフラグFvが値0であるか否かを判定する(ステップS120)。VDIMフラグFvが値0である場合には、VDIMスイッチ90がオフされているか、あるいはブレーキECU66による車両運動統合制御が実行されていないことになり、この場合には、駆動輪63a,63bに連結された車軸としてのリングギヤ軸32aに出力すべきトルクとしての目標トルクTr*の仮の値である仮目標トルクTrtmpを要求トルクT*に設定すると共に(ステップS130)、目標トルクTr*の所定時間(ここでは本ルーチンの実行間隔)あたりの変化量の上下限値(許容量)である上下限レート値ΔTとして第1の緩変化制約たる所定値T0を設定する(ステップS140)。更に、設定した仮目標トルクTrtmpと上下限レート値ΔTと本ルーチンの前回実行時における目標トルクTr*とに基づいて目標トルクTr*を設定する(ステップS150)。すなわち、ステップS150では、次式(1)に示すように、仮目標トルクTrtmpと目標トルクTr*の前回値に上下限レート値ΔTを加えた値とのうちの小さい方と、目標トルクTr*の前回値から上下限レート値ΔTを減じたものとのうち大きい方を目標トルクTr*として設定する。
ここで、実施例のハイブリッド自動車20では、モータMG1,MG2の目標動作点に応じて昇圧後電圧VHが目標昇圧後電圧VHtagまで昇圧されることになるが、基本的に目標昇圧後電圧VHtagは、モータMG2の回転数Nm2の高く、かつモータMG2に対するトルク指令Tm2*が大きいほど大きくなることから、モータMG2が所定の高回転域にあるときにトルク指令Tm2*の値が大きくなると、目標昇圧後電圧VHtagがより大きな値に設定されることになる。従って、モータMG2が当該高回転域にあるときにトルク指令Tm2*の急増を許容すると、目標昇圧後電圧VHtagがより大きな値に設定されることに起因して昇圧コンバータ55の出力側の平滑コンデンサ57に高電圧が印加されることになり、これは部品保護の観点から好ましいこととはいえず、また搭載スペースの削減といった観点から平滑コンデンサ57の静電容量を小さくすることを困難とする。このため、実施例において上下限レート値ΔTとして設定される所定値T0は、モータMG2が上記高回転域にあるときのモータMG2のトルク変動(上昇)を抑制すべく比較的小さい一定の値として定められている。これにより、要求トルクT*が上昇していく場合には、目標トルクTr*が第1の緩変化制約たる上下限レート値T0と仮目標要求トルクTrtmp(基本的には要求トルクT*)とに基づいて緩変化するように設定されることになるから、特にモータMG2の回転数Nm2が高いときにトルク指令Tm2*の急増に起因した平滑コンデンサ57への高電圧の印加(目標昇圧後電圧VHtagの急増)を抑制して部品保護を図ると共に、車軸としてのリングギヤ軸32aに出力されるトルクの変化に起因したショックを抑制することが可能となる。
Tr* = max(min(Trtmp,前回T*+ΔT),前回T*-ΔT) …(1)
続いて、ここでは目標トルクTr*に基づく車両全体に要求される要求パワーをエンジン22によりまかなうものとして、エンジン22に要求される要求パワーPe*を設定する(ステップS160)。要求パワーPe*は、設定した目標トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものとバッテリ50が要求する充放電要求パワーPb*とロスLossとの和として計算することができる。次いで、設定した要求パワーPe*に基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS170)。ステップS170では、要求パワーPe*とエンジン22を効率よく動作させる動作ラインとに基づいて目標回転数Ne*と目標トルクTe*とが設定される。図5に、エンジン22の動作ラインと回転数NeとトルクTeとの相関曲線とを例示する。同図に示すように、目標回転数Ne*と目標トルクTe*は、上記動作ラインと要求パワーP*(Ne*×Te*)が一定となることを示す相関曲線との交点として求めることができる。
ステップS170にてエンジン22の目標回転数Ne*と目標トルクTe*とを設定したならば、ステップS170にて設定した目標回転数Ne*とリングギヤ軸32aの回転数Nr(Nm2/Gr)と動力分配統合機構30のギヤ比ρ(サンギヤ31の歯数/リングギヤ32の歯数)とを用いて次式(2)に従いモータMG1の目標回転数Nm1*を計算した上で、計算した目標回転数Nm1*と現在の回転数Nm1とに基づく次式(3)の計算を実行してモータMG1のトルク指令Tm1*を設定する(ステップS180)。ここで、式(2)は、動力分配統合機構30の回転要素に関する力学的な関係式である。また、動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図6に例示する。図中、左側のS軸はモータMG1の回転数Nm1に一致するサンギヤ31の回転数を示し、中央のC軸はエンジン22の回転数Neに一致するキャリア34の回転数を示し、右側のR軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。また、R軸上の2つの太線矢印は、モータMG1からトルクTm1を出力したときにこのトルク出力によりリングギヤ軸32aに作用するトルクと、モータMG2から出力されるトルクTm2が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。モータMG1の目標回転数Nm1*を求めるための式(2)は、この共線図における回転数の関係を用いれば容易に導出することができる。そして、式(3)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(3)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。
Nm1* = Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) …(2)
Tm1* = -ρ/(1+ρ)・Te*+k1・(Nm1*-Nm1)+k2・∫(Nm1*-Nm1)dt …(3)
モータMG1の目標回転数Nm1*とトルク指令Tm1*とを計算したならば、バッテリ50の入出力制限Win,Woutと計算したモータMG1のトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で除することによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tmin,Tmaxを次式(4)および式(5)により計算すると共に(ステップS190)、要求トルクTr*とトルク指令Tm1*と動力分配統合機構30のギヤ比ρを用いてモータMG2から出力すべきトルクとしての仮モータトルクTm2tmpを式(6)により計算し(ステップS200)、計算したトルク制限Tmin,Tmaxで仮モータトルクTm2tmpを制限した値としてモータMG2のトルク指令Tm2*を設定する(ステップS210)。このようにモータMG2のトルク指令Tm2*を設定することにより、車軸としてのリングギヤ軸32aに出力する要求トルクTr*を、バッテリ50の入出力制限Win,Woutの範囲内で制限したトルクとして設定することができる。なお、式(6)は、前述した図6の共線図から容易に導き出すことができる。
Tmin = (Win-Tm1*・Nm1)/Nm2 …(4)
Tmax = (Wout-Tm1*・Nm1)/Nm2 …(5)
Tm2tmp = (Tr*+Tm1*/ρ)/Gr …(6)
そして、エンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信し(ステップS220)、再度ステップS100以降の処理を実行する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における燃料噴射制御や点火制御等の制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。
一方、ステップS120にてVDIMフラグFvが値1であると判断されたときには、VDIMスイッチ90がオンされると共にブレーキECU66による車両運動統合制御が実行されており、ハイブリッドECU70は、ステップS100にてブレーキECU66からのトルク制限値Tlimを受信していることになる。このため、ステップS120にて否定判断がなされた時には、仮目標トルクTrtmpとして、ステップS110にて設定した要求トルクT*をステップS100にて入力したトルク制限値Tlimで制限した値、すなわち要求トルクT*とトルク制限値Tlimとの小さい方の値を設定する(ステップS230)。更に、ステップS100にて入力したモータMG2の現在の回転数Nm2に基づいて上下限レート値ΔTを設定する(ステップS240)。ここで、実施例では、モータMG2の回転数Nm2と上下限レート値ΔTとの関係が予め定められて車両運動統合制御の実行時用の上下限レート値設定用マップとしてROM74に記憶されており、上下限レート値ΔTとしては、与えられた回転数Nm2に対応したものが当該マップから導出・設定される。図7に上下限レート値設定用マップの一例を示す。図7の上下限レート値設定用マップ(第2の緩変化制約)は、VDIMフラグFvが値1に設定されているとき、すなわちブレーキECU66により車両運動統合制御が実行されているときにのみ用いられるものであり、基本的にモータMG2の回転数Nm2が低いほど車軸としてのリングギヤ軸32aに出力されるトルクの変動を許容する傾向をもつものである。具体的に説明すると、実施例の上下限レート値設定用マップは、モータMG2の回転数Nm2が値0から第1の閾値Nref1までの領域では上下限レート値ΔTを上記所定値T0よりも大きい値T1に設定し、回転数Nm2が第1の閾値Nref1から当該閾値Nref1よりも大きい第2の閾値Nref2までの領域では上下限レート値ΔTを所定値T0まで回転数Nm2に対して線形的に減少するように設定し、回転数Nm2が第2の閾値Nref2以上となる領域では上下限レート値ΔTを上記所定値T0に設定するように作成されている。なお、値T1は、実験・解析等に基づいて、過大なショックが発生しない程度に車軸としてのリングギヤ32aに出力されるトルクの変動を許容する値として定められる。こうして、仮目標トルクTrtmpおよび上下限レート値ΔTを設定したならば、上述したステップS150にて仮目標トルクTrtmpと目標トルクTr*の前回値に上下限レート値ΔTを加えた値とのうちの小さい方と、目標トルクTr*の前回値から上下限レート値ΔTを減じたものとのうち大きい方を目標トルクTr*として設定すると共に、更に上述のステップS160〜S220の処理を実行した上で、再度ステップS100以降の処理を実行する。
これにより、図8に示すように、時刻t0にVDIMフラグFvが値1に設定されると共にブレーキECU66により車両運動統合制御が実行され、トルク制限値Tlimが比較的小さい値に設定された場合には、VDIMフラグFvが値0に設定されると共にブレーキECU66により車両運動統合制御が実行されていない場合(t2−t0)に比べて、目標トルクTr*が比較的短時間(t1−t0)のうちにトルク制限値Tlimに収束することになる。従って、実施例のハイブリッド自動車20では、モータMG2の回転数Nm2が比較的低いときに駆動輪63a,63bの空転によるスリップが発生している状態を含む挙動不安定状態が発生したとしても、過大なショックを発生させることなく速やかに当該挙動不安定状態を解消することができる。また、実施例のハイブリッド自動車20では、VDIMフラグFvが値1に設定されると共にブレーキECU66により車両運動統合制御が実行されていても、モータMG2の回転数Nm2が高まるにつれて上下限レート値ΔTがより小さな値に設定されることから、モータMG2の回転数Nm2が高い領域では、特にモータMG2の回転数Nm2が高いときにトルク指令Tm2*の急増に起因した平滑コンデンサ57への高電圧の印加(目標昇圧後電圧VHtagの急増)を抑制して部品保護を図ると共に、車軸としてのリングギヤ軸32aに出力されるトルクの変化に起因したショックを抑制することが可能となる。
以上説明したように、実施例のハイブリッド自動車20では、ブレーキECU66によって駆動輪63a,63bの空転によるスリップが発生している状態を少なくとも含む挙動不安定状態を解消するためのトルク制限値Tlimが設定されていないときには、リングギヤ軸32aに出力すべき目標トルクTr*が運転者によるアクセル操作に基づく要求トルクT*と比較的小さな一定値T0に設定される第1の緩変化制約としての上下限レート値ΔTとに基づいて緩変化するように設定され(ステップS120,S130,S140,S150)、設定された目標トルクTr*に基づくトルクがリングギヤ軸32aに出力されるようにエンジン22とモータMG1およびMG2とが制御される(ステップS160〜S220)。また、挙動不安定状態を解消すべくブレーキECU66によりトルク制限値Tlimが設定されているときには、運転者によるアクセル操作に基づく要求トルクT*およびブレーキECU66によるトルク制限値Tlimのうちの小さい方と、第2の緩変化制約としての上下限レート値設定用マップを用いてモータMG2の回転数Nm2が低いほどリングギヤ軸32aに出力されるトルクの変動を許容するように設定される上下限レート値ΔTとに基づいて緩変化するように目標トルクTr*が設定され(ステップS120,S230,S240,S150)、設定された目標トルクTr*に基づくトルクがリングギヤ軸32aに出力されるようにエンジン22とモータMG1およびMG2とが制御される(ステップS160〜S220)。これにより、実施例のハイブリッド自動車20では、ブレーキECU66によりトルク制限値Tlimが設定されないときに上下限レート値ΔTとして設定される所定値T0を部品保護の要請が高まるモータMG2の回転数Nm2が比較的高い状態を基準として定め、ハイブリッド自動車20の挙動が安定しているときに、上下限レート値ΔTとして設定される所定値T0を用いてリングギヤ軸32aに出力されるべき目標トルクTr*を緩変化させることで部品保護を図りつつスムースな走行を実現することが可能となる。また、ブレーキECU66によりトルク制限値Tlimが設定されるときに用いられる上下限レート値設定用マップを第1の緩変化制約としての所定値T0に比べてモータMG2の回転数Nm2が低いほどリングギヤ軸32aに出力されるトルクの変動を許容する傾向をもつものとすることにより、モータMG2(および駆動輪63a,63b)の回転数Nm2(車速V)が比較的低い状態で駆動輪63a,63bの空転によるスリップが発生する等してブレーキECU66によりトルク制限値Tlimが設定されたときには、過大なショックが発生しない程度に要求トルクT*とトルク制限値Tlimとの小さい方に基づく目標トルクTr*の変動を許容して、挙動不安定状態の解消とそれによる部品保護を図ることができる。この結果、実施例のハイブリッド自動車20では、車両挙動の安定化と部品保護の両立を図りつつ、できるだけスムースな走行を実現することが可能となる。
また、上記実施例の上下限レート値設定用マップ(第2の緩変化制約)は、モータMG2の回転数Nm2が低いほど車軸としてのリングギヤ軸32aに出力されるトルクの変動を許容する傾向、すなわち目標トルクTr*の少なくとも減少側の(所定時間あたりの)変化量の許容量をモータMG2の回転数Nm2が低いほど大きくする傾向を有するものである。これにより、ブレーキECU66によって運転者のアクセル操作に基づく要求トルクT*よりも大幅に小さいトルク制限値Tlimが設定されたときに、過大なショックを発生させることなく挙動不安定状態を解消するためのトルク制限値Tlimに基づく駆動力をリングギヤ軸32aに出力することが可能となる。更に、ハイブリッド自動車20は、バッテリ50からの電圧を昇圧してモータMG2側に供給可能な昇圧コンバータ55や平滑コンデンサ57等を含む電機駆動系を有し、当該昇圧コンバータ55は、基本的にモータMG2の回転数が高く、かつモータMG2からのトルク(トルク指令Tm2*)が高いほどバッテリ50からの電圧(昇圧前電圧VL)が昇圧されるように制御される。そして、上記実施例では、ブレーキECU66によるトルク制限値Tlimの設定の有無に拘わらず、少なくもモータMG2の回転数Nm2が所定の高回転域(値Nref2以上の領域)にあるときには目標トルクTr*の変化量の許容量である上下限レート値ΔTが比較的小さい値である所定値T0に設定される。これにより、当該高回転域におけるモータMG2からのトルクの急増を抑え、それにより昇圧コンバータ55による過剰な昇圧に起因した電機駆動系(特に平滑コンデンサ57)の劣化を抑制することができる。
なお、上記実施例のハイブリッド自動車20では、ブレーキECU66によりトルク制限値Tlimが設定されていないときに用いられる上下限レート値ΔT(第1の緩変化設定制約)が一定値である所定値T0とされているが、これに限られるものではなく、例えばモータMG2の回転数Nm2に応じて変化する値とされてもよい。また、上記実施例では、上下限レート値ΔTを用いる関係上、目標トルクTr*の所定時間あたりの変化量の許容量は、上限側(増加側)と下限側(減少側)とで同一の値となるが、これに限られるものではなく、上限レート値と下限レート値とを用いることで目標トルクTr*の所定時間あたりの変化量の許容量を上限側と下限側とで異なるものとしてもよい。更に、上記実施例のハイブリッド自動車20は、モータMG2の動力をリングギヤ軸32aに接続された車軸に出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図9に示す変形例としてのハイブリッド自動車120のように、モータMG2の動力をリングギヤ軸32aに接続された車軸(車輪63a,63bが接続された車軸)とは異なる車軸(図9における車輪63c,63dに接続された車軸)に出力するものに適用されてもよい。また、上記実施例のハイブリッド自動車20は、エンジン22の動力を動力分配統合機構30を介して車輪63a,63bに接続される車軸としてのリングギヤ軸32aに出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図10に示す変形例としてのハイブリッド自動車220のように、エンジン22のクランクシャフトに接続されたインナーロータ232と車輪63a,63bに動力を出力する車軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を車軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えたものに適用されてもよい。
ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。すなわち、実施例では、リングギヤ軸32aに動力を出力可能なモータMG2が「電動機」に相当し、モータMG2と電力をやり取りするバッテリ50が「蓄電手段」に相当し、図3のステップS110の処理を実行するハイブリッドECU70が「要求駆動力設定手段」に相当し、車両運動統合制御を実行すべきときにトルク制限値Tlimを設定するブレーキECU66が「制限駆動力設定手段」に相当し、図3のステップS120〜150,S230,S240の処理を実行するハイブリッドECU70が「目標駆動力設定手段」に相当し、図3のステップS160〜S220の処理を実行するハイブリッドECU70やエンジンECU24、モータECU40の組み合わせが「制御手段」に相当する。また、バッテリ50からの電圧を昇圧してインバータ41,42に供給可能な昇圧コンバータ55が「電圧変換手段」に相当し、昇圧コンバータ55を制御するハイブリッドECU70が「電圧変換制御手段」に相当し、エンジン22が「内燃機関」に相当し、モータMG1および動力分配統合機構30の組み合わせや対ロータ電動機230が「電力動力入出力手段」に相当し、モータMG1が「発電用電動機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。
なお、「電動機」や「発電用電動機」は、モータMG1,MG2のような同期発電電動機に限られず、誘導電動機といったような他の如何なる形式のものであっても構わない。「蓄電手段」は、バッテリ50のような二次電池に限られず、電力動力入出力手段や電動機と電力をやり取り可能なものであればキャパシタといったような他の如何なる形式のものであっても構わない。「要求駆動力設定手段」は、アクセル開度Accと車速Vに基づいて要求トルクT*を設定するものに限られず、運転者の駆動力要求操作に応じて要求駆動力を設定するものであれば、他の如何なる形式のものであっても構わない。「制限駆動力設定手段」は、車両運動統合制御を実行可能なブレーキECU66に限られず、車両が挙動不安定状態にあるとき挙動不安定状態を解消するためにトルク制限値Tlimを設定するものであれば、他の如何なるものであっても構わない。「目標駆動力設定手段」は、要求トルクT*とトルク制限値Tlimと上下限レート値ΔTとに基づいて目標トルクTr*を設定するハイブリッドECU70に限られず、制限駆動力が設定されていないときには目標駆動力を設定された要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定し、制限駆動力が設定されているときには目標駆動力を要求駆動力および制限駆動力のうちの小さい方と第1の緩変化制約に比べて電動機の回転数が小さいほど車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように設定するものであれば、如何なる形式のものであっても構わない。「制御手段」は、目標駆動力に基づく動力が車軸に出力されるように電動機等を制御するものであれば、ハイブリッドECU70とエンジンECU24とモータECU40との組み合わせに限られるものではなく、単一の電子制御ユニットのような他の如何なる形式のものであっても構わない。「内燃機関」は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力するエンジン22に限られず、水素エンジンといったような他の如何なる形式のものであっても構わない。何れにしても、これら実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎず、課題を解決するための手段の欄に記載した発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
本発明は、車両の製造産業等において利用可能である。
本発明の一実施例に係る車両としてのハイブリッド自動車20の概略構成図である。 モータMG1,MG2を含む電機駆動系の概略構成図である。 実施例のハイブリッドECU70により実行される駆動制御ルーチンの一例を示すフローチャートである。 要求トルク設定用マップの一例を示す説明図である。 エンジン22の動作ラインと目標回転数Ne*と目標トルクTe*との相関曲線とを例示する説明図である。 動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を例示する説明図である。 上下限レート値設定用マップの一例を示す説明図である。 目標トルクTr*が時間の経過と共に変化する様子を例示する説明図である。 変形例に係るハイブリッド自動車120の概略構成図である。 他の変形例に係るハイブリッド自動車220の概略構成図である。
符号の説明
20,120,220 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、54a 正極母線、54b 負極母線、55 昇圧コンバータ、56 システムメインリレー、57,59 平滑コンデンサ、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 車輪(駆動輪)、63c,63d 車輪、64a,64b ブレーキホイルシリンダ、65a,65b 車輪速センサ、66 ブレーキ用電子制御ユニット(ブレーキECU)、67 ブレーキアクチュエータ、68 ブレーキマスタシリンダ、69 電子制御式油圧ブレーキユニット(ブレーキユニット)、70 ハイブリッド用電子制御ユニット(ハイブリッドECU)、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、90 VDIMスイッチ、91 第1電圧センサ、92 第2電圧センサ、93 第3電圧センサ、94 Gセンサ、95 ヨーレートセンサ、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、MG1,MG2 モータ、T11〜T16,T21〜26,T31,T32 トランジスタ、D11〜D16,D21〜D26,D31,D32 ダイオード、L リアクトル。

Claims (7)

  1. 駆動輪に連結された車軸に動力を出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段とを有する車両であって、
    運転者による駆動力要求操作に基づいて走行に要求される要求駆動力を設定する要求駆動力設定手段と、
    前記駆動輪の空転によるスリップが発生している状態を少なくとも含む挙動不安定状態にあるときに、該挙動不安定状態を解消するために前記車軸に出力すべき駆動力である制限駆動力を設定する制限駆動力設定手段と、
    前記制限駆動力設定手段により前記制限駆動力が設定されていないときには前記車軸に出力すべき目標駆動力を前記設定された要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定し、前記制限駆動力設定手段により前記制限駆動力が設定されているときには前記目標駆動力を前記設定された要求駆動力および制限駆動力のうちの小さい方と前記第1の緩変化制約に比べて前記電動機の回転数が低いほど前記車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように設定する目標駆動力設定手段と、
    前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記電動機を制御する制御手段と、
    を備える車両。
  2. 前記第2の緩変化制約は、前記目標駆動力の少なくとも減少側の変化量の許容量を前記電動機の回転数が低いほど大きくする傾向を有する制約である請求項1に記載の車両。
  3. 請求項1または2に記載の車両において、
    前記蓄電手段からの電圧を昇圧して前記電動機側に供給可能な電圧変換手段を含む電源回路と、
    前記電動機の回転数が高いほど前記蓄電手段からの電圧が昇圧されるように前記電圧変換手段を制御する電圧変換制御手段とを更に備え、
    前記第1および第2の緩変化制約は、少なくとも前記電動機の回転数が所定の高回転域にあるときには前記目標駆動力の少なくとも増加側の変化量の許容量を所定値に設定する制約である車両。
  4. 請求項1から3の何れか一項に記載の車両において、
    前記駆動輪に連結された車軸に動力を出力可能な内燃機関を更に備え、
    前記制御手段は、前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記内燃機関と前記電動機とを制御する車両。
  5. 前記車軸と前記内燃機関の機関軸とに接続されて電力と動力との入出力を伴って前記内燃機関の動力の少なくとも一部を前記車軸側に出力すると共に前記蓄電手段と電力をやり取り可能な電力動力入出力手段を更に備え、前記電動機は前記車軸または該車軸とは異なる他の車軸に動力を出力可能であり、前記制御手段は、前記設定された目標駆動力に基づく動力が前記車軸に出力されるように前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する請求項4に記載の車両。
  6. 前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含む請求項5に記載の車両。
  7. 駆動輪に連結された車軸に動力を出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段と、運転者による駆動力要求操作に基づいて走行に要求される要求駆動力を設定する要求駆動力設定手段と、前記駆動輪の空転によるスリップが発生している状態を少なくとも含む挙動不安定状態にあるときに、該挙動不安定状態を解消するために車軸に出力すべき駆動力である制限駆動力を設定する制限駆動力設定手段とを有する車両の制御方法であって、
    (a)前記制限駆動力設定手段により前記制限駆動力が設定されていないときには前記車軸に出力すべき目標駆動力を前記要求駆動力と第1の緩変化制約とに基づいて緩変化するように設定し、前記制限駆動力設定手段により前記制限駆動力が設定されているときには前記目標駆動力を前記要求駆動力および前記制限駆動力のうちの小さい方と前記第1の緩変化制約に比べて前記電動機の回転数が低いほど前記車軸に出力される動力の変動を許容する傾向をもった第2の緩変化制約とに基づいて緩変化するように設定するステップと、
    (b)ステップ(a)にて設定された目標駆動力に基づく動力が前記車軸に出力されるように前記電動機を制御するステップと、
    を備える車両の制御方法。
JP2008070300A 2008-03-18 2008-03-18 車両およびその制御方法 Active JP5115261B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070300A JP5115261B2 (ja) 2008-03-18 2008-03-18 車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070300A JP5115261B2 (ja) 2008-03-18 2008-03-18 車両およびその制御方法

Publications (2)

Publication Number Publication Date
JP2009220792A true JP2009220792A (ja) 2009-10-01
JP5115261B2 JP5115261B2 (ja) 2013-01-09

Family

ID=41238040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070300A Active JP5115261B2 (ja) 2008-03-18 2008-03-18 車両およびその制御方法

Country Status (1)

Country Link
JP (1) JP5115261B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145720A1 (ja) * 2022-01-31 2023-08-03 株式会社BluE Nexus 車両用駆動装置の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092580A (ja) * 2002-09-03 2004-03-25 Toyota Motor Corp 車両制御装置及びその制御方法
JP2006115588A (ja) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd 車両のモータトラクション制御装置
JP2006115644A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 車両のモータトラクション制御装置
JP2009029261A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp 車両用駆動力制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092580A (ja) * 2002-09-03 2004-03-25 Toyota Motor Corp 車両制御装置及びその制御方法
JP2006115588A (ja) * 2004-10-13 2006-04-27 Nissan Motor Co Ltd 車両のモータトラクション制御装置
JP2006115644A (ja) * 2004-10-15 2006-04-27 Nissan Motor Co Ltd 車両のモータトラクション制御装置
JP2009029261A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp 車両用駆動力制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145720A1 (ja) * 2022-01-31 2023-08-03 株式会社BluE Nexus 車両用駆動装置の制御装置

Also Published As

Publication number Publication date
JP5115261B2 (ja) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4453765B2 (ja) ハイブリッド車およびその制御方法
JP4462366B2 (ja) 動力出力装置およびこれを備える車両並びに動力出力装置の制御方法
JP2010115059A (ja) 車両およびその制御方法
JP2008168720A (ja) 自動車およびその制御方法
JP2008260428A (ja) 車両およびその制御方法
JP2009143306A (ja) 内燃機関装置およびその制御方法並びに動力出力装置
JP2009189217A (ja) 自動車およびその制御方法
JP2011097666A (ja) 自動車およびその制御方法
JP2009196474A (ja) ハイブリッド車およびその制御方法並びに駆動装置
JP2009160953A (ja) 動力出力装置およびその制御方法並びに車両、駆動装置
JP2013193523A (ja) ハイブリッド車
JP2009214580A (ja) ハイブリッド車およびその制御方法
JP4976990B2 (ja) ハイブリッド車およびその制御方法並びに駆動装置
JP4784300B2 (ja) 自動車およびその制御方法
KR20160129740A (ko) 하이브리드차의 제어 장치
JP5115261B2 (ja) 車両およびその制御方法
JP2008136308A (ja) 電源装置およびこれを搭載する車両並びに電源装置の制御方法
JP4973514B2 (ja) 車両およびその制御方法
JP4301252B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2006044536A (ja) ハイブリッド車およびその制御方法
JP2009165326A (ja) 車両およびその制御方法
JP5018548B2 (ja) ハイブリッド車およびその制御方法
JP4770756B2 (ja) 車両およびその制御方法
JP2009126330A (ja) ハイブリッド車およびその制御方法並びに駆動装置
JP2009262866A (ja) ハイブリッド車およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121001

R151 Written notification of patent or utility model registration

Ref document number: 5115261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3